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Abstract
Recent advancements in the reasoning and code
generation capabilities of Large Language Models
(LLMs) have enhanced planning for Embodied AI
tasks. However, efficiently informing the agent
about the environment remains a challenge. In-
spired by modular visual reasoning, we propose
a novel approach that uses code generation to
ground the planner in the environmental context
and reason about past experiences. Our frame-
work allows the LLM to aggregate information
from relevant observations via API calls to image
understanding models, including flexible VLMs.
We evaluate our approach using Embodied Ques-
tion Answering (EQA) and develop a synthetic
data collection procedure using simulator ground
truth states. Our framework shows notable im-
provements over baseline methods.

1. Introduction
With Foundation Models conquering traditional downstream
tasks such as image generation (Saharia et al., 2022), ob-
ject recognition (Minderer et al., 2022; Kuo et al., 2022),
segmentation (Kirillov et al., 2023), video understanding
(Arnab et al., 2021), object tracking (Yang et al., 2023a),
and image captioning (Yu et al., 2022), embodied reason-
ing is becoming a sought-after target (Huang et al., 2022b).
Embodied reasoning presents unique challenges over image-
and video-based reasoning, including multimodality, spa-
tiotemporal structure, and action-conditioned data collection
difficulties. Notably, it requires multistep (Dasgupta et al.,
2022; Yu et al., 2019), modular, and interpretable reasoning
to handle partial observability, general applicability, and
effective communication with humans and AI agents.

To achieve this, literature (Surı́s et al., 2023; Roziere et al.,
2023; Li et al., 2022) has focused on AI systems that com-
bine pre-trained modules like LLMs (Achiam et al., 2023;
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Team et al., 2024; Brown et al., 2020; Touvron et al., 2023)
or VLMs (Wang et al., 2023; Liu et al., 2023; Bai et al.,
2023). While template-based program generation offers
flexibility, it lacks generalization to arbitrary queries and
open worlds (Yu et al., 2019). LLMs, with their generaliza-
tion and in-context learning capabilities, are promising but
struggle with modularity due to the combinatorial growth
of sample space. We propose using code generation as an
intermediate module to attain multistep, modular, and inter-
pretable embodied reasoning, inspired by recent progress
in visual question answering (Surı́s et al., 2023; Roziere
et al., 2023; Li et al., 2022). Our system integrates per-
ception, memory, and code generation LLM modules with
online Python code execution. Unlike ProgPrompt (Singh
et al., 2023), which focuses on planning, we focus on its pre-
requisite – embodied reasoning. Our contributions include
presenting STREAM, a method for grounded reasoning
from embodied experience without training, proposing an
efficient data collection procedure for synthetic question-
answer pairs, and evaluating our method on a new bench-
mark called QuEST, demonstrating its superiority against
strong baselines.

2. Related work
Episodic Memory Question Answering. Visual Ques-
tion Answering (VQA) (Antol et al., 2015; Goyal et al.,
2017) proposes a flexible framework for evaluating the un-
derstanding of natural images but is often limited to single-
image contexts. To address this limitation, VQA systems
have been enhanced to handle more complex inputs like
videos (Zhong et al., 2022; Choudhury et al., 2023; Liang
et al., 2024), 3D scenes (Ma et al., 2022; Fu et al., 2024;
Chen et al., 2022), and full environments (Das et al., 2018).
OpenEQA (Majumdar et al., 2024) introduces a practical set-
ting for Episodic Memory Embodied QA (EM-EQA), where
the agent can passively process previously observed visual
history to answer questions about the environment. Through
the costly human labeling process, the authors managed to
collect 1636 questions. As the baselines, they use multi-
modal foundation models like GPT-4V (Yang et al., 2023b)
to process entire visual histories or caption each frame and
aggregate these captions with an LLM. However, processing
long videos or reconstructing 3D scenes can be prohibitively
expensive or inefficient. Our work focuses on a nuanced
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approach where the agent actively reasons about process-
ing the observation history to answer questions, grounding
answers in the visual history effectively.

Code for Visual Reasoning and Embodied AI. An-
swering complex questions requires combining basic skills,
which can benefit from a reasoning module that inte-
grates these skills. Modular VQA techniques like Neural
Modular Networks (NMNs) (Andreas et al., 2016), NS-
VQA (Yi et al., 2018), and Probabilistic Neural-symbolic
Models (Vedantam et al., 2019) have integrated learned
modules but face challenges in open-ended settings. Lever-
aging LLMs like GPT-4 (Achiam et al., 2023) for code
generation, specialized in generating programs, has shown
promise (Subramanian et al., 2023; Gupta & Kembhavi,
2022b; Surı́s et al., 2023; Choudhury et al., 2023; Ge et al.,
2023; Liang et al., 2024). ViperGPT (Surı́s et al., 2023) and
ProViQ (Choudhury et al., 2023) deliver zero-shot results
on VideoQA datasets like NeXT-QA (Xiao et al., 2021) but
are limited in temporal and situated reasoning. We propose
extending the modular vision framework to efficiently pro-
cess the temporal history of visual observations and agents’
actions in environments like AI2-THOR (Kolve et al., 2017).
This includes tools for flexible scene understanding, such
as depth models for exact locations and VLMs (Wang et al.,
2023) for general visual questions.

In the active robotic setting, code generation with LLMs has
been useful (Singh et al., 2023; Liang et al., 2022; Huang
et al., 2023). ProgPrompt (Singh et al., 2023) generates
robot task plans as code, while CodeAsPolicies (Liang et al.,
2022) translates natural language commands into robot pol-
icy code. VoxPoser (Huang et al., 2023) uses LLMs to
generate code interacting with VLMs to produce sequences
of 3D affordances. These approaches are promising for
tabletop manipulation but struggle in partially observable
environments where the episode history is crucial for plan
generation. Our work focuses on processing visual histo-
ries and envisions combining this with code generation for
future planning tasks.

3. QuEST benchmark
In creating a benchmark to evaluate complex, multistep,
and grounded spatiotemporal embodied reasoning, we have
a few requirements. First, the answers must be grounded,
ensuring justification for further planning. Second, we aim
to maintain low annotation costs while keeping the data
realistic. Third, the partially observable nature of embodied
reasoning must be reflected in queries, requiring tasks that
involve multiple locations, vantage points, and times. This
forms the basis of our benchmark, QuEST (Questioning in
Embodied Simulated Tasks).

In the most general and realistic setting for embodied rea-

soning, we can only assume that the agent knows the world
via its own experiences, that is, without assuming com-
plete 3D maps (He et al., 2024), prescribed lists of ob-
jects present (Singh et al., 2023), or constrained lists of
possible reasoning tasks (Huang et al., 2022a). We for-
mulate our embodied agent data setting as a collection of
n experience trajectory tuples

{(
st, at

)
t=1,...,T

}
i=1,...,n

in arbitrary recorded times t, comprising agent states and
observations st =

(
lt, pt, xt

)
of locations l, camera pose

parameters p, RGB-D image observations xt, as well as
actions at, taken in the next moment. Inspired by (Das
et al., 2018) we evaluate embodied reasoning with grounded
embodied question answering, that is, requiring that given a
novel query prompt q, the agent not only answers correctly
in a required structured format but also provides an accurate
grounding for the objects in answer, i.e. its coordinates.

To generate such question-answer pairs, we use AL-
FRED (Shridhar et al., 2020), a dataset of household tasks in
the AI2-THOR simulator (Kolve et al., 2017), where agents
complete tasks through a series of actions. We use the FiLM
agent (Min et al., 2021) with ground truth depth estimation
and pre-trained semantic segmentation models for RGB in-
puts, and along with embodied agent data, we record the
ground truth states of the simulator, i.e. objects locations,
states, and bounding boxes for each observation. The latest
is optional and could be switched to any object recogni-
tion model. To maintain a realistic data generation process
where the agent may perform random exploration, we sam-
ple 1,529 experience trajectories using the unseen test part
of ALFRED, with the agent navigating and interacting with
the environment. Utilizing the knowledge of the ground
truth environment states in these trajectories, we generate
questions based on 10 hand-coded templates. Each of the
template questions tests the spatiotemporal understanding
of the model, from simple ones (e.g. “Have you seen the
TV?”, “What objects do you see now?”) to a more complex
(e.g. “Did you open the drawer before or after you picked
up the watch?”, “What is the state of the cabinet? Open or
closed?”). The data collection process is demonstrated in
Figure 4.

For evaluation, as the answers to the questions are struc-
tured, we use the Jaccard score for list-based answers
(e.g. “Q: What objects are on the table? A: [’credit
card(credit card id)’]”) and accuracy for specific responses
(e.g. yes/no questions). We also assess the executability
of generated solutions, ensuring the generated code runs
correctly and the answer satisfies the requested format. Our
dataset has around 36,000 questions, with a roughly bal-
anced distribution across categories. For a full description
of data statistics and examples of generated questions, please
see Appendix A.1.
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4. STREAM
We propose STREAM (Spatio-Temporal Reasoning,
Embodied Action, and Memory), an AI system designed
for spatiotemporal embodied reasoning. Our method
addresses the need for AI systems capable of complex
problem-solving by integrating multiple pre-trained mod-
ules. STREAM comprises three core modules: Percep-
tion, Memory, and Reasoning. Inspired by the code gen-
eration capabilities of ViperGPT (Surı́s et al., 2023) and
VISPROG (Gupta & Kembhavi, 2022a), we make the Rea-
soning module the central component, uniting the system
by coordinating the interactions between the Perception
and Memory modules through the Reasoning API. This in-
tegration allows the system to process and interpret data
effectively, facilitating advanced spatiotemporal embodied
reasoning in dynamic environments. The complete pipeline
can be found in Figure 5.

Reasoning API. The Reasoning API is the back-
bone of STREAM, constructed around three pri-
mary classes: SceneObjectAPI, ActionAPI, and
RGBDImageAPI. The SceneObjectAPI class manages
object instances, providing essential attributes such as ob-
ject type, location, and bounding boxes, which are tied
to specific images. The RGBDImageAPI class captures
the agent’s experiences over time, It consists of an RGB-
D frame, camera and agent positions, and a timestep
of observation. The ActionAPI class details the ac-
tions performed by the agent, including action types and
targeted objects. Additionally, the API includes use-
ful functions like get all objects images() and
get relative position() to facilitate modular and
reusable code generation. These classes and functions en-
able the system to capture temporal, spatial, and visual
properties of the scene in a structured way, ensuring robust
and interpretable reasoning.

Reasoning module. The reasoning module of STREAM
employs the Gemma 7B code generation LLM (Team et al.,
2024), which is adept at producing high-quality code. This
module leverages the in-context learning abilities of the
LLMs (Brown et al., 2020), allowing it to generate code
based on provided examples and prompts. In our ex-
periments, we conducted ablation studies to optimize the
model’s performance, exploring various quantization strate-
gies, model sizes, and design choices to balance cost and
efficiency. The reasoning module’s ability to generate mod-
ular and interpretable code is crucial for enabling the system
to perform complex tasks that require spatiotemporal rea-
soning and coordination between different AI modules.

Perception module. The perception module in STREAM
utilizes a vision-language model (VLM) to handle queries

about the visual properties of the scene. Among three
VLMs: Qwen-VL (Bai et al., 2023), LLaVa-1.6 (Liu
et al., 2024), CogVLM (Wang et al., 2023), we selected
CogVLM based on its grounding abilities and its superior
performance in object recognition and localization tasks on
our dataset subsample of 5000 images, achieving a 0.75
mIoU score. The perception module allows the system
to verify and extract visual and spatial properties of ob-
jects through functions like verify property() and
get object state(). By efficiently querying visual
information, the perception module supports the reasoning
module in making informed decisions about the environ-
ment, enhancing the system’s overall capability to process
and interpret complex scenes.

Memory module. The memory module of STREAM con-
sists of instances from the API classes, enabling the system
to store and access past experiences. Preprocessing steps
include depth estimation, object recognition, and linking
to calculate 3D positions and assign unique IDs to objects
across different images. In the simulator, we use ground
truth states to recognize objects and link them, but for real-
world applications, methods using CLIP (Radford et al.,
2021) and spatial comparison can be employed. This mod-
ule’s robust preprocessing and data management ensures
that the system can track objects over time and space, facili-
tating complex queries and enabling detailed spatiotemporal
reasoning.

5. Experiments
5.1. Baselines

We implement four baselines with similar parameter com-
plexity to evaluate our model’s performance. The first base-
line is VideoLLaVA (Lin et al., 2023), a model for video
understanding that processes the entire sequence of images
as input and directly generates the answer. This comparison
assesses whether our structured reasoning process, decou-
pled from raw data, captures and utilizes temporal, spatial,
and visual information more effectively than a model where
reasoning and data processing are entangled. While Vide-
oLLAVA can generate structured outputs, it cannot ground
its answers and explain the process behind its solutions. The
second baseline, the Textual Embodied Large Language
Model (TE-LLM), uses the same LLM (Gemma-7B) but
provides the entire embodied experience in plain text format.
Due to the LLM’s token limit, we subsample observations,
ensuring frames with non-trivial actions are included and
each observed object is represented at least once. The ad-
missible length of the input in this case is 30 observations
on average. The model is prompted with the list of observed
objects and their locations, the robot’s position, and the
next action. This baseline evaluates whether dynamically
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Figure 1. Average performance for spatial and spatiotemporal
groups of questions across different models.

generating and executing functions offer more effective use
of the LLM’s reasoning capabilities compared to a direct
text-based approach.

The third baseline involves applying CogVLM throughout
the experience trajectories to obtain dense captions for all
relevant frames. These captions, along with recognized ob-
jects and their respective locations and timesteps, are then
added to the Gemma prompt for final reasoning. This ap-
proach, however, proved computationally heavy, and full
comparisons were not possible, so we compared this base-
line to a smaller subset of the benchmark in our ablation
studies. The full prompts for each model, as well as the
Table 4 of baselines functional comparison, are detailed in
the Appendix A.2.

Additionally, we report the results of a hand-coded human
solution as a ”soft upper bound” baseline, where a human
expert writes near-ideal code using our developed API.

5.2. Results

We present average performance results in Figure 1. For a
complete executability and performance evaluation of every
question type, please refer to Table 5. STREAM generates
executable Python programs with more than 85% executabil-
ity for 6 from 10 question types. VideoLLAVA has near
perfect “executability”, however, TE-LLM returns the cor-
rect format for only 44.5% of QuEST questions because it
can include information up to 30 frames before maxing out
the token limit. Note that VideoLLaVA and TE-LLM inher-
ently cannot process certain question types, see Table 4.

In terms of accuracy, STREAM has a clear edge over the
baselines, surpassing VideoLLaVA by 15-90% and TE-LLM
by 12-95%. VideoLLaVA struggles because it is forced to
always generate output directly and without multi-step rea-
soning. This is hard for more complex questions like “What
objects did you see on the kitchen table?”, where Vide-
oLLaVA would have to process all frames directly, reaching

Table 1. Ablating different LLMs for reasoning

Model Avg. Acc. Avg. Exec. %

Gemma-2B 4.6 2.26
TE-LLM + CogVLM 34.2 32.84
Gemma-7B 4bit 67.1 76.48
Gemma-7B 71.1 77.32

only 10.8% accuracy. TE-LLM copes better with multi-
step reasoning as it reduces complex images to language
tokens that the subsequent LLM can reason about. Overall,
however, having code generation as an intermediate rea-
soning module is important. Another natural conclusion
from this observation is that even though LLMs may have
tremendous generalization capabilities, the way we use the
same LLM — e.g. for intermediate code rather than natural
language generation — can have a big impact on the final
performance.

Ablations. In Table 1 we compare different LLMs for our
reasoning module, specifically Gemma2B, Gemma7B with
weights quantized to 4 bits, and CogVLM, on a subset of
100 experience trajectories. Further, in Table 6 in the Ap-
pendix, we provide the detailed per-category accuracies. We
observe that the Gemma 2B is not sufficient for reliable rea-
soning, while the quantized Gemma 7B approaches closely
the unquantized version for almost all question categories
while being four times smaller in memory.

6. Conclusion
This paper proposes a novel framework that leverages the
advanced capabilities of LLMs in code generation to im-
prove Embodied QA based on agents’ experiences. Our
modular STREAM method dynamically generates simple
Python programs to process historical information using im-
age understanding models (e.g., VLMs) in a structured way.
To evaluate such STREAM, we created a large and synthetic
EQA dataset named QuEST. It tests the ability to reason
about spatial and spatiotemporal questions and ground the
answers in the history of the agent’s observations. We show
that the intermediate reasoning module is necessary not only
for interpretable multistep spatiotemporal reasoning but also
for allowing for effective and efficient Embodied QA.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Appendix
A.1. QuEST data collection and statistics

We generate a total of 1,529 trajectories with a limit on the number of frames of 1,000. The median length of the trajectory
is 261. For each trajectory, we randomly sample 3 questions from each of the 10 pre-defined question categories at random
timesteps, totaling to around 36k questions. The distribution of the number of different question categories is roughly
balanced, see Figure 2 in the appendix for the precise distribution. For trajectory length distribution, please refer to Figure 3.

Figure 2. The distribution of question categories in the dataset.

Table 2. Examples of questions.

Question Example

did you do a before b Did you pick up the statute before or after you put down the watch?

what is inside on What is on the coffee table?

did you do Did you open the drawer?

have seen Have you seen the book?

what objects in same What objects are on the same shelf as the vase?

what objects see now What objects do you see now?

where put pick obj Where did you pick up the plate?

what objects lbr What objects are to the left of you know?

where have seen last Where have you seen the fork last?

what object state What is the state of the microwave? Is it on or off?

A.2. Model, baselines and results

Listing 1. The template code for the proposed Reasoning API.
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Figure 3. The distribution of trajectory lengths in the dataset.

Figure 4. The scheme describing the process of data collection. We start by sampling random questions from our question types. After
this, we pass history simulator states together with questions to a validity check that filters questions that can not be answered from current
history. For example, if the history contains no fridge objects, then the question about the fridge state, such as “Is the fridge open?” is not
valid. Finally, we generate answers to valid questions using the history of simulator states.
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Table 3. Dataset statistics. RCM stands for Random Classifier Metric.

Question Metric # samples Median timestep RCM

did you do a before b Accuracy 1512 113.0 50.0

what is inside on Jaccard 3708 112.0 2.0

did you do Accuracy 4020 50.0 50.0

have seen Accuracy 4020 84.0 50.0

what objects in same Jaccard 3798 90.0 1.6

what objects see now Jaccard 4020 97.0 4.2

where put pick obj Accuracy 3183 74.0 50.0

what objects lbr Jaccard 3972 93.0 3.6

where have seen last Jaccard 4020 71.0 1.6

what object state Accuracy 4011 71.0 50.0

Table 4. Comparison of different approaches based on their ability to provide grounded answers, interpretable solutions, and structured
output.

Approach Grounded answers Interpretable solutions Structured output

VideoLLaVA-7B × × ✓

TE-LLM (Gemma-7B) ✓ × ✓

TE-LLM (Gemma-7B) + CogVLM ✓ × ✓

STREAM (Ours) ✓ ✓ ✓
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Figure 5. The STREAM pipeline. The code generating LLM is prompted with a description of the API, a few examples and a question,
and produces a general data-independent code solution, which employs other models like a Vision Language Model (VLM). The input to
the generated code function is an agent’s history, which consists of a sequence of actions and image observations, preprocessed with
depth estimation and object recognition models. The code solution is then executed to produce the answer. Here, the execution traces are
presented.
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You are a household robot. You are provided with a sequence of observations, actions, and robot positions
below. Please, answer the question after this sequence.

1. Caption: {caption}. Observed objects: [{obj1.obj type}¡{obj1.id}¿, {obj2.obj type}¡{obj2.id}¿,
...]; Robot position: {’x’:0.0, ’y’:0.0, ’z’:0.0}; Action: {action}.

...

...

...

QUESTION: {question}. Please, return the output in the following format: {output format}. Example:
{example of output format}.

Figure 6. The template of the prompt for TE-LLM (+ CogVLM) baseline.

You are seeing a first person video of the robot performing household tasks. Please, answer the following
question as if you are the robot.
QUESTION: {question}. Please, return the output in the following format: {output format}. Example:
{example of output format}.

Figure 7. The template of the prompt for VideoLLaVA baseline.

Table 5. Comparing with VideoLLaVA-7B and TE-LLM baselines on QuEST. Blue indicates questions that require spatiotemporal
reasoning, Green indicates questions that require spatial only reasoning. See Table 3 for the corresponding evaluation metrics for each
question type.

did you do did you do
a before b have seen where have

seen last
what objects

see now
Average

(spatiotemporal)

Model Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf.

VideoLLaVA-7B 100.0 37.7 100.0 51.4 100.0 64.5 - - 100.0 10.8 100.0 41.1
TE-LLM (Gemma-7B) 31.7 70.8 51.0 49.6 57.8 94.5 44.1 35.1 7.9 3.4 38.5 50.7
STREAM (Ours) 89.8 94.2 17.6 72.4 91.7 94.6 91.5 47.4 100.0 99.7 78.1 81.7
Human solution 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

what objects
in same

what objects
lbr

what is
inside on

what object
state

where put
pick obj

Average
(spatial)

Model Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf. Exec. Perf.

VideoLLaVA-7B 100.0 5.4 100.0 9.1 100.0 7.4 100.0 28.3 - - 100.0 12.6
TE-LLM (Gemma-7B) 80.1 4.1 - - 37.5 12.1 - - 45.8 32.4 54.5 16.2
STREAM (Ours) 77.3 40.7 100.0 99.9 99.4 64.7 64.5 64.1 64.7 95.9 81.2 73.1
Human solution 100.0 51.3 100.0 100.0 100.0 66.1 100.0 67.4 100.0 100.0 100.0 77.0
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Table 6. Ablation study results with different LLM models for the reasoning module.

Question Model Exec. Metric

did you do

STREAM (Gemma-2B) 1.4 42.86
TE-LLM (Gemma-7B) + CogVLM 32.8 79.03
STREAM (Gemma-7B 4bit) 68.6 89.08
STREAM (Gemma-7B) 89.8 94.17

did you do a before b

STREAM (Gemma-2B) 1.1 0.0
TE-LLM (Gemma-7B) + CogVLM 55.1 46.51
STREAM (Gemma-7B 4bit) 24.7 39.13
STREAM (Gemma-7B) 17.6 72.41

have seen

STREAM (Gemma-2B) 0.0 0.0
TE-LLM (Gemma-7B) + CogVLM 59.8 90.27
STREAM (Gemma-7B 4bit) 85.3 98.71
STREAM (Gemma-7B) 91.7 94.59

what is inside on

STREAM (Gemma-2B) 0.0 0.0
TE-LLM (Gemma-7B) + CogVLM 43.9 11.4
STREAM (Gemma-7B 4bit) 87.0 61.61
STREAM (Gemma-7B) 99.4 64.74

what object state

STREAM (Gemma-2B) 0.0 0.0
TE-LLM (Gemma-7B) + CogVLM 6.9 0.0
STREAM (Gemma-7B 4bit) 59.2 60.07
STREAM (Gemma-7B) 64.5 64.1

what objects in same

STREAM (Gemma-2B) 0.0 0.0
TE-LLM (Gemma-7B) + CogVLM 87.4 5.73
STREAM (Gemma-7B 4bit) 84.0 38.27
STREAM (Gemma-7B) 77.3 40.67

what objects lbr

STREAM (Gemma-2B) 19.5 7.53
TE-LLM (Gemma-7B) + CogVLM 0.0 nan
STREAM (Gemma-7B 4bit) 100.0 99.81
STREAM (Gemma-7B) 100.0 99.91

what objects see now

STREAM (Gemma-2B) 0.0 0.0
TE-LLM (Gemma-7B) + CogVLM 3.2 0.0
STREAM (Gemma-7B 4bit) 100.0 99.75
STREAM (Gemma-7B) 100.0 99.72

where have seen last

STREAM (Gemma-2B) 2.1 0.0
TE-LLM (Gemma-7B) + CogVLM 40.2 25.83
STREAM (Gemma-7B 4bit) 91.4 40.83
STREAM (Gemma-7B) 91.5 47.41

where put pick obj

STREAM (Gemma-2B) 0.8 0.0
TE-LLM (Gemma-7B) + CogVLM 32.1 54.72
STREAM (Gemma-7B 4bit) 56.2 96.08
STREAM (Gemma-7B) 64.7 95.92
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