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Abstract

Small language models (SLMs) are increasingly deployed on edge devices for
personalized applications, offering efficient decoding latency and reduced energy
consumption. However, these SLMs often generate inaccurate responses when han-
dling complex queries. One promising solution is uncertainty-based SLM routing,
offloading high-stakes queries to stronger large language models (LLMs) when
resulting in low-confidence responses on SLM. This follows the principle of If
you lack confidence, seek stronger support to enhance reliability. Relying on more
powerful LLMs is yet effective but increases invocation costs. Therefore, striking
a routing balance between efficiency and efficacy remains a critical challenge.
Additionally, efficiently generalizing the routing strategy to new datasets remains
under-explored. In this paper, we conduct a comprehensive investigation into bench-
marking and generalization of uncertainty-driven routing strategies from SLMs
to LLMs over 5000+ settings. Our findings highlight: First, uncertainty-correctness
alignment in different uncertainty quantification (UQ) methods significantly im-
pacts routing performance. Second, uncertainty distributions depend more on both
the specific SLM and the chosen UQ method, rather than on downstream data.
Building on the insight, we propose a proxy routing data construction pipeline and
open-source a hold-out set to enhance the generalization on predicting the routing
curve for new downstream data. Experimental results indicate that proxy routing
data effectively bootstraps routing performance without any new data. The source
code is available at https://anonymous.4open.science/r/quodlibeta.

1 Introduction

Large language models (LLMs) deployment on edge devices has gained increasing attention in
recent years, primarily due to their potential for low-latency, privacy-preserving inference. Given
the computational and memory constraints of edge devices, small language models (SLMs) (e.g.,
Phi2-mini [35] or Llama3.2-3B [70] are designed for resource-efficient deployment, particularly on
devices such as smartphones and wearable devices. Their overarching goal is to democratize the
deployment of LMs, making it accessible and affordable to users across diverse settings and at any
time [52} 86, 183]. However, these SLMs often lack the robustness and scalability of LLMs [8] (e.g.,
GPT-40 [2] and Llama-3.1-405B), especially when faced with diverse and complex input queries
under the deployment on edge devices, which eventually degrade the overall performance. This
limitation raises a critical need for exploring solutions to increase the response reliability of SLMs.

To mitigate this unreliability, a line of work proposes to partially offload challenging and complex
queries from SLMs to LLMs [[11} 159,32, 166]. A hybrid system is then established to wisely route
the queries from SLMs and seek more reliable and deterministic responses from stronger LLMs.
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Table 1: Uncertainty quantification (UQ) methods evaluated in our benchmark. “Model Access”
specifies whether a method views the LM’s weights/logits (white-box) or only its generated output
(black-box). “Require Training?” indicates if additional training is needed. See Subsection [2.T|for
taxonomy details and Subsection[ﬂ[for method descriptions.

Uncertainty Quantification (UQ) Methods Taxonomy Model Access Require Training?
Average Token Prob [53] Token/sequence probabilities White-box No
p(True) [39] Token/sequence probabilities White-box No
Perplexity [21] Token/sequence probabilities White-box No
Jaccard Degree [47] Output consistency Black-box No
Verbalization-1s [[76./69] Verbalized uncertainty Black-box No
Verbalization-2s [|69] Verbalized uncertainty Black-box No
Trained Probe [4.[39.153] Uncertainty probe White-box Yes
OOD Probe [39!153] Uncertainty probe White-box Yes

Although LLMs can exhibit superior performance, they incur high maintenance and inference costs
given the large scale of model size and their infrastructure (i.e., a single NVIDIA A100 GPU can
cost approximately $2,000 per month for deployment). Inaccurate routing by SLMs increases the
volume of queries forwarded to LLMs, necessitating greater bandwidth allocation for maintaining
the service of LLMs. As a result, operational costs and budgetary requirements rise accordingly,
especially when continuous deployment is required. Hence, developing an effective routing strategy
is crucial for fully deploying SLMs [59} 166 [11], as it both enhances response reliability and reduces
the costs associated with services and data transmission.

Leveraging SLMs’ self-uncertainty estimation emerges as a robust strategy for enhancing routing
effectiveness [[11, [16]]. By relying on the self-assessed uncertainty, the system can better decide
whether to handle a query locally or delegate it to a larger model without the aid of extra routers,
ensuring that only queries deemed unreliable by the SLMs are routed to LLMs. As a result, the
uncertainty-based routing approach not only generalizes well to new datasets, as only self-assessed
information from SLM is needed, but it also reduces the high operational costs associated with
accurately running LLMs. To this end, we aim to explore two open and nontrivial research questions
for uncertainty-based SLM routing:

1) What is the best practice of uncertainty estimation for query routing from SLMs to LLMs?
In this research question, we benchmark the uncertainty-correctness alignment of each uncertainty
quantification (UQ) method under its impact on SLM routing. A good alignment is a key factor for
successful routing decisions, as any misalignment can cause unnecessary offloading with extra cost.
However, SLMs may struggle to provide reliable uncertainty estimates [33} [15} [73]], making them
less effective as indicators for query routing. Thus, we benchmark the alignment between uncertainty
and correctness, paving the insights for establishing more effective routing strategie

2) What is the best practice to initially establish an effective routing strategy when generalizing
to new datasets? In this research question, we explore how to generalize routing strategies to new
datasets. Existing approaches [59, 32] rely on sufficient new downstream data to make routing
decisions for optimal performance-cost trade-offs, but this process is time-consuming and labor-
intensive. Broadly speaking, collecting and analyzing full downstream datasets under varying
SLM configurations can be prohibitively costly, delaying implementation, which is not practical
in real-world scenarios. This delay is particularly problematic in high-stakes scenarios, such as
medical wearable devices, where reliability is critical, and inaccuracies are unacceptable even in early
deployment stages. Based on our findings, we provide a data construction pipeline to predict the
routing curves in new downstream scenarios without any new downstream data. A generated proxy
routing dataset as a data-agnostic hold-out set enables the estimation of effective routing decisions
via the predicted routing curves. We further benchmark the benefits of this proxy routing dataset,
demonstrating its generalization ability in predicting the routing curve to new datasets.

This work offers an accessible and reproducible pipeline for uncertainty-based routing from bench-
marking to generalization. Our main contributions are summarized as follows:

"For the convenience of writing, we interchangeably use uncertainty and confidence, where low uncertainty
refers to high confidence.



74
75
76
77
78

79
80
81
82
83

84

85

86

87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102

103
104
105

107
108
109
110
111
112

113
114
115
116
117
118
119
120

121
122
123
124
125
126

* Comprehensive benchmarking and detailed analysis: This benchmark evaluates 8 UQ methods
across 14 datasets to examine the alignment between uncertainty and correctness in routing tasks.
We incorporate 8 SLMs and 2 LLMs to emulate real-world deployment scenarios. We then
delve into key observations from the extensive results and conclude the insights for developing
uncertainty-based SLM routing.

* Proxy routing data for generalizing routing to new data: Building on our benchmarking
pipeline, we introduce a proxy routing data construction pipeline designed to generalize the routing
curve prediction in new downstream scenarios. Empirical results show that this proxy routing
data generalizes effectively the routing prediction to new datasets without relying on any new
downstream data.

2 Reviewing Different Schools of Uncertainty Quantification and LLM
Routing

2.1 Uncertainty Quantification for LMs

Uncertainty quantification methods estimate a model’s confidence in its predictions [31]. For
traditional classification and regression, uncertainty estimation is well-established [23]. However, for
LLMs generating free-form responses to complex queries, estimating uncertainty is more challenging
because the output space can grow exponentially with vocabulary size, and each sequence spans
multiple tokens [20]. Existing uncertainty quantification approaches for LLMs can be grouped into
the following four categories.

Via verbalizing uncertainty. This line of work prompts language models to report linguistic con-
fidence 53! 156]. To enable LMs to verbalize confidence, researchers have proposed fine-tuning
them to express uncertainty [46] or teaching them to verbalize confidence through in-context learn-
ing [17]. Verbalized confidence can take the form of linguistic expressions of uncertainty or numer-
ical scores [24]. Multiple studies find that LLMs tend to be overconfident when reporting confi-
dence [[76,169]. To mitigate this overconfidence, prompting strategies such as multi-step elicitation,
top-k, and Chain-of-Thought [72] have been explored [69]]. Sampling multiple response-confidence
pairs and designing more effective aggregation strategies can also help mitigate overconfidence [76].
Moreover, [69] reports that verbalized confidence is typically better calibrated than the model’s
conditional probabilities.

Via analyzing token/sequence probabilities. This line of research derives confidence scores from
model logits for output tokens [24,|33}138]]. The confidence of a generated sequence is computed by
aggregating the log-probabilities of its tokens. Common aggregation strategies include arithmetic
average, minimum, perplexity, and average entropy [20} 21, 171]]. Because not all tokens in a sequence
equally reflect semantic content, SAR reweights token likelihoods to emphasize more meaningful
tokens [18]. However, different surface realizations of the same claim can yield different probabilities,
implying that the calculated confidence reflects how a claim is articulated rather than the claim
itself [33]]. To combine LM self-assessment with token probabilities, p(True) is proposed: the model
is asked whether its generated response is correct, and the probabilities of True/False tokens serve as
the confidence score 39, 169].

Via gauging output consistency. This line of research (e.g., SelfCheckGPT [54]]) assumes that
high-confidence LL.Ms produce consistent outputs [S3]]. A typical approach samples m responses
for a given input query, measures inter-response similarity, and calculates a confidence score from
meaning diversity [20]. Common ways to measure pairwise similarity include Natural Language
Inference (NLI) and Jaccard similarity [24]]. Consistency is then assessed by analyzing the similarity
matrix, for instance, by counting semantic sets, summing eigenvalues of the graph Laplacian or
computing eccentricity [47]. Because different sentences can express the same meaning, semantic
entropy [40] first clusters responses by semantic equivalence before measuring consistency.

Via training uncertainty probes. This approach trains classifiers to predict whether an LLM
will arrive at the correct answer for a particular query, using predicted probabilities as confidence
scores [24]. Training data is often obtained by sampling multiple answers per question at a fixed
temperature and labeling each for correctness [39]. A probe (commonly a multi-layer perceptron)
then takes hidden states as inputs to predict correctness [4} 42]]. Because in-domain training data
is not always available, Contrast-Consistent Search trains probes unsupervisedly by maximizing
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Figure 1: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on OpenBookQA. A higher ROC AUC
indicates a stronger alignment.

representation distances between contradictory answers on Yes/No questions [[7]. Furthermore,
whether probes trained on out-of-distribution data remain effective is still under debate [39 (53| 40].

2.2 LLM Routing

In query-routing scenarios, recent approaches train additional classifiers to direct queries to different
SLMs or LLLMs based on historical performance metrics and user feedback data [[L6} |59} 166, |37,
84]. For instance, RouterBench [32]] collects inference outputs from selected LLMs to aid in
the development of routing classifiers. However, these methods face significant challenges when
encountering new downstream tasks, as such data falls outside the distribution of the existing training
data. This limitation makes them less practical for real-world scenarios, such as on personal edge
device deployment, where adaptability to unseen conditions is crucial. Our work focuses on how to
establish routing systems between SLMs and LLMs and generalize to new downstream tasks. In
this manner, uncertainty-based routing is an appropriate solution to overcome these challenges, as
uncertainty is directly extracted from SLMs themselves. Furthermore, we propose a proxy routing
data construction pipeline to initialize a routing system that generalizes to unseen datasets.

3 Benchmarking Uncertainty-based SLM Routing

In this section, we systematically evaluate 12 SLMs and 4 LLMs on 15 datasets using 8 UQ methods
(see Table |I) for uncertainty-based SLM routing. This section details the datasets, models, and
UQ methods, followed by several key findings and practical considerations. All experiments are
conducted on four S0GB NVIDIA A100 GPUs.

3.1 Benchmark Coverage and Setup

Language Models. We evaluate 12 open-source SLMs, organized into three categories:
non-reasoning LMs, reasoning LMs, and a recurrent neural network (RNN) model. The non-reasoning
models are Llama-3.2-1B-Instruct [55]], Llama-3.2-3B-Instruct [55], Phi-3.5-mini-instruct [1]],
Mistral-7B-Instruct-v0.3 [36], Qwen2.5-7B-Instruct [78]], Llama-3.1-8B-Instruct [19], and
Granite-3.1-8B-Instruct [26]. The reasoning models are Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B,
and Phi-4-mini-reasoning [[77]. The RNN model is RWKV-7-2.9B [61]]. These SLMs come from
Alibaba (four models), Meta (three), Microsoft, Mistral Al, IBM, and LF Al & Data. Except for
RWKV-7-2.9B, all adopt decoder-only Transformer architectures and are available on Hugging Face.
We also include four LLMs: three open-source models—Ilama-3.1-70B-Instruct [[19], Qwen3-32B,
and DeepSeek-R1 [29]—and one proprietary API model, GPT-4.1 mini [34]. Qwen3-32B and
DeepSeek-R1 are reasoning LLMs, whereas Llama-3.1-70B and GPT-4.1 mini are non-reasoning.

Datasets. Experiments span 15 datasets from four domains: (/) Mathematical Reasoning (AQuA [48]],
GSMSK [13], MultiArith [63], SVAMP [60], MATH-500 [43]]), (2) Commonsense Reasoning
(CommonsenseQA [67], HellaSwag [80]], OpenBookQA [57]], PIQA [6], Truthful QA [45], Wino-
Grande [64], BoolQ [12], Social 1Qa [63]]), (3) Conversational and Contextual Understanding
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Figure 2: Overall accuracy vs. routing ratio with different UQ methods and SLMs. (a)-(d) show
the results of routing to DeepSeek-R1 on the CommonsenseQA dataset; and (e)-(h) demonstrate the
results of routing to GPT-4.1 mini on the OpenBookQA dataset.

(CoQA [62]), and (4) Problem Solving (MMLU [30]]). These cover free-form, multiple-choice, and
True/False question answering and are available via Hugging Face. Table2]in Appendix[A provides
further details.

UQ Methods and Hyperparameters. We evaluate 8 approaches from the four categories in
Section [2.1] (1) Average token probability uses the probability of the chosen option token (e.g., “A”)
for multiple-choice tasks or the mean probability of all generated tokens for free-form tasks. (2)
Perplexity is computed for a sequence of N output tokens {y; }}¥, with probabilities {p(y;)}, as

exp(+ Zf;l Inp(y;)), and its reciprocal serves as the confidence score. (3) p(True) is a method
where the LM first outputs an answer, then evaluates the generated response using only “True” or
“False.” The probabilities for these two tokens are normalized to sum to 1, and the probability of
“True” is used as confidence. (4) Verbalized confidence in a single response (denoted as verbalization-
1s) prompts the model to output both the answer and numeric confidence in one step. (5) Verbalized
confidence in the second round (denoted as verbalization-2s) obtains the confidence in a separate,
follow-up query after the model has provided an answer. (6) The degree matrix (denoted as jaccard-
degree) generates m = 5 samples (temperature 1.0) for one query, computes pairwise Jaccard
similarities, and sets confidence to trace(mI — D)/m?, where D is the degree matrix. (7) Trained
probe is a four-layer MLP with LeakyReL U activations, trained on a fixed subsample of the in-domain
training set for each dataset, taking as input the hidden states from the eighth-to-last transformer
layer. We train for 20 epochs (learning rate 5 x 10~%). (8) Trained probe on out-of-distribution data
(denoted as ood-probe) is identical in architecture but trained on all other datasets. e.g., if AQuA is
evaluated, the ood-probe is trained on the remaining 14 datasets (20 epochs, learning rate 1 x 10~%).

For verbalization-based methods, we discard queries when the model does not follow instructions
to produce a confidence score. For free-form question answering, we use GPT-4.1 mini to evaluate
whether a response is essentially equivalent to the ground truth answer [85].

3.2 Report Observations

In this section, we present our benchmarking results analyzing the impact of uncertainty-correctness
alignment on routing tasks. More observations and experimental results on proxy routing and routing
can be found in Appendix[C.1.

Observation @: Uncertainty estimation in SLMs may exhibit misalignment with prediction
correctness. From the theoretical perspective, well-calibrated uncertainty scores do not necessarily
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Figure 4: Confidence distributions across 15 datasets. The histogram depicts the aggregated distribu-
tion from all datasets, while each curve represents a single dataset. (a) Confidence of Phi-3.5-mini by
OOD Probe; (b) Confidence of Llama-3.1-8B by Perplexity.

imply a strong correlation with the correctness of the predictions [33, [11]. The predictions of
models might be perfectly calibrated yet still display relatively low accuracy (i.e., confidently provide
wrong answers). This phenomenon is also evident in our benchmark results (illustrated in Figure ).
We compute AUC scores to quantify the correlation between extracted uncertainty and prediction
correctness, treating correctness as a binary ground truth and using confidence values as the ranking
metric. The results show that not all UQ methods effectively exhibit a strong alignment between
confidence and prediction correctness. Moreover, from Figure [T and Figure [§, we can observe
that the alignment may vary across datasets for the same SLM and UQ method. For instance,
Perplexity [21] demonstrates strong alignment for Phi-3.5-mini on the MultiArith dataset but fails
on the OpenBookQA dataset. On the other hand, OOD Probe, Trained Probe, and Perplexity obtain
consistently decent alignment compared to other UQ methods across different SLMs and domains of
datasets. Conversely, we notice that verbalization-based methods, namely verbalization-1s [69} 53],
and verbalization-2s [69], consistently withhold low alignment between uncertainty and prediction
correctness. More experimental results can be found in Appendix [C.1.

Observation @: Verbalization-based UQ methods struggle to extract uncertainty in SLMs for
query routing. We find that verbalization methods like verbalization-2s [69] obtain poor alignment
between confidence and prediction correctness, and this misalignment can lead to inferior routing
performance in SLMs, where the conclusion can be found in Figure 2| Recent advancements [75.[79]
also show that uncertainty scores derived from verbalization may exhibit good reflection on models’
intrinsic uncertainty of prediction across multiple models and datasets. This discrepancy poses a
significant challenge for establishing effective routing performance since queries that are actually
correct may be unnecessarily routed from SLMs to LLMs, thereby increasing the overall cost of
deploying routing systems.

Observation ®: A good routing standard highly depends on UQ methods with good uncertainty-
correctness alignment. A notable phenomenon occurs when UQ methods, such as Trained Probe 53],
exhibit strong alignment, leading to significant improvements in routing performance. This is because
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Figure 6: Routing results from four SLMs to DeepSeek-R1 on AQuA (mathematical reasoning), with
eight commonsense-reasoning datasets and one conversational & contextual understanding dataset
constituting the proxy routing data, demonstrate the strong generalization capability of the proxy
routing data in predicting the routing curve.

the extracted uncertainty scores from these UQ methods more effectively indicate whether SLMs
produce correct predictions. Among all UQ methods evaluated for routing tasks, we find that Trained
Probe [53], OOD Probe [39}153]], and Perplexity [20] consistently rank as the top three methods for
SLM routing. Therefore, a comprehensive analysis of UQ methods before deploying a routing system
in SLMs is highly recommended to ensure efficient query routing.

Observation @: SLLMs can match LLM performance on high-confidence queries. Although SLMs
generally underperform LLMs, we find that for queries where SLMs exhibit high confidence, their
accuracy approaches that of LLMs. To illustrate, we progressively remove queries starting from those
with the lowest SLM confidence and compute the ratio of SLM to LLM accuracy on the remaining
top-k% queries (Figure . As more low-confidence queries are excluded, SLMs achieve comparable
performance to LLMs. For instance, on GSM8K, Qwen3-0.6B achieves performance nearly equal
to Llama-3.1-70B on the top 20% highest-confidence queries. Moreover, the effectiveness of this
selection depends on the uncertainty quantification (UQ) method: approaches with stronger alignment
(e.g., Trained Probe [53])) yield higher relative accuracy than weaker ones (e.g., verbalization-2s)
across all query exclusion rates. Additional results appear in Appendix [C.2.

4 Generalizable SLM Routing for New Downstream Scenarios

In this section, we first describe the pipeline for constructing proxy routing data with experimental
details. We then investigate how well the proxy routing data can predict the routing curve for new
downstream scenarios without accessing the new datasets. Finally, we discuss our results and offer
several insights into the proxy routing data for establishing routing in early-stage deployments.

4.1 Proxy Routing Data Construction Pipeline

We aim to evaluate the effectiveness of proxy routing data in generalizing the routing curve predictions
to new downstream scenarios, without relying on additional downstream data. Specifically, the proxy
routing data serves as a data-agnostic hold-out set tailored to a particular SLM, which can generalize
its routing standards across various new downstream datasets. By leveraging this proxy routing data,
we establish a generalizable routing framework for the routing deployments in the new scenario.
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Algorithm 1 Proxy Routing Data Construction Pipeline

input A collection of datasets D = {D;}¥; with N domains

output A set of proxy routing data X
1: Collect diverse domain of dataset D; to form D = {D;} ¥,
2: Generate uncertainty distributions {Fp}, of D with selected UQ methods
3: Sample X = {z; | z; € X; ~ {Fp}M, Vi, j} from i-th bin in {Fp} M,

This approach simplifies deployment of routing systems by eliminating the need for dataset-specific
routing analysis and demonstrates that proxy routing data can generalize across diverse datasets.

The overall construction pipeline is detailed as follows. Let D = {D;}}¥ ;| be a diverse collection
of datasets, where IV denotes the number of distinct domain types included in the collection. We
select a diverse collection of datasets D with various domains, such as commonsense reasoning,
mathematics, and more, where we follow the settings in [S0]. And then, we process every data
instance in D through selected UQ methods to capture their corresponding uncertainty distributions
{Fp}M, with M bins, where M € Z* is an arbitrary number. These distributions serve as the
sampling foundation of each data instance in forming proxy routing data. Finally, data instances
obtained in the set of proxy routing data X are weighted-sampled from each bin of {Fp}*, such
that X = {z; | z; € X; ~ {Fp}}, Vi, j}. This ensures similar distribution in proxy routing data
across various uncertainty levels presented in {Fp} ;. The resulting collection of these sampled
data instances forms the final proxy routing dataset. The detailed pipeline of constructing the proxy
routing dataset is outlined in Algorithm I}

4.2 Proxy Routing Data Setups

Benchmark Settings. We evaluate the constructed proxy routing data on 15 SLMs and 4 LLMs
across 15 datasets. Based on the observations and results from the previous benchmark section,
we select 2 UQ methods that demonstrate the strongest alignment between predicted uncertainty
and actual correctness: "OOD Probe" [39, 53] and "Perplexity" [20] method. We consider the
routing performance evaluated on the entire new dataset as the ground truth. To simulate new dataset
scenarios, we introduce two evaluation settings: (1) fully out-of-domain and (2) partially in-domain.
First, for the out-of-domain setting, we evaluate a target dataset using proxy routing data derived from
source datasets with no domain overlap. Second, in the partially in-domain setting, we designate one
dataset as the target and construct its proxy routing data using the remaining 14 datasets, where the
domain of the dataset may partially overlap. The target dataset’s generalization performance is then
evaluated using this proxy routing set, which does not contain any information from the target dataset.
All reported results represent the average across three individual experimental runs.

Data Construction Settings. The proxy routing data is weighted-sampled from each bin of the proxy
routing data distributions, with the number of bins set to 30. We sample 10% of the instances from
each bin to form the final proxy routing data. The temperature is fixed at 0 with a fixed random seed
of 50 to ensure reproducibility.

4.3 Routing Curve Prediction with Proxy Routing Data

We provide several key insights into the generalization ability of proxy routing data as follows.

Insights @: The extracted confidence distribution is predominantly determined by the chosen
SLM and uncertainty quantification (UQ) method, with minimal dependence on the downstream
dataset. As illustrated in Figure 4, confidence scores aggregated from 15 different tasks exhibit a
nearly identical shape regardless of the specific dataset. Instead, they vary notably with different
SLMs and UQ methods. This finding suggests that the confidence distribution is largely data-agnostic,
enabling the construction of proxy routing data that generalizes to new tasks without any new datasets.

Insights ®: Proxy routing data helps SLM routing to predict an accurate routing curve without
any new data, allowing routing strategies to be initialized on SLMs without accessing new
datasets. Building on our findings about uncertainty distributions, we sampled a data subset to create
a final proxy routing dataset using the pipeline described in Section[4.1] We then utilized this proxy
routing dataset to predict all thresholds for different routing ratios in new downstream scenarios.
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The experimental results (see Figure [5 and Figure[6) show that the routing curves from the proxy
routing data closely match those from the entire new downstream dataset in both evaluation settings,
indicating that the proxy routing data provides strong capability for establishing routing strategies on
unseen downstream datasets. An identical phenomenon is observed across multiple UQ methods and
different SLMs, highlighting the potential of proxy routing data to initiate the routing process for any
new dataset, independent of the UQ method or SLM used. More results are in Appendix[C.3!

5 Challenges and Opportunities

@ How to cash-in routing efficiency on new edge devices? Based on the benchmark results, proxy
routing data provides a robust foundation for establishing routing policies on new edge devices
without accessing prior knowledge at the early stage of deployment. This enables the routing
policies with strong generalization to new dataset scenarios and enhances the efficiency across diverse
deployments for personal edge devices. While proxy routing data holds a good performance in the
early deployment stage, an important direction to explore is how to effectively leverage additional
private on-device data to strengthen the quality of proxy routing data, aiming to continuously enhance
the deployment of personalized routing strategies. With the aid of proxy routing data, less private
data is required, but striking a balance between privacy and performance remains an open challenge.

@ How to effectively strike a balance between LLM routing efficiency and utility? We em-
pirically observe that by leveraging UQ methods with strong uncertainty-utility alignment (e.g.,
Perplexity and OOD Probe methods), routing thresholds can effectively be determined with the sweet
points of efficiency and utility. However, achieving such sweet spots can be challenging due to the
variability in downstream datasets and the sensitivity of UQ methods to LLM-specific characteristics.
Additionally, discrepancies across different device types, such as variations between iOS and Android
systems , further complicating the process, requiring tailored strategies and analytics to account for
platform-specific constraints and capabilities. Based on these factors, providing a fair apple-to-apple
comparison regarding routing performance is inherently challenging. Researchers should be mindful
of these complexities and focus on developing methods that are not only efficient but also capable of
handling long-context scenarios effectively.

©® How is the performance when conducting compression (e.g., pruning, quantization) on the
on-device model? As with the on-device models discussed in the above sections, we directly adopt
a pre-trained small model without any modifications. Alternatively, on-device models can also be
generated by compressing larger models. Specifically, numerous works have explored methods for
compressing LLMs into smaller sizes using techniques such as pruning [22] and quantization [74}44].
The advantage of employing compression methods is that the smaller models compressed from larger
ones tend to retain similar distributions of the output, thereby mitigating the issue of distribution shift.

® Uncertainty-aware routing in on-device multimodal language models. While LLMs typically
operate with a single modality for both input and output, a promising research direction involves
exploring uncertainty-aware routing in multimodal language models (MLLMs). For instance, in
vision-language models (VLMs) such as LLaVa [49] and InternVL [9]], the inputs include both
images/videos and text. By incorporating visual modalities, the properties of vision tokens signif-
icantly influence the output. As a result, the uncertainty in the generated text differs from that of
language-only models. Benchmarking and generalizing uncertainty-aware routing for on-device
MLLMs is a valuable direction for the research community.

6 Conclusion

This paper investigates the routing accuracy of SLMs in estimating their uncertainty and establishing
best practices for initiating effective routing strategies. Through comprehensive benchmarking of 15
SLMs, 4 LLMs, 8 UQ methods, and 15 datasets across 5000+ settings, we found that the alignment
between uncertainty and correctness significantly impacts routing performance. Additionally, our
experiments show that uncertainty distributions depend primarily on the specific SLM and UQ
method rather than the downstream data. Building on the insights, we introduced a proxy routing data
construction pipeline and a hold-out dataset to generalize routing strategies without prior knowledge
of new downstream data. The results confirm that the proxy routing data effectively bootstraps
routing, indicating its strong potential for benefiting in resource-efficient SLM deployment.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Last paragraph of Section 1
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Appendix E
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section 3.1

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Abstract (https://anonymous.4open.science/r/quodlibeta)
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

32


https://anonymous.4open.science/r/quodlibeta
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

845
846

847

848
849
850

851

852

853

854

855
856

857
858
859

860
861

862

863

864

865

866
867
868

869
870
871

872
873

874

875
876

877
878
879

880
881
882

883
884

885

886
887
888

889

890

891

892

893
894

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 3.1
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix D
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All dataset used in this work are public available. This research has no violation
of ML safety or human rights.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix F
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All the code, data, and models in this work is opensourced with Apache-2.0
licence.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Section 3.1 describes the usage of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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