STREAM: Embodied Reasoning through Code Generation

Daniil Cherniavskii !

Abstract

Recent advancements in the reasoning and code
generation capabilities of Large Language Models
(LLMs) have enhanced planning for Embodied Al
tasks. However, efficiently informing the agent
about the environment remains a challenge. In-
spired by modular visual reasoning, we propose
a novel approach that uses code generation to
ground the planner in the environmental context
and reason about past experiences. Our frame-
work allows the LLM to aggregate information
from relevant observations via API calls to image
understanding models, including flexible VLMs.
We evaluate our approach using Embodied Ques-
tion Answering (EQA) and develop a synthetic
data collection procedure using simulator ground
truth states. Our framework shows notable im-
provements over baseline methods.

1. Introduction

With Foundation Models conquering traditional downstream
tasks such as image generation (Saharia et al., 2022), ob-
ject recognition (Minderer et al., 2022; Kuo et al., 2022),
segmentation (Kirillov et al., 2023), video understanding
(Arnab et al., 2021), object tracking (Yang et al., 2023a),
and image captioning (Yu et al., 2022), embodied reason-
ing is becoming a sought-after target (Huang et al., 2022b).
Embodied reasoning presents unique challenges over image-
and video-based reasoning, including multimodality, spa-
tiotemporal structure, and action-conditioned data collection
difficulties. Notably, it requires multistep (Dasgupta et al.,
2022; Yu et al., 2019), modular, and interpretable reasoning
to handle partial observability, general applicability, and
effective communication with humans and Al agents.

To achieve this, literature (Suris et al., 2023; Roziere et al.,
2023; Li et al., 2022) has focused on Al systems that com-
bine pre-trained modules like LLMs (Achiam et al., 2023;

"University of Amsterdam. Correspondence to: Daniil Cherni-
avskii <d.cherniavskii@uva.nl>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Phillip Lippe ' Andrii Zadaianchuk ' Efstratios Gavves '

Team et al., 2024; Brown et al., 2020; Touvron et al., 2023)
or VLMs (Wang et al., 2023; Liu et al., 2023; Bai et al.,
2023). While template-based program generation offers
flexibility, it lacks generalization to arbitrary queries and
open worlds (Yu et al., 2019). LLMs, with their generaliza-
tion and in-context learning capabilities, are promising but
struggle with modularity due to the combinatorial growth
of sample space. We propose using code generation as an
intermediate module to attain multistep, modular, and inter-
pretable embodied reasoning, inspired by recent progress
in visual question answering (Suris et al., 2023; Roziere
et al., 2023; Li et al., 2022). Our system integrates per-
ception, memory, and code generation LLM modules with
online Python code execution. Unlike ProgPrompt (Singh
et al., 2023), which focuses on planning, we focus on its pre-
requisite — embodied reasoning. Our contributions include
presenting STREAM, a method for grounded reasoning
from embodied experience without training, proposing an
efficient data collection procedure for synthetic question-
answer pairs, and evaluating our method on a new bench-
mark called QUEST, demonstrating its superiority against
strong baselines.

2. Related work

Episodic Memory Question Answering. Visual Ques-
tion Answering (VQA) (Antol et al., 2015; Goyal et al.,
2017) proposes a flexible framework for evaluating the un-
derstanding of natural images but is often limited to single-
image contexts. To address this limitation, VQA systems
have been enhanced to handle more complex inputs like
videos (Zhong et al., 2022; Choudhury et al., 2023; Liang
et al., 2024), 3D scenes (Ma et al., 2022; Fu et al., 2024,
Chen et al., 2022), and full environments (Das et al., 2018).
OpenEQA (Majumdar et al., 2024) introduces a practical set-
ting for Episodic Memory Embodied QA (EM-EQA), where
the agent can passively process previously observed visual
history to answer questions about the environment. Through
the costly human labeling process, the authors managed to
collect 1636 questions. As the baselines, they use multi-
modal foundation models like GPT-4V (Yang et al., 2023b)
to process entire visual histories or caption each frame and
aggregate these captions with an LLM. However, processing
long videos or reconstructing 3D scenes can be prohibitively
expensive or inefficient. Our work focuses on a nuanced

STREAM: Embodied Reasoning through Code Generation

approach where the agent actively reasons about process-
ing the observation history to answer questions, grounding
answers in the visual history effectively.

Code for Visual Reasoning and Embodied AI. An-
swering complex questions requires combining basic skills,
which can benefit from a reasoning module that inte-
grates these skills. Modular VQA techniques like Neural
Modular Networks (NMNs) (Andreas et al., 2016), NS-
VQA (Yi et al., 2018), and Probabilistic Neural-symbolic
Models (Vedantam et al., 2019) have integrated learned
modules but face challenges in open-ended settings. Lever-
aging LLMs like GPT-4 (Achiam et al., 2023) for code
generation, specialized in generating programs, has shown
promise (Subramanian et al., 2023; Gupta & Kembhavi,
2022b; Suris et al., 2023; Choudhury et al., 2023; Ge et al.,
2023; Liang et al., 2024). ViperGPT (Suris et al., 2023) and
ProViQ (Choudhury et al., 2023) deliver zero-shot results
on VideoQA datasets like NeXT-QA (Xiao et al., 2021) but
are limited in temporal and situated reasoning. We propose
extending the modular vision framework to efficiently pro-
cess the temporal history of visual observations and agents’
actions in environments like AI2-THOR (Kolve et al., 2017).
This includes tools for flexible scene understanding, such
as depth models for exact locations and VLMs (Wang et al.,
2023) for general visual questions.

In the active robotic setting, code generation with LLMs has
been useful (Singh et al., 2023; Liang et al., 2022; Huang
et al., 2023). ProgPrompt (Singh et al., 2023) generates
robot task plans as code, while CodeAsPolicies (Liang et al.,
2022) translates natural language commands into robot pol-
icy code. VoxPoser (Huang et al., 2023) uses LLMs to
generate code interacting with VLMs to produce sequences
of 3D affordances. These approaches are promising for
tabletop manipulation but struggle in partially observable
environments where the episode history is crucial for plan
generation. Our work focuses on processing visual histo-
ries and envisions combining this with code generation for
future planning tasks.

3. QuEST benchmark

In creating a benchmark to evaluate complex, multistep,
and grounded spatiotemporal embodied reasoning, we have
a few requirements. First, the answers must be grounded,
ensuring justification for further planning. Second, we aim
to maintain low annotation costs while keeping the data
realistic. Third, the partially observable nature of embodied
reasoning must be reflected in queries, requiring tasks that
involve multiple locations, vantage points, and times. This
forms the basis of our benchmark, QUEST (Questioning in
Embodied Simulated Tasks).

In the most general and realistic setting for embodied rea-

soning, we can only assume that the agent knows the world
via its own experiences, that is, without assuming com-
plete 3D maps (He et al., 2024), prescribed lists of ob-
jects present (Singh et al., 2023), or constrained lists of
possible reasoning tasks (Huang et al., 2022a). We for-
mulate our embodied agent data setting as a collection of

n experience trajectory tuples {(st, at)t—l T}
=Lt li=1n

in arbitrary recorded times ¢, comprising agent states and
observations s; = (lt, Dt xt) of locations [, camera pose
parameters p, RGB-D image observations z;, as well as
actions a;, taken in the next moment. Inspired by (Das
et al., 2018) we evaluate embodied reasoning with grounded
embodied question answering, that is, requiring that given a
novel query prompt g, the agent not only answers correctly
in a required structured format but also provides an accurate
grounding for the objects in answer, i.e. its coordinates.

To generate such question-answer pairs, we use AL-
FRED (Shridhar et al., 2020), a dataset of household tasks in
the AI2-THOR simulator (Kolve et al., 2017), where agents
complete tasks through a series of actions. We use the FiLM
agent (Min et al., 2021) with ground truth depth estimation
and pre-trained semantic segmentation models for RGB in-
puts, and along with embodied agent data, we record the
ground truth states of the simulator, i.e. objects locations,
states, and bounding boxes for each observation. The latest
is optional and could be switched to any object recogni-
tion model. To maintain a realistic data generation process
where the agent may perform random exploration, we sam-
ple 1,529 experience trajectories using the unseen test part
of ALFRED, with the agent navigating and interacting with
the environment. Utilizing the knowledge of the ground
truth environment states in these trajectories, we generate
questions based on 10 hand-coded templates. Each of the
template questions tests the spatiotemporal understanding
of the model, from simple ones (e.g. “Have you seen the
TV?”, “What objects do you see now?”) to a more complex
(e.g. “Did you open the drawer before or after you picked
up the watch?”, “What is the state of the cabinet? Open or
closed?”). The data collection process is demonstrated in
Figure 4.

For evaluation, as the answers to the questions are struc-
tured, we use the Jaccard score for list-based answers
(e.g. “Q: What objects are on the table? A: [’credit
card(credit_card_id)’]”) and accuracy for specific responses
(e.g. yes/no questions). We also assess the executability
of generated solutions, ensuring the generated code runs
correctly and the answer satisfies the requested format. Our
dataset has around 36,000 questions, with a roughly bal-
anced distribution across categories. For a full description
of data statistics and examples of generated questions, please
see Appendix A.1.

STREAM: Embodied Reasoning through Code Generation

4. STREAM

We propose STREAM (Spatio-Temporal Reasoning,
Embodied Action, and Memory), an Al system designed
for spatiotemporal embodied reasoning. Our method
addresses the need for AI systems capable of complex
problem-solving by integrating multiple pre-trained mod-
ules. STREAM comprises three core modules: Percep-
tion, Memory, and Reasoning. Inspired by the code gen-
eration capabilities of ViperGPT (Suris et al., 2023) and
VISPROG (Gupta & Kembhavi, 2022a), we make the Rea-
soning module the central component, uniting the system
by coordinating the interactions between the Perception
and Memory modules through the Reasoning API. This in-
tegration allows the system to process and interpret data
effectively, facilitating advanced spatiotemporal embodied
reasoning in dynamic environments. The complete pipeline
can be found in Figure 5.

Reasoning API. The Reasoning API is the back-
bone of STREAM, constructed around three pri-
mary classes: SceneObjectAPI, ActionAPI, and
RGBDImageAPI.The SceneObjectAPT class manages
object instances, providing essential attributes such as ob-
ject type, location, and bounding boxes, which are tied
to specific images. The RGBDImageAPT class captures
the agent’s experiences over time, It consists of an RGB-
D frame, camera and agent positions, and a timestep
of observation. The ActionAPTI class details the ac-
tions performed by the agent, including action types and
targeted objects. Additionally, the API includes use-
ful functions like get_all_objects_images () and
get_relative_position () to facilitate modular and
reusable code generation. These classes and functions en-
able the system to capture temporal, spatial, and visual
properties of the scene in a structured way, ensuring robust
and interpretable reasoning.

Reasoning module. The reasoning module of STREAM
employs the Gemma 7B code generation LLM (Team et al.,
2024), which is adept at producing high-quality code. This
module leverages the in-context learning abilities of the
LLMs (Brown et al., 2020), allowing it to generate code
based on provided examples and prompts. In our ex-
periments, we conducted ablation studies to optimize the
model’s performance, exploring various quantization strate-
gies, model sizes, and design choices to balance cost and
efficiency. The reasoning module’s ability to generate mod-
ular and interpretable code is crucial for enabling the system
to perform complex tasks that require spatiotemporal rea-
soning and coordination between different Al modules.

Perception module. The perception module in STREAM
utilizes a vision-language model (VLM) to handle queries

about the visual properties of the scene. Among three
VLMs: Qwen-VL (Bai et al., 2023), LLaVa-1.6 (Liu
et al., 2024), CogVLM (Wang et al., 2023), we selected
CogVLM based on its grounding abilities and its superior
performance in object recognition and localization tasks on
our dataset subsample of 5000 images, achieving a 0.75
mloU score. The perception module allows the system
to verify and extract visual and spatial properties of ob-
jects through functions like verify property () and
get_object_state (). By efficiently querying visual
information, the perception module supports the reasoning
module in making informed decisions about the environ-
ment, enhancing the system’s overall capability to process
and interpret complex scenes.

Memory module. The memory module of STREAM con-
sists of instances from the API classes, enabling the system
to store and access past experiences. Preprocessing steps
include depth estimation, object recognition, and linking
to calculate 3D positions and assign unique IDs to objects
across different images. In the simulator, we use ground
truth states to recognize objects and link them, but for real-
world applications, methods using CLIP (Radford et al.,
2021) and spatial comparison can be employed. This mod-
ule’s robust preprocessing and data management ensures
that the system can track objects over time and space, facili-
tating complex queries and enabling detailed spatiotemporal
reasoning.

5. Experiments
5.1. Baselines

We implement four baselines with similar parameter com-
plexity to evaluate our model’s performance. The first base-
line is VideoLLaVA (Lin et al., 2023), a model for video
understanding that processes the entire sequence of images
as input and directly generates the answer. This comparison
assesses whether our structured reasoning process, decou-
pled from raw data, captures and utilizes temporal, spatial,
and visual information more effectively than a model where
reasoning and data processing are entangled. While Vide-
oLLAVA can generate structured outputs, it cannot ground
its answers and explain the process behind its solutions. The
second baseline, the Textual Embodied Large Language
Model (TE-LLM), uses the same LLM (Gemma-7B) but
provides the entire embodied experience in plain text format.
Due to the LLM’s token limit, we subsample observations,
ensuring frames with non-trivial actions are included and
each observed object is represented at least once. The ad-
missible length of the input in this case is 30 observations
on average. The model is prompted with the list of observed
objects and their locations, the robot’s position, and the
next action. This baseline evaluates whether dynamically

STREAM: Embodied Reasoning through Code Generation

100

80

60

Performance, %

40

20

, W

Spatial

-LLM (Gemma-7B)

STREAM (Ours)
STREAM (Ours)

TE

Spatiotemporal

Figure 1. Average performance for spatial and spatiotemporal
groups of questions across different models.

generating and executing functions offer more effective use
of the LLM’s reasoning capabilities compared to a direct
text-based approach.

The third baseline involves applying CogVLM throughout
the experience trajectories to obtain dense captions for all
relevant frames. These captions, along with recognized ob-
jects and their respective locations and timesteps, are then
added to the Gemma prompt for final reasoning. This ap-
proach, however, proved computationally heavy, and full
comparisons were not possible, so we compared this base-
line to a smaller subset of the benchmark in our ablation
studies. The full prompts for each model, as well as the
Table 4 of baselines functional comparison, are detailed in
the Appendix A.2.

Additionally, we report the results of a hand-coded human
solution as a ”soft upper bound” baseline, where a human
expert writes near-ideal code using our developed APL.

5.2. Results

We present average performance results in Figure 1. For a
complete executability and performance evaluation of every
question type, please refer to Table 5. STREAM generates
executable Python programs with more than 85% executabil-
ity for 6 from 10 question types. VideoLLAVA has near
perfect “executability”’, however, TE-LLM returns the cor-
rect format for only 44.5% of QUEST questions because it
can include information up to 30 frames before maxing out
the token limit. Note that VideoLLaVA and TE-LLM inher-
ently cannot process certain question types, see Table 4.

In terms of accuracy, STREAM has a clear edge over the
baselines, surpassing VideoLLaVA by 15-90% and TE-LLM
by 12-95%. VideoLLaVA struggles because it is forced to
always generate output directly and without multi-step rea-
soning. This is hard for more complex questions like “What
objects did you see on the kitchen table?”, where Vide-
oLLaVA would have to process all frames directly, reaching

Table 1. Ablating different LLMs for reasoning

Model Avg. Acc. Avg. Exec. %
Gemma-2B 4.6 2.26
TE-LLM + CogVLM 34.2 32.84
Gemma-7B 4bit 67.1 76.48
Gemma-7B 71.1 77.32

only 10.8% accuracy. TE-LLM copes better with multi-
step reasoning as it reduces complex images to language
tokens that the subsequent LLM can reason about. Overall,
however, having code generation as an intermediate rea-
soning module is important. Another natural conclusion
from this observation is that even though LLMs may have
tremendous generalization capabilities, the way we use the
same LLM — e.g. for intermediate code rather than natural
language generation — can have a big impact on the final
performance.

Ablations. In Table | we compare different LLMs for our
reasoning module, specifically Gemma2B, Gemma7B with
weights quantized to 4 bits, and CogVLM, on a subset of
100 experience trajectories. Further, in Table 6 in the Ap-
pendix, we provide the detailed per-category accuracies. We
observe that the Gemma 2B is not sufficient for reliable rea-
soning, while the quantized Gemma 7B approaches closely
the unquantized version for almost all question categories
while being four times smaller in memory.

6. Conclusion

This paper proposes a novel framework that leverages the
advanced capabilities of LLMs in code generation to im-
prove Embodied QA based on agents’ experiences. Our
modular STREAM method dynamically generates simple
Python programs to process historical information using im-
age understanding models (e.g., VLMs) in a structured way.
To evaluate such STREAM, we created a large and synthetic
EQA dataset named QuEST. It tests the ability to reason
about spatial and spatiotemporal questions and ground the
answers in the history of the agent’s observations. We show
that the intermediate reasoning module is necessary not only
for interpretable multistep spatiotemporal reasoning but also
for allowing for effective and efficient Embodied QA.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

STREAM: Embodied Reasoning through Code Generation

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural
module networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 39-48,
2016.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Zitnick, C. L., and Parikh, D. Vqa: Visual question
answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425-2433, 2015.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucié, M.,
and Schmid, C. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 6836-6846, 2021.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P,
Lin, J., Zhou, C., and Zhou, J. Qwen-vl: A versatile
vision-language model for understanding, localization,
text reading, and beyond. 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Chen, W., Hu, S., Talak, R., and Carlone, L. Leveraging
large language models for robot 3d scene understanding.
arXiv preprint arXiv:2209.05629, 2022.

Choudhury, R., Niinuma, K., Kitani, K. M., and Jeni, L. A.
Zero-shot video question answering with procedural pro-
grams. arXiv preprint arXiv:2312.00937, 2023.

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and
Batra, D. Embodied question answering. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1-10, 2018.

Dasgupta, 1., Kaeser-Chen, C., Marino, K., Ahuja, A.,
Babayan, S., Hill, F.,, and Fergus, R. Collaborating with
language models for embodied reasoning. In NeurlPS
2022 Foundation Models for Decision Making Workshop,
2022.

Fu, R., Liu, J., Chen, X., Nie, Y., and Xiong, W. Scene-llm:
Extending language model for 3d visual understanding
and reasoning. arXiv preprint arXiv:2403.11401, 2024.

Ge, J., Subramanian, S., Shi, B., Herzig, R., and Dar-
rell, T. Recursive visual programming. arXiv preprint
arXiv:2312.02249, 2023.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and
Parikh, D. Making the v in vqa matter: Elevating the
role of image understanding in visual question answer-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 6904-6913, 2017.

Gupta, T. and Kembhavi, A. Visual programming: Com-
positional visual reasoning without training. ArXiv,
abs/2211.11559, 2022a.

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. 2023 ieee. In
CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 14953-14962, 2022b.

He, Q., Lin, K., Chen, S., Hu, A., and Jin, Q. Think-
program-rectify: 3d situated reasoning with large lan-
guage models. arXiv preprint arXiv:2404.14705, 2024.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118-9147.
PMLR, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P, Zeng, A., Tompson, J., Mordatch, 1., Chebotar, Y.,
Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S.,
Hausman, K., and Ichter, B. Inner Monologue: Embodied
Reasoning through Planning with Language Models. In
arXiv preprint arXiv:2207.05608, 2022b.

Huang, W., Wang, C., Zhang, R., Li, Y., Wu, J., and Fei-Fei,
L. Voxposer: Composable 3d value maps for robotic
manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y,, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp- 4015-4026, 2023.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. AI2-THOR: An Interactive 3D Environment for Visual
Al. arXiv, 2017.

Kuo, W., Cui, Y., Gu, X., Piergiovanni, A., and An-
gelova, A. F-vlm: Open-vocabulary object detection
upon frozen vision and language models. arXiv preprint
arXiv:2209.15639, 2022.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092-1097, 2022.

STREAM: Embodied Reasoning through Code Generation

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

Liang, L., Sun, G., Qiu, J., and Zhang, L. Neural-symbolic
videoqa: Learning compositional spatio-temporal rea-
soning for real-world video question answering. arXiv
preprint arXiv:2404.04007, 2024.

Lin, B., Zhu, B., Ye, Y., Ning, M., Jin, P, and Yuan,
L. Video-llava: Learning united visual representa-
tion by alignment before projection. arXiv preprint
arXiv:2311.10122, 2023.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning, 2023.

Liu, H,, Li, C, Li, Y., Li, B., Zhang, Y., Shen, S., and
Lee, Y. J. Llava-1.6: Improved reasoning, ocr, and world

knowledge, January 2024. URL https://1llava-vl.

github.io/blog/2024-01-30-11lava-1-6/.

Ma, X., Yong, S., Zheng, Z., Li, Q., Liang, Y., Zhu, S.-C.,
and Huang, S. Sqa3d: Situated question answering in 3d
scenes. arXiv preprint arXiv:2210.07474, 2022.

Majumdar, A., Ajay, A., Zhang, X., Putta, P., Yenamandra,
S., Henaff, M., Silwal, S., Mcvay, P., Maksymets, O.,
Arnaud, S., Yadav, K., Li, Q., Newman, B., Sharma, M.,
Berges, V., Zhang, S., Agrawal, P, Bisk, Y., Batra, D.,
Kalakrishnan, M., Meier, F., Paxton, C., Sax, S., and Ra-
jeswaran, A. Openeqa: Embodied question answering in
the era of foundation models. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

Min, S. Y., Chaplot, D. S., Ravikumar, P. K., Bisk, Y.,
and Salakhutdinov, R. Film: Following instructions in
language with modular methods. In International Con-
ference on Learning Representations, 2021.

Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weis-
senborn, D., Dosovitskiy, A., Mahendran, A., Arnab, A.,
Dehghani, M., Shen, Z., et al. Simple open-vocabulary
object detection. In European Conference on Computer
Vision, pp. 728-755. Springer, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748-8763. PMLR, 2021.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, L,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479-36494, 2022.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10740-10749, 2020.

Singh, 1., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 11523-11530.
IEEE, 2023.

Subramanian, S., Narasimhan, M., Khangaonkar, K., Yang,
K., Nagrani, A., Schmid, C., Zeng, A., Darrell, T., and
Klein, D. Modular visual question answering via code
generation. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 2:
Short Papers), pp. 747-761, 2023.

Suris, D., Menon, S., and Vondrick, C. Vipergpt: Visual in-
ference via python execution for reasoning. Proceedings
of IEEE International Conference on Computer Vision
(ICCV), 2023.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Riviere, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F,, et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vedantam, R., Desai, K., Lee, S., Rohrbach, M., Batra,
D., and Parikh, D. Probabilistic neural symbolic models
for interpretable visual question answering. In Interna-
tional Conference on Machine Learning, pp. 6428-6437.
PMLR, 2019.

Wang, W., Lv, Q., Yu, W., Hong, W, Qi, J., Wang, Y., Ji,
J., Yang, Z., Zhao, L., Song, X., et al. Cogvlm: Visual
expert for pretrained language models. arXiv preprint
arXiv:2311.03079, 2023.

Xiao, J., Shang, X., Yao, A., and Chua, T.-S. Next-qa:
Next phase of question-answering to explaining temporal
actions. In Proceedings of the IEEE/CVF conference on

https://llava-vl.github.io/blog/2024-01-30-llava-1-6/
https://llava-vl.github.io/blog/2024-01-30-llava-1-6/

STREAM: Embodied Reasoning through Code Generation

computer vision and pattern recognition, pp. 9777-9786,
2021.

Yang, J., Gao, M., Li, Z., Gao, S., Wang, F., and Zheng, F.
Track anything: Segment anything meets videos, 2023a.

Yang, Z., Li, L., Lin, K., Wang, J., Lin, C.-C., Liu, Z., and
Wang, L. The dawn of Imms: Preliminary explorations
with gpt-4v (ision). arXiv preprint arXiv:2309.17421, 9
(1):1, 2023b.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. Neural-symbolic vqa: Disentangling reasoning
from vision and language understanding. Advances in
neural information processing systems, 31, 2018.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini,
M., and Wu, Y. Coca: Contrastive captioners are image-
text foundation models. arXiv preprint arXiv:2205.01917,
2022.

Yu, L., Chen, X., Gkioxari, G., Bansal, M., Berg, T. L., and
Batra, D. Multi-target embodied question answering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6309-6318, 2019.

Zhong, Y., Xiao, J., Ji, W., Li, Y., Deng, W., and Chua,
T.-S. Video question answering: Datasets, algorithms and
challenges. arXiv preprint arXiv:2203.01225, 2022.

STREAM: Embodied Reasoning through Code Generation

A. Appendix
A.1. QuEST data collection and statistics

We generate a total of 1,529 trajectories with a limit on the number of frames of 1,000. The median length of the trajectory
is 261. For each trajectory, we randomly sample 3 questions from each of the 10 pre-defined question categories at random
timesteps, totaling to around 36k questions. The distribution of the number of different question categories is roughly
balanced, see Figure 2 in the appendix for the precise distribution. For trajectory length distribution, please refer to Figure 3.

Where have you seen all <obj> last time?

) . -
Where did you pick / placed <obj>? What objects do you see now?

Did you do <act> <obj>?
What objects are to the left / right / behind you right now?

Did you do <actl> <objl> before or after <act2> <obj2>7?

Have you seen the <obj? What objects are in / on the same <objl> as <obj2>?

What objects are inside / on <obj>? What state is the <obj>? <optionl> or <option2>?

Figure 2. The distribution of question categories in the dataset.

Table 2. Examples of questions.

Question Example

did_you_do_a_before_b Did you pick up the statute before or after you put down the watch?

what_is_inside_on What is on the coffee table?
did_you_do Did you open the drawer?

have_seen Have you seen the book?
what_objects_in_same What objects are on the same shelf as the vase?
what_objects_see_now What objects do you see now?
where_put_pick_obj Where did you pick up the plate?
what_objects_lbr What objects are to the left of you know?
where_have_seen _last Where have you seen the fork last?
what_object_state What is the state of the microwave? Is it on or off?

A.2. Model, baselines and results

Listing 1. The template code for the proposed Reasoning API.

8

STREAM: Embodied Reasoning through Code Generation

400

350

300

250

200

150

100

50

400 600 800 1000
Trajectory Length

Figure 3. The distribution of trajectory lengths in the dataset.

Hisﬁt{ory Q: Is the fridge open?
2 A: No

Q: Where is the vase?

Al [x,y, z]

states:
{51,582}

Q: Is the door close to fridge?
A: No

-

simulator state S1:
{“door”: {“visible”: True, “state”:”closed”},

[x,y,z]), “vase”: ...} History - -
i, Q: Did you open the fridge?
i : A: No

Sample random questions: Valid Q&A:

Q: Where have you seen a
chair?

Alx,y, 2]

Q: Have you seen the keys? A: No
Answer }_’ Q: Is the fridge open?

Q: Have you seen
the keys?

Q: s the fridge open? states:

generation Q: What objects are in front of me
{S1y-- - 5n}

now? A: [“door”, “vase”]

Validity
check

Q: What is on the table?
A: [“cup”, “bread”]

Figure 4. The scheme describing the process of data collection. We start by sampling random questions from our question types. After
this, we pass history simulator states together with questions to a validity check that filters questions that can not be answered from current
history. For example, if the history contains no fridge objects, then the question about the fridge state, such as “Is the fridge open?” is not
valid. Finally, we generate answers to valid questions using the history of simulator states.

STREAM: Embodied Reasoning through Code Generation

Table 3. Dataset statistics. RCM stands for Random Classifier Metric.

Question Metric ~ #samples Median timestep RCM
did_you_do_a_before.b Accuracy 1512 113.0 50.0
what_is_inside_on Jaccard 3708 112.0 2.0
did_you_do Accuracy 4020 50.0 50.0
have_seen Accuracy 4020 84.0 50.0
what_objects_in_same Jaccard 3798 90.0 1.6
what_objects_see_now Jaccard 4020 97.0 4.2
where_put_pick_obj Accuracy 3183 74.0 50.0
what_objects_lbr Jaccard 3972 93.0 3.6
where_have_seen_last Jaccard 4020 71.0 1.6
what_object_state Accuracy 4011 71.0 50.0

Table 4. Comparison of different approaches based on their ability to provide grounded answers, interpretable solutions, and structured

output.

Approach Grounded answers Interpretable solutions Structured output
VideoLLaVA-7B X X v
TE-LLM (Gemma-7B) v X v
TE-LLM (Gemma-7B) + CogVLM v X Vv
STREAM (Ours) v v v

10

STREAM: Embodied Reasoning through Code Generation

Question » . . - »
What objects did you see on the dining table?

Perception module Reasoning module Memory module

Vision-Language Model Code-generating LLM

Code-based reasoning with STREAM)

def get_objects_located_on_dining_table(images: List[RGBD Image], actions: List[ActionAPI])
=2 Listlstrl:

nn

“"Return the list of objects located on the dining table.

Step 1: find image containing dining table and extract the dinning
table object

image = get_image_containing_objects(images, ['dining table']) .
dining_table = image.get_objects_of_type('dining table')[0]

Step 2: for each object in the image, check if they are visually close
to the dining table

objects = [obj for obj in image.objects if are_close(obj,
dining_table)]

Il

Step 3: for each object in the list, verify that they are located on
the dining table

objects = [obj for obj in objects

{dining_table}?")]

Step 4: return list of the objects after filtering
return prettify_objects(objects)

[
Answer 'credit card<CreditCard| 700.66] +00.80|-03.70>',

'alarm clock<AlarmClock|-00.45|+00.80|-04.03>",
'mug<Mug|-01.47 | +00.80|-04.03>"',
'key chain<KeyChain|-00.25 | +00.80|-04.14>",
'credit card<CreditCard|-01.07 | +00.80|-04.14>",
'desk lamp<DeskLamp |-01.53| +00.80|-04.30>'

1

Figure 5. The STREAM pipeline. The code generating LLM is prompted with a description of the API, a few examples and a question,
and produces a general data-independent code solution, which employs other models like a Vision Language Model (VLM). The input to
the generated code function is an agent’s history, which consists of a sequence of actions and image observations, preprocessed with
depth estimation and object recognition models. The code solution is then executed to produce the answer. Here, the execution traces are
presented.

11

STREAM: Embodied Reasoning through Code Generation

You are a household robot. You are provided with a sequence of observations, actions, and robot positions
below. Please, answer the question after this sequence.

1. Caption: {caption}. Observed objects: [{objl.obj_type};{objl.id};, {obj2.obj_type}i{obj2.id};,
...J; Robot position: {"x’:0.0, ’y’:0.0, ’z’:0.0}; Action: {action}.

QUESTION: {question}. Please, return the output in the following format: {output format}. Example:
{example_of_output_format}.

Figure 6. The template of the prompt for TE-LLM (+ CogVLM) baseline.

You are seeing a first person video of the robot performing household tasks. Please, answer the following
question as if you are the robot.

QUESTION: {question}. Please, return the output in the following format: {output_format}. Example:
{example_of_output_format}.

Figure 7. The template of the prompt for VideoLLaVA baseline.

Table 5. Comparing with VideoLLaVA-7B and TE-LLM baselines on QuEST. indicates questions that require spatiotemporal
reasoning, indicates questions that require spatial only reasoning. See Table 3 for the corresponding evaluation metrics for each
question type.
did_vou_do did_you_do have_seen where_have what_objects Average
-you- a_before_b - seen_last see_now (spatiotemporal)

Model Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf.

VideoLLaVA-7B 100.0 37.7 100.0 51.4 100.0 64.5 - - 100.0 10.8 100.0 41.1

TE-LLM (Gemma-7B) 31.7 70.8 51.0 49.6 578 945 441 351 79 34 385 50.7

STREAM (Ours) 89.8 942 17.6 724 917 94.6 91.5 47.4 100.0 99.7 78.1 81.7

Human solution 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

what_objects what_objects what_is what_object where_put Average

in_same Ibr inside_on state pick_obj (spatial)
Model Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf.
VideoLLaVA-7B 100.0 54 100.0 9.1 100.0 7.4 100.0 28.3 - - 100.0 12.6
TE-LLM (Gemma-7B) 80.1 4.1 - - 375 121 - - 458 324 545 162
STREAM (Ours) 773 40.7 100.0 99.9 994 64.7 645 64.1 64.7 959 81.2 73.1
Human solution 100.0 51.3 100.0 100.0 100.0 66.1 100.0 67.4 100.0 100.0 100.0 77.0

12

STREAM: Embodied Reasoning through Code Generation

Table 6. Ablation study results with different LLM models for the reasoning module.

Question Model Exec. Metric
STREAM (Gemma-2B) 1.4 42.86
. TE-LLM (Gemma-7B) + CogVLM 32.8 79.03
did_you_do .
STREAM (Gemma-7B 4bit) 68.6 89.08
STREAM (Gemma-7B) 89.8 94.17
STREAM (Gemma-2B) 1.1 0.0
. TE-LLM (Gemma-7B) + CogVLM 55.1 46.51
did_youdo-a-before.b qrpp A M (Gemma-7B 4bit) 247 39.13
STREAM (Gemma-7B) 176 7241
STREAM (Gemma-2B) 0.0 0.0
have._seen TE-LLM (Gemma-7B) + CogVLM 59.8 90.27
- STREAM (Gemma-7B 4bit) 853 98.71
STREAM (Gemma-7B) 91.7 94.59
STREAM (Gemma-2B) 0.0 0.0
hat is.inside_on TE-LLM (Gemma-7B) + CogVLM 43.9 11.4
what-1s-nside-o STREAM (Gemma-7B 4bit) 870 61.61
STREAM (Gemma-7B) 99.4 64.74
STREAM (Gemma-2B) 0.0 0.0
what_obiect_state TE-LLM (Gemma-7B) + CogVLM 6.9 0.0
-object- STREAM (Gemma-7B 4bit) 592 60.07
STREAM (Gemma-7B) 645 64.1
STREAM (Gemma-2B) 0.0 0.0
what_obiects.in_same TE-LLM (Gemma-7B) + CogVLM 87.4 5.73
-objects-n- STREAM (Gemma-7B 4bit) 84.0 3827
STREAM (Gemma-7B) 773 40.67
STREAM (Gemma-2B) 195 7.3
what_obiects.Ibr TE-LLM (Gemma-7B) + CogVLM 0.0 nan
-ObJects- STREAM (Gemma-7B 4bit) 100.0 99.81
STREAM (Gemma-7B) 100.0 9991
STREAM (Gemma-2B) 0.0 0.0
what obiects scongy TE-LLM (Gemma-7B) + CogVLM 3.2 0.0
-objects-see- STREAM (Gemma-7B 4bit) 1000 99.75
STREAM (Gemma-7B) 100.0 99.72
STREAM (Gemma-2B) 2.1 0.0
where have scen last [E-LLM (Gemma-7B) + CogVLM ~ 40.2 25.83
—HAvE-SEEtl- STREAM (Gemma-7B 4bit) 914 4083
STREAM (Gemma-7B) 91.5 4741
STREAM (Gemma-2B) 0.8 0.0
where out oick obi TE-LLM (Gemma-7B) + CogVLM 32.1 54.72
-PUL-pIck-ob] STREAM (Gemma-7B 4bit) 562 96.08
STREAM (Gemma-7B) 64.7 9592

13

