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Abstract

The rapid development of LLMs has sparked001
extensive research into their factual knowledge.002
Current works find that LLMs fall short on003
questions around low-frequency entities. How-004
ever, such proofs are unreliable since the ques-005
tions can differ not only in entity frequency006
but also in difficulty themselves. So we intro-007
duce FREQUENCYQA benchmark, containing008
283K abstract questions, each instantiated by a009
pair of high-frequency and low-frequency en-010
tities. It ensures a controllable comparison to011
study the role of knowledge frequency in the012
performance of LLMs. Because the difference013
between such a pair is only the entity with dif-014
ferent frequencies. In addition, we use both015
correctness and uncertainty to develop a two-016
round method to evaluate LLMs’ knowledge017
robustness. It aims to avoid possible semantic018
shortcuts which is a serious problem of cur-019
rent QA study. Experiments reveal that LLMs,020
including GPT-4o, exhibit particularly low ro-021
bustness regarding low-frequency knowledge.022
Besides, we find that uncertainty can be used to023
effectively identify high-quality and shortcut-024
free questions while maintaining the data size.025
Based on this, we propose an automatic method026
to select such questions to form a subset called027
FREQUENCYQA-Hard, containing only hard028
low-frequency questions.1029

1 Introduction030

The rapid advancement of large language models031

(LLMs) has promoted a lot of study on their fac-032

tual knowledge and reasoning ability (Wei et al.,033

2024a,b; Hendrycks et al., 2021).034

Sun et al. (2024) and Mallen et al. (2023) com-035

pare LLMs’ performance on questions around en-036

tities with different frequencies. LLMs are found037

struggle to handle tail knowledge. However, the038

questions they study are different and can vary in039

1We provide data and code in supplementary materials,
which will be released upon acceptance.

High Frequency Entity:

Alexis Vuillermoz

(RelationshipCount: 238)

Hypernym: Racer

What type of racing does  [Racer]  primarily participate in?

A. Road bicycle racing.  B. Motorcycle racing. 

C. Mountain biking.  D. Go-kart racing.

Low Frequency Entity:

Jamie Stauffer

(RelationshipCount: 66)

What type of racing does 

Alexis Vuillermoz primarily 

participate in?

A. ... B. ... C. ... D. ...

Answer：
A. Road bicycle racing.

Answer：
B. Motorcycle racing.

What type of racing does 

Jamie Stauffer primarily 

participate in?

A. ... B. ... C. ... D. ...

Abstract Question:

Instantiation Instantiation

Figure 1: An example from FREQUENCYQA

difficulty levels, not only in entity frequencies. As 040

Allen-Zhu and Li (2023) emphasized, we need a 041

more “controlled, synthetic experiment that con- 042

firms the weakness of LLMs” nowadays. Therefore, 043

existing comparisons are not enough since they can 044

not guarantee that the low frequency is the only 045

cause of LLMs’ poor performance. 046

To tackle the issue, we introduce our FREQUEN- 047

CYQA benchmark. Pairs of high-frequency and 048

low-frequency entities share the same question, as 049

shown in Figure 1. The shared abstract question, 050

with a hypernym to represent the two specific en- 051

tities, guarantees that the difference between such 052

a pair is only the entity. This allows for a con- 053

trollable comparison between high-frequency and 054

low-frequency entities. FREQUENCYQA is a large 055

scale dataset containing 283K such question pairs. 056

It is generated through an automatic pipeline base 057

on raw knowledge base, ensuring both diversity and 058

scalability. Through this benchmark, we can com- 059

pletely compare LLM’s performance on different 060

knowledge frequencies. 061
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For a more robust and accurate evaluation, we062

use the multiple-choice format (Hendrycks et al.,063

2021; Geva et al., 2021) in our benchmark. But064

semantic shortcuts (Geirhos et al., 2020) between065

questions and options may help LLMs to guess the066

answer, which is also a common but severe prob-067

lem recently. Thus, we further design a two-round068

method using both correctness and uncertainty to069

evaluate LLMs’ knowledge. During experiments,070

we found that LLMs have very poor robustness, es-071

pecially on low-frequency knowledge, where even072

the powerful GPT-4o also performs badly.073

Recent benchmarks, like SimpleQA (Wei et al.,074

2024a), ensure their difficulty by collecting ques-075

tions adversarially against LLMs’ responses. But076

relying only on accuracy, they ignore the quality077

of their questions, and the difficulty is closely re-078

lated to the models they use. Fortunately, our ex-079

periments find that uncertainty is also an effective080

tool in selecting both high-quality and shortcut-free081

questions while maintaining the benchmark size.082

Combining accuracy and uncertainty, we propose083

a new flexible method to select our subset called084

FREQUENCYQA-Hard for future study. It con-085

tains 81K difficult low-frequency questions with086

high-quality and no semantic shortcuts.087

In summary, we have three main contributions:088

(1) [Resource] We introduce FREQUENCYQA089

benchmark, where a pair of entities share the same090

abstract question. It enables a more controllable091

and reasonable proof that LLMs perform worse092

when the required knowledge is less frequent. (§3)093

(2) [Method] We design a two-round method us-094

ing correctness and uncertainty to evaluate LLMs’095

robust knowledge. [Finding] LLMs can not stand096

such a test, especially on low-frequency knowledge,097

where even GPT-4o performs badly. (§4)098

(3) [Finding] Uncertainty is more helpful to find099

questions with high quality. [Resource] Through100

this, we select FREQUENCYQA-Hard benchmark101

containing only hard and low-frequency questions102

of high quality and no shortcuts. (§5)103

2 Related Works104

2.1 Benchmarking LLMs’ Factuality105

The factuality evaluation of LLMs has recently at-106

tracted significant attention (Wang et al., 2024c).107

Some factuality benchmarks require open-ended108

generation by LLMs, such as SimpleQA (Wei et al.,109

2024a), FreshQA (Vu et al., 2024), SelfAware (Yin110

et al., 2023), CLR-Fact (Zheng et al., 2024a), and111

HaluEval (Li et al., 2023). Such evaluations ei- 112

ther rely heavily on expert annotation, or utilize 113

automatic answer matching that sacrifices evalua- 114

tion accuracy (Min et al., 2023; Chern et al., 2023; 115

Wang et al., 2024b). Other benchmarks adopt 116

the format of Yes-or-No questions (Geva et al., 117

2021; Zhang et al., 2024) or multiple-choice ques- 118

tions (MCQ) (Hendrycks et al., 2021; Wang et al., 119

2024a). These formats allow model responses to 120

be easily parsed and compared with gold labels, 121

enabling solid yet efficient evaluations. 122

2.2 Long-Tail Knowledge 123

Long-tail knowledge (Wei et al., 2024b; Chen et al., 124

2023) is an important aspect of factuality. Kumar 125

et al. (2024) proposes an automatic approach to 126

generate questions for tail entities. Kandpal et al. 127

(2023) find LLMs struggle to learn long-tail knowl- 128

edge. Other works study the influence of knowl- 129

edge frequency: Mallen et al. (2023) introduced 130

PopQA, a long-tail benchmark, and found that mod- 131

els’ performance will change with the frequency 132

of entities in the questions. Sun et al. (2024) also 133

proves this by constructing questions around head, 134

torso, and tail entities. However, questions in these 135

benchmarks are all in the form of open-ended gener- 136

ation, which can not be easily evaluated. They also 137

depend on limited number of templates to produce 138

QA questions from knowledge graphs, which will 139

significantly harm the diversity of the benchmarks. 140

Most importantly, the questions are different, so 141

they may vary in difficulty levels, and thus can not 142

provide fair comparisons. 143

2.3 Abstraction Knowledge 144

Existing works have studied various aspects of ab- 145

straction, for example, entity abstraction (Wu et al., 146

2012; Song et al., 2015), event abstraction (Wang 147

et al., 2024e,d), and conceptual abstraction (Han 148

et al., 2024). Abstraction has been shown to be 149

beneficial for downstream tasks like commonsense 150

reasoning, numerical reasoning, and logical reason- 151

ing (Zhou et al., 2024; Hong et al., 2024). In this 152

paper, we control question difficulty by sharing the 153

same abstraction form between a pair of entities. 154

3 FREQUENCYQA 155

To ensure more fair and controllable comparisons 156

between LLMs’ performance on high-frequency 157

and low-frequency factual knowledge, we propose 158

a new benchmark called FREQUENCYQA. 159
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Hypernym FootballerSeason

Racer
GameBrand

Jamie 

Stauffer
Relationship

Count: 66

Entity

......Alexis Vuillermoz is a 

French road bicycle racer, 

who rides for UCI ProTeam 

Team TotalEnergies......

…… Jamie Stauffer is a 

professional motorcycle racer 

who competes in the Australian 

Superbike Championship......

Alexis 

Vuillermoz
Relationship

Count: 238

Hypernym: Racer

Step 1: Generate a shared abstract question

Step 2: Generate answers for both entities separately

Step 3: Generate a distractor for both entities 

Step 4: Form the multiple-choice question using the four options

Step 5: Reflect and check —> SUCCEED / FAIL

High Frequency Entity: 

Alexis Vuillermoz

Low Frequency Entity: 

Jamie Stauffer

1) Entity Pairs Extraction from DBpedia

FrequencyQA

3) Hard High-Quality Question Selecting

FrequencyQA

- Hard

FrequencyQA

× N

Correctness

Answer :
……

Uncertainty

× N

2) Abstract Question Generation

Figure 2: An overview of our benchmark curation pipeline. It contains three parts. Through the first two parts, (1)
Entity Pairs Extraction from DBpedia and (2) Abstract Question Generation, we can get the whole FREQUENCYQA.
And through the third part, (3) Hard High-Quality Question Selecting, we can get a harder subset, containing only
difficult low-frequency questions with high quality and no semantic shortcut.

3.1 Question Formulation160

For an accurate evaluation, our questions are in the161

form of multiple choice. Although recently there162

are several generative QA benchmarks, like Sim-163

pleQA (Wei et al., 2024a), and also some automatic164

methods (Zheng et al., 2023) to evaluate generated165

answers. There are still significant limitations in166

such generative QAs since the answer should be167

single and indisputable. Questions like What is the168

primary focus or intention behind Civil Procedure169

Rules cannot be included since there are many ways170

to answer this question. However, multiple-choice171

questions do not have such limitations.172

Each piece of data in FREQUENCYQA, shown173

in Figure 1, contains an abstract question shared by174

two entities having the same hypernym. One entity,175

having many relationships in DBpedia (Auer et al.,176

2007), which will be introduced next, is the high-177

frequency entity, and the other, with only a few178

relationships, is the low-frequency one. The ques-179

tion will have different answers for the two entities,180

respectively. Such data form can ensure detailed181

and controllable comparisons between entities with182

different frequencies, and that is why we call it183

FREQUENCYQA. Containing 283K such question184

pairs, the benchmark is constructed through a fully185

automated pipeline, which is cheap and scalable.186

3.2 Curation Pipeline187

In this section, we discuss the data curation pipeline188

for our dataset. As shown in Figure 2, the pipeline189

contains three parts: (1) Entity Pairs Extraction190

from DBpedia, (2) Abstract Question Generation,191

and (3) Hard High-Quality Question Filtering. 192

Here we will introduce the first two parts, used 193

to build FREQUENCYQA, and leave the third part, 194

used to build FREQUENCYQA-Hard, for §5. 195

3.2.1 Entity Pairs Extraction from DBpedia 196

Following Sun et al. (2024), an entity’s frequency 197

is defined by its number of relationships in DB- 198

pedia. High-frequency entities are those whose 199

cumulative relationships account for the first 1/3 200

of all sorted entities, and low-frequency entities are 201

for the last 1/3. Details are shown in Appendix B. 202

In practice, we first get all the hypernyms in 203

DBpedia and classify the entities belonging to them 204

into high-frequent and low-frequent. Then, we map 205

the entities one-by-one to get entity pairs. The 206

reason behind this is that not every random pair of 207

entities can have a shared abstract question easily. 208

For example, it’s hard to write a shared question for 209

Einstein and Apple even though they are all high- 210

frequency entities. But it’s easy for two specific 211

universities to share a same abstract question. In 212

order for our entity pairs to produce high quality 213

abstract questions, we ensure that the two entities 214

have the same hypernym. This allows them to have 215

similar descriptions, making it easier to generate 216

an abstract question. 217

3.2.2 Abstract Question Generation 218

After acquiring the entity pairs, we adopt a multi- 219

step curation pipeline to generate high-quality ab- 220

stract multiple-choice questions: (1) Generate an 221

abstract question (without options) according to the 222

DBpedia descriptions of both entity. (2) Separately 223
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generate the corresponding answers based on the224

descriptions, with length control to alleviate bias225

among candidate answers. (3) Generate distractors226

for both entities with length control. Compared to227

randomly selected distractors, LLM-selected dis-228

tractors generation have demonstrated its effective-229

ness for the high relevance between distractors and230

designated choices (Zheng et al., 2024b). (4) For-231

mulate the final multiple-choice question using the232

four answer candidates above. (5) Proofread the233

question according to the standards below.234

The standards for questions are presented as fol-235

lows: (1) Quality: The questions should have one236

and only one correct answer for both entities. (2)237

Semantic Shortcuts: The correct answer cannot be238

simply guessed by the names of the entities or the239

way the questions are asked. For example, the ques-240

tion: What was the primary operational location241

of Sydney O-Class Tram? A. Oslo, Norway B. Syd-242

ney, Australia C. Stockholm, Sweden D. Melbourne,243

Australia is not allowed since only the correct an-244

swer contains Sydney which is also in the entity’s245

name. (3) Length Bias: The four options in one246

question should have roughly the same length to247

avoid length bias. In summary, the generated ques-248

tions should have high-quality and no shortcuts, in249

semantics or length.250

During the curation, we utilize GPT-4o-mini251

(OpenAI, 2024a) with few-shot expert-written252

Chain-of-thought (CoT) demonstrations (Wei et al.,253

2022), with details provided in Appendix C.254

3.3 Expert Verification255

We enlist the help of three postgraduate students,256

each with extensive experience in NLP research,257

to validate the quality of these generated questions258

through a sample of 200 question pairs. The in-259

struction is the same as the standard (1) given to260

LLMs above. The quality of each pair is decided261

by majority voting. Results show that their total262

agreement (all 3 experts have the same judgement)263

is 88.0%. And 95.5% of the abstract questions are264

considered correct and of high quality both for the265

high-frequency entity and the low-frequency entity,266

demonstrating the reliability of our benchmark.267

3.4 Main Evaluations268

FREQUENCYQA is a large-scale benchmark com-269

prising a total of 283,455 abstract questions, each270

paired with a high-frequency and a low-frequency271

instantiation. Detailed statistics are in Appendix A.272

We experiment with a selection of LLMs on our273

FREQUENCYQA benchmark to investigate their 274

performance on high-frequency and low-frequency 275

questions and also the difference between them. 276

3.4.1 Experiment Setup 277

Metric: We calculate Uncertainty, Accuracy, and 278

Macro F1-score between model predictions and 279

ground truth labels. We apply perplexity-based 280

uncertainty for open source LLMs and verbalized 281

uncertainty for proprietary LLMs due to several rea- 282

sons, with details explained in Appendix D. Thus, 283

we only compare uncertainty between high and low 284

frequency within each setting separately. 285

Models: We experiment with 16 different models, 286

with a full list in Appendix E, and categorize the 287

evaluation into three types: (1) Open Source LLM 288

Zero-Shot (Qin et al., 2023). (2) Open Source LLM 289

Few-Shot (Brown et al., 2020). (3) Proprietary 290

LLM API. 291

3.4.2 Results and Analysis 292

Evaluation results are reported in Table 1. Our 293

observations include: (1) Huge drop in perfor- 294

mance from high-freq to low-freq: All models 295

suffer a performance decrease from high-frequency 296

questions to low-frequency questions in all three 297

settings. For instance, the accuracy and Macro F1- 298

score of Llama-3-8B drop up to about 14 points in 299

the few-shot setting. Proprietary models like GPT- 300

4o are no exception. These all prove that LLM’s 301

performance is closely related to the frequency of 302

the knowledge in the corpus. (2) Increased Un- 303

certainty from high-freq to low-freq: Similarly, 304

the uncertainty of LLMs all increase from high- 305

frequency questions to low-frequency questions. 306

For example, the uncertainty difference of Gemma- 307

2-9B is up to about 86 points when using zero-shot. 308

The uncertainty in the zero-shot setting is generally 309

higher than in the few-shot setting, and the differ- 310

ence is also more pronounced. We think it may 311

be because LLMs find some familiar examples in 312

the few-shot setting, which decreases their uncer- 313

tainty. In spite of this, the difference is still clear 314

between high-freq and low-freq. These all prove 315

that LLMs not only perform better but also are 316

more confident about high-frequency knowledge. 317

(3) Few-shot helps a lot only for LLMs without 318

instruction-tuning: Most non-instruction-tuned 319

LLMs show a huge improvement in performance 320

from zero-shot to few-shot, but performance is sim- 321

ilar for those instruction-tuned LLMs. This could 322

be because the few-shot examples only teach LLMs 323
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Models
High Freq Question Low Freq Question Average Difference (H –> T)
Unc. Acc Ma-F1 Unc. Acc Ma-F1 Unc. Acc Ma-F1 Unc. Acc Ma-F1
(↓) (↑) (↑) (↓) (↑) (↑) (↓) (↑) (↑)

Random - 25.29 25.29 - 25.22 25.22 - 25.26 25.26 - ↓ 0.07 ↓ 0.07
Majority - 25.70 10.22 - 25.14 10.04 - 25.42 10.13 - ↓ 0.56 ↓ 0.18

LLM (Open Source) + Zero-Shot
Llama-3 8B 54.33 65.90 63.60 81.54 53.83 51.29 67.94 59.87 57.44 ↑ 6.11 ↓ 12.07 ↓ 12.30
Llama-3-Instruct 8B 77.55 80.72 80.71 117.41 69.03 68.95 97.48 74.88 74.83 ↑ 39.86 ↓ 11.69 ↓ 11.76
Llama-3.1 8B 55.91 65.29 63.31 83.35 52.66 50.52 69.63 58.98 56.92 ↑ 27.44 ↓ 12.63 ↓ 12.78
Llama-3.1-Instruct 8B 58.97 80.06 80.08 87.05 69.99 69.94 73.01 75.03 75.01 ↑ 28.08 ↓ 10.07 ↓ 10.14
Gemma-2 9B 124.97 64.50 64.80 211.34 52.24 51.23 168.16 58.37 58.01 ↑ 86.37 ↓ 12.26 ↓ 13.57
Phi-3.5-mini-Instruct 4B 27.81 72.81 72.78 39.80 65.26 65.00 33.81 69.04 68.89 ↑ 11.99 ↓ 7.55 ↓ 7.78
Falcon2 11B 56.93 70.72 69.80 87.31 58.07 56.70 72.12 64.40 63.25 ↑ 30.38 ↓ 12.65 ↓ 13.10
Mistral-v0.3 7B 39.83 65.55 63.11 56.99 53.36 50.26 48.41 59.46 56.69 ↑ 17.16 ↓ 12.19 ↓ 12.85
Mistral-v0.3-Instruct 7B 44.73 73.53 73.14 66.09 63.05 62.40 55.41 68.29 67.77 ↑ 21.36 ↓ 10.48 ↓ 10.74

LLM (Open Source) + Few-Shot
Llama-3 8B 21.89 75.57 75.55 23.75 61.00 61.01 22.82 68.29 68.28 ↑ 1.86 ↓ 14.57 ↓ 14.55
Llama-3-Instruct 8B 26.20 79.94 79.92 28.70 67.98 67.95 27.45 73.96 73.93 ↑ 2.50 ↓ 11.96 ↓ 11.96
Llama-3.1 8B 20.82 74.91 74.89 22.62 62.00 62.00 21.72 68.46 68.45 ↑ 1.81 ↓ 12.91 ↓ 12.90
Llama-3.1-Instruct 8B 20.63 79.74 79.74 22.48 69.09 69.07 21.56 74.42 74.40 ↑ 1.85 ↓ 10.65 ↓ 10.66
Gemma-2 9B 20.26 80.10 80.08 22.36 68.36 68.31 21.31 74.23 74.20 ↑ 2.10 ↓ 11.74 ↓ 11.77
Phi-3.5-mini-Instruct 4B 11.02 73.68 73.67 11.85 67.46 67.33 11.44 70.57 70.50 ↑ 0.83 ↓ 6.22 ↓ 6.34
Falcon2 11B 16.42 77.11 77.01 17.77 65.92 65.75 17.10 71.52 71.38 ↑ 1.35 ↓ 11.19 ↓ 11.26
Mistral-v0.3 7B 13.89 75.55 75.53 14.99 62.88 62.85 14.44 69.22 69.19 ↑ 1.10 ↓ 12.67 ↓ 12.68
Mistral-v0.3-Instruct 7B 15.97 74.46 74.40 17.40 65.51 65.35 16.69 69.99 69.87 ↑ 1.43 ↓ 8.95 ↓ 9.05

LLM (Proprietary) API
GPT4o-mini (Zero-Shot) 13.52 85.61 85.58 18.34 73.85 73.73 15.93 79.73 79.66 ↑ 4.82 ↓ 11.76 ↓ 11.85
GPT4o-mini (Few-Shot) 25.74 84.78 84.69 38.17 72.76 72.47 31.96 78.77 78.58 ↑ 12.43 ↓ 12.02 ↓ 12.22
GPT4o-mini (CoT) 10.53 86.25 86.25 12.27 74.39 74.40 11.40 80.32 80.32 ↑ 1.74 ↓ 11.85 ↓ 11.85
GPT4o (Zero-Shot) 14.18 93.86 93.95 30.98 85.76 86.69 22.58 89.81 90.32 ↑ 16.80 ↓ 8.10 ↓ 7.26
GPT4o (Few-Shot) 28.41 93.94 93.95 45.81 86.54 86.75 37.11 90.24 90.35 ↑ 17.40 ↓ 7.40 ↓ 7.20
GPT4o (CoT) 10.39 92.40 92.47 18.36 85.47 85.72 14.38 88.93 89.10 ↑ 7.97 ↓ 6.93 ↓ 6.75

Table 1: Performance of various LLMs on the testing set of FREQUENCYQA. Unc., Acc, and Ma-F1 denote
Uncertainty, Accuracy, and Macro F1-score. The Difference column shows how scores change from high-frequency
questions to low-frequency questions. The best performances within each method are underlined, and the best
among all methods are bold-faced. And for the Difference column, We underline the largest difference within each
method and bold the one among all methods. More results can be seen in Table 10.

how to do multiple-choice questions, while those324

instruction-tuned ones have already learned. (4)325

CoT lowers uncertainty but does not awlays aid326

performance: It’s obvious that after the CoT in-327

ference, LLMs are more sure about their answers.328

However, results show that the average accuracy of329

GPT-4o even drops after adding CoT, which means330

CoT can not always help such factual questions.331

4 Robust Knowledge Measurement332

With the help of FREQUENCYQA, we can conduct333

a more detailed and controllable study of the factual334

knowledge of LLMs.335

When considering how humans tackle multiple-336

choice questions, it’s often the case that we do not337

really know the correct answers. Instead, we rely338

on semantic shortcuts within the questions to make339

educated guesses. Although we intentionally ex-340

clude these shortcuts when constructing the bench-341

mark, they are difficult to eliminate entirely from342

multiple-choice questions. Such a situation often343

occurs even in human exam questions. Therefore, 344

we need to devise an effective method to evaluate 345

the robustness of factual knowledge of LLMs in 346

the form of multiple-choice questions. 347

4.1 The Definition of Robust Knowledge 348

We categorize LLM’s results into four scenarios 349

based on its uncertainty and the correctness of its 350

answers. The uncertainty pertains to the statement 351

based on pure Question+Answer (without options), 352

which isolates the correct knowledge without the 353

influence of the three distractors. Details are in 354

Appendix D. Meanwhile, the correctness refers to 355

the original multiple-choice question. 356

Low Uncertainty & Correct Answer: LLM 357

shows confidence about the correct knowledge and 358

also answers the question correctly. In this case, 359

we consider the LLM to possess robust knowledge. 360

High Uncertainty & Incorrect Answer: LLM 361

expresses uncertainty and answers incorrectly. So, 362

we conclude that the LLM lacks the knowledge. 363

High Uncertainty & Correct Answer: LLM is 364
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Models First Round Second Round
High Low Avg. Diff High Low Avg. Diff

Open Source LLM
Llama-3 8B 75.57 61.00 68.29 ↓ 14.57 66.09 (-9.48) 39.15 (-21.86) 52.62 (-15.67) ↓ 26.95 (+12.38)
Llama-3-Instruct 8B 79.94 67.98 73.96 ↓ 11.96 69.04 (-10.91) 43.50 (-24.49) 56.27 (-17.69) ↓ 25.54 (+13.58)
Llama-3.1 8B 74.91 62.00 68.46 ↓ 12.91 66.27 (-8.64) 40.35 (-21.65) 53.31 (-15.15) ↓ 25.92 (+13.01)
Llama-3.1-Instruct 8B 79.74 69.09 74.42 ↓ 10.65 72.89 (-6.85) 43.91 (-25.19) 58.40 (-16.02) ↓ 28.98 (+18.34)
Llama-3.2 3B 68.89 57.26 63.08 ↓ 11.63 59.15 (-9.73) 38.19 (-19.07) 48.67 (-14.41) ↓ 20.96 (+9.33)
Llama-3.2-Instruct 3B 71.43 62.12 66.78 ↓ 9.32 64.14 (-7.30) 40.19 (-21.93) 52.17 (-14.62) ↓ 22.68 (+14.63)
Gemma-2 2B 62.99 50.93 56.96 ↓ 12.06 52.54 (-10.44) 35.40 (-15.53) 43.97 (-12.99) ↓ 17.14 (+5.09)
Gemma-2 9B 80.10 68.36 74.23 ↓ 11.74 71.26 (-8.84) 46.98 (-21.38) 59.12 (-15.11) ↓ 24.28 (+12.54)
Phi-3.5-mini 4B 73.68 67.46 70.57 ↓ 6.22 67.08 (-6.60) 44.39 (-23.06) 55.74 (-14.84) ↓ 22.69 (+16.47)
Falcon2 11B 77.11 65.92 71.52 ↓ 11.19 64.27 (-12.84) 43.37 (-22.55) 53.82 (-17.70) ↓ 20.90 (+9.71)
Mistral-v0.3 7B 75.55 62.88 69.22 ↓ 12.67 68.75 (-6.80) 39.81 (-23.07) 54.28 (-14.94) ↓ 28.94 (+16.27)
Mistral-v0.3-Instruct 7B 74.46 65.51 69.99 ↓ 8.95 68.25 (-6.21) 41.19 (-24.32) 54.72 (-15.27) ↓ 27.06 (+18.10)

Proprietary LLM
GPT4o-mini 84.78 72.76 78.77 ↓ 12.02 71.00 (-13.78) 33.16 (-39.60) 52.08 (-26.69) ↓ 37.83 (+25.81)
GPT4o 93.94 86.54 90.24 ↓ 7.40 79.85 (-14.09) 25.50 (-61.04) 52.68 (-37.57) ↓ 54.34 (+46.94)

Table 2: Accuracy scores in LLMs’ robust knowledge measurement. We also report the changes in the scores from
the first round to the second round. The best performances within each method are underlined, and the best among
all methods are bold-faced. And for the Difference column and values in parentheses, We underline the largest
difference within each method and bold the one among all methods.

unsure but answers correctly. This indicates that365

it may retain the correct knowledge, but the mem-366

ory is vague, or that the semantic shortcuts in the367

question lead to the correct answer.368

Low Uncertainty & Incorrect Answer: LLM is369

confident yet answers incorrectly. This could result370

from the LLM recalling incorrect knowledge or371

from misleading distractors in questions.372

In the first two categories, we can determine373

whether the LLM truly possesses the knowledge.374

However, in the latter two cases, multiple factors375

influence the final results, and the LLM’s grasp of376

knowledge is not robust.377

This classification method leverages the378

strengths of both multiple-choice and generative379

questions, since we collect the uncertainty score380

without the distractors. While multiple-choice381

questions are easy to evaluate, they may allow382

for shortcuts; generative questions, on the other383

hand, are the opposite. Our method capitalizes on384

the uncertainty inherent in generative questions,385

which do not have shortcuts, and the accuracy of386

easily parsed answers provided by multiple-choice387

questions. This approach ensures that evaluation388

remains straightforward while fully addressing the389

potential for shortcuts.390

4.2 The Two-Round Measurement391

We introduce our two-round measurement, which392

can be applied to any multiple-choice benchmarks,393

based on the four categories. In the first round,394

we present multiple-choice questions to evaluate395

LLM’s performance. Then, results are classified 396

into four categories. For questions falling into the 397

latter two cases (high-uncertainty correct & low- 398

uncertainty incorrect), we will conduct a second 399

round questioning. Scores will be modified if the 400

correctness of any questions changes in this round. 401

For questions requiring reassessment in the sec- 402

ond round, we ask LLMs to judge whether the four 403

statements, with details in Appendix D, are true 404

or false. The LLM is considered to truly possess 405

the knowledge only when all four statements are 406

accurately judged. On one hand, the second round 407

provides an opportunity for LLMs to correct the 408

answer by breaking distractors into separate ques- 409

tions, and on the other hand, it identifies questions 410

where the LLMs simply guess the correct answers. 411

Compared to breaking down the multiple-choice 412

questions into four correctness judgments directly 413

from the start, our two-round approach offers a 414

comprehensive analysis of how LLMs’ perfor- 415

mance changes from the first to the second stage. 416

It leverages both uncertainty and correctness, pro- 417

viding deeper insights into LLMs’ confidence and 418

robustness regarding the factual knowledge they 419

retain. Additionally, this method enables us to de- 420

termine whether a particular result is due to LLM’s 421

lack of knowledge or the shortcuts and misleading 422

distractors in the multiple-choice questions. 423

Although the second round of evaluation is 424

stricter, our FREQUENCYQA benchmark ensures 425

fair classification and comparison between high- 426

frequency and low-frequency questions under the 427
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Figure 3: Heatmaps illustrating how subset quality changes with incorrect model number and high uncertainty
remaining ratio. The former refers to the minimum number of times that each remaining question in the subset is
answered incorrectly. The latter refers to the proportion of high-uncertainty questions that are retained in the subset.

same setting. Because we have a shared abstract428

question for each pair of entities, controlling other429

factors which may affect LLM’s uncertainty and ac-430

curacy. Thus, we can rule out all the other factors431

to purely compare the difference between high-432

frequency and low-frequency knowledge.433

4.3 Experiments and Analysis434

Here, we conduct the experiments using this435

method to measure LLMs’ knowledge robustness436

in a few-shot manner. Results are shown in Table 2437

There are very interesting observations from the438

results: (1) GPT-4o and GPT-4o-mini can not439

stand the test of robust knowledge measurement440

especially on low-frequency knowledge: Their441

performance is still very good on high-frequency442

questions after the second round but drops a lot443

on low-frequency ones. The accuracy of GPT-444

4o on low-frequency questions after the second445

round is only 25.50, about 61 points lower than the446

first round. Its performance is even the worst of447

all the evaluated models, with GPT-4o-mini being448

the second-to-last. (2) The LLMs’ grasp of low-449

frequency knowledge is less robust than that450

of high-frequency knowledge: Performance of451

LLMs in the second round all drop much more on452

low-frequency questions than on high-frequency453

questions. For example, in all of the open source454

LLMs, the accuracy of Llama-3.1-8B-Instruct in455

the second round, whose average performance is456

the best in the first round, dropped up to about457

25 points on low-frequency questions while only458

about 7 points on high-frequency questions. (3)459

LLMs which can stand the test of robust knowl-460

edge measurement must have a very accurate461

grasp of low-frequency knowledge: LLMs whose462

average accuracy in the second round is higher than463

55 are all those who performed relatively better on464

the low-frequency questions. This illustrates the465

importance of the LLMs mastering low-frequency466

knowledge if they want to be reliable models in the 467

aspect of factual knowledge. 468

5 FREQUENCYQA-Hard 469

Directly collected questions, especially the high- 470

frequency part, are a bit simple for today’s LLMs. 471

More importantly, they may have low quality and 472

semantic shortcuts. So we introduce a new method 473

to select a subset called FREQUENCYQA-Hard, 474

containing only difficult, low-frequency questions 475

that have high quality and no semantic shortcuts. 476

5.1 Hard High-Quality Question Filtering 477

The filtering method utilizes both correctness and 478

uncertainty, similar to the last section. Previous 479

benchmarks, like SimpleQA (Wei et al., 2024a) and 480

MMLU-Pro (Wang et al., 2024a), were collected 481

adversarially based on LLMs’ responses to ensure 482

question difficulty. We enhance this method by 483

also considering LLMs’ uncertainty to achieve the 484

selection of high-quality, shortcut-free questions. 485

As illustrated in the third part of Figure 2, we col- 486

lect the correctness and uncertainty from six open- 487

source LLMs, listed in Appendix E, for questions 488

with low-frequency entities. Different from above, 489

both metrics here are about the entire multiple- 490

choice questions, considering all the four options’ 491

quality. We choose the questions that many mod- 492

els answer incorrectly and exhibit high uncertainty 493

for our hard subset. We define two hyperparame- 494

ters: incorrect model number and high uncertainty 495

remaining ratio. The former is the minimum num- 496

ber of times that each remaining question is an- 497

swered incorrectly. The latter is the proportion of 498

high-uncertainty questions (sort by the sum of the 499

uncertainty of all models) retained in the subset. 500

The method is designed based on this assump- 501

tion: Low-quality questions and those with seman- 502

tic shortcuts are often associated with correct an- 503
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Method Backbone Unc. Acc Ma-F1

Open Source
LLM

Llama-3 8B 25.04 27.95 27.74
Llama-3-Instruct 8B 30.57 22.38 22.32
Llama-3.1 8B 23.87 28.76 28.40
Llama-3.1-Instruct 8B 23.77 27.06 26.59
Llama-3.2 3B 26.97 27.10 27.05
Llama-3.2-Instruct 3B 27.04 28.68 28.65
Gemma-2 2B 31.07 22.80 22.35
Gemma-2 9B 23.67 24.71 24.64
Phi-3.5-mini 4B 12.42 31.87 31.19
Falcon2 11B 18.65 23.70 23.64
Mistral-v0.3 7B 15.69 23.96 23.74
Mistral-v0.3-Instruct 7B 18.36 23.65 23.25

Proprietary
LLM

GPT4o-mini 46.49 38.13 37.82
GPT4o 54.66 69.98 70.02

Table 3: Performance of various LLMs on the testing
set of FREQUENCYQA-Hard. Unc., Acc, and Ma-F1,
denote Uncertainty, Accuracy, and Macro F1-score. The
best performances within each method are underlined
and the best among all methods are bold-faced.

swers and low uncertainty across different mod-504

els, as our benchmark is constructed by LLMs-505

generated questions. The rationale behind this is as506

follows: (1) For low-quality questions, if the ques-507

tion or answer is incorrect, it is likely that the LLM508

did not generate it from the descriptions but rather509

from its internal knowledge. Consequently, mod-510

els may display high confidence and yield correct511

answers. (2) For questions containing shortcuts,512

models may cheat through shortcuts, resulting in513

lower uncertainty and higher accuracy. These will514

all be proved in the following experiments.515

5.2 Parameters Chosen by Expert Verification516

To validate our filtering method, we invite experts517

to annotate the shortcuts in the 200 randomly sam-518

pled questions in the same setting mentioned in519

§3.3. The instruction is the same as the standard520

(2) given to LLMs above. Results show that 9.4%521

of the 95.5% correct and high quality questions are522

identified as having semantic shortcuts.523

Then, we examine how the following metrics524

change with different settings regarding correctness525

and uncertainty, which are illustrated in Figure 3:526

(1) Remaining Low-Quality Ratio (the propor-527

tion of remaining low-quality problems relative528

to the original number of low-quality problems),529

(2) Remaining Shortcut Ratio (the proportion of530

remaining problems with shortcuts relative to the531

original number of problems with shortcuts), (3)532

GPT-4o Accuracy (the accuracy of GPT-4o on the533

remaining questions), and (4) Remaining Ques-534

tion Count (the size of the remaining questions).535

The results suggest that both uncertainty and cor-536

rectness contribute to the selection of high-quality,537

shortcut-free questions, thereby demonstrating the 538

effectiveness of our method. While it is expected 539

that different models’ correctness would aid in iden- 540

tifying more challenging questions, it is notewor- 541

thy that uncertainty proved to be more effective in 542

selecting high-quality and shortcut-free questions 543

while maintaining the dataset size, validating the 544

inclusion of uncertainty in our filtering method. 545

Finally, we choose to set incorrect model number 546

to 3 and high uncertainty remaining ratio to 0.8 547

according to Figure 3. It is a trade-off between 548

quality, difficulty, and subset size. In this setting, 549

only 1.5% of the total questions are of low quality, 550

and 2.1% with shortcuts. Finally, the subset size 551

is 81K, with a GPT-4o accuracy of 70%. Detailed 552

statistics are shown in Appendix A. 553

5.3 Experiments and Analysis 554

Then we conduct experiments on FREQUENCYQA- 555

Hard in a few-shot manner, with results shown in 556

Table 3. In the multiple-choice question format, 557

the open-source LLMs all significantly underper- 558

form, indicating the difficulty of our benchmark. 559

For the proprietary LLMs, GPT-4o-mini also has 560

a poor performance with an accuracy of about 38, 561

even though we do not use it when constructing the 562

subset. GPT-4o is better with an accuracy of about 563

70, but still has a huge room for future enhance- 564

ment. And, predictably, its knowledge robustness 565

will drop much more on this benchmark according 566

to our experiments in §4.3. 567

6 Conclusions 568

In this paper, we first introduce FREQUENCYQA 569

benchmark to evaluate LLMs’ factual knowledge, 570

with a fully automatic pipeline. This benchmark 571

allows for more controllable and detailed compar- 572

isons between high-frequency and low-frequency 573

knowledge of LLMs. Then, we propose a two- 574

round method utilizing correctness and uncertainty 575

to measure LLMs’ knowledge robustness. And we 576

are surprised to find that even powerful LLMs like 577

GPT-4o can not stand such a test, especially on the 578

low-frequency knowledge. At last, we discover that 579

uncertainty is more effective in filtering out ques- 580

tions with low quality and shortcuts compared with 581

correctness, which is often used by recent works. 582

Based on this method, we provide a subset called 583

FREQUENCYQA-Hard, which contains only diffi- 584

cult low-frequency questions of high quality and 585

no shortcuts for future study. 586
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Limitations587

While we contribute valuable resources, methods,588

and findings to advance the probing of LLMs’ fac-589

tual knowledge, several limitations still exist that590

cannot be covered in this single work.591

In this paper, we provide a shared abstract ques-592

tion with the entities being the only varying part.593

However, due to the sharing of such abstract ques-594

tions, it is difficult to contain more entities with595

different frequencies in the same question because596

many entities lack sufficient shared features to gen-597

erate common questions.598

Our approach ensures that the difference be-599

tween a pair is only the entity. Future research600

could investigate methods for measuring the entire601

knowledge frequency required to solve the ques-602

tions, rather than limiting it to entity frequency. We603

believe it is a challenging but valuable task.604

Additionally, our focus is on fixed knowledge,605

but fast-changing factual knowledge (Do et al.,606

2024b) and other knowledge (Do et al., 2024a;607

Wang et al., 2022, 2023) also deserves atten-608

tion. Specifically, exploring how knowledge fre-609

quency can assist LLMs in acquiring new infor-610

mation (Choi et al., 2023; Zong et al., 2023) is a611

worthwhile area for further study.612

Ethics Statement613

Offensive Content Elimination. Our benchmark614

curation pipeline, which involves generating con-615

tent using LLMs, requires stringent measures to616

ensure that generated responses are free from offen-617

sive material. We manually review a random sam-618

ple of 200 data instances from FREQUENCYQA619

for any offensive content. Based on our annota-620

tions, we have not detected any offensive content.621

Therefore, we believe our dataset is safe and will622

not yield any negative societal impact.623

Licenses. We will share our code under the MIT li-624

cense, allowing other researchers free access to our625

resources for research purposes. Our dataset will be626

released under a CC license, also providing schol-627

ars with free access. We take full responsibility for628

any rights violations or issues related to the data629

license. The DBpedia dataset used in this paper630

is shared under the CC BY-SA license, permitting631

its use for research. As for language models, we632

access all open-source LMs via the Huggingface633

Hub (Wolf et al., 2020). All associated licenses634

permit user access for research purposes, and we635

have agreed to adhere to all terms of use.636

Annotations. For expert verifications, we have 637

obtained IRB approval and support from our insti- 638

tution’s department, enabling us to invite expert 639

graduate students to validate the quality of our data. 640

They all agree to participate voluntarily without be- 641

ing compensated. We have made significant efforts 642

to eliminate offensive content, thereby ensuring 643

that no annotators are offended. 644
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Appendices1148

A Benchmark Statistics1149

FREQUENCYQA is a large-scale benchmark com-1150

prising a total of 283,455 abstract question pairs,1151

each paired with a high-frequency and a low-1152

frequency entity. We guarantee that each entity1153

corresponds to a single question sourced from 91661154

hypernyms, to ensure no overlap. We partition our1155

data into training, validation, and testing splits fol-1156

lowing an 8:1:1 ratio, ensuring that entities of dif-1157

ferent frequency intervals are evenly distributed in1158

each split. Specific details are shown in Table 4.1159

And for FREQUENCYQA-Hard, there are 81,1361160

high-quality and shortcut-free questions with low-1161

frequency entities from 4,876 hypernyms in total,1162

with details shown in Table 5.1163

Split #Q. Pair #Entity #Hyper. #H. R. #L. R.
Train 226,762 453,524 8,430 628 76
Valid 28,345 56,690 3,316 627 76
Test 28,348 56,696 3,314 629 76

Total 283,455 566,910 9,166 628 76

Table 4: The statistics of FREQUENCYQA benchmark.
#Q. Pair refers to the number of question pairs. Hyper.
means hypernym. #H. R. and #L. R. refer to the average
number of relationships of high-frequency entities and
low-frequency entities respectively.

Split #Q. = #Entity #Hyper. #L. R.

Train 65,057 4,396 77.45
Valid 7,978 1,466 77.23
Test 8,101 1,484 77.65

Total 81,136 4,876 77.44

Table 5: The statistics of FREQUENCYQA-Hard bench-
mark. Here the number of questions is equal to the
number of entities since it only has low frequency enti-
ties.

For benchmark quality, we further compute the1164

correctness of the annotated date in §3.3 coming1165

from the train, validation, and test set separately.1166

The results presented in Table 6 show the high cor-1167

rectness in all splits of our benchmark. Besides,1168

our labeling is very strict. If either of the questions1169

in one pair is wrong, we will judge the whole ques-1170

tion pair incorrect. Since each pair contains two1171

questions, actually only about 2.25% of the total1172

questions are incorrect.1173

Split Correctness Agreement

Train 95.68 88.27
Valid 93.75 87.50
Test 95.45 90.91

Table 6: The statistics of FREQUENCYQA-Hard bench-
mark. Here the number of questions is equal to the
number of entities since it only has low frequency enti-
ties.

B Definition of High and Low Frequency 1174

First, we randomly sample 1K entities from DBpe- 1175

dia and compute their relationship count separately. 1176

This process is to study the distribution of entities’ 1177

relationship counts in DBpedia and find bound- 1178

aries for high-frequency and low-frequency entities. 1179

Then we sort these entities in order of their relation- 1180

ship count from highest to lowest. High-frequency 1181

entities possess cumulative relationship count of up 1182

to 1/3 of all entities, while low frequency entities 1183

range from 2/3 to 1. We exclude those between 1/3 1184

and 2/3 to make comparison clear. 1185

Repeating this process 3 times, we get the num- 1186

ber of relationships to distinguish high-frequency 1187

and low-frequency entities, which are higher than 1188

185 and lower than 107 respectively. (Of the 1K 1189

randomly sampled entities, 119 entities are iden- 1190

tified as high frequent and 621 entities as low fre- 1191

quent.) These two numbers are then used to classify 1192

all the high-frequency and low-frequency entities. 1193

It is necessary to randomly select 1K entities 1194

first to calculate the two boundaries, since the time 1195

to compute the cumulative relationship count for 1196

all the sorted entities in DBpedia is unaffordable. 1197

C Details in FREQUENCYQA 1198

Construction 1199

In the process of entity pairs extraction, both hy- 1200

pernyms that do not have enough entities and low- 1201

frequency entities that do not have enough high- 1202

frequency entities to pair with are all discarded. 1203

Finally, we get 293K entities pairs from 9,261 hy- 1204

pernyms in total. 1205

These pairs are then fed into the LLM to generate 1206

questions. Each pair has a shared abstract question 1207

respectively. Since a hypernym can have several 1208

entity pairs, the final number of abstract questions, 1209

which is equal to the number of pairs, is more 1210

than that of hypernyms. After LLM’s proofread 1211

stage, there are 283K abstract questions left, which 1212

are used to build our FREQUENCYQA benchmark. 1213
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Task Prompt

Question Generation You will be given two entities belonging to the same hypernym. Generate a shared multiple choice
question for both entities based on their descriptions according to the following 5 steps.
Requirements: First, the questions should have one and only one correct answer for both entities.
Second, the correct answer cannot be simply guessed by the names of the entities or the way the
questions are asked. For example, the question: "What was the primary operational location of
Sydney O-Class Tram? A. Oslo, Norway B. Sydney, Australia C. Stockholm, Sweden D. Melbourne,
Australia" is not allowed since only the correct answer contains "Sydney" which is also in the entity’s
name. Third, the four options should have roughly the same length.
Step 1, generate the shared question containing "[entity_name]" which can be replaced by the two
entity names and then have different answers accordingly.
Step 2, use roughly the same amount of words to answer the questions for both entities separately.
Step 3, generate a misleading distractor for both entities separately. The distractors should have
roughly the same length with the correct answers.
Step 4, form the final multiple choice question using the above four answer candidates, and make sure
the answer for Entity1 is ’A’ , the answer for Entity2 is ’B’, and their misleading answer candidates
are ’C’ and ’D’.
Step 5, check whether the final question and answer candidates meet the above requirements. If yes,
then output **SCUUEED**, otherwise output **FAIL**.

Follow these examples:
. . . . . . (Examples written by experts)

Hypernym: [Hypernym]
Entity1: [Entity1]
Entity1 Description: [Entity1 Description]
Entity2: [Entity2]
Entity2 Description: [Entity2 Description]

Table 7: The prompt used to generate questions in FREQUENCYQA. Placeholders [Hypernym], [Entity1], [Entity1
Description], [Entity2], [Entity2 Description] will be replaced with real hypernym, high-frequency entity, low-
frequency entity, and their descriptions accordingly.

Entities belonging to these questions come from1214

9,166 different hypernyms.1215

In the process of Abstract Question Generation,1216

the prompt we use to generate questions is shown1217

in Table 7. In questions generated by LLMs, the1218

answer for the high-frequency entity is A, low-1219

frequency entity is B, and their distractors are C1220

and D respectively. And in the end, we randomly1221

shuffle the 4 options in one question to guarantee1222

the balance of the correct options.1223

Task Prompt

Uncertainty Question: [question]
Generation Answer: **[option].**

Uncertainty: **[uncertainty percentage]**
Answer the following multiple choice
question. Select only one correct answer
from the choices and give your uncertainty
score, following the above format.

[Question]
A. [OptionA]. B. [OptionB].
C. [OptionC]. D. [OptionD].

Table 8: The prompt used to generate uncertainty score
for proprietary LLMs. Placeholders [Hypernym], [En-
tity1], [Entity1 Description], [Entity2], [Entity2 De-
scription] will be replaced with real hypernym, high-
frequency entity, low-frequency entity, and their descrip-
tions accordingly.

D Calculation of Uncertainty 1224

Following Liu et al. (2023), we first combine the 1225

questions with each of their options, and use GPT- 1226

4o-mini to transform them into four statements. 1227

The data can also be found in our benchmark. 1228

Then we compute the uncertainty for each state- 1229

ment. For open-source LLMs, uncertainty refers to 1230

their perplexity for generating the correct statement. 1231

For proprietary LLMs, we allow them to generate 1232

their uncertainty scores, with prompt shown in Ta- 1233

ble 8. Then, the threshold between high and low 1234

uncertainty for each model is determined by its 1235

own average uncertainty on the testing set of each 1236

benchmark respectively. 1237

There are several reasons for choosing differ- 1238

ent uncertainties for each setting. On one hand, 1239

perplexity-based uncertainty is unavailable for pro- 1240

prietary LLMs. On the other hand, open source 1241

LLMs often fail to understand the instructions and 1242

can not generate uncertainty scores. We have con- 1243

ducted experiments on verbalized uncertainty of 1244

open source LLMs. However, experiments show 1245

that Llama-3-8B-Instruct has a 18.5% chance of 1246

not generating an uncertainty score, which makes 1247

the results unreliable and will also affect further 1248

robustness evaluations. In addition, Vashurin et al. 1249
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(2024) mentioned that, for multiple choice QA,1250

information-based methods such as perplexity are1251

substantially superior to quantifying model uncer-1252

tainty.1253

Method Prompt

Zero-Shot [Question]
A. [OptionA]. B. [OptionB].
C. [OptionC]. D. [OptionD].
The correct answer is:

Few-Shot [Examples]
Answer the multiple choice question. Select
only one correct answer from the choices,
following above examples.

[Question]
A. [OptionA]. B. [OptionB].
C. [OptionC]. D. [OptionD].

CoT Question: [question]
Rational: [rationale]
Answer: **[option].**
Answer the multiple choice question. Think
step by step and generate a short rationale
to support your reasoning. Choose one best
answer based on the generated rational, fol-
lowing the above format. Keep your whole
response in 50 tokens.

[Question]
A. [OptionA]. B. [OptionB].
C. [OptionC]. D. [OptionD].

Table 9: The prompt used when evaluating LLMs on
our benchmark. Placeholders [Examples], [Question],
[OptionA], [OptionB], [OptionC], [OptionD] will be
replaced with the real examples, questions and their
options accordingly.

E Experiment Details1254

For the main evaluations on FREQUENCYQA,1255

we categorize the evaluation of different mod-1256

els into three types: (1) OPEN SOURCE LLM1257

ZERO-SHOT: We first evaluate Llama3, Llama3.1,1258

Llama3.2 (Touvron et al., 2023; Dubey et al., 2024),1259

Gemma2 (Mesnard et al., 2024; Riviere et al.,1260

2024), Phi3.5 (Abdin et al., 2024), Falcon, Fal-1261

con2 (Malartic et al., 2024), Mistral (Jiang et al.,1262

2023), and their instruction versions accordingly in1263

a zero-shot manner (Qin et al., 2023). (2) OPEN1264

SOURCE LLM FEW-SHOT: Then we evaluate1265

the above models in a few-shot manner (Brown1266

et al., 2020). Since our benchmark is in the form1267

of four options multiple-choice questions, the shot1268

number is set to four to minimize bias, where each1269

of the four examples corresponds to a different1270

correct answer in (a, b, c, d). (3) PROPRIETARY1271

LLM API: Finally, we evaluate the performance1272

of GPT-4o (OpenAI, 2023, 2024b) and GPT-4o-1273

mini (OpenAI, 2024a), using zero-shot, few-shot, 1274

and Chain-of-Thought (CoT; Wei et al., 2022). 1275

All the open-source models are run on 4 1276

NVIDIA A6000 (40G) GPUs with BF32. And 1277

for proprietary LLM, we access them via OpenAI 1278

API 2. The different kinds of prompts we use are 1279

shown in Table 9. And all the evaluation results are 1280

reported in Table 10. 1281

For the question filtering of FREQUENCYQA- 1282

Hard, the six open-source LLMs we use are Llama- 1283

3-8B-Instruct, Llama-3.1-8B-Instruct, gemma-2- 1284

9b, Phi-3.5-mini-instruct, Falcon-11B, and Mistral- 1285

7B-Instruct-v0.3. 1286

2https://platform.openai.com/docs/
api-reference
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Models
High Freq Question Low Freq Question Average Difference (H –> T)
Unc. Acc Ma-F1 Unc. Acc Ma-F1 Unc. Acc Ma-F1 Unc. Acc Ma-F1
(↓) (↑) (↑) (↓) (↑) (↑) (↓) (↑) (↑)

Random - 25.29 25.29 - 25.22 25.22 - 25.26 25.26 - ↓ 0.07 ↓ 0.07
Majority - 25.70 10.22 - 25.14 10.04 - 25.42 10.13 - ↓ 0.56 ↓ 0.18

LLM (Open Source) + Zero-shot
Llama-3 8B 54.33 65.90 63.60 81.54 53.83 51.29 67.94 59.87 57.44 ↑ 6.11 ↓ 12.07 ↓ 12.30
Llama-3-Instr 8B 77.55 80.72 80.71 117.41 69.03 68.95 97.48 74.88 74.83 ↑ 39.86 ↓ 11.69 ↓ 11.76
Llama-3.1 8B 55.91 65.29 63.31 83.35 52.66 50.52 69.63 58.98 56.92 ↑ 27.44 ↓ 12.63 ↓ 12.78
Llama-3.1-Instr 8B 58.97 80.06 80.08 87.05 69.99 69.94 73.01 75.03 75.01 ↑ 28.08 ↓ 10.07 ↓ 10.14
Llama-3.2 3B 67.51 57.93 53.65 99.55 48.10 44.66 83.53 53.02 49.16 ↑ 32.04 ↓ 9.83 ↓ 9.00
Llama-3.2-Instr 3B 74.27 71.47 71.51 108.24 62.17 62.18 91.26 66.82 66.85 ↑ 33.97 ↓ 9.30 ↓ 9.33
Gemma-2 2B 133.57 46.48 43.40 213.40 37.76 34.07 173.49 42.12 38.74 ↑ 79.83 ↓ 8.72 ↓ 9.33
Gemma-2 9B 124.97 64.50 64.80 211.34 52.24 51.23 168.16 58.37 58.01 ↑ 86.37 ↓ 12.26 ↓ 13.57
Phi-3.5-mini-Instr 4B 27.81 72.81 72.78 39.80 65.26 65.00 33.81 69.04 68.89 ↑ 11.99 ↓ 7.55 ↓ 7.78
Falcon 7B 62.33 18.19 18.55 92.92 17.93 18.19 77.63 18.06 18.37 ↑ 30.59 ↓ 0.26 ↓ 0.36
Falcon-Instr 7B 88.88 25.68 14.49 128.75 25.71 14.01 108.82 25.70 14.25 ↑ 39.87 ↑ 0.02 ↓ 0.48
Falcon2 11B 56.93 70.72 69.80 87.31 58.07 56.70 72.12 64.40 63.25 ↑ 30.38 ↓ 12.65 ↓ 13.10
Mistral-v0.3 7B 39.83 65.55 63.11 56.99 53.36 50.26 48.41 59.46 56.69 ↑ 17.16 ↓ 12.19 ↓ 12.85
Mistral-v0.3-Instr 7B 44.73 73.53 73.14 66.09 63.05 62.40 55.41 68.29 67.77 ↑ 21.36 ↓ 10.48 ↓ 10.74

LLM (Open Source) + 4-shot
Llama-3 8B 21.89 75.57 75.55 23.75 61.00 61.01 22.82 68.29 68.28 ↑ 1.86 ↓ 14.57 ↑ 14.55
Llama-3-Instr 8B 26.20 79.94 79.92 28.70 67.98 67.95 27.45 73.96 73.93 ↑ 2.50 ↓ 11.96 ↓ 11.96
Llama-3.1 8B 20.82 74.91 74.89 22.62 62.00 62.00 21.72 68.46 68.45 ↑ 1.81 ↓ 12.91 ↓ 12.90
Llama-3.1-Instr 8B 20.63 79.74 79.74 22.48 69.09 69.07 21.56 74.42 74.40 ↑ 1.85 ↓ 10.65 ↓ 10.66
Llama-3.2 3B 23.58 68.89 68.84 25.59 57.26 57.17 24.59 63.08 63.01 ↑ 2.01 ↓ 11.63 ↓ 11.67
Llama-3.2-Instr 3B 23.66 71.43 71.43 25.67 62.12 62.09 24.67 66.78 66.76 ↑ 2.01 ↓ 9.32 ↓ 9.34
Gemma-2 2B 26.96 62.99 62.93 29.43 50.93 50.91 28.20 56.96 56.92 ↑ 2.47 ↓ 12.06 ↓ 12.02
Gemma-2 9B 20.26 80.10 80.08 22.36 68.36 68.31 21.31 74.23 74.20 ↑ 2.10 ↓ 11.74 ↓ 11.77
Phi-3.5-mini-Instr 4B 11.02 73.68 73.67 11.85 67.46 67.33 11.44 70.57 70.50 ↑ 0.83 ↓ 6.22 ↓ 6.34
Falcon 7B 21.69 28.40 21.25 23.42 28.25 20.63 22.56 28.33 20.94 ↑ 1.73 ↓ 0.15 ↓ 0.62
Falcon-Instr 7B 21.69 26.27 18.32 23.42 25.67 18.15 22.56 25.97 18.23 ↑ 1.73 ↓ 0.59 ↓ 0.17
Falcon2 11B 16.42 77.11 77.01 17.77 65.92 65.75 17.10 71.52 71.38 ↑ 1.35 ↓ 11.19 ↓ 11.26
Mistral-v0.3 7B 13.89 75.55 75.53 14.99 62.88 62.85 14.44 69.22 69.19 ↑ 1.10 ↓ 12.67 ↓ 12.68
Mistral-v0.3-Instr 7B 15.97 74.46 74.40 17.40 65.51 65.35 16.69 69.99 69.87 ↑ 1.43 ↓ 8.95 ↓ 9.05

LLM (Proprietary) API
GPT4o-mini (Zero-Shot) 13.52 85.61 85.58 18.34 73.85 73.73 15.93 79.73 79.66 ↑ 4.82 ↓ 11.76 ↓ 11.85
GPT4o-mini (Few-Shot) 25.74 84.78 84.69 38.17 72.76 72.47 31.96 78.77 78.58 ↑ 12.43 ↓ 12.02 ↓ 12.22
GPT4o-mini (CoT) 10.53 86.25 86.25 12.27 74.39 74.40 11.40 80.32 80.32 ↑ 1.74 ↓ 11.85 ↓ 11.85
GPT4o (Zero-Shot) 14.18 93.86 93.95 30.98 85.76 86.69 22.58 89.81 90.32 ↑ 16.80 ↓ 8.10 ↓ 7.26
GPT4o (Few-Shot) 28.41 93.94 93.95 45.81 86.54 86.75 37.11 90.24 90.35 ↑ 17.40 ↓ 7.40 ↓ 7.20
GPT4o (CoT) 10.39 92.40 92.47 18.36 85.47 85.72 14.38 88.93 89.10 ↑ 7.97 ↓ 6.93 ↓ 6.75

Table 10: Performance of various LLMs on the testing set of FREQUENCYQA. Unc., Acc, and Ma-F1, denote
Uncertainty, Accuracy, and Macro F1-score. And the Difference column shows how scores change from high-
frequency questions to low-frequency questions. The best performances within each method are underlined and the
best among all methods are bold-faced. And for the Difference column, We underline the largest difference within
each method and bold the one among all methods.
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