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Abstract

Small language models (SLMs) are increasingly deployed on edge devices for1

personalized applications, offering efficient decoding latency and reduced energy2

consumption. However, these SLMs often generate inaccurate responses when han-3

dling complex queries. One promising solution is uncertainty-based SLM routing,4

offloading high-stakes queries to stronger large language models (LLMs) when5

resulting in low-confidence responses on SLM. This follows the principle of If6

you lack confidence, seek stronger support to enhance reliability. Relying on more7

powerful LLMs is yet effective but increases invocation costs. Therefore, striking8

a routing balance between efficiency and efficacy remains a critical challenge.9

Additionally, efficiently generalizing the routing strategy to new datasets remains10

under-explored. In this paper, we conduct a comprehensive investigation into bench-11

marking and generalization of uncertainty-driven routing strategies from SLMs12

to LLMs over 5000+ settings. Our findings highlight: First, uncertainty-correctness13

alignment in different uncertainty quantification (UQ) methods significantly im-14

pacts routing performance. Second, uncertainty distributions depend more on both15

the specific SLM and the chosen UQ method, rather than on downstream data.16

Building on the insight, we propose a proxy routing data construction pipeline and17

open-source a hold-out set to enhance the generalization on predicting the routing18

curve for new downstream data. Experimental results indicate that proxy routing19

data effectively bootstraps routing performance without any new data. The source20

code is available at https://anonymous.4open.science/r/quodlibeta.21

1 Introduction22

Large language models (LLMs) deployment on edge devices has gained increasing attention in23

recent years, primarily due to their potential for low-latency, privacy-preserving inference. Given24

the computational and memory constraints of edge devices, small language models (SLMs) (e.g.,25

Phi2-mini [35] or Llama3.2-3B [70] are designed for resource-efficient deployment, particularly on26

devices such as smartphones and wearable devices. Their overarching goal is to democratize the27

deployment of LMs, making it accessible and affordable to users across diverse settings and at any28

time [52, 86, 83]. However, these SLMs often lack the robustness and scalability of LLMs [8] (e.g.,29

GPT-4o [2] and Llama-3.1-405B), especially when faced with diverse and complex input queries30

under the deployment on edge devices, which eventually degrade the overall performance. This31

limitation raises a critical need for exploring solutions to increase the response reliability of SLMs.32

To mitigate this unreliability, a line of work proposes to partially offload challenging and complex33

queries from SLMs to LLMs [11, 59, 32, 66]. A hybrid system is then established to wisely route34

the queries from SLMs and seek more reliable and deterministic responses from stronger LLMs.35
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Table 1: Uncertainty quantification (UQ) methods evaluated in our benchmark. “Model Access”
specifies whether a method views the LM’s weights/logits (white-box) or only its generated output
(black-box). “Require Training?” indicates if additional training is needed. See Subsection 2.1 for
taxonomy details and Subsection 3.1 for method descriptions.

Uncertainty Quantification (UQ) Methods Taxonomy Model Access Require Training?

Average Token Prob [53] Token/sequence probabilities White-box No
p(True) [39] Token/sequence probabilities White-box No
Perplexity [21] Token/sequence probabilities White-box No
Jaccard Degree [47] Output consistency Black-box No
Verbalization-1s [76, 69] Verbalized uncertainty Black-box No
Verbalization-2s [69] Verbalized uncertainty Black-box No

Trained Probe [4, 39, 53] Uncertainty probe White-box Yes
OOD Probe [39, 53] Uncertainty probe White-box Yes

Although LLMs can exhibit superior performance, they incur high maintenance and inference costs36

given the large scale of model size and their infrastructure (i.e., a single NVIDIA A100 GPU can37

cost approximately $2,000 per month for deployment). Inaccurate routing by SLMs increases the38

volume of queries forwarded to LLMs, necessitating greater bandwidth allocation for maintaining39

the service of LLMs. As a result, operational costs and budgetary requirements rise accordingly,40

especially when continuous deployment is required. Hence, developing an effective routing strategy41

is crucial for fully deploying SLMs [59, 66, 11], as it both enhances response reliability and reduces42

the costs associated with services and data transmission.43

Leveraging SLMs’ self-uncertainty estimation emerges as a robust strategy for enhancing routing44

effectiveness [11, 16]. By relying on the self-assessed uncertainty, the system can better decide45

whether to handle a query locally or delegate it to a larger model without the aid of extra routers,46

ensuring that only queries deemed unreliable by the SLMs are routed to LLMs. As a result, the47

uncertainty-based routing approach not only generalizes well to new datasets, as only self-assessed48

information from SLM is needed, but it also reduces the high operational costs associated with49

accurately running LLMs. To this end, we aim to explore two open and nontrivial research questions50

for uncertainty-based SLM routing:51

1) What is the best practice of uncertainty estimation for query routing from SLMs to LLMs?52

In this research question, we benchmark the uncertainty-correctness alignment of each uncertainty53

quantification (UQ) method under its impact on SLM routing. A good alignment is a key factor for54

successful routing decisions, as any misalignment can cause unnecessary offloading with extra cost.55

However, SLMs may struggle to provide reliable uncertainty estimates [33, 15, 73], making them56

less effective as indicators for query routing. Thus, we benchmark the alignment between uncertainty57

and correctness, paving the insights for establishing more effective routing strategies1.58

2) What is the best practice to initially establish an effective routing strategy when generalizing59

to new datasets? In this research question, we explore how to generalize routing strategies to new60

datasets. Existing approaches [59, 32] rely on sufficient new downstream data to make routing61

decisions for optimal performance-cost trade-offs, but this process is time-consuming and labor-62

intensive. Broadly speaking, collecting and analyzing full downstream datasets under varying63

SLM configurations can be prohibitively costly, delaying implementation, which is not practical64

in real-world scenarios. This delay is particularly problematic in high-stakes scenarios, such as65

medical wearable devices, where reliability is critical, and inaccuracies are unacceptable even in early66

deployment stages. Based on our findings, we provide a data construction pipeline to predict the67

routing curves in new downstream scenarios without any new downstream data. A generated proxy68

routing dataset as a data-agnostic hold-out set enables the estimation of effective routing decisions69

via the predicted routing curves. We further benchmark the benefits of this proxy routing dataset,70

demonstrating its generalization ability in predicting the routing curve to new datasets.71

This work offers an accessible and reproducible pipeline for uncertainty-based routing from bench-72

marking to generalization. Our main contributions are summarized as follows:73

1For the convenience of writing, we interchangeably use uncertainty and confidence, where low uncertainty
refers to high confidence.
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• Comprehensive benchmarking and detailed analysis: This benchmark evaluates 8 UQ methods74

across 14 datasets to examine the alignment between uncertainty and correctness in routing tasks.75

We incorporate 8 SLMs and 2 LLMs to emulate real-world deployment scenarios. We then76

delve into key observations from the extensive results and conclude the insights for developing77

uncertainty-based SLM routing.78

• Proxy routing data for generalizing routing to new data: Building on our benchmarking79

pipeline, we introduce a proxy routing data construction pipeline designed to generalize the routing80

curve prediction in new downstream scenarios. Empirical results show that this proxy routing81

data generalizes effectively the routing prediction to new datasets without relying on any new82

downstream data.83

2 Reviewing Different Schools of Uncertainty Quantification and LLM84

Routing85

2.1 Uncertainty Quantification for LMs86

Uncertainty quantification methods estimate a model’s confidence in its predictions [31]. For87

traditional classification and regression, uncertainty estimation is well-established [23]. However, for88

LLMs generating free-form responses to complex queries, estimating uncertainty is more challenging89

because the output space can grow exponentially with vocabulary size, and each sequence spans90

multiple tokens [20]. Existing uncertainty quantification approaches for LLMs can be grouped into91

the following four categories.92

Via verbalizing uncertainty. This line of work prompts language models to report linguistic con-93

fidence [53, 56]. To enable LMs to verbalize confidence, researchers have proposed fine-tuning94

them to express uncertainty [46] or teaching them to verbalize confidence through in-context learn-95

ing [17]. Verbalized confidence can take the form of linguistic expressions of uncertainty or numer-96

ical scores [24]. Multiple studies find that LLMs tend to be overconfident when reporting confi-97

dence [76, 69]. To mitigate this overconfidence, prompting strategies such as multi-step elicitation,98

top-k, and Chain-of-Thought [72] have been explored [69]. Sampling multiple response-confidence99

pairs and designing more effective aggregation strategies can also help mitigate overconfidence [76].100

Moreover, [69] reports that verbalized confidence is typically better calibrated than the model’s101

conditional probabilities.102

Via analyzing token/sequence probabilities. This line of research derives confidence scores from103

model logits for output tokens [24, 33, 38]. The confidence of a generated sequence is computed by104

aggregating the log-probabilities of its tokens. Common aggregation strategies include arithmetic105

average, minimum, perplexity, and average entropy [20, 21, 71]. Because not all tokens in a sequence106

equally reflect semantic content, SAR reweights token likelihoods to emphasize more meaningful107

tokens [18]. However, different surface realizations of the same claim can yield different probabilities,108

implying that the calculated confidence reflects how a claim is articulated rather than the claim109

itself [53]. To combine LM self-assessment with token probabilities, p(True) is proposed: the model110

is asked whether its generated response is correct, and the probabilities of True/False tokens serve as111

the confidence score [39, 69].112

Via gauging output consistency. This line of research (e.g., SelfCheckGPT [54]) assumes that113

high-confidence LLMs produce consistent outputs [53]. A typical approach samples m responses114

for a given input query, measures inter-response similarity, and calculates a confidence score from115

meaning diversity [20]. Common ways to measure pairwise similarity include Natural Language116

Inference (NLI) and Jaccard similarity [24]. Consistency is then assessed by analyzing the similarity117

matrix, for instance, by counting semantic sets, summing eigenvalues of the graph Laplacian or118

computing eccentricity [47]. Because different sentences can express the same meaning, semantic119

entropy [40] first clusters responses by semantic equivalence before measuring consistency.120

Via training uncertainty probes. This approach trains classifiers to predict whether an LLM121

will arrive at the correct answer for a particular query, using predicted probabilities as confidence122

scores [24]. Training data is often obtained by sampling multiple answers per question at a fixed123

temperature and labeling each for correctness [39]. A probe (commonly a multi-layer perceptron)124

then takes hidden states as inputs to predict correctness [4, 42]. Because in-domain training data125

is not always available, Contrast-Consistent Search trains probes unsupervisedly by maximizing126
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Figure 1: The ROC AUC scores measure the alignment between confidence and correctness across
different SLMs and uncertainty quantification methods on OpenBookQA. A higher ROC AUC
indicates a stronger alignment.

representation distances between contradictory answers on Yes/No questions [7]. Furthermore,127

whether probes trained on out-of-distribution data remain effective is still under debate [39, 53, 40].128

2.2 LLM Routing129

In query-routing scenarios, recent approaches train additional classifiers to direct queries to different130

SLMs or LLMs based on historical performance metrics and user feedback data [16, 59, 66, 37,131

84]. For instance, RouterBench [32] collects inference outputs from selected LLMs to aid in132

the development of routing classifiers. However, these methods face significant challenges when133

encountering new downstream tasks, as such data falls outside the distribution of the existing training134

data. This limitation makes them less practical for real-world scenarios, such as on personal edge135

device deployment, where adaptability to unseen conditions is crucial. Our work focuses on how to136

establish routing systems between SLMs and LLMs and generalize to new downstream tasks. In137

this manner, uncertainty-based routing is an appropriate solution to overcome these challenges, as138

uncertainty is directly extracted from SLMs themselves. Furthermore, we propose a proxy routing139

data construction pipeline to initialize a routing system that generalizes to unseen datasets.140

3 Benchmarking Uncertainty-based SLM Routing141

In this section, we systematically evaluate 12 SLMs and 4 LLMs on 15 datasets using 8 UQ methods142

(see Table 1) for uncertainty-based SLM routing. This section details the datasets, models, and143

UQ methods, followed by several key findings and practical considerations. All experiments are144

conducted on four 80GB NVIDIA A100 GPUs.145

3.1 Benchmark Coverage and Setup146

Language Models. We evaluate 12 open-source SLMs, organized into three categories:147

non-reasoning LMs, reasoning LMs, and a recurrent neural network (RNN) model. The non-reasoning148

models are Llama-3.2-1B-Instruct [55], Llama-3.2-3B-Instruct [55], Phi-3.5-mini-instruct [1],149

Mistral-7B-Instruct-v0.3 [36], Qwen2.5-7B-Instruct [78], Llama-3.1-8B-Instruct [19], and150

Granite-3.1-8B-Instruct [26]. The reasoning models are Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B,151

and Phi-4-mini-reasoning [77]. The RNN model is RWKV-7-2.9B [61]. These SLMs come from152

Alibaba (four models), Meta (three), Microsoft, Mistral AI, IBM, and LF AI & Data. Except for153

RWKV-7-2.9B, all adopt decoder-only Transformer architectures and are available on Hugging Face.154

We also include four LLMs: three open-source models—Llama-3.1-70B-Instruct [19], Qwen3-32B,155

and DeepSeek-R1 [29]—and one proprietary API model, GPT-4.1 mini [34]. Qwen3-32B and156

DeepSeek-R1 are reasoning LLMs, whereas Llama-3.1-70B and GPT-4.1 mini are non-reasoning.157

Datasets. Experiments span 15 datasets from four domains: (1) Mathematical Reasoning (AQuA [48],158

GSM8K [13], MultiArith [63], SVAMP [60], MATH-500 [43]), (2) Commonsense Reasoning159

(CommonsenseQA [67], HellaSwag [80], OpenBookQA [57], PIQA [6], TruthfulQA [45], Wino-160

Grande [64], BoolQ [12], Social IQa [65]), (3) Conversational and Contextual Understanding161
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(a) Phi-3.5-mini (b) Mistral-7B (c) Qwen3-1.7B (d) Qwen3-4B

(e) Phi-3.5-mini (f) Mistral-7B (g) Qwen3-1.7B (h) Qwen3-4B
Figure 2: Overall accuracy vs. routing ratio with different UQ methods and SLMs. (a)-(d) show
the results of routing to DeepSeek-R1 on the CommonsenseQA dataset; and (e)-(h) demonstrate the
results of routing to GPT-4.1 mini on the OpenBookQA dataset.

(CoQA [62]), and (4) Problem Solving (MMLU [30]). These cover free-form, multiple-choice, and162

True/False question answering and are available via Hugging Face. Table 2 in Appendix A provides163

further details.164

UQ Methods and Hyperparameters. We evaluate 8 approaches from the four categories in165

Section 2.1. (1) Average token probability uses the probability of the chosen option token (e.g., “A”)166

for multiple-choice tasks or the mean probability of all generated tokens for free-form tasks. (2)167

Perplexity is computed for a sequence of N output tokens {yi}Ni=1 with probabilities {p(yi)}Ni=1 as168

exp
(

1
N

∑N
i=1 ln p(yi)

)
, and its reciprocal serves as the confidence score. (3) p(True) is a method169

where the LM first outputs an answer, then evaluates the generated response using only “True” or170

“False.” The probabilities for these two tokens are normalized to sum to 1, and the probability of171

“True” is used as confidence. (4) Verbalized confidence in a single response (denoted as verbalization-172

1s) prompts the model to output both the answer and numeric confidence in one step. (5) Verbalized173

confidence in the second round (denoted as verbalization-2s) obtains the confidence in a separate,174

follow-up query after the model has provided an answer. (6) The degree matrix (denoted as jaccard-175

degree) generates m = 5 samples (temperature 1.0) for one query, computes pairwise Jaccard176

similarities, and sets confidence to trace(mI →D)/m2, where D is the degree matrix. (7) Trained177

probe is a four-layer MLP with LeakyReLU activations, trained on a fixed subsample of the in-domain178

training set for each dataset, taking as input the hidden states from the eighth-to-last transformer179

layer. We train for 20 epochs (learning rate 5↑ 10→4). (8) Trained probe on out-of-distribution data180

(denoted as ood-probe) is identical in architecture but trained on all other datasets. e.g., if AQuA is181

evaluated, the ood-probe is trained on the remaining 14 datasets (20 epochs, learning rate 1↑ 10→4).182

For verbalization-based methods, we discard queries when the model does not follow instructions183

to produce a confidence score. For free-form question answering, we use GPT-4.1 mini to evaluate184

whether a response is essentially equivalent to the ground truth answer [85].185

3.2 Report Observations186

In this section, we present our benchmarking results analyzing the impact of uncertainty-correctness187

alignment on routing tasks. More observations and experimental results on proxy routing and routing188

can be found in Appendix C.1.189

Observation ✁: Uncertainty estimation in SLMs may exhibit misalignment with prediction190

correctness. From the theoretical perspective, well-calibrated uncertainty scores do not necessarily191
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(a) Granite-3.1-8B (b) Qwen3-0.6B (c) Llama-3.2-1B (d) RWKV-7-2.9B

Figure 3: Relative accuracy of SLMs vs. LLMs on top-k% confident queries. “Relative accuracy”
is the ratio of SLM accuracy to LLM accuracy. The x-axis “Lowest Conf. Excluded” shows the
percentage of low-confidence queries removed; for example, 80 means 80% of queries with the
lowest confidence are excluded, leaving the top 20%. (a) and (b) compare SLMs to Llama-3.1-70B
on GSM8K, while (c) and (d) compare SLMs to Qwen3-32B on BoolQ.

(a) Phi-3.5-mini (b) Llama-3.1-8B

Figure 4: Confidence distributions across 15 datasets. The histogram depicts the aggregated distribu-
tion from all datasets, while each curve represents a single dataset. (a) Confidence of Phi-3.5-mini by
OOD Probe; (b) Confidence of Llama-3.1-8B by Perplexity.

imply a strong correlation with the correctness of the predictions [33, 11]. The predictions of192

models might be perfectly calibrated yet still display relatively low accuracy (i.e., confidently provide193

wrong answers). This phenomenon is also evident in our benchmark results (illustrated in Figure 1).194

We compute AUC scores to quantify the correlation between extracted uncertainty and prediction195

correctness, treating correctness as a binary ground truth and using confidence values as the ranking196

metric. The results show that not all UQ methods effectively exhibit a strong alignment between197

confidence and prediction correctness. Moreover, from Figure 1 and Figure 8, we can observe198

that the alignment may vary across datasets for the same SLM and UQ method. For instance,199

Perplexity [21] demonstrates strong alignment for Phi-3.5-mini on the MultiArith dataset but fails200

on the OpenBookQA dataset. On the other hand, OOD Probe, Trained Probe, and Perplexity obtain201

consistently decent alignment compared to other UQ methods across different SLMs and domains of202

datasets. Conversely, we notice that verbalization-based methods, namely verbalization-1s [69, 53],203

and verbalization-2s [69], consistently withhold low alignment between uncertainty and prediction204

correctness. More experimental results can be found in Appendix C.1.205

Observation ✂: Verbalization-based UQ methods struggle to extract uncertainty in SLMs for206

query routing. We find that verbalization methods like verbalization-2s [69] obtain poor alignment207

between confidence and prediction correctness, and this misalignment can lead to inferior routing208

performance in SLMs, where the conclusion can be found in Figure 2. Recent advancements [75, 79]209

also show that uncertainty scores derived from verbalization may exhibit good reflection on models’210

intrinsic uncertainty of prediction across multiple models and datasets. This discrepancy poses a211

significant challenge for establishing effective routing performance since queries that are actually212

correct may be unnecessarily routed from SLMs to LLMs, thereby increasing the overall cost of213

deploying routing systems.214

Observation ✃: A good routing standard highly depends on UQ methods with good uncertainty-215

correctness alignment. A notable phenomenon occurs when UQ methods, such as Trained Probe [53],216

exhibit strong alignment, leading to significant improvements in routing performance. This is because217
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(e) Mistral-7B (g) Phi-4-mini-reasoning(f) Qwen3-0.6B (g) RWKV-7-2.9B

(a) Mistral-7B (b) Qwen3-0.6B (c) Phi-4-mini-reasoning (d) RWKV-7-2.9B

(e) Mistral-7B (g) Phi-4-mini-reasoning(f) Qwen3-0.6B (g) RWKV-7-2.9B

(a) Mistral-7B (b) Qwen3-0.6B (c) Phi-4-mini-reasoning (d) RWKV-7-2.9B

Figure 5: Routing results from four SLMs to Llama-3.1-70B on HellaSwag, with the remaining 14
other datasets constituting the proxy routing data.

(e) Mistral-7B (g) Phi-4-mini-reasoning(f) Qwen3-0.6B (g) RWKV-7-2.9B

(a) Mistral-7B (b) Qwen3-0.6B (c) Phi-4-mini-reasoning (d) RWKV-7-2.9B

(e) Mistral-7B (g) Phi-4-mini-reasoning(f) Qwen3-0.6B (g) RWKV-7-2.9B

(a) Mistral-7B (b) Qwen3-0.6B (c) Phi-4-mini-reasoning (d) RWKV-7-2.9B

(e) Mistral-7B (g) Phi-4-mini-reasoning(f) Qwen3-0.6B (g) RWKV-7-2.9B

(a) Mistral-7B (b) Qwen3-0.6B (c) Phi-4-mini-reasoning (d) RWKV-7-2.9B

Figure 6: Routing results from four SLMs to DeepSeek-R1 on AQuA (mathematical reasoning), with
eight commonsense-reasoning datasets and one conversational & contextual understanding dataset
constituting the proxy routing data, demonstrate the strong generalization capability of the proxy
routing data in predicting the routing curve.

the extracted uncertainty scores from these UQ methods more effectively indicate whether SLMs218

produce correct predictions. Among all UQ methods evaluated for routing tasks, we find that Trained219

Probe [53], OOD Probe [39, 53], and Perplexity [20] consistently rank as the top three methods for220

SLM routing. Therefore, a comprehensive analysis of UQ methods before deploying a routing system221

in SLMs is highly recommended to ensure efficient query routing.222

Observation ✄: SLMs can match LLM performance on high-confidence queries. Although SLMs223

generally underperform LLMs, we find that for queries where SLMs exhibit high confidence, their224

accuracy approaches that of LLMs. To illustrate, we progressively remove queries starting from those225

with the lowest SLM confidence and compute the ratio of SLM to LLM accuracy on the remaining226

top-k% queries (Figure 3). As more low-confidence queries are excluded, SLMs achieve comparable227

performance to LLMs. For instance, on GSM8K, Qwen3-0.6B achieves performance nearly equal228

to Llama-3.1-70B on the top 20% highest-confidence queries. Moreover, the effectiveness of this229

selection depends on the uncertainty quantification (UQ) method: approaches with stronger alignment230

(e.g., Trained Probe [53]) yield higher relative accuracy than weaker ones (e.g., verbalization-2s)231

across all query exclusion rates. Additional results appear in Appendix C.2.232

4 Generalizable SLM Routing for New Downstream Scenarios233

In this section, we first describe the pipeline for constructing proxy routing data with experimental234

details. We then investigate how well the proxy routing data can predict the routing curve for new235

downstream scenarios without accessing the new datasets. Finally, we discuss our results and offer236

several insights into the proxy routing data for establishing routing in early-stage deployments.237

4.1 Proxy Routing Data Construction Pipeline238

We aim to evaluate the effectiveness of proxy routing data in generalizing the routing curve predictions239

to new downstream scenarios, without relying on additional downstream data. Specifically, the proxy240

routing data serves as a data-agnostic hold-out set tailored to a particular SLM, which can generalize241

its routing standards across various new downstream datasets. By leveraging this proxy routing data,242

we establish a generalizable routing framework for the routing deployments in the new scenario.243
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Algorithm 1 Proxy Routing Data Construction Pipeline

input A collection of datasets D = {Di}Ni=1 with N domains
output A set of proxy routing data X

1: Collect diverse domain of dataset Di to form D = {Di}Ni=1

2: Generate uncertainty distributions {FD}Mi=1 of D with selected UQ methods
3: Sample X = {xj | xj ↓ Xi ↔ {FD}Mi=1 ↗i, j} from i-th bin in {FD}Mi=1

This approach simplifies deployment of routing systems by eliminating the need for dataset-specific244

routing analysis and demonstrates that proxy routing data can generalize across diverse datasets.245

The overall construction pipeline is detailed as follows. Let D = {Di}Ni=1 be a diverse collection246

of datasets, where N denotes the number of distinct domain types included in the collection. We247

select a diverse collection of datasets D with various domains, such as commonsense reasoning,248

mathematics, and more, where we follow the settings in [50]. And then, we process every data249

instance in D through selected UQ methods to capture their corresponding uncertainty distributions250

{FD}Mi=1 with M bins, where M ↓ Z+ is an arbitrary number. These distributions serve as the251

sampling foundation of each data instance in forming proxy routing data. Finally, data instances252

obtained in the set of proxy routing data X are weighted-sampled from each bin of {FD}Mi=1 such253

that X = {xj | xj ↓ Xi ↔ {FD}Mi=1 ↗i, j}. This ensures similar distribution in proxy routing data254

across various uncertainty levels presented in {FD}Mi=1. The resulting collection of these sampled255

data instances forms the final proxy routing dataset. The detailed pipeline of constructing the proxy256

routing dataset is outlined in Algorithm 1.257

4.2 Proxy Routing Data Setups258

Benchmark Settings. We evaluate the constructed proxy routing data on 15 SLMs and 4 LLMs259

across 15 datasets. Based on the observations and results from the previous benchmark section,260

we select 2 UQ methods that demonstrate the strongest alignment between predicted uncertainty261

and actual correctness: "OOD Probe" [39, 53] and "Perplexity" [20] method. We consider the262

routing performance evaluated on the entire new dataset as the ground truth. To simulate new dataset263

scenarios, we introduce two evaluation settings: (1) fully out-of-domain and (2) partially in-domain.264

First, for the out-of-domain setting, we evaluate a target dataset using proxy routing data derived from265

source datasets with no domain overlap. Second, in the partially in-domain setting, we designate one266

dataset as the target and construct its proxy routing data using the remaining 14 datasets, where the267

domain of the dataset may partially overlap. The target dataset’s generalization performance is then268

evaluated using this proxy routing set, which does not contain any information from the target dataset.269

All reported results represent the average across three individual experimental runs.270

Data Construction Settings. The proxy routing data is weighted-sampled from each bin of the proxy271

routing data distributions, with the number of bins set to 30. We sample 10% of the instances from272

each bin to form the final proxy routing data. The temperature is fixed at 0 with a fixed random seed273

of 50 to ensure reproducibility.274

4.3 Routing Curve Prediction with Proxy Routing Data275

We provide several key insights into the generalization ability of proxy routing data as follows.276

Insights ✁: The extracted confidence distribution is predominantly determined by the chosen277

SLM and uncertainty quantification (UQ) method, with minimal dependence on the downstream278

dataset. As illustrated in Figure 4, confidence scores aggregated from 15 different tasks exhibit a279

nearly identical shape regardless of the specific dataset. Instead, they vary notably with different280

SLMs and UQ methods. This finding suggests that the confidence distribution is largely data-agnostic,281

enabling the construction of proxy routing data that generalizes to new tasks without any new datasets.282

Insights ✂: Proxy routing data helps SLM routing to predict an accurate routing curve without283

any new data, allowing routing strategies to be initialized on SLMs without accessing new284

datasets. Building on our findings about uncertainty distributions, we sampled a data subset to create285

a final proxy routing dataset using the pipeline described in Section 4.1. We then utilized this proxy286

routing dataset to predict all thresholds for different routing ratios in new downstream scenarios.287
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The experimental results (see Figure 5 and Figure 6) show that the routing curves from the proxy288

routing data closely match those from the entire new downstream dataset in both evaluation settings,289

indicating that the proxy routing data provides strong capability for establishing routing strategies on290

unseen downstream datasets. An identical phenomenon is observed across multiple UQ methods and291

different SLMs, highlighting the potential of proxy routing data to initiate the routing process for any292

new dataset, independent of the UQ method or SLM used. More results are in Appendix C.3.293

5 Challenges and Opportunities294

✁ How to cash-in routing efficiency on new edge devices? Based on the benchmark results, proxy295

routing data provides a robust foundation for establishing routing policies on new edge devices296

without accessing prior knowledge at the early stage of deployment. This enables the routing297

policies with strong generalization to new dataset scenarios and enhances the efficiency across diverse298

deployments for personal edge devices. While proxy routing data holds a good performance in the299

early deployment stage, an important direction to explore is how to effectively leverage additional300

private on-device data to strengthen the quality of proxy routing data, aiming to continuously enhance301

the deployment of personalized routing strategies. With the aid of proxy routing data, less private302

data is required, but striking a balance between privacy and performance remains an open challenge.303

✂ How to effectively strike a balance between LLM routing efficiency and utility? We em-304

pirically observe that by leveraging UQ methods with strong uncertainty-utility alignment (e.g.,305

Perplexity and OOD Probe methods), routing thresholds can effectively be determined with the sweet306

points of efficiency and utility. However, achieving such sweet spots can be challenging due to the307

variability in downstream datasets and the sensitivity of UQ methods to LLM-specific characteristics.308

Additionally, discrepancies across different device types, such as variations between iOS and Android309

systems , further complicating the process, requiring tailored strategies and analytics to account for310

platform-specific constraints and capabilities. Based on these factors, providing a fair apple-to-apple311

comparison regarding routing performance is inherently challenging. Researchers should be mindful312

of these complexities and focus on developing methods that are not only efficient but also capable of313

handling long-context scenarios effectively.314

✃ How is the performance when conducting compression (e.g., pruning, quantization) on the315

on-device model? As with the on-device models discussed in the above sections, we directly adopt316

a pre-trained small model without any modifications. Alternatively, on-device models can also be317

generated by compressing larger models. Specifically, numerous works have explored methods for318

compressing LLMs into smaller sizes using techniques such as pruning [22] and quantization [74, 44].319

The advantage of employing compression methods is that the smaller models compressed from larger320

ones tend to retain similar distributions of the output, thereby mitigating the issue of distribution shift.321

✄ Uncertainty-aware routing in on-device multimodal language models. While LLMs typically322

operate with a single modality for both input and output, a promising research direction involves323

exploring uncertainty-aware routing in multimodal language models (MLLMs). For instance, in324

vision-language models (VLMs) such as LLaVa [49] and InternVL [9], the inputs include both325

images/videos and text. By incorporating visual modalities, the properties of vision tokens signif-326

icantly influence the output. As a result, the uncertainty in the generated text differs from that of327

language-only models. Benchmarking and generalizing uncertainty-aware routing for on-device328

MLLMs is a valuable direction for the research community.329

6 Conclusion330

This paper investigates the routing accuracy of SLMs in estimating their uncertainty and establishing331

best practices for initiating effective routing strategies. Through comprehensive benchmarking of 15332

SLMs, 4 LLMs, 8 UQ methods, and 15 datasets across 5000+ settings, we found that the alignment333

between uncertainty and correctness significantly impacts routing performance. Additionally, our334

experiments show that uncertainty distributions depend primarily on the specific SLM and UQ335

method rather than the downstream data. Building on the insights, we introduced a proxy routing data336

construction pipeline and a hold-out dataset to generalize routing strategies without prior knowledge337

of new downstream data. The results confirm that the proxy routing data effectively bootstraps338

routing, indicating its strong potential for benefiting in resource-efficient SLM deployment.339
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NeurIPS Paper Checklist692

The checklist is designed to encourage best practices for responsible machine learning research,693

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove694

the checklist: The papers not including the checklist will be desk rejected. The checklist should695

follow the references and follow the (optional) supplemental material. The checklist does NOT count696

towards the page limit.697

Please read the checklist guidelines carefully for information on how to answer these questions. For698

each question in the checklist:699

• You should answer [Yes] , [No] , or [NA] .700

• [NA] means either that the question is Not Applicable for that particular paper or the701

relevant information is Not Available.702

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).703

The checklist answers are an integral part of your paper submission. They are visible to the704

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it705

(after eventual revisions) with the final version of your paper, and its final version will be published706

with the paper.707

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.708

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a709

proper justification is given (e.g., "error bars are not reported because it would be too computationally710

expensive" or "we were unable to find the license for the dataset we used"). In general, answering711

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we712

acknowledge that the true answer is often more nuanced, so please just use your best judgment and713

write a justification to elaborate. All supporting evidence can appear either in the main paper or the714

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification715

please point to the section(s) where related material for the question can be found.716

IMPORTANT, please:717

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",718

• Keep the checklist subsection headings, questions/answers and guidelines below.719

• Do not modify the questions and only use the provided macros for your answers.720

1. Claims721

Question: Do the main claims made in the abstract and introduction accurately reflect the722

paper’s contributions and scope?723

Answer: [Yes]724

Justification: Last paragraph of Section 1725

Guidelines:726

• The answer NA means that the abstract and introduction do not include the claims727

made in the paper.728

• The abstract and/or introduction should clearly state the claims made, including the729

contributions made in the paper and important assumptions and limitations. A No or730

NA answer to this question will not be perceived well by the reviewers.731

• The claims made should match theoretical and experimental results, and reflect how732

much the results can be expected to generalize to other settings.733

• It is fine to include aspirational goals as motivation as long as it is clear that these goals734

are not attained by the paper.735

2. Limitations736

Question: Does the paper discuss the limitations of the work performed by the authors?737

Answer: [Yes]738

Justification: Appendix E739
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Guidelines:740

• The answer NA means that the paper has no limitation while the answer No means that741

the paper has limitations, but those are not discussed in the paper.742

• The authors are encouraged to create a separate "Limitations" section in their paper.743

• The paper should point out any strong assumptions and how robust the results are to744

violations of these assumptions (e.g., independence assumptions, noiseless settings,745

model well-specification, asymptotic approximations only holding locally). The authors746

should reflect on how these assumptions might be violated in practice and what the747

implications would be.748

• The authors should reflect on the scope of the claims made, e.g., if the approach was749

only tested on a few datasets or with a few runs. In general, empirical results often750

depend on implicit assumptions, which should be articulated.751

• The authors should reflect on the factors that influence the performance of the approach.752

For example, a facial recognition algorithm may perform poorly when image resolution753

is low or images are taken in low lighting. Or a speech-to-text system might not be754

used reliably to provide closed captions for online lectures because it fails to handle755

technical jargon.756

• The authors should discuss the computational efficiency of the proposed algorithms757

and how they scale with dataset size.758

• If applicable, the authors should discuss possible limitations of their approach to759

address problems of privacy and fairness.760

• While the authors might fear that complete honesty about limitations might be used by761

reviewers as grounds for rejection, a worse outcome might be that reviewers discover762

limitations that aren’t acknowledged in the paper. The authors should use their best763

judgment and recognize that individual actions in favor of transparency play an impor-764

tant role in developing norms that preserve the integrity of the community. Reviewers765

will be specifically instructed to not penalize honesty concerning limitations.766

3. Theory assumptions and proofs767

Question: For each theoretical result, does the paper provide the full set of assumptions and768

a complete (and correct) proof?769

Answer: [NA]770

Justification: [NA]771

Guidelines:772

• The answer NA means that the paper does not include theoretical results.773

• All the theorems, formulas, and proofs in the paper should be numbered and cross-774

referenced.775

• All assumptions should be clearly stated or referenced in the statement of any theorems.776

• The proofs can either appear in the main paper or the supplemental material, but if777

they appear in the supplemental material, the authors are encouraged to provide a short778

proof sketch to provide intuition.779

• Inversely, any informal proof provided in the core of the paper should be complemented780

by formal proofs provided in appendix or supplemental material.781

• Theorems and Lemmas that the proof relies upon should be properly referenced.782

4. Experimental result reproducibility783

Question: Does the paper fully disclose all the information needed to reproduce the main ex-784

perimental results of the paper to the extent that it affects the main claims and/or conclusions785

of the paper (regardless of whether the code and data are provided or not)?786

Answer: [Yes]787

Justification: Section 3.1788

Guidelines:789

• The answer NA means that the paper does not include experiments.790
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• If the paper includes experiments, a No answer to this question will not be perceived791

well by the reviewers: Making the paper reproducible is important, regardless of792

whether the code and data are provided or not.793

• If the contribution is a dataset and/or model, the authors should describe the steps taken794

to make their results reproducible or verifiable.795

• Depending on the contribution, reproducibility can be accomplished in various ways.796

For example, if the contribution is a novel architecture, describing the architecture fully797

might suffice, or if the contribution is a specific model and empirical evaluation, it may798

be necessary to either make it possible for others to replicate the model with the same799

dataset, or provide access to the model. In general. releasing code and data is often800

one good way to accomplish this, but reproducibility can also be provided via detailed801

instructions for how to replicate the results, access to a hosted model (e.g., in the case802

of a large language model), releasing of a model checkpoint, or other means that are803

appropriate to the research performed.804

• While NeurIPS does not require releasing code, the conference does require all submis-805

sions to provide some reasonable avenue for reproducibility, which may depend on the806

nature of the contribution. For example807

(a) If the contribution is primarily a new algorithm, the paper should make it clear how808

to reproduce that algorithm.809

(b) If the contribution is primarily a new model architecture, the paper should describe810

the architecture clearly and fully.811

(c) If the contribution is a new model (e.g., a large language model), then there should812

either be a way to access this model for reproducing the results or a way to reproduce813

the model (e.g., with an open-source dataset or instructions for how to construct814

the dataset).815

(d) We recognize that reproducibility may be tricky in some cases, in which case816

authors are welcome to describe the particular way they provide for reproducibility.817

In the case of closed-source models, it may be that access to the model is limited in818

some way (e.g., to registered users), but it should be possible for other researchers819

to have some path to reproducing or verifying the results.820

5. Open access to data and code821

Question: Does the paper provide open access to the data and code, with sufficient instruc-822

tions to faithfully reproduce the main experimental results, as described in supplemental823

material?824

Answer: [Yes]825

Justification: Abstract (https://anonymous.4open.science/r/quodlibeta)826

Guidelines:827

• The answer NA means that paper does not include experiments requiring code.828

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/829

public/guides/CodeSubmissionPolicy) for more details.830

• While we encourage the release of code and data, we understand that this might not be831

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not832

including code, unless this is central to the contribution (e.g., for a new open-source833

benchmark).834

• The instructions should contain the exact command and environment needed to run to835

reproduce the results. See the NeurIPS code and data submission guidelines (https:836

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.837

• The authors should provide instructions on data access and preparation, including how838

to access the raw data, preprocessed data, intermediate data, and generated data, etc.839

• The authors should provide scripts to reproduce all experimental results for the new840

proposed method and baselines. If only a subset of experiments are reproducible, they841

should state which ones are omitted from the script and why.842

• At submission time, to preserve anonymity, the authors should release anonymized843

versions (if applicable).844

32

https://anonymous.4open.science/r/quodlibeta
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the845

paper) is recommended, but including URLs to data and code is permitted.846

6. Experimental setting/details847

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-848

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the849

results?850

Answer: [Yes]851

Justification: Section 3.1852

Guidelines:853

• The answer NA means that the paper does not include experiments.854

• The experimental setting should be presented in the core of the paper to a level of detail855

that is necessary to appreciate the results and make sense of them.856

• The full details can be provided either with the code, in appendix, or as supplemental857

material.858

7. Experiment statistical significance859

Question: Does the paper report error bars suitably and correctly defined or other appropriate860

information about the statistical significance of the experiments?861

Answer: [NA]862

Justification: [NA]863

Guidelines:864

• The answer NA means that the paper does not include experiments.865

• The authors should answer "Yes" if the results are accompanied by error bars, confi-866

dence intervals, or statistical significance tests, at least for the experiments that support867

the main claims of the paper.868

• The factors of variability that the error bars are capturing should be clearly stated (for869

example, train/test split, initialization, random drawing of some parameter, or overall870

run with given experimental conditions).871

• The method for calculating the error bars should be explained (closed form formula,872

call to a library function, bootstrap, etc.)873

• The assumptions made should be given (e.g., Normally distributed errors).874

• It should be clear whether the error bar is the standard deviation or the standard error875

of the mean.876

• It is OK to report 1-sigma error bars, but one should state it. The authors should877

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis878

of Normality of errors is not verified.879

• For asymmetric distributions, the authors should be careful not to show in tables or880

figures symmetric error bars that would yield results that are out of range (e.g. negative881

error rates).882

• If error bars are reported in tables or plots, The authors should explain in the text how883

they were calculated and reference the corresponding figures or tables in the text.884

8. Experiments compute resources885

Question: For each experiment, does the paper provide sufficient information on the com-886

puter resources (type of compute workers, memory, time of execution) needed to reproduce887

the experiments?888

Answer: [Yes]889

Justification: Appendix D890

Guidelines:891

• The answer NA means that the paper does not include experiments.892

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,893

or cloud provider, including relevant memory and storage.894
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• The paper should provide the amount of compute required for each of the individual895

experimental runs as well as estimate the total compute.896

• The paper should disclose whether the full research project required more compute897

than the experiments reported in the paper (e.g., preliminary or failed experiments that898

didn’t make it into the paper).899

9. Code of ethics900

Question: Does the research conducted in the paper conform, in every respect, with the901

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?902

Answer: [Yes]903

Justification: All dataset used in this work are public available. This research has no violation904

of ML safety or human rights.905

Guidelines:906

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.907

• If the authors answer No, they should explain the special circumstances that require a908

deviation from the Code of Ethics.909

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-910

eration due to laws or regulations in their jurisdiction).911

10. Broader impacts912

Question: Does the paper discuss both potential positive societal impacts and negative913

societal impacts of the work performed?914

Answer: [Yes]915

Justification: Appendix F916

Guidelines:917

• The answer NA means that there is no societal impact of the work performed.918

• If the authors answer NA or No, they should explain why their work has no societal919

impact or why the paper does not address societal impact.920

• Examples of negative societal impacts include potential malicious or unintended uses921

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations922

(e.g., deployment of technologies that could make decisions that unfairly impact specific923

groups), privacy considerations, and security considerations.924

• The conference expects that many papers will be foundational research and not tied925

to particular applications, let alone deployments. However, if there is a direct path to926

any negative applications, the authors should point it out. For example, it is legitimate927

to point out that an improvement in the quality of generative models could be used to928

generate deepfakes for disinformation. On the other hand, it is not needed to point out929

that a generic algorithm for optimizing neural networks could enable people to train930

models that generate Deepfakes faster.931

• The authors should consider possible harms that could arise when the technology is932

being used as intended and functioning correctly, harms that could arise when the933

technology is being used as intended but gives incorrect results, and harms following934

from (intentional or unintentional) misuse of the technology.935

• If there are negative societal impacts, the authors could also discuss possible mitigation936

strategies (e.g., gated release of models, providing defenses in addition to attacks,937

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from938

feedback over time, improving the efficiency and accessibility of ML).939

11. Safeguards940

Question: Does the paper describe safeguards that have been put in place for responsible941

release of data or models that have a high risk for misuse (e.g., pretrained language models,942

image generators, or scraped datasets)?943

Answer: [NA]944

Justification: [NA]945

Guidelines:946
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• The answer NA means that the paper poses no such risks.947

• Released models that have a high risk for misuse or dual-use should be released with948

necessary safeguards to allow for controlled use of the model, for example by requiring949

that users adhere to usage guidelines or restrictions to access the model or implementing950

safety filters.951

• Datasets that have been scraped from the Internet could pose safety risks. The authors952

should describe how they avoided releasing unsafe images.953

• We recognize that providing effective safeguards is challenging, and many papers do954

not require this, but we encourage authors to take this into account and make a best955

faith effort.956

12. Licenses for existing assets957

Question: Are the creators or original owners of assets (e.g., code, data, models), used in958

the paper, properly credited and are the license and terms of use explicitly mentioned and959

properly respected?960

Answer: [NA]961

Justification: All the code, data, and models in this work is opensourced with Apache-2.0962

licence.963

Guidelines:964

• The answer NA means that the paper does not use existing assets.965

• The authors should cite the original paper that produced the code package or dataset.966

• The authors should state which version of the asset is used and, if possible, include a967

URL.968

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.969

• For scraped data from a particular source (e.g., website), the copyright and terms of970

service of that source should be provided.971

• If assets are released, the license, copyright information, and terms of use in the972

package should be provided. For popular datasets, paperswithcode.com/datasets973

has curated licenses for some datasets. Their licensing guide can help determine the974

license of a dataset.975

• For existing datasets that are re-packaged, both the original license and the license of976

the derived asset (if it has changed) should be provided.977

• If this information is not available online, the authors are encouraged to reach out to978

the asset’s creators.979

13. New assets980

Question: Are new assets introduced in the paper well documented and is the documentation981

provided alongside the assets?982

Answer: [NA]983

Justification: [NA]984

Guidelines:985

• The answer NA means that the paper does not release new assets.986

• Researchers should communicate the details of the dataset/code/model as part of their987

submissions via structured templates. This includes details about training, license,988

limitations, etc.989

• The paper should discuss whether and how consent was obtained from people whose990

asset is used.991

• At submission time, remember to anonymize your assets (if applicable). You can either992

create an anonymized URL or include an anonymized zip file.993

14. Crowdsourcing and research with human subjects994

Question: For crowdsourcing experiments and research with human subjects, does the paper995

include the full text of instructions given to participants and screenshots, if applicable, as996

well as details about compensation (if any)?997

Answer: [NA]998
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Justification: [NA]999

Guidelines:1000

• The answer NA means that the paper does not involve crowdsourcing nor research with1001

human subjects.1002

• Including this information in the supplemental material is fine, but if the main contribu-1003

tion of the paper involves human subjects, then as much detail as possible should be1004

included in the main paper.1005

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1006

or other labor should be paid at least the minimum wage in the country of the data1007

collector.1008

15. Institutional review board (IRB) approvals or equivalent for research with human1009

subjects1010

Question: Does the paper describe potential risks incurred by study participants, whether1011

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1012

approvals (or an equivalent approval/review based on the requirements of your country or1013

institution) were obtained?1014

Answer: [NA]1015

Justification: [NA]1016

Guidelines:1017

• The answer NA means that the paper does not involve crowdsourcing nor research with1018

human subjects.1019

• Depending on the country in which research is conducted, IRB approval (or equivalent)1020

may be required for any human subjects research. If you obtained IRB approval, you1021

should clearly state this in the paper.1022

• We recognize that the procedures for this may vary significantly between institutions1023

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1024

guidelines for their institution.1025

• For initial submissions, do not include any information that would break anonymity (if1026

applicable), such as the institution conducting the review.1027

16. Declaration of LLM usage1028

Question: Does the paper describe the usage of LLMs if it is an important, original, or1029

non-standard component of the core methods in this research? Note that if the LLM is used1030

only for writing, editing, or formatting purposes and does not impact the core methodology,1031

scientific rigorousness, or originality of the research, declaration is not required.1032

Answer: [Yes]1033

Justification: Section 3.1 describes the usage of LLMs.1034

Guidelines:1035

• The answer NA means that the core method development in this research does not1036

involve LLMs as any important, original, or non-standard components.1037

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1038

for what should or should not be described.1039
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