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Abstract—Recent advances in symbolic music generation pri-
marily rely on deep learning models such as Transformers,
GANs, and diffusion models. While these approaches achieve
high-quality results, they require substantial computational
resources, limiting their scalability. We introduce LZMidi, a
lightweight symbolic music generation framework based on a
Lempel-Ziv (LZ78)-induced sequential probability assignment
(SPA). By leveraging the discrete and sequential structure of
MIDI data, our approach enables efficient music generation on
standard CPUs with minimal training and inference costs. The-
oretically, we establish universal convergence guarantees for our
approach, underscoring its reliability and robustness. Compared
to state-of-the-art diffusion models, LZMidi achieves competi-
tive Fréchet Audio Distance (FAD), Wasserstein Distance (WD),
and Kullback-Leibler (KL) scores, while significantly reducing
computational overhead—up to 30× faster training and 300×
faster generation. Our results position LZMidi as a significant
advancement in compression-based learning, highlighting how
universal compression techniques can efficiently model and
generate structured sequential data, such as symbolic music,
with practical scalability and theoretical rigor.

I. INTRODUCTION

Deep learning–based generative models have achieved re-
markable success in text, image, and audio synthesis. How-
ever, their substantial computational demands—particularly
in sampling procedures such as those employed in diffusion-
based models—pose significant challenges for practical de-
ployment because of high latency and the reliance on spe-
cialized hardware. Recent research has explored more com-
putationally tractable alternatives that maintain competitive
output quality. [22] introduces a learning framework based on
universal sequential probability assignments (SPAs) derived
from the celebrated Lempel-Ziv (LZ78) [26] compression.
Using LZ parsing under stationary and ergodic assump-
tions, the proposed approach represents sequences efficiently
within a tree-based structure. This methodology offers strong
theoretical guarantees on runtime, memory usage and has
demonstrated promising results in text generation, achieving
low-latency training and sampling.

Our present work focuses on the generation of symbolic
music, which refers to the task of generating music in a
structured, discrete format, typically represented as MIDI or
other symbolic encodings rather than raw audio waveforms.
With its discrete structure and finite alphabet, symbolic music
is well-suited to LZ-based SPAs. In this work, we induce an
LZ78-based SPA on symbolic music from the Lakh MIDI

dataset and use this as a tool for symbolic music generation.
Empirical evaluations indicate that LZ78-based SPA pro-
duces music of excellent perceptual quality—quantified using
Fréchet Audio Distance (FAD)—while significantly reducing
both training time and sampling overhead.

Notably, our proposed framework operates efficiently on
standard CPUs, eliminating the need for energy-intensive
GPUs. This not only enhances accessibility for researchers
and practitioners with limited computational resources but
also aligns with sustainability goals by reducing environ-
mental impact. Collectively, these results position LZMidi as
a compelling, resource-efficient alternative to deep learning
approaches in symbolic music generation.

II. RELATED WORK

A. Deep Learning for MIDI Generation

State-of-the-art symbolic music generation predominantly
employs deep learning techniques, with transformer-based
models and diffusion frameworks leading recent advance-
ments. Early influential contributions within the Magenta
suite, such as MusicVAE [20], provided hierarchical VAEs
for capturing long-term musical structure, while Music Trans-
former [12] introduced relative attention mechanisms to
handle long-range dependencies. Transformer-GANs [17]
integrate Transformers with GAN architectures to enhance
sequence coherence and mitigate exposure bias.

Concurrently, diffusion-based works, such as [16] and [19],
advanced symbolic music generation through iterative refine-
ment procedures in continuous and discrete latent spaces,
respectively. Although effective, these approaches remain
computationally intensive. Recent efforts, including fast dif-
fusion GANs [24], attempt to accelerate generation by re-
ducing denoising steps. Motivated by these computational
constraints, our work introduces compression-based universal
sequential probability assignments (SPA) as a lightweight,
scalable alternative achieving comparable generative quality
with significantly reduced training and sampling costs.

B. Universal Information Processing for MIDI data

Prior to the deep learning era, universal algorithms such
as Lempel-Ziv (LZ77, LZ78) [25], [26] and Context-Tree
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Weighting (CTW) [23] inspired extensive research in sym-
bolic music processing. This includes (1) identifying themes
and patterns in musical data, (2) compression-based simi-
larity and perceptual measures, and (3) sequence-prediction
algorithms for music generation [7], [18], [21]. In particular,
in the context of symbolic music generation, [4] employs
CTW to model musical event probabilities based on prior
context, effectively capturing hierarchical and temporal de-
pendencies. This approach directly inspires our use of LZ78-
based sequential probability assignment. Additionally, [14]
also hints at the possible efficacy of LZ78 for universal
sequence modeling, which further motivates our efforts.

C. Compression for Learning

Compression serves as a proxy for learning because an
algorithm’s ability to compress data reflects its capacity to
capture underlying structure. [8] argues that language model-
ing is equivalent to compression, as minimizing the expected
negative log-likelihood minimizes the expected code length.
In essence, a model with lower perplexity compresses text
more efficiently, demonstrating its grasp of statistical reg-
ularities. Moreover, off-the-shelf compressors can function
as probabilistic sequence models by selecting the token that
minimizes compressed file size. Similarly, compressor-based
methods, which operate without explicit model parameters,
have demonstrated competitive performance in classification
tasks, highlighting that compression itself can leverage in-
herent redundancies to approximate learned representations
without conventional model training [13]. 1 Together, these
results imply that minimizing redundancy is tantamount to
learning the data’s probabilistic structure

Further, Merhav and Weinberger [15] examine "universal
simulation", a closely related concept demonstrating that
sampling uniformly from the type class of a training sequence
yields samples exactly matching the source distribution,
thus minimizing dependency (mutual information) with the
training data. They quantify this dependency as the "price
of universality", reflecting the statistical cost incurred when
generating samples without knowledge of the source distribu-
tion. Our LZMidi method is directly motivated by these foun-
dational concepts: it leverages universal compression (via
LZ78-based SPA) to efficiently approximate the underlying
statistical structure of symbolic music. This allows LZMidi
to effectively capture the intrinsic redundancy and repetitive
structure in musical sequences [5], providing a resource-
efficient alternative for symbolic music generation.

III. THEORETICAL BACKGROUND

In this section, we introduce the LZ78-based sequential prob-
ability assignment (SPA) from [22] and outline a theoretical
justification of its application to symbolic music. Consider
a finite, individual sequence xn = (x1, x2, . . . , xn), where

1However, we note that the validity of such compressor-based classifica-
tion methods has sparked some debate regarding their empirical accuracy
evaluation criteria and whether such accuracy comparisons might be inher-
ently biased or overly optimistic.

each symbol xi takes a value from a finite alphabet X . The
tree-based Lempel-Ziv algorithm (LZ78) [26] is a universal
compression algorithm where the number of bits expended
per source symbol converge to the entropy rate, while also
inducing a sequential probability assignment. Following this
idea, [22] derives a practical sequential probability assign-
ment: for a given sequence xt−1 = (x1, x2, . . . , xt−1), to
predict the next symbol xt, we can derive the probability of
observing symbol a given context xt−1 shown below. We
adopt the notations from [22]:

qLZ,γ(a|xt−1) ≜
NLZ(a|xt−1) + γ∑

a′∈X NLZ(a′|xt−1) + γ|X |
. (1)

The probability assignment for symbol a given context xt−1

identifies the fraction of times symbol a followed the context
as xt; it includes a perturbation term directed by γ to
tune how much the probability assignment should respect
the empirical distribution from training data. Further details
regarding the outline of the LZ78-induced SPA are provided
in Appendix A. To justify our use of the LZ tree model,
we present the following theorem, which establishes that an
LZ tree trained on a sufficiently large dataset will closely
approximate the true data distribution:

Theorem III.1 (Universal Convergence of LZ78-SPA). Let
P be the law of a process with components taking values
in a finite alphabet X , and let Qm be the LZ78-based
sequential probability assignment (SPA) constructed using m
i.i.d training sequences from PXn . Then, for any fixed n,

D
(
PXn

∥∥Qm
Xn

) a.s.−−−−→
m→∞

0,

where D(·∥·) denotes the Kullback–Leibler divergence.

Proof Sketch. By construction, each node in the LZ78
tree tracks the empirical frequency of symbols following
a particular context, and since every context with nonzero
probability is visited infinitely often, the frequency with
which a symbol a appears converges to the true condi-
tional probability P (a|context). Consequently, the LZ78-
SPA, which returns q(a|context), an estimate of P via
empirical frequencies, assigns probabilities that approximate
P increasingly accurately with more training data. As a
result, when the assigned probabilities agree with the source
distribution for all positively-probable contexts, the relative
entropy D(PXn∥Qm

Xn) converges to 0 almost surely as
m → ∞.

A full, detailed proof is provided in Appendix B. Here,
we emphasize that the key idea relies on the law of large
numbers, which can be invoked because each relevant context
is visited infinitely often. This allows us to conclude that
local (node-wise) empirical distributions converge to the true
underlying source probabilities.

Remark III.2. While standard universal compression theory
typically relies on ergodicity for asymptotic guarantees, our
practical setting employs fixed-length sequences, making



explicit ergodicity assumptions less critical for our empirical
results.

IV. METHODS

A. Data Structure

We use the Lakh MIDI Dataset (LMD), containing 648,574
samples, each with 256 notes drawn from the alphabet
X = {0, 1, . . . , 89}, to train our LZ-based model for sym-
bolic music generation. Here, 0 represents a rest, 1 denotes
consecutive note continuation, and 2–89 correspond to actual
pitch values. Figure 1 illustrates a sample MIDI sequence.
The dataset’s note distribution (Figure 2) highlights the
dominance of rests (0s) and continuations (1s), while Figure 3
shows that actual note pitches are clustered around the mid-
range. To build the alphabet for the LZ model, we simply
treat each individual note as a symbol within the alphabet
X = {0, 1, 2, . . . , 89}, allowing us to traverse the tree and
update the SPA sequentially for each note in the dataset.

Figure 1: Sample Midi File

Figure 2: Data Distribution includ-
ing 0 & 1

Figure 3: Data Distribution without
0 & 1

B. Baseline Model

For comparison, we use the absorbing state discrete diffu-
sion denoising model (ASD3PM) by Plasser et al. [19], a
discrete diffusion-based generative model for symbolic mu-
sic. ASD3PM outperforms transformer-based autoregressive
models [6] and prior continuous diffusion approaches [16].
ASD3PM follows an iterative denoising process, progres-
sively refining a noisy symbolic sequence. Unlike continuous
diffusion models that rely on latent representations, ASD3PM
directly models discrete token transitions, making it well-
suited for symbolic data like MIDI. The forward process
masks tokens using a transition matrix Qt, introducing an
absorbing state for corrupted inputs, while the reverse process
predicts pθ(x0|xt) using a neural network. Inspired by [3],
it simplifies training by parameterizing loss directly on the
original data x0 and dynamically adjusting diffusion steps
for flexible sampling. Its hierarchical architecture combining

convolutional and transformer layers for refinement helps it
outperform larger latent-space diffusion models [16].

The loss function minimizes the evidence lower bound
(ELBO) on the likelihood of the original data:

LELBO = Eq(x0)

 T∑
t=1

T − t− 1

T
Eq(xt|x0)

[
log pθ(x0|xt)

]
(2)

where T is the number of diffusion steps. This formulation
ensures efficient training by focusing on intermediate diffu-
sion steps. Its hierarchical architecture improves efficiency
by reducing trainable parameters while maintaining fidelity
and diversity.

Note that while ASD3PM is a state-of-the-art discrete dif-
fusion model, it was originally designed for more elaborate
tasks (e.g., polyphonic generation with flexible infilling). Our
LZMidi focuses on simpler unconditional generation.

C. Metrics

We will evaluate the quality of the generated music through
the following set of metrics:

1) Framewise Self-Similarity Metrics (Consistency and Vari-
ance): To evaluate statistical similarity between generated
and original sequences, we adopt the overlapping area (OA)
metric from [16], which quantifies local pitch and duration
distributions. Using a sliding 4-measure window (with a 2-
measure hop), we fit Gaussian PDFs to pitch (p(k)) and
duration (d(k)) distributions. The overlapping area (OA)
between adjacent windows is defined as:

OA(k, k + 1) = 1− erf
(
c− µ1√
2σ1

)
+ erf

(
c− µ2√
2σ2

)
(3)

where c is the intersection of the two Gaussian PDFs,
and (µ1, σ1), (µ2, σ2) are the respective means and standard
deviations.

From the overlapping areas for pitch (OAP ) and duration
(OAD), we compute the consistency (C) and variance (Var)
as follows:

C = max

(
0, 1− |µOA − µGT|

µGT

)
(4)

Var = max

(
0, 1− |σ2

OA − σ2
GT|

σ2
GT

)
(5)

where µOA, σ
2
OA and µGT, σ

2
GT are the means and variances

of generated and ground-truth samples, respectively.

Consistency measures alignment with ground truth, while
variance reflects diversity. Higher consistency suggests re-
alistic sequence structure, while balanced variance prevents
mode collapse. However, strong OA scores alone do not
guarantee perceptual quality, necessitating complementary
evaluation (e.g., FAD). This motivates us to experiment with
alternative qualitative metrics described below.



2) Fréchet Audio Distance (FAD): Fréchet Audio Distance
(FAD), inspired by the Fréchet Inception Distance (FID) [11],
quantifies how closely the statistical distribution of generated
audio aligns with real data. It computes the Fréchet distance
between feature embeddings extracted from a pre-trained
model (e.g., VGGish [9]). Lower FAD scores indicate better
perceptual similarity, making it a robust metric for evaluating
generative quality.
3) KL-Divergence: Kullback-Leibler (KL) divergence mea-
sures the discrepancy between the probability distributions of
real and generated data. While lower KL values suggest better
alignment, it primarily favours distributional similarity over
perceptual quality. Given that KL can favor models producing
mode-collapsed outputs, we emphasize FAD as the primary
metric for evaluating generation fidelity.
4) Wasserstein Distance: While consistency, variance, FAD,
and KL divergence target audio-based evaluations, we also
require a metric that directly examines numerical sequence
distributions—especially for hyperparameter tuning without
relying on costly neural-network inferences. We therefore use
the Wasserstein Distance (WD) [2], [10], which measures the
minimal cost of transforming one distribution into another.
In our setup, we compare feature distributions from real and
generated data; with a lower WD indicating a closer match
between generated outputs and the ground truth.

V. EXPERIMENTS

A. Training and Generation Setup

We trained the LZMidi model using the provided implemen-
tation of LZ-based SPA from [22]. The Lakh MIDI Dataset
was split into an 80/20 train-test split. For training, we
iterated through all samples in the training set, updating the
LZ tree with each sequence. For evaluation, we generated
1,000 samples for each value of block length. All experiments
were conducted on a CPU (Apple M1 Chip, 2021 MacBook).
Following are some key parameters we can fine-tune for our
training and generation of the LZ:

1) Dirichlet Parameter (γ): This parameter, used in the
computation of the sequential probability assignment
(Equation 1), determines the proximity of the SPA to
the empirical distribution. A smaller γ results in the SPA
being closer to the empirical distribution.

2) Top-K: The number of allowed symbols from which
the model predicts.

3) Temperature: This parameter controls the randomness
of the generated output by adjusting the probabilities
of predicted symbols. A value approaching 0 samples
the most likely outcome; a value approaching 1 samples
directly from the SPA; a value approaching ∞ samples
from a uniform distribution over the symbols.

4) Minimum Context: The minimum context length that
the SPA maintains during prediction. We set this value
to 64 in our experiment.

We performed a hyperparameter sweep using Optuna [1] to
find the γ, Top-K, and temperature that optimizes Wasser-
stein distance. We suggest a categorical selection of the

hyperparameters to Optuna for the hyperparameter sweep
with the Wasserstein distance as the objective to minimize.
We observed that γ and temperature affect the generation
quality the most, with a smaller γ ≈ 5 × 10−5 and a
larger temperature T ≈ 0.8 being optimal in terms of the
Wasserstein distance. For the final generation, we choose
γ = 5 × 10−5, T = 0.8, and K = 8 to be our selection
of hyperparameters.

To generate a sample, we randomly select a symbol from
the alphabet as seed data, corresponding to a direct child
node of the LZ root, and generate a sequence of length
256. The generated sequence is then mapped from its integer
representation to note values and post-processed to ensure
that no ‘1’ follows ‘0’. Finally, the sequence is plotted
and converted into both MIDI and WAV formats for metric
computation and audio analysis.

Figure 4: MIDI plots for Generated Samples using the LZMidi Model.

Note that we independently trained the ASD3PM baseline
due to significant differences in sequence length—our setup
uses sequences of 256 tokens, whereas Plasser et al. [19]
trained on 1024-token sequences—making direct use of these
results unsuitable for a fair comparison. [19] reports a 24-
hour training duration on 4x NVIDIA 2080 Ti GPUs. Due
to computational constraints, we fixed our training time to
approximately one hour. We include the metrics of the fully-
trained model in the Appendix C.

B. Results

We computed the consistency and variance metrics by com-
paring generated samples with 1000 randomly sampled se-
quences from both the training and test sets (in Table I).
LZMidi exhibits high consistency and variance for both pitch
and duration, closely matching the dataset statistics. In fact,
variance is greater in all cases for LZMidi.



Figure 5: MIDI plots for Generated Samples using the D3PM Model.

Table I: Consistency and Variance

Training Set Test Set
Pitch Duration Pitch Duration

C Var C Var C Var C Var
LZMidi 0.97 0.92 0.97 0.93 0.97 0.93 0.97 0.94

ASD3PM 0.98 0.85 0.99 0.87 0.98 0.86 0.99 0.87

We evaluate the quality of the generated MIDI samples
using the three aforementioned metrics: Wasserstein Distance
(WD), Fréchet Audio Distance (FAD), and Kullback-Leibler
(KL) Divergence. As shown in Table II, we compare our
generated data to both the training and testing datasets.
LZMidi achieves a much lower Wasserstein Distance (WD)
and Fréchet Audio Distance (FAD) in both the training
and test sets, indicating superior fidelity and distributional
alignment.

Table II: WD, FAD and KL Divergence metrics

Training Test
WD FAD KL WD FAD KL

LZMidi 8.57 0.69 1.42 8.39 0.64 1.37
ASD3PM 27.91 4.22 2.29 27.96 4.05 2.26

C. Training, Generation Time, and Memory Usage

We record the training time, generation time (per sample),
and memory usage of LZMidi to underscore its compu-
tational advantages over deep learning–based methods. Ta-
ble III summarizes these metrics for different L settings.
The metrics for our models are substantially lower than
those of D3PM. For instance, while our training time is
fixed at approximately one hour (reflecting our computational
constraints), [16] report a 6.5-hour training duration on an
Nvidia Tesla V100 GPU.

D. Floating point operations (FLOPS) for ASD3PM Baseline

We analyze the computation (FLOPS) required for sequential
MIDI generation using the ASD3PM baseline. We set the

Table III: Training Time, Generation Time, Memory Usage

Training
Time (s)

Generation
Time

(s/sample)

Model
Size (MB)

LZMidi 107.7 0.016 287.1
ASD3PM 3480 5.4 306.2

sequence length for the generated MIDI files to 256 timesteps
as in the experiments. To evaluate the computational effi-
ciency of our diffusion-based baseline model for symbolic
music generation, we analyzed the floating-point operations
per second (FLOPS) across different layers of the network
during training and inference. Table IV provides a breakdown
of the total FLOPS and the corresponding CPU utilization
metrics for key operations.

Table IV: FLOPs and CPU Utilization of the Diffusion Baseline

Operation Calls Total FLOPs (MFLOPs) Self CPU % CPU Total Time (ms)
aten::addmm 145 620,622.774 37.36% 736.399
aten::bmm 48 12,884.902 6.91% 126.123
aten::mul 1 377.487 1.08% 21.089
aten::add 97 203.424 1.25% 14.255
DataParallel::forward 50 104.858 2.14% 18.332
aten::expand 243 0.00 0.56% 55.675
aten::reshape 245 0.00 0.88% 56.436

VI. CONCLUSION

In this work, we introduced a novel approach to symbolic
music generation using LZ78-based sequential probability as-
signment (SPA). Our method generates high-fidelity musical
samples while substantially reducing computational require-
ments relative to state-of-the-art deep learning methods. Our
experiments show that LZMidi effectively captures musical
patterns, maintaining diversity and consistency metrics that
rival or exceed those of diffusion-based models. Our experi-
ments suggest that LZMidi rivals the diffusion baseline on all
the aforementioned qualitative metrics (WD, FAD, KL) dur-
ing both training and testing. Moreover, the method exhibits
significant computational benefits—lower training/generation
times and reduced memory usage—thus enabling efficient
symbolic music generation on CPUs.

Future work will extend this study by training on longer
sequences (e.g., 64-bar samples), as well as polyphonic se-
quences, and comparing results against fully trained diffusion
models to assess scalability.

Remark VI.1. Some of our generated samples (correspond-
ing to the plots in 4) are attached here for the reader’s
listening.
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APPENDIX

A. LZ78-Based Sequential Probability Assignment for Symbolic Music Generation

In this work, we leverage the LZ78-based Sequential Probability Assignment (SPA) [22] for modeling symbolic music
sequences. The model employs the incremental parsing algorithm of LZ78 to construct a prefix tree representation of
an input training corpus of note events. Unlike conventional deep learning approaches that require extensive parameter
optimization, the LZ78-SPA model learns symbol-by-symbol probability assignments incrementally and efficiently.

Preliminaries and Notation: Let {xt}nt=1 be a sequence of discrete musical symbols drawn from a finite alphabet A, where
|A| = A < ∞. Each symbol xt ∈ A may represent a specific note or a rest indicator. The LZ78 parsing procedure
incrementally partitions the sequence xn = x1x2 · · ·xn into a set of phrases (nodes) that form a growing prefix tree.

We denote by Z(xt) the set of phrases (including the empty root phrase) in the LZ78 parsing of the prefix xt. Each phrase
is a node in the prefix tree. For a given symbol xt, let z(xt) represent the phrase (node) associated with xt, and let zc(xt−1)
represent the LZ78 context of xt, i.e., the phrase prefix excluding the current symbol xt.

Universal Sequential Probability Assignment: We define a sequential probability assignment (SPA) as a family of conditional
distributions:

q = {qt(· | xt−1) : t ≥ 1}, qt(a|xt−1) ∈ M(A), (6)

where qt(a|xt−1) is the probability of symbol a ∈ A given the observed sequence xt−1.

Following [22], our LZ78-SPA conditions the probability assignment for xt on its LZ78 context zc(xt−1). To introduce
smoothness and avoid zero-probability assignments for unseen events, we employ a Dirichlet prior with parameter γ > 0.
This prior acts as an additive smoothing factor. Formally, define N(a|xt−1, zc(xt−1)) as the count of symbol a for phrases
with prior context (zc(xt−1).

The LZ78-based SPA with a Dirichlet prior is given by:

qLZ,γ(a|xt−1) ≜
NLZ(a|xt−1) + γ∑

a′∈X NLZ(a′|xt−1) + γ|X |
. (7)

Equivalently, since
∑

b∈A N(b | xt−1, zc(xt−1)) is the number of times we have visited the context zc(xt−1) in the prefix
tree, this can be written as:

qt(a|xt−1) =
N(a|xt−1, zc(xt−1)) + γ

N(·|xt−1, zc(xt−1)) + γA
,

where
N(·|xt−1, zc(xt−1)) =

∑
b∈A

N(b|xt−1, zc(xt−1)).

Training Procedure: Training the LZ78-SPA consists of two steps:

1) LZ78 Parsing: Given the training corpus of symbolic music, we parse the entire training set using the LZ78 algorithm.
This involves incrementally building a prefix tree, adding a new branch whenever a previously unseen context-symbol
combination is encountered. The result is a tree structure Z(xN ) where N is the length of the entire training set.

2) Count Aggregation and Prior Incorporation: For each node (phrase) in the LZ78 tree, we record the counts N(a |
xt−1, zc(xt−1)) for all symbols a ∈ A that follow the context zc(xt−1). After parsing, these counts are fixed and used
with the Dirichlet prior parameter γ to define the SPA.

Loss Function (Log Loss): The quality of a sequential probability assignment is typically measured by the log loss. For a
given test sequence xn, the log loss under the LZ78-SPA model is:

L(xn) = − 1

n

n∑
t=1

log qt(xt | xt−1).

This log loss corresponds to the negative log-likelihood per symbol and provides a measure of how well the learned model
predicts the sequence. Lower values of L(xn) indicate better predictive performance.



In practice, the LZ78-SPA often achieves asymptotically optimal log loss behavior when compared to Markovian or finite-state
models [22]. For symbolic music generation, this translates into capturing the underlying repetitive and hierarchical patterns
of musical structure while requiring significantly fewer computational resources than typical deep learning approaches.

B. Proof of the Theorem

Definition A.1. Let Qm be the probability model induced by an LZ78 tree built with m equal-length realizations Xn i.i.d.∼ PXn

sampled from source P over alphabet A. Let X(i),n denote the ith such sequence generated. No assumptions are placed on
P .

Remark A.2. In this setting, the depth of the LZ78 tree is upper-bounded by n.

Definition A.3 (Symbol counts). C(a|xn) is the number of times that symbol a appears in xn.

Theorem A.4. Assume that the SPA at each node of the LZ78 tree, q, satisfies q(a|ym) − C(a|ym)
m → 0, for all individual

sequences y. Then as m → ∞,
D(PXn∥Qm

Xn)
a.s.−→ 0.

Proof. First, we define some additional notation:

• When parsing the mth sample at index t, denote the current node of the LZ78 tree by zmt . The subsequence of symbols
seen at zmt until time t is denoted S(zmt ,m, t). Denote the length of this subsequence by ℓ(zmt ,m, t).

• The LZ78 SPA at sample m, step t is denoted q(·|S(zmt ,m, t)). The SPA for a node that has not yet see data is denoted
q(·).

· Consider any Y n ∈ An such that PXn(Y n) > 0.

log
1

Qm
Xn(Y n)

=

n∑
t=1

log
1

q(Yt|S(zmt ,m, t))
.

Fact A.5. Fix t ≥ 1, Y t−1 ∈ An such that PXt−1(Y t−1) > 0. Then, ∀a ∈ A,

C(a|S(zmt ,m, t)))

ℓ(zmt ,m, t)

a.s.−→ PXt|Xt−1(a|Y t) as m → ∞.

Proof. Fix some m > 0, and define

Cm(Y t−1) =

m∑
i=1

1
{
X(i),t−1 = Y t−1

}
.

We can bound ℓ(zmt ,m, t) by a constant plus Cm(Y t−1) on both sides. Note that, for Cm(Y t−1) ≥ t, no returns to the root
occur before reaching zmt , so zmt is a depth-(t− 1) corresponding directly to the prefix Y t−1. Otherwise, zmt is some node
encountered after a return to the root, in which case we cannot say much about ℓ(zmt ,m, t) relative to Cm(Y t−1).

By the law of large numbers, 1
mCm(Y t−1)

a.s.−→ PXt−1(Y t−1) > 0 as m → ∞. Therefore, there almost surely exists some
M such that CM (Y t−1) ≥ t. From this point, consider m > M .

For a lower bound on ℓ(zmt ,m, t), the node zmt was visited for all but maybe the first t times Y t was seen. For an upper
bound, we consider all the possible times zmt was visited that do not correspond to Y t−1, i.e., times zmt was visited after a
return to the root. There is exactly one return to the root for every leaf of the tree, so the number of extra visits is bounded.
So, ∀m > M , almost surely ℓ(zmt ,m, t) = Cm(Y t−1) +O(1).

By the same logic, C(a|S(zmt ),m, t)) = Cm(Y t−1 ⌢a) +O(1), where ⌢ represents sequence concatenation.

By the law of large numbers, 1
mCm(Y t−1) = PXt−1(Y t−1) + op(1), and analogously for 1

mCm(Y t−1 ⌢a). As a result,

C(a|S(zmt ,m, t)))

ℓ(zmt ,m, t)
=

1
m

(
Cm(Y t−1 ⌢a) +O(1)

)
1
m

(
Cm(Y t−1) +O(1)

) =
PXt(Y t−1 ⌢a) + op(1)

PXt−1(Y t−1) + op(1)

a.s.−→ PXt|Xt−1(a|Y t−1),

by Slutsky’s theorem.



Corollary A.6. We know that, almost surely, for sufficiently large m ℓ(zmt ,m, t) = Cm(Y t−1) + O(1). So, by the law of
large numbers, ℓ(zmt ,m, t) almost surely grows unbounded, for any Y t−1 with non-zero measure under P .

Corollary A.7. By assumption, ∀Y t−1 ∈ At−1 with nonzero measure under P ,

q(a|S(zmt ,m, t)) → C(a|S(zmt ,m, t)))

ℓ(zmt ,m, t)
, as ℓ(zmt ,m, t) → ∞.

Applying the fact ℓ(zmt ,m, t)
a.s.−→ ∞, along with Fact A.5, as m → ∞,

q(a|S(zmt ,m, t))
a.s.−→ PXt|Xt−1(a|Y t−1).

By Corollary A.7, the continuous mapping theorem, and Slutsky’s theorem (as n < ∞ is a fixed quantity), for any fixed
Y n with nonzero measure under P ,

log
1

Qm
Xn(Y n)

=

n∑
t=1

log
1

q(Yt|S(zmt ,m, t))

a.s.−→
n∑

t=1

log
1

PXt|Xt−1(Yt|Y t−1)
= log

1

PXn(Y n)
.

Applying this to the relative entropy,

D(PXn∥Qm
Xn) = E

[
logPXn(Xn)

]
+ E

[
logQm

Xn(Xn)
]
= E

[
logPXn(Xn)

]
+

∑
Y n:PXn (Y n)>0

PXn(Y n) log
1

Qm
Xn(Y n)

.

Applying Slutsky’s theorem (using the fact that the summation has a fixed, finite number of terms),∑
Y n:PXn (Y n)>0

PXn(Y n) log
1

Qm
Xn(Y n)

a.s.−→ E
[
logPXn(Xn)

]
,

and, therefore,
D(PXn∥Qm

Xn)
a.s.−→ E

[
logPXn(Xn)

]
− E

[
logPXn(Xn)

]
= 0.

Additionally, in our future work, we intend to compare LZMidi to other symbolic music baselines (e.g., n-gram or transformer
models) for a more direct comparison in unconditional settings.

C. Fully-trained ASD3PM results

In addition to the partially-trained diffusion baseline (ASD3PM) results presented in Section V-B (Plasser et al. [19]), we
provide here the results for the fully-trained ASD3PM diffusion model. We additionally emphasized several key experimental
differences between their setup and ours in 1) Sequence Length (256 vs. 1024 tokens) and 2) Hardware & Training time.

Due to these differences, the following results are not directly comparable but instead provide additional context regarding
the performance achieved by a longer-trained diffusion approach with extended sequences:

Setting Unconditional
Pitch Duration

Metric C Var C Var
ASD3PM 0.992 0.920 0.993 0.937

Table V: Fully-trained metrics for Melody 64 bar setting.

These fully-trained results serve to contextualize the partially-trained ASD3PM baseline discussed in the main text.
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