
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A CONDITIONAL INDEPENDENCE TEST IN THE PRES-
ENCE OF DISCRETIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Testing conditional independence (CI) has many important applications, such as
Bayesian network learning and causal discovery. Although several approaches have
been developed for learning CI structures for observed variables, those existing
methods generally fail to work when the variables of interest can not be directly
observed and only discretized values of those variables are available. For example,
if X1, X̃2 and X3 are the observed variables, where X̃2 is a discretization of the
latent variable X2, applying the existing methods to the observations of X1, X̃2

and X3 would lead to a false conclusion about the underlying CI of variables
X1, X2 and X3. Motivated by this, we propose a CI test specifically designed to
accommodate the presence of discretization. To achieve this, a bridge equation
and nodewise regression are used to recover the precision coefficients reflecting
the conditional dependence of the latent continuous variables under the nonpara-
normal model. An appropriate test statistic has been proposed, and its asymptotic
distribution under the null hypothesis of CI has been derived. Theoretical analysis,
along with empirical validation on various datasets, rigorously demonstrates the
effectiveness of our testing methods.

1 INTRODUCTION

Independence and conditional independence (CI) are fundamental concepts in statistics. They are
leveraged for exploring queries in statistical inference, such as sufficiency, parameter identification,
and ancillarity (Dawid, 1979). They also play a central role in emerging areas such as causal discovery
(Koller & Friedman, 2009), graphical model learning, and feature selection (Xing et al., 2001). Tests
for CI have attracted increasing attention from both theoretical and application sides.

Formally, the problem is to test the CI of two variables X1 and X2 given a random vector (a set of
other variables) Z. In statistical notation, the null hypothesis is written as H0 : X1 ⊥⊥ X2 | Z, where
⊥⊥ denotes “independent from.” The alternative hypothesis is written as H1 : X1 ̸⊥⊥ X2 | Z, where
̸⊥ denotes “dependent with.” The null hypothesis implies that once Z is known, the values of Xj1
provide no additional information about Xj2 , and vice versa. Different tests have been designed to
handle different scenarios, including Gaussian variables with linear dependence (Yuan & Lin, 2007;
Peterson et al., 2015; Mohan et al., 2012; Ren et al., 2015) and non-linear dependence (Fukumizu
et al., 2004; Zhang et al., 2012; Strobl et al., 2019; Sen et al., 2017; Aliferis et al., 2010) (For detailed
related work, please refer to App. F).

Given observations of X1, X2, and Z, the CI can be effectively tested with existing methods.
However, in many scenarios, accurately measuring continuous variables of interest is challenging
due to limitations in data collection. Sometimes the data obtained are approximations represented as
discretized values. For example, in finance, variables such as asset values cannot be measured and
are binned into ranges for assessing investment risks (e.g., sell, hold, and strong buy) (Changsheng &
Yongfeng, 2012; Damodaran, 2012). Similarly, in mental health, anxiety levels are often assessed
using scales like the GAD-7, which categorizes responses into levels such as mild, moderate, or
severe (Mossman et al., 2017; Johnson et al., 2019). In the entertainment industry, the quality of
movies is typically summarized through viewer ratings (Sparling & Sen, 2011; Dooms et al., 2013).

When discretization is present, existing CI tests can fail to determine the CI of underlying continuous
variables. This issue arises because existing CI tests treat discretized observations as observations of
continuous variables, leading to incorrect conclusions about their CI relationships. More precisely,
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the problem lies in the discretization process, which introduces new discrete variables. Consequently,
although the intent is to test the CI of the underlying continuous variables, what is actually being
tested is the CI involving a mix of both continuous and newly introduced discrete variables. In general,
this CI relationship is inconsistent with the one among the underlying continuous variables.

(a) (b) (c)

Figure 1: We illustrate different data generative
processes with causal graphical models. The dis-
cretization process introduces new discrete vari-
ables which are denoted with a tilde (∼).

As illustrated in Fig. 1, we show different data-
generative processes using causal graphical mod-
els (Pearl, 2000) in the presence of discretization.
A gray node indicates an observable variable,
while a white node indicates a latent variable.
Variables denoted by Xj (without a tilde ∼) rep-
resent continuous variables, which may not be
observed; while variables denoted by X̃j repre-
sent observed discretized variables derived from
Xj due to discretization. In Fig. 1(a), X2 is
latent, and only its discrete counterpart X̃2 is
observed. In this case, rather than observing X1,
X2, and X3, we only observe X1, X̃2, and X3.
Existing CI methods use these observations to test whether X1⊥⊥X3 | {X2}, but what is actually
being tested is whether X1⊥⊥X3 | {X̃2}. In fact, according to the causal Markov condition (Spirtes
et al., 2000), it can be inferred from Fig. 1(a) that X1⊥⊥X3 | {X2} and X1 ̸⊥⊥X3 | {X̃2}. This
mismatch leads to existing CI methods, that employ observations to check the CI relationships
between X1 and X3 given X2, to reach incorrect conclusions. Due to the same reason, checking the
CI also fails in Fig 1(b) and Fig 1(c).

In this paper, we design a CI test specifically for handling the presence of discretization. An appropri-
ate test statistic for the CI of latent continuous variables, based solely on discretized observations, is
derived. To develop this test, we first estimate the covariance between latent continuous variables and
discretized observations. This is achieved by constructing bridge equations that enable the estimation
of covariance using statistics derived from discretized observations. Subsequently, to utilize the
estimated covariance of latent continuous variables for testing CI relationships, we apply a node-wise
regression approach (Callot et al., 2019). This method allows us to derive test statistics for CI based
on the estimated covariance. By assuming that the continuous variables follow a Gaussian distribution,
we can derive the asymptotic distributions of the test statistics under the null hypothesis of CI. The
major contributions of our paper include that

• We develop a CI test for ensuring accurate analysis in scenarios where data has been discretized,
which are common due to limitations in data collection or measurement techniques, such as in
financial analysis and healthcare.

• Our CI test can handle various scenarios including 1). Both variables Xj1 and Xj2 are discretized
2). Both variables Xj1 and Xj2 are continuous. 3). One of the variables Xj1 or Xj2 is discretized.

• We compare our test with the existing methods on both synthetic and real-world datasets, confirm-
ing that our method can effectively estimate the CI of the underlying continuous variables and
outperform the existing tests applied on the discretized observations.

2 PROBLEM SETTING AND NECESSITY OF CORRECTION

Problem Setting Consider a set of independent and identically distributed (i.i.d.) p-dimensional
random vectors, denoted as X̃ = (X1, X2, . . . , X̃j , . . . , X̃p)

T . In this set, some variables, indicated
by a tilde (∼), such as X̃j , follow a discrete distribution. For each such variable, there exists a
corresponding latent Gaussian random variable Xj . The transformation from Xj to X̃j is governed
by an unknown monotone nonlinear function gj and a thresholding function fj . The function
fj ◦ gj : X → X̃ maps the continuous domain of Xj onto the discrete domain of X̃j . Specifically,
for each variable Xj , there exists a finite constant vector dj = (dj,1, . . . , dj,M−1) characterized by
strictly increasing elements such that

X̃j = fj(gj(Xj)) =


1 0 < gj(Xj) < dj,1
m dj,m−1 < gj(Xj) < dj,m
M gj(Xj) > dj,M−1

(1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

This model is also known as the nonparanormal model (Liu et al., 2009). The cardinality of the
domain after discretization is at least 2 and smaller than infinity. Our goal is to assess both conditional
and unconditional independence among the variables of the vector X = (X1, X2, . . . , Xp). In
our model, we assume X ∼ N(0,Σ), Σ only contain 1 among its diagonal, i.e., σjj = 1 for all
j ∈ [1, . . . , p]. One should note this assumption is without loss of generality. We provide a detailed
discussion of our assumption in App. B.9.

Why the correction is essential? We aim to propose a CI test that serves as a correction to
infer the correct CI relationships among the latent continuous variables of interest. One question
that arises is whether the discretized variables exhibit the same conditional independence as their
original continuous counterparts, i.e., the correction is not needed. This concern becomes more
significant when the level of discretization is high. To highlight the effect of discretization, we propose
the following theorem. In essence, the discretization inevitably introduces distortions, leading to
potentially false conclusions. The proof can be found in Appendix B.1.

Theorem 2.1. Let X1, X2 and X3 be jointly Gaussian random variables such that X1 ⊥⊥ X3|X2,
X̃2 = fj(gj(X2)) is the descretized observation as defined in equation 1. Then the conditional
independence between X1 and X3 given X̃2 doesn’t hold, i.e., X1 ̸⊥⊥ X3|X̃2.

3 DCT: A DISCRETIZATION-AWARE CI TEST

Notation Throughout this work, we use Xj to denote the j-th component of the vector of variables
X . We denote the sample mean of Xj by En[Xj ], and the expectation by E[Xj ]. The empirical
probability is represented by Pn whereas the true probability is denoted by P. For a matrix X, X−j
represents all columns of X except the j-th column, X−j−j denotes the submatrix obtained by
removing both the j-th column and row, and X−jj represents the j-th column of X with the j-th row
removed. For any parameter α, we use α̂ to denote its estimation. 1{condition} is 1 if the condition
holds true, 0 otherwise. For a full notation table, please refer to Appendix A.

To develop a CI test, we need to design a test statistic that can reflect the conditional dependence
relation and be calculated from observations. Next, it is essential to derive the underlying distribution
of this statistic under the null hypothesis that the tested variables are conditionally (or unconditionally)
independent. By calculating the value of the test statistic from observations and determining if this
statistic is likely to be drawn from the derived distribution (i.e., calculating the p-value and comparing
it with the significance level α), we can decide if the null hypothesis should be rejected.

Our objective is to deduce the independence and CI relationships within the original multivariate
Gaussian variable X , based on its discretized observations X̃ . In the context of a multivariate
Gaussian model, this challenge is directly equivalent to constructing statistical inferences for its
covariance matrix Σ = (σj1j2) and its precision matrix Ω = (ωjk) = Σ−1 (Baba et al., 2004). The
covariance matrix Σ captures the pairwise covariances between variables, while the precision matrix
Ω provides information about the CI between variables. Specifically, the entry ωjk in the precision
matrix is the partial correlation coefficient between variables Xj and Xk, which can be used to test
whether these variables are conditionally independent given some other variables. Technically, we
are interested in two things: (1) the calculation of the covariance σ̂j1j2 and the precision coefficient
(or the partial correlation coefficient) ω̂jk, serving as the estimation of σj1j2 and ωjk respectively (in
this paper, a variable with a hat indicates its estimation); and (2) the derivation of the distribution of
σ̂j1j2 − σj1j2 and ω̂jk − ωjk under the null hypothesis of independence and CI.

In the remainder of section, 1). we first introduce bridge equations to address the estimation challenge
of the covariance σj1j2 ; 2). we proceed to derive the distribution of σ̂j1j2 − σj1j2 , demonstrating it
is asymptotically normal; 3). utilizing nodewise regression, we establish the relationship between
the covariance matrix Σ and the precision matrix Ω, where the regression parameter βj,k acts as an
effective surrogate for ωjk. Leveraging the distribution of σ̂j1j2 − σj1j2 , we further illustrate that
β̂j,k − βj,k is also asymptotically normal.

3.1 ESTIMATING COVARIANCE THROUGH OBSERVATIONS

Our first task is to establish the connection between the underlying covariance σj1j2 of the continuous
pair Xj1 and Xj2 with their observed counterparts. In the presence of discretization, the sample
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covariance matrix computed from X̃ is inconsistent with the covariance matrix of X . To obtain the
estimation σ̂j1,j2 consistent with σj1,j2 , the bridge equation is leveraged. In general, its form is as
follows.

τ̂j1,j2 = T (σ̂j1j2 ; Λ̂), (2)
where σ̂j1j2 is the estimated covariance, τ̂j1,j2 is a statistic that can also be estimated from obser-
vations, and Λ̂ is a set of additional parameters required by the function T (·). The specific form
of the function T (·) will be derived later. Both τ̂j1,j2 and Λ̂ should be able to be calculated purely
relying on observations. Then, given the calculated τ̂j1,j2 and Λ̂, σ̂j1,j2 can be obtained by solving
the bridge equation. As a result, the covariance matrix Σ of X can be estimated, which contains
information about both unconditional independence and CI (which can be derived from its inverse).

To estimate the covariance of a latent multivariate Gaussian distribution, we need to design appropriate
τ̂j1,j2 , Λ̂, and T (·). Notably, bridge equations have to be designed to handle the possible cases:
C1. both observed variables are discretized; C2. one variable is continuous while the other is
discretized. For C3. both variables remain continuous, we can easily take its sample covariance as
the estimated covariance. We will show that cases C1 and C2 can be merged into a single form of
bridge equation with different parameters and a binarization operation applied to the observations.
Our bridge equations are presented in Def. 3.1, Def. 3.2.

3.1.1 BRIDGE EQUATIONS FOR DISCRETIZED AND MIXED PAIRS

Let us first address the challenging cases where both observed variables are discretized or where
one variable is continuous while the other is discretized. In general, different bridge equations
would need to be designed to handle each case individually. However, in our analysis, we provide a
unified bridge equation that is applicable to both cases. This is achieved by binarizing the observed
variables, thereby unifying both cases into a binary case. As some information may be lost in the
binarization process, this unification may require more data samples compared to using tailored
bridge functions for each specific case. Developing specific bridge equations for each case to improve
sample efficiency is left in future work.

Theoretically, continuous variables and discrete variables can be further discretized into binary
variables. Imagine we have the observed variable X̃j1 with the possible values "low", "medium",
"high", we can create a dividing point: everything above becomes "very high", everything below
becomes "very low". This binarization process is also applicable to the continuous variable. Note
that X̃j is just the discretized version of its corresponding continuous variable Xj , this dividing
point directly responds to a specific value in the original continuous domain, which we denote as the
boundary hj . Multiple choices of hj are possible. In this paper, we define hj as the boundary in the
continuous domain that corresponds to the mean of its discretized counterpart X̃j . Mathematically,
we define hj as follows: for any single discretized variable X̃j , there exists a constant cj such that
hj = g−1

j (cj) satisfying

1{x̃ij > E[X̃j ]} = 1{gj(xij) > cj} = 1{xij > hj}.

Estimating the boundary Since the continuous variableXj follows a normal distribution according
to our assumption, we can thus construct the relation P(X̃j > E[X̃j ]) = 1− Φ(hj), where Φ is the
cumulative distribution function (cdf) of a standard normal distribution. Apparently, we do not have
access to the true probability. However, we can easily obtain its estimation by counting how many
samples drop in the region larger than its sample mean. Specifically,

ĥj = Φ−1(1− τ̂j), (3)

where τ̂j = 1
n

∑n
i=1 1{x̃ij > En[X̃j ]}, serving as the estimation of P(X̃j > E[X̃j ]). We further

denote Φ̄(·) = 1− Φ(·).

Intuition of estimating covariance The question now is to estimate the latent covariance σj1j2
for the observed discrete pair (X̃j1 , X̃j2) or mixed pair (X̃j1 , Xj2). Leveraging the binarization
process, there exists boundaries hj1 , hj2 that partition the continuous variables pair Xj1 and Xj2 to
a 2× 2 contingency table. The area of each cell in this table represents the joint probability of the
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pair (Xj1 , Xj2) falling with a specific region defined by those boundaries. In this paper, we focus on
the top-right cell of the contingency table, which represents the joint probability of both variables
exceeding their respective boundaries.

Mathematically, we denote Φ̄(z1, z2; ρ) = P(Z1 > z1, Z2 > z2), where (Z1, Z2) follows a bivariate
normal distribution with mean zero, variance one and covariance ρ. For a discretized pair of observed
variables (X̃j1 , X̃j2), We define

τj1,j2 := P(X̃j1 > E[X̃j1 ], X̃j2 > E[X̃j2 ]) = Φ̄(hj1 , hj2 ;σj1j2).

That is, the probability of discretized variables larger than their mean can be expressed as a function
of underlying covariance. This equation serves as the key to estimating latent covariance based on
the discretized observations. Similarly, we can estimate this probability by counting samples dropped
into the region of both variables exceeding their sample means. Mathematically,

τ̂j1,j2 := Pn(X̃j1 > En[X̃j1 ], X̃j2 > En[X̃j2)] =
1

n

n∑
i=1

1{x̃ij1 > En[X̃j1 ], x̃
i
j2 > En[X̃j2 ]}. (4)

Since Φ̄(hj1 , hj2 ;σj1j2) is a function of σj1j2 , by substituting the parameters τj1,j2 , hj1 , hj2 as their
estimation, we can construct the bridge equation as follows:

Definition 3.1 (Bridge Equation for A Discretized-Variable Pair). For discretized variables X̃j1 and
X̃j2 , the bridge equation is defined as:

τ̂j1,j2 = T (σ̂j1j2 ; {ĥj1 , ĥj2}),

where T (σ̂j1j2 ; {ĥj1 , ĥj2}) =
∫
z1>ĥj1

∫
z2>ĥj2

ϕ(z1, z2; σ̂j1j2) dz1 dz2, and ϕ is the probability den-
sity function of a bivariate normal distribution with mean zero and covariance σ̂j1j2 , we note that
ĥj1 , ĥj2 can be simply calculated using equation 3 and τ̂j1,j2 can be calculated using equation 4.

Following the same intuition, we can directly apply the same bridge equation to estimate the co-
variance of mixed pairs. The only difference is there is no need to estimate the boundary ĥj for the
continuous variable. Instead, we can incorporate its true mean of zero into the equation.

Definition 3.2 (Bridge Equation for A Continuous-Discretized-Variable Pair). For one continuous
variable Xj1 and one discretized variable X̃j2 , the bridge function is defined as follows:

τ̂j1,j2 = Pn(Xj1 > 0, X̃j2 > En[X̃j2 ]) :=
1

n

n∑
i=1

1{xij1 > 0, x̃ij2 > En[X̃j2 ]} = T (σj1j2 ; {0, ĥj2}),

and the function T (·) has the same form of Def. 3.1.

3.1.2 CALCULATION OF ESTIMATED COVARIANCE

For the continuous case where there is no discretization transformation, the sample covariance
provides a consistent estimation of the true one. That is, for an observable pair of continuous variables
(Xj1 , Xj2), we can simply obtain the analytic solution of estimated covariance:

σ̂j1j2 =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2 (5)

For the cases involving the discretized variable as proposed in Def. 3.1 and Def. 3.2, we can rely on
the property that variance Σ only contains 1 among the diagonal, which implies the covariance σj1j2
should vary from −1 to 1. Thus, we can calculate the estimated covariance by solving the objective

σ̂j1j2 = arg min
σ′
j1j2

||τ̂j1,j2 − T (σ′
j1j2 ; {ĥj1 , ĥj2})||

2 s.t.− 1 < σ′
j1j2 < 1. (6)

The τ̂j1,j2 is a one-to-one mapping with calculated σ̂j1j2 , ĥj1 and ĥj2 , which is proved in App. B.3
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3.2 UNCONDITIONAL INDEPENDENCE TEST

The estimation of covariance σ̂j1j2 can be effectively solved using the designed bridge equation.
Now, we focus on deriving the distribution of σ̂j1j2 − σj1j2 . These results is used as an unconditional
independence test in the presence of the discretization. Moreover, Thm. 3.3, Lem. 3.4, Lem. 3.5
and Lem. 3.6 will be leveraged in the derivation process of the CI test in Section 3.3. The detailed
derivation steps for both unconditional independence test and CI test are relatively complicated,
therefore, we will provide a general intuition. For a complete derivation, please refer to the App. B.4.

Assume we are interested in the true parameter θ0, e.g., for discretized pairs, θ = (σ̂j1j2 , hj1 , hj2).
We denote θ̂ as its estimation which is close to θ0, and f(θ) is a continuous function. By leveraging
Taylor expansion, we have

f(θ̂) = f(θ0) + f ′(θ0)(θ̂ − θ0)+ . . . , (7)

where the second order terms and more are omitted, which directly constructs the relationship between
the estimated parameter with the true one. Rearrange the term, we get θ̂−θ0 = (f(θ̂)−f(θ0))/f ′(θ0).
If the denominator is a constant and the numerator can be expressed as a sum of i.i.d samples, we can
see θ̂− θ0 will be asymptotically normal according to the central limit theorem (Van der Vaart, 2000).

Let ψθ̂ = [f1
θ̂
(·), . . .]T contains a group of functions parameterized by θ̂. We define the functions

evaluated at one sample as ψi
θ̂
= ψθ̂(z

i), where zi denotes the i-th sample point. We define the sample
mean of these functions evaluated at n points as En[ψθ̂] =

1
n

∑n
i=1 ψ

i
θ̂
, similarly, En[ψθ̂ψ

T
θ̂
] =

1
n

∑n
i=1 ψ

i
θ̂
ψi
θ̂

T and ψ′
θ̂

denotes the Jacobian matrix ∂ψθ̂

∂θ̂
. We now provide the main result of derived

distribution σ̂j1j2 − σj1j2 under the hull hypothesis that tested pairs are independent.
Theorem 3.3 (Independence Test). Under the null hypothesis that the Gaussian variables (Xj1 , Xj2 )
are statistically independent σj1j2 = 0, the test statistics σ̂j1j2 obtained according to Def. 3.1 for
discretized pairs (X̃j1 , X̃j2 ), Def. 3.2 for mixed pairs (Xj1 , X̃j2 ) and equation 5 for continuous pairs,
is asymptotically normal:

√
n(σ̂j1j2 − σj1j2)

d→ N
(
0, ((En[ψ′

θ̂
])−1En[ψθ̂ψ

T
θ̂
](En[ψ′T

θ̂
])−1)1,1

)
, (8)

where the specific form of ψi
θ̂

are presented in Lem. 3.4,Lem. 3.5 and Lem. 3.6.

We now provide the specific forms of ψi
θ̂
. Since the variables being tested for independence can be

both discretized, only one being discretized, or neither being discretized—-the form of ψθ̂ varies
accordingly. The specific forms of ψθ̂ in these scenarios are defined as follows:

Lemma 3.4. (ψi
θ̂

for A Continuous-Variable Pair). For two continuous variables Xj1 and Xj2 with
their corresponding i-th samples xij1 , x

i
j2

:

ψi
θ̂
:= xij1x

i
j2 − En[Xj1 ]En[Xj2 ]− σ̂j1j2 , (9)

Lemma 3.5 (ψi
θ̂

for A Discretized-Variable Pair). For discretized variables X̃j1 and X̃j2 , with their
corresponding i-th samples x̃ij1 , x̃

i
j2

:

ψi
θ̂
:=

τ̂ ij1,j2 − T (σ̂j1j2 ; {ĥj1 , ĥj2})τ̂ ij1 − Φ̄(ĥj1)

τ̂ ij2 − Φ̄(ĥj2)

 , (10)

where τ̂ ij1j2 = 1{x̃ij1 > En[X̃j1 ], x̃
i
j2
> En[X̃j2 ]}, τ̂ ij1 = 1{x̃ij > En[X̃j1 ]}, and similarly for τ̂ ij2 .

Lemma 3.6 (ψi
θ̂

for A Continuous-Discretized-Variable Pair). For one discretized variable X̃j2 and
one continuous variable Xj1 , with their corresponding i-th sample point x̃ij2 , x

i
j1

:

ψi
θ̂
:=

(
τ̂ ij1,j2 − T (σ̂j1j2 ; {0, ĥj2)}

τ̂ ij2 − Φ̄(ĥj2)

)
, (11)

where τ̂ ij1j2 = 1{xij1 > 0, x̃ij2 > En[X̃j2 ]}, τ̂ ij2 = 1{x̃ij > En[X̃j2 ]}.
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Derivation of forms of ψθ̂ for different cases and their corresponding distribution defined in Eq equa-
tion 8 can be found in App. B.5, App. B.6, App. B.7. Up to this point, our discussion has been
confined to the case of covariance σj1j2 , the indicator of unconditional independence. In the next
section, we will present the results of our CI test.

3.3 CONDITIONAL INDEPENDENCE (CI) TEST

To construct a CI test of our model, we are interested at two things: calculation of the estimated
precision coefficient ω̂jk and the derivation of the corresponding distribution ω̂jk − ωjk. While
obtaining ω̂jk from the Σ̂ is straightforward, it leaves the inference problem unresolved. Thus, we
leverage nodewise regression and show the regression parameter βj,k serving as a surrogate of testing
for ωjk = 0, we then construct the formulation of β̂j,k − βj,k as the combination of formulation of
σ̂j1j2 − σj1j2 and show it will also be asymptotically normal.

The following lemma formalizes the properties of nodewise regression that enable this approach:
Lemma 3.7. [Nodewise Regression Properties] For a p-dimensional multivariate normal variable
X = (X1, . . . , Xp) ∼ N(0,Σ) with covariance matrix Σ and precision matrix Ω = Σ−1 =
(ωjk)1≤j,k≤p. For any j ∈ {1, . . . , p}, consider the nodewise regression where each Xj is regressed
on all other variables:

Xj =
∑
k ̸=j

Xkβj,k + ϵj ,

where βj,k is the regression coefficient of Xk in predicting Xj , βj = (βj,k)k ̸=j ∈ Rp−1 is the vector
of all coefficients, and ϵj is the residual term. Then the following relationships hold:

βj = Σ−1
−j−jΣ−jj ∈ Rp−1,

βj,k = −ωjk
ωjj

, j ̸= k.
(12)

The derivation can be found in Appendix B.8.1. The lemma establishes the deterministic relationships
between the regression coefficient βj,k and the entry of precision matrix ωjk. Since ωjj will never be
zero (due to the positive definiteness Ω), we can conclude βj,k serves as an effective surrogate of
ωjk. Moreover, βj can be expressed in terms of the submatrices of the covariance matrix Σ. We can
further conduct its estimation β̂j = (β̂j,k)k ̸=j = Σ̂−1

−j−jΣ̂−jj , where the estimated covariance terms
can be obtained using Def. 3.1, 3.2 and equation 5.

Statistical Inference for βj,k Nodewise regression offers a direct solution for the estimation
problem. A pertinent inquiry pertains to the construction of the distribution of β̂j − βj . It is crucial
to recognize that the distribution of σ̂j1j2 − σj1j2 is already established. Therefore, if we can
conceptualize β̂j−βj as a linear combination of σ̂j1j2 −σj1j2 , the problem is directly solved, i.e., the
β̂j − βj is linear combination of dependent Gaussian variables. The underlying relationship between
these variables is as follows:

β̂j − βj = −Σ̂−1
−j−j

(
(Σ̂−j−j −Σ−j−j)βj − (Σ̂−jj −Σ−jj)

)
.

The derivation is provided in App. B.8.2. For ease of notation, we further express the distribution of
the difference between the estimated covariance and the true covariance as

σ̂j1j2 − σj1j2 =
1

n

n∑
i=1

ξij1,j2 . (13)

The specific form of ξij1,j2 is given in App. B.5, B.6, B.7 respectively for different cases. For notational
convenience, we express Σ̂−j−j −Σ−j−j =

1
n

∑n
i=1 Ξ

i
−j,−j and Σ̂−jj −Σ−jj =

1
n

∑n
i=1 Ξ

i
−j,j ,

where ξj1,j2 is the element of the matrix Ξ at the position indexed by (j1, j2). We now propose the
statistic and its asymptotic distribution for the CI test in the following theorem.
Theorem 3.8 (Conditional Independence test). Under the null hypothesis that Gaussian variables
Xj and Xk are conditional statistically independent given all other variables X−{jk}, i.e., βj,k = 0,
the testing statistic

β̂j,k = (Σ̂−1
−j−jΣ̂−jj)[k], (14)

7
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Figure 2: Comparison of results of Type I and calibrated Type II error (1 − power) for all three
types of tested data (continuous, mixed, discrete) and different number of samples and cardinality of
conditioning set. The suffix attached to a test’s name denotes the cardinality of discretization; for
example, "Fisherz_4" signifies the application of the Fisher-z test to data discretized into four levels.
Chi-square test is only applicable for the discrete case.

where [k] denotes the element corresponding to the variable Xk in Σ̂−1
−j−jΣ̂−jj , has the asymptotic

distribution:
√
n(β̂j,k − βj,k) ∼ N(0, a[k]

T 1

n

n∑
i=1

vec(Bi−j)vec(B
i
−j)

Ta[k]),

where Bi =

[
Ξi−j,j

T

Ξi−j,−j

]
, a

[k]
l =


(
Σ̂−1

−j−j

)
[k],l

, for l ∈ {1, . . . , p− 1}∑p−1
q=1

(
Σ̂−1

−j−j

)
[k],l

(
β̃j

)
q
, for l ∈ {p, . . . , p2 − p}

and β̃j is βj whose βj,k = 0; vec is row-wise vectorization of a matrix.

In practice, we can plug in the estimation of regression parameter β̂j and set β̂j,k = 0 as the
substitution of β̃j to calculate the variance and do the CI test. Specifically, we can obtain the β̂j,k
using equation 14 where the estimated covariance terms can be calculated by solving the bridge
equation Eq. 2. Under the null hypothesis that βj,k = 0 (conditional independence), we can take
the calculated β̂j,k into the distribution defined in Thm. 3.8 and obtain the p-value. If the p-value is
smaller than the predefined significance level α (normally set at 0.05), we will infer the tested pairs
are conditionally dependent; otherwise, we do not. The detailed derivation of the Thm. 3.8 can be
found in App. B.8.2. The pseudo code of DCT is provided in Appendix D.

4 EXPERIMENTS

We applied the proposed method DCT to synthetic data to evaluate its practical performance and
compare it with Fisher-Z test (Fisher, 1921) (for all three data types) and Chi-Square test (F.R.S.,
2009) (for discrete data only) as baselines. Specifically, we investigated its Type I and Type II error
and its application in causal discovery. The experiments investigating its robustness, performance in
denser graphs and effectiveness in a real-world dataset can be found in App. E.

4.1 ON THE EFFECT OF THE CARDINALITY OF CONDITIONING SET AND THE SAMPLE SIZE

Our experiment investigates the variations in Type I and Type II error (1 minus power) probabilities
under two conditions. In the first scenario, we focus on the effects of modifying the sample size,

8
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denoted as n = (100, 500, 1000, 2000), while conditioning on a single variable. In the second, the
sample size is held constant at 2000, and we vary the cardinality of the conditioning set, represented
as D = (1, 2, . . . , 5). It is assumed that every variable within this conditioning set is effective, i.e.,
they influence the CI of the tested pairs. We repeat each test 1500 times.

We use Y,W to denote the variables being tested and use Z to denote the variables being conditioned
on. The discretized versions of the variables are denoted with a tilde symbol (e.g., Z̃). For both con-
ditions, we evaluate three distinct types of observations of tested variables: continuous observations
for both variables (Y,W ), discrete observations for both variables (Ỹ , W̃ ) and a mixed type (Ỹ ,W ).
The variables in the conditioning set will always be discretized observations (Z̃).

To see how well the derived asymptotic null distribution approximates the true one, we verify if
the probability of Type I error aligns with the significance level α preset in advance. We generate
true continuous multivariate Gaussian data Y,W from Zi (single i = 1 for the first scenario, and
summed over n for the second), structured as aiZi + E and

∑n
i=1 aiZi + E, where ai is sampled

from U(0.5, 1.5) and E follows a standard normal distribution, independent of all other variables.
This ensures Y ⊥⊥W |Z. The data are then discretized into K = (2, 4, 8, 12) levels, with boundaries
randomly set based on the variable range. The first column in Fig. 2 (a) (b) shows the resulting
probability of Type I errors at the significance level α = 0.05 compared with other methods.

A good test should have as small a probability of Type II error as possible, i.e., a larger power.
To test the power of our DCT, we generate the continuous multivariate Gaussian data Zi from
Y,W ; constructed as Zi = aiY + biW + E, where ai, bi are sampled from U(0.5, 1.5) and E
follows a standard normal distribution independent with all others, i.e., Y ̸⊥⊥ W |Z. The same
discretization approach is applied here. One should note that directly comparing the p-value with
a common predefined significance level is unfair since all baselines tend to produce very small
p-values. Therefore, all tests are calibrated1 in this experiment. The second column in Fig. 2 (a) and
(b) correspondingly shows the calibrated Type II error as the number of samples and the cardinality
of the conditioning set change, compared to other methods.

From Fig. 2 (a), we note that the Type I error rates with our derived null distribution are well-
approximated at 0.05 across all three data types in both scenarios. In contrast, other testing methods
show significantly higher Type I error rates, increasing with the number of samples and the size of
the conditioning set. This indicates that such methods are more prone to erroneously concluding
that tested variables are conditionally dependent. Additionally, while alternative tests demonstrate
considerable power with smaller sample sizes, our approach requires a sample size of 1000 to achieve
satisfactory power, particularly in mixed and continuous cases. A possible explanation for this
phenomenon is that our method binarizes discretized data, which may not effectively utilize all
observations. This aspect warrants further investigation in future research. Moreover, our test shows
remarkable stability in response to changes in the number of conditioning sets.

4.2 APPLICATION IN CAUSAL DISCOVERY

Causal discovery aims at looking for the true causal structure from the data. Under the assumption of
causal Markov condition that the causal relationships among variables can be expressed by a Directed
Acyclic Graph (DAG) G and its statistical independence is entailed in this graphic model, faithfulness
ensures that the statistical independencies observed in the data can be reliably used to infer the
causal structure. Given both assumptions, constraint-based causal discovery, e.g., PC algorithm
(Spirtes et al., 2000) recovers the graph structure relying on testing the conditional independence
of observation. Apparently, in the presence of discretization, the failures of testing conditional
independence will seriously impair the resulting DAG.

To evaluate the efficacy of the DCT, we construct the true DAG G utilizing the Bipartite Pairing
(BP) model as detailed in (Asratian et al., 1998), with the number of edges being one fewer than the
number of nodes. The subsequent generation of true multivariate Gaussian data involves assigning
causal weights drawn from a uniform distribution U ∼ (0.5, 2) and incorporating noise via samples
from a standard normal distribution for each variable.

1Calibration is the process of empirically finding the decision threshold to match the desired significance
level, ensuring accurate control of Type I error.
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(a) fixed nodes p = 8, changing sample size n = (500, 1000, 5000, 1000)

(b) fixed sample size n = 5000, changing node p = (4, 6, 8, 10)

Figure 3: Experimental result of skeleton discovery on synthetic data for changing sample size (a)
and changing number of nodes (b). Fisherz_nodis is the Fisher-z test applied to original continuous
data. We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).

Following this, we binarize the data, setting the threshold randomly based on each variable’s range.
Our experiment is divided into two scenarios: In the first, we set the number of samples n = 5000,
with the number of nodes p varying across 4, 6, 8, and 10. In the second scenario, we fix the number
of nodes at p = 8 and explore sample sizes n = (500, 1000, 5000, 10000).

A comparative analysis is performed using the PC algorithm integrated with various testing methods.
Specifically, we compare DCT against the Fisher-z test applied to discretized data, the Chi-Square
test, and the Fisher-z test on the original continuous data, the latter serving as a theoretical upper
bound. Since the PC algorithm only returns a completed partially directed acyclic graph (CPDAG),
we apply the same orientation rules from Dor & Tarsi (1992), as implemented by Causal-DAG
(Chandler Squires, 2018), to convert a CPDAG into a DAG for easier comparison. We evaluate
both the undirected skeleton and the directed graph using structural Hamming distance (SHD), F1
score, precision, and recall as evaluation metrics. For each setting, we run 10 graph instances with
different seeds and report the mean and standard deviation for skeleton discovery in Figure 3 and
DAG discovery in Figure 4 in Appendix C.

According to the result, DCT exhibits performance nearly on par with the theoretical upper bound
across metrics such as F1 score, precision, and Structural Hamming Distance (SHD) when the number
of variables (p) is small and the sample size (n) is large. Despite a decline in performance as the
number of variables increases with a smaller sample size, DCT significantly outperforms both the
Fisher-Z test and the Chi-square test. Notably, in almost all settings, the recall of DCT is lower than
that of the baseline tests, which is a reasonable outcome since these tests tend to infer conditional
dependencies, thereby retaining all edges given the discretized observations. For instance, a fully
connected graph, would achieve a recall of 1.

5 CONCLUSION

In this paper, we present a new testing method tailored for scenarios commonly encountered in
real-world applications, where variables, though inherently continuous, are only observable in their
discretized forms. Our method distinguishes itself from existing CI tests by effectively mitigating the
misjudgment introduced by discretization and accurately recovering the CI relationships of latent
continuous variables. We substantiate our approach with theoretical results and empirical validation,
underscoring the effectiveness of our testing methods.
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A NOTATION TABLE

Category Description
Number and Indices
n Number of samples
p Number of variables
j1, j2, j, k Index of a variable j1, j2, j, k ∈ (1, . . . , p)
Random Variables
X A vector of Gaussian variables
X̃ A vector of variables whose partial variables are discretized versions of X
Σ Covariance of X
Σ−j−j Submatrix of Σ with j-th row and j-th column removed
Σ−jj j-th column of X with j-th row removed
Ω Precision matrix of X , equals to Σ−1

Xj j-th component of the X
X−{jk} All other variables of X with Xj and Xk removed
σj1j2 Covariance between Xj1 and Xj2
ωjk Precision coefficient ωjk
xij i-th sample of Xj

x̃ij i-th sample of X̃j

hj The boundary in the continuous domain that corresponds to the mean of X̃j

τj Probability of X̃j larger than its mean: P(X̃j > E[X̃j ])
βj,k Regression coefficient of Xk in predicting Xj

βj Vector of all coefficients regressing Xj

ξij1j2 Influence function component, it represents the influence of the i-th obser-
vation on the covariance estimation error

Ξi Matrix form of ξi

Estimation of Variables
σ̂j1j2 Estimation of σj1j2 , calculated using equation 6, equation 5
Σ̂ Estimation of Σ, matrix form of σ̂j1j2
ω̂jk Estimation of ωjk
ĥj Estimation of hj , calculated using equation 3
τ̂j1 Estimation of τj1 , calculated as 1

n

∑n
i=1 1{x̃ij > En(X̃j)}

β̂j Estimation of β̂j , calculated as Σ̂−1
−j−jΣ̂−jj

Functions and Operators
P True probability
Pn Sample probability
E[Z] Expectation of a random variable Z
En[Z] Sample mean of a random variable Z over n samples
1 1 condition: is 1 if the condition is true, 0 otherwise
Φ(z) Cumulative distribution function of a standard normal distribution
Φ̄(z) 1− Φ(z), corresponding to the P(Z > z)
Φ̄(z1, z2; ρ) P(Z1 > z1, Z2 > z2), where (Z1, Z2) follows a bivariate normal distribu-

tion with mean zero, variance one and covariance ρ.
ψθ̂ A group of functions parametrized by θ̂
ψi
θ̂

ψθ̂ evaluated at sample i
ψ′
θ̂

Jacobian matrix of ∂ψθ̂

∂θ̂

For Discretized Pair X̃j1 , X̃j2

τj1j2 Probability of both X̃j1 and X̃j2 larger than their mean: P(X̃j1 >

E[X̃j1 ], X̃j2 > E[X̃j2 ])

τ̂j1j2 Estimation of τj1j2 : 1
n

∑n
i=1 1{x̃ij1 > En[X̃j1 ], x̃

i
j2
> En[X̃j2 ]}
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Category Description

τ̂ ij1j2 A sample of τ̂j1j2 : 1{x̃ij1 > En[X̃j1 ], x̃
i
j2
> En[X̃j2 ]}

For Mixed Pair Xj1 , X̃j2

τj1j2 Probability of both Xj1 and X̃j2 larger than their mean: P(Xj1 > 0, X̃j2 >

E[X̃j2 ])

τ̂j1j2 Estimation of τj1j2 : 1
n

∑n
i=1 1{xij1 > 0, x̃ij2 > En[X̃j2 ]}

τ̂ ij1j2 A sample of τ̂j1j2 : 1{x̃ij1 > 0, x̃ij2 > En[X̃j2 ]}
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B PROOF AND DERIVATIONS

B.1 PROOF OF THM.2.1

If the X1, X2 and X2 are jointly Gaussian and X1 ⊥⊥ X3|X3, we have
Cov(X1, X3|X2) = 0. (15)

To test if X1, X3 are conditional independent given X̃2, we are interested if Cov(X1, X3|X̃2) equals
zero. Using the law of total covariance, we have

Cov(X1, X3|X̃2) = E[Cov(X1, X3|X2, X̃2)|X̃2] + Cov(E[X1|X2, X̃2],E[X3|X2, X̃2]|X̃2).
(16)

Since X̃2 is the deterministic function of X2, X̃2 will be conditional independent with X1 and X3

given X2. Therefore,

Cov(X1, X3|X2, X̃2) = Cov(X1, X3|X2) = 0. (17)
The first term of equation 16 is zero. We now focus on the second term. Similarly, we have

E[X1|X2, X̃2] = E[X1|X2], E[X3|X2, X̃2] = E[X3|X2], (18)
due to the conditional independence. One can see

Cov(X1, X3|X2, X̃2) = Cov(E[X1|X2],E[X3|X2]|X̃2). (19)
Without loss of generality, we assume the mean of X1, X2 and X3 are zero. Then E[X1|X2] and
E[X3|X2] are scaled versions of X2. The original equation becomes

Cov(X1, X3|X2, X̃2) = c · V ar(X2|X̃2), (20)
where c is a constant. We know that

V ar(X2|X̃2) = E[(X2 − E[X2|X̃2])
2|X̃2], (21)

which will be zero if and only if X2 is almost surely a function of X̃2. That means given X̃2, the
value of X2 is determined exactly without any randomness, which clearly doesn’t hold true in our
discretization framework. Thus, X1 ̸⊥⊥ X3|X̃2, which completes the proof.

B.2 PROOF OF θ̂
p→ θ0

Lemma B.1. For the estimation θ̂ which is calculated using bridge equation3.1 3.2 and equation 5,
as a zero of Ψn defined in equation 34,equation 41, equation 44 , will converge in probability to
θ0 = (σj1j2 , hj1 , hj2), (σj1j2 , hj2), (σj1j2) respectively.

Proof We first focus on the most challenging one where both variables are discrete. According to
the law of large numbers, for the estimated boundary ĥj1 and ĥj2 whose calculations are defined as
ĥj = Φ−1(1− τ̂j), we should have

n→∞, τ̂j =
1

n

n∑
i=1

1{x̃ij > En[X̃j ]}
p→ P(X̃j > E[X̃j ]). (22)

Recall the definition P(X̃j > E[X̃j ]) = 1 − Φ(hj), according to continuous mapping theorem
(Vaart, 1998a), as long as the function Φ−1(1− ·) is continuous, we should have ĥj

p→ hj . And thus
ĥj1

p→ hj1 , ĥj2
p→ hj2 .

We have τ̂j1,j2 = Φ̄(ĥj1 , ĥj2 , σ̂j1j2) and the estimation σ̂j1j2 can be obtained through solving the
function. Similarly, we also have

n→∞, τ̂j1,j2 =
1

n

n∑
i=1

1{x̃ij1 > En[X̃j1 ]}1{x̃ij2 > En[X̃j2 ]}
p→ P(x̃ij1 > E[X̃j1 ], x̃

i
j2 > E[X̃j2 ])

= τj1,j2 .
(23)
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Similarly, according to the continuous mapping theorem, we have σ̂j1j2
p→ σj1j2 . Thus, the parameter

(σ̂j1j2 , ĥj1 , ĥj2)
p→ (σj1j2 , hj1 , hj2).

Apparently, the result above could easily extend to the mixed case where we fix ĥ1 = h1 = 0. Using
the same procedure, we should have (σ̂j1j2 , ĥj2)

p→ (σj1j2 , hj2).

For the continuous case whose estimated variance is calculated as σ̂j1j2 = 1
n

∑n
i=1 x

i
j1
xij2 −

1
n

∑n
i=1 x

i
j1

1
n

∑n
i=1 x

i
j2
., according to law of large numbers, we should have

n→∞, σ̂j1j2 =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2
p→ E(Xj1Xj2)− E(Xj1)E(Xj2) = σj1j2 .

(24)

B.3 PROOF OF ONE-TO-ONE MAPPING BETWEEN τ̂j1,j2 WITH σ̂j1j2

Lemma B.2. For any fixed ĥj1 and ĥj2 , T (σ′
j1j2

; {ĥj1 , ĥj2}) =∫
x1>ĥj1

∫
x2>ĥj2

ϕ(xj1 , xj2 ;σ)dxj1dxj2 , is a strictly monotonically increasing function on
σ ∈ (−1, 1).

Proof To prove the lemma, we just need to show the gradient
∂T (σ′

j1j2
;{ĥj1

,ĥj2
}

∂σ > 0 for σ′
j1j2
∈

(−1, 1).

∂T (σj1j2); {ĥj1 , ĥj2}
∂σ′

j1j2

==
1

2π
√

(1− σ′2
j1j2

)
exp

(
−
(ĥ2j1 − 2σ′

j1j2
ĥj1 ĥj2 + ĥ2j2)

2(1− σ′2
j1j2

)

)
, (25)

which is obviously positive for σ′
j1j2
∈ (−1, 1). Thus, we have one-to-one mapping between τ̂j1j2

with the calculated σ̂j1j2 for fixed ĥj1 and ĥj2 .

B.4 PROOF OF THM. 3.3

In this section, we provide the proof of Thm. 3.3, which utilizes a regular statistical tool: Z-estimator
(Vaart, 1998b). Specifically, we are interested in the parameter θ and we have it estimation θ̂. Let
x1, . . . ,xn are sampled from some distribution, we can construct the function characterized by the
parameter θ related the x as ψθ(x). As long as we have n observations, we can construct the function
as follows

Ψn(θ) =
1

n

n∑
i=1

ψθ(xi) = En[ψθ]. (26)

We further specify the form

Ψ(θ) =

∫
ψθ(x)dx = E[ψθ]. (27)

Assume the estimator θ̂ is a zero of Ψn, i.e., Ψn(θ̂) = 0 and will converge in probability to θ0, which
is a zero of Ψ, i.e., Ψ(θ0) = 0. Expand Ψn(θ̂) in a Taylor series around θ0, we should have

0 = Ψn(θ̂) = Ψn(θ0) + (θ̂ − θ0)Ψ′
n(θ0) +

1

2
(θ̂ − θ0)2Ψ′′

n(θ0). (28)

Rearrange the equation above, we have

θ̂ − θ0 = − Ψn(θ0)

Ψ′
n(θ0) +

1
2 (θ̂ − θ0)2Ψ′′

n(θ0)

= −
1
n

∑n
i=1 ψθ(xi)

Ψ′
n(θ0) +

1
2 (θ̂ − θ0)2Ψ′′

n(θ0)
.

(29)
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According to the central limit theorem, the numerator will be asymptotic normal with variance
E[ψ2

θ0
]/n as the mean Ψ(θ0) = 0 is zero. The first term of denominator Ψ′

n(θ0) will converge in
probability to Ψ′(θ0) according to the law of large numbers. The second term θ̂ − θ0 = oP (1). 2

As long as the denominator converges in probability and the numerator converges in distribution,
according to Slusky’s lemma, we have

√
n(θ̂ − θ0)⇝ N

(
0,

E[ψ2
θ0
]

E[ψ′
θ0
]2

)
. (30)

Extend into the high-dimensional case we should have

θ̂ − θ0 = −Ψ′
n(θ0)

−1Ψn(θ0) (31)

where the second order term is omitted, further assume the matrix E[ψ′
θ0
] is invertible, we have

√
n(θ̂ − θ0)⇝ N

(
0, (E[ψ′

θ0 ])
−1E[ψθ0ψTθ0 ](E[ψ

′T
θ0 ])

−1
)
, (32)

Specifically, in our case θ0 = (σj1j2 ,Λ), where Λ is another parameter set influencing the estimation
of σj1j2 (will discuss case in case in later proof). In the practical scenario, we only have access to the
estimated parameter θ̂ and the empirical distribution Pn, thus we have

σ̂j1j2 − σj1j2
approx∼ N

(
0, ((En[ψ′

θ̂
])−1En[ψθ̂ψ

T
θ̂
](En[ψ′T

θ̂
])−1)1,1

)
. (33)

Under the null hypothesis of independent, σj1j2 = 0. We provide the proof that θ̂
p→ θ0 of our case

in App. B.2. Thus, En[ψθ̂], the function parameterized by θ̂, should also converge in En[ψθ0 ] when
n→∞. Besides, by the law of large numbers, En[ψθ̂0 ] will converge to E[ψθ̂0 ]. Thus, the equation
above will converge to equation 32 when n→∞.

B.5 DERIVATION OF LEM. 3.5

Let’s first focus on the most challenging case where both variables are discretized observations
and our interested parameter will include θ̂ = (σ̂j1j2 , ĥj1 , ĥj2) (Although we only care about the
distribution of σ̂j1j2 − σj1j2 , the estimation of boundary ĥj1and ĥj2 will influence the estimation of
σ̂j1j2 , thus we need to consider all of them).

The next step will be to construct an appropriate criterion function ψ such that Ψn(θ̂) = 0. Given n
observations {x̃1, x̃2, . . . , x̃n}, which are discretized version of {x1,x2, . . . ,xn} we should have

Ψn(θ̂) =

Ψn(σ̂j1j2)

Ψn(ĥj1)

Ψn(ĥj2)

 =
1

n

n∑
i=1

ψθ̂(x̃
i) =

1

n

n∑
i=1

τ̂ ij1,j2 − T (σ̂j1j2 ; {ĥj1 , ĥj2})τ̂ ij1 − Φ̄(ĥj1)

τ̂ ij2 − Φ̄(ĥj2)

 = 0. (34)

Ψn(θ0) =

(
Ψn(σj1j2)
Ψn(hj1)
Ψn(hj2)

)
=

1

n

n∑
i=1

ψθ0(x̃
i) =

1

n

n∑
i=1

τ̂ ij1,j2 − T (σj1j2 ; {hj1 , hj2})τ̂ ij1 − Φ̄(hj1)
τ̂ ij2 − Φ̄(hj2)

 . (35)

The difference between the estimated parameter with the true parameter can be expressed as

θ̂ − θ0 =

σ̂j1j2 − σj1j2ĥj1 − hj1
ĥj2 − hj2

 = − 1

n

n∑
i=1


∂Ψn(σj1j2 )

∂σj1j2

∂Ψn(σj1j2 )

∂hj1

∂Ψn(σj1j2 )

∂hj2
∂Ψn(hj1

)

∂σj1j2

∂Ψn(hj1
)

∂hj1

∂Ψn(hj1
)

∂hj2
∂Ψn(hj2

)

∂σj1j2

∂Ψn(hj2
)

∂hj1

∂Ψn(hj2
)

∂hj2


−1

·

τ̂ ij1,j2 − T (σj1j2 ; {hj1 , hj2})τ̂ ij1 − Φ̄(hj1)
τ̂ ij2 − Φ̄(hj2)

 , (36)

2We will not provide proof of this in this paper; however, interested readers may refer to (Vaart, 1998b)
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where the specific form of each entry of the gradient matrix is expressed as

∂Ψn(σj1j2)

∂σj1j2
= − 1

2π
√
(1− σ2

j1,j2
)
exp

(
−
(h2j1 − 2σj1,j2hj1hj2 + h2j2)

2(1− σ2
j1,j2

)

)
;

∂Ψn(σj1j2)

∂hj1
=

∫ ∞

hj2

1

2π
√
1− σj1j22

exp

(
−
h2j1 − 2σj1j2hj1x2 + x22

2(1− σ2
j1,j2

)

)
dx2;

∂Ψn(σj1j2)

∂hj2
=

∫ ∞

hj1

1

2π
√
1− σj1j22

exp

(
−h

2
2 − 2σj1j2hj2x1 + x21

2(1− σj1j22)

)
dx1;

∂Ψn(hj1)

∂σj1j2
= 0;

∂Ψn(hj1)

∂hj1
=

1√
2π

exp

(
−
h2j1
2

)
;

∂Ψn(hj1)

∂hj2
= 0;

∂Ψn(hj2)

∂σj1j2
= 0;

∂Ψn(hj2)

∂hj1
= 0;

∂Ψn(hj2)

∂hj2
=

1√
2π

exp

(
−
h2j2
2

)
.

(37)

For simplicity of notation, we define

σ̂j1j2 − σj1j2 =
1

n

n∑
i=1

ξij1,j2 , (38)

where the specific form is of {ξij1,j2} is defined in equation 36. We should note that {ξij1,j2} are i.i.d
random variables with mean zero (this property will be the key to the derivation of inference of CI).
As long as our estimation θ̂ converge in probability to θ0 as proved in B.2, we have

√
n(θ̂ − θ0)⇝ N

(
0, ((E[ψ′

θ0 ])
−1E[ψθ0ψTθ0 ](E[ψ

′T
θ0 ])

−1)
)
, (39)

where ψθ0 is defined in equation 35. However, in practice, we don’t have access to either θ0 or
the true expectation. In this scenario, we can plug in the empirical distribution of Pnψθ̂ to get the
estimated variance, i.e., the actual variance used in the calculation of σ̂j1j2 − σj1j2 is

1

n

(
(En[ψ′

θ̂
])−1En[ψθ̂ψ

T
θ̂
](En[ψ′T

θ̂
])−1

)
1,1
. (40)

B.6 DERIVATION OF LEM. 3.6

Use the same procedure as in the derivation of Lem. 3.5, for mixed pair of observations where Xj1 is
continuous and X̃j2 is discrete, we can construct the criterion function

Ψn(θ̂) =

(
Ψn(σ̂j1j2)

Ψn(ĥj2)

)
=

1

n

n∑
i=1

ψθ̂(x̃
i) =

1

n

n∑
i=1

(
τ̂ ij1,j2 − T (σ̂j1j2 ; {0, ĥj2})

τ̂ ij2 − Φ̄(ĥj2)

)
= 0. (41)

Ψn(θ0) =

(
Ψn(σj1j2)
Ψn(hj2)

)
=

1

n

n∑
i=1

ψθ0(x̃
i) =

1

n

n∑
i=1

(
τ̂ ij1,j2 − T (σj1j2 ; {0, hj2})

τ̂ ij2 − Φ̄(hj2)

)
. (42)
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The difference between the estimated parameter with the true parameter can be expressed as

θ̂−θ0 =

(
σ̂j1j2 − σj1j2
ĥj2 − hj2

)
= − 1

n

n∑
i=1

∂Ψn(σj1j2
)

∂σj1j2

∂Ψn(σj1j2
)

∂hj2
∂Ψn(hj2

)

∂σj1j2

∂Ψn(hj2
)

∂hj2

−1(
τ̂ ij1,j2 − T (σj1j2 ; {0, hj2})

τ̂ ij2 − Φ̄(hj2).

)
,

(43)
where the specific form of each entry of the gradient matrix can be found in equation 37. Using exactly
the same procedure, we should have the same formation of the variance calculated as equation 40
with a different definition of ψθ0 and ψθ̂ defined in equation 42 equation 41.

B.7 DERIVATION OF LEM. 3.4

Use the same line of procedure as in the derivation of Lem. 3.5, for a continuous pair of variables, we
can construct the criterion function

Ψn(θ̂) = Ψn(σ̂j1j2) =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2 − σ̂j1j2 = 0. (44)

Ψn(θ0) = Ψn(σj1j2) =
1

n

n∑
i=1

xij1x
i
j2 −

1

n

n∑
i=1

xij1
1

n

n∑
i=1

xij2 − σj1j2 . (45)

Denote 1
n

∑n
i=1 x

i
j1

as x̄j1 and 1
n

∑n
i=1 x

i
j2

as x̄j2 . We should have

σ̂j1j2 − σj1j2 =
1

n

n∑
i=1

xij1x
i
j2 − x̄j1 x̄j2 − σj1j2 . (46)

According to equation 30, we have

√
n(σ̂j1j2 − σj1j2)⇝ N

(
0,

E[ψ2
θ0
]

(E[ψ′
θ0
])2

)
. (47)

where (E[ψ′
θ0
])2 = 1. In practical calculation, we have the variance

1

n
En[ψ2

θ̂
]/(En[ψ′

θ̂
])2 =

1

n2

n∑
i=1

(xij1x
i
j2 − x̄j1 x̄j2 − σ̂j1j2)

2. (48)

B.8 PROOF OF THM. 3.8

B.8.1 PROOF OF LEM. 3.7

Consider our latent continuous variables X = (X1, . . . , Xp) ∼ N(0,Σ) and do nodewise regression

Xj = X−jβj + ϵj , (49)

where X−j is the submatrix of X with Xj removed. We can divide its covariance Σ and its precision
matrix Ω = Σ−1 into the predictor X−j and outcome variable Xj in our regression:

Σ =

(
Σjj Σj−j
Σ−jj Σ−j−j

)
Ω =

(
Ωjj Ωj−j
Ω−jj Ω−j−j

)
. (50)

Just like regular linear regression, we can get

n→∞, βj = Σ−1
−j−jΣ−jj . (51)
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From the invertibility of a block matrix[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
. (52)

If A and D is invertible, we will have[
A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
. (53)

Thus, we can get:

Ωjj = (Σjj −Σj−jΣ
−1
−j−jΣ−jj)

−1;

Ωj−j = −
(
Σjj −Σj−jΣ

−1
−j−jΣ−jj

)−1
Σj−j(Σ−j−j)

−1.
(54)

Move one step forward:
−Ω−1

jj Ωj−j = Σj−j(Σ−j−j)
−1. (55)

Take transpose for both sides, as long as Ω is a symmetric matrix and Ω−jj = ΩT
j−j , we will have

−Ω−1
jj Ω−jj = Σ−1

−j−jΣ−jj = βj . (56)

We should note testing Ω−jj = 0 is equivalent to testing βj = 0 as the Ωjj will always be nonzero.
The variable Ω−jj captures the CI of Xj with other variables. As long as the variable Ωjj is just one
scalar, we can get

βj,k = −ωjk
ωjj

(57)

capturing the CI relationship between variable Xj with Xk conditioning on all other variables.

B.8.2 DETAILED DERIVATION OF INFERENCE FOR βj

Nodewise regression allows us to use the regression parameter βj as the surrogate of Ω−jj . The
problem now transfers to constructing the inference for βj , specifically, the derivation of distribution
of β̂j − βj . The overarching concept is that we are already aware of the distribution of σ̂j1j2 − σj1j2
and we know that there exists a deterministic relationship between βj with Σ. Consequently, we can
express β̂j − βj as a composite of σ̂j1j2 − σj1j2 to establish such an inference. Specifically, we have

β̂j − βj = Σ̂−1
−j−jΣ̂−jj −Σ−1

−j−jΣ−jj

= Σ̂−1
−j−j

(
Σ̂−jj − Σ̂−j−jΣ

−1
−j−jΣ−jj

)
= −Σ̂−1

−j−j

(
Σ̂−j−jβj −Σ−j−jβj +Σ−j−jβj − Σ̂−jj

)
= −Σ̂−1

−j−j

(
(Σ̂−j−j −Σ−j−j)βj − (Σ̂−jj −Σ−jj)

)
,

(58)

where each entry in matrix (Σ̂−j−j −Σ−j−j) and (Σ̂−jj −Σ−jj) denotes the difference between
estimated covariance with true covariance.

Suppose that we want to test the CI of the variable X1 with other variables, j = 1. then

Σ̂−1−1 −Σ−1−1 =

[
σ̂2,2 . . . σ̂2,p

. . .
σ̂p,2 . . . σ̂p,p

]
−

[
σ2,2 . . . σ2,p

. . .
σp,2 . . . σp,p

]
(59)

:=
1

n

n∑
i=1

ξi2,2 . . . ξi2,p. . .
ξip,2 . . . ξ

i
p,p

 , (60)
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where {ξij1,j2} are i.i.d random variables with specific form defined in equation 36 for discrete case,
equation 43 for mixed case and equation 46 in continuous case. Put them together:

β̂1 − β1 =


β̂1,2 − β1,2
β̂1,3 − β1,3

. . .

β̂1,p − β1,p

 = −Σ̂−1
−1−1

1

n

n∑
i=1



ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p


β1,2β1,3
. . .
β1,p

−

ξi2,1
ξi3,1
. . .
ξip,1


 .

(61)

As 1
n

∑n
i=1 ξ

i
j1,j2

is asymptotically normal, the who vector of β̂1 − β1 is a linear combination of
Gaussian distribution. However, We cannot merely engage in a linear combination of its variance as
they are dependent with each other. For example, if Y1, Y2 are dependent and we are trying to find
out V ar(aY1 + bY2), we should have

V ar(aY1 + bY2) = [a b]

[
V ar(Y1) Cov(Y1, Y2)

Cov(Y1, Y2) V ar(Y2)

] [
a
b

]
. (62)

Now, suppose we are interested in the distribution of β̂1,2 − β1,2, we have

β̂1,2 − β1,2 =
1

n

n∑
i=1

(Σ̂−1
−1−1)[2],:



ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p


β1,2β1,3
. . .
β1,p

−

ξi2,1
ξi3,1
. . .
ξip,1


 , (63)

where (Σ̂−1
−1−1)[2],: is the row of index of X2 of Σ̂−1

−1−1 ([2] denotes the index of the variable). For
ease of notation, let

Ξi−1,−1 =


ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p

 , Ξi−1,1 =


ξi2,1
ξi3,1
. . .
ξip,1

 , (64)

and let

Bi−1 =


ξi2,1 ξi3,1 . . . ξip,1
ξi2,2 ξi2,3 . . . ξi2,p
ξi3,2 ξi3,3 . . . ξi3,p
. . . . . . . . . . . .
ξip,2 ξip,3 . . . ξip,p

 =

[
Ξi−j,j

T

Ξi−j,−j

]
(65)

as the concatenation of those two matrices. Similarly as equation 62, The variance is calculated as

V ar
(√

n(β̂1,2 − β1,2)
)
= a[2]

T 1

n

n∑
i=1

vec(Bi−1)vec(B
i
−1)

Ta[2], (66)

where

a
[2]
l =


(
Σ̂−1

−1−1

)
[2],l

, for l ∈ {1, . . . , p− 1}∑p−1
q=1

(
Σ̂−1

−1−1

)
[2],l

(β1)q , for l ∈ {p, . . . , p2 − p}
(67)

vec(Bi−1) is the row-wise vectorization of matrix Bi−1, i.e.,

vec(Bi−1) =


ξi2,1
ξi3,1

...
ξip,p

 ∈ Rp
2−p. (68)

Thus, the distribution of β̂j,k − βj,k is

β̂j,k − βj,k ∼ N(0, a[k]
T 1

n2

n∑
i=1

vec(Bi−j)vec(B
i
−j)

T )a[k]). (69)

In practice, we can plug in the estimates of βj to estimate the interested distribution and do the CI
test by hypothesizing βj,k = 0.
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B.9 DISCUSSION OF ASSUMPTION

In this section, we first justify why the assumption of zero mean and identity variance can be made
without loss of generality. Then, we explain the rationale behind the linear Gaussian assumption.

B.9.1 ZERO MEAN AND IDENTITY VARIANCE

In this section, we engage in a more thorough discussion regarding our assumptions about X .
Specifically, we demonstrate that this assumption of mean and variance does not compromise the
generality. In other words, the true model may possess different mean and variance values, but we
proceed by treating it as having a mean of zero and identity variance.

The key ingredient allowing us to assume such a model is, the discretization function gj is an unknown
nonlinear monotonic function. Suppose the g′j maps the continuous domain to a binary variable, and
we have the "groundtruth" variable, denoted X ′

j , with mean a and variance b. Assume the cardinality
of the discretized domain is only 2, i.e., our observation X̃j can only be 0 or 1. We further have the
constant d′j as the discretization boundary such that we have the observation

X̃j = 1(g′j(X
′
j) > d′j) = 1(X ′

j > g′−1
j (dj))

We can always produce our assumed variable Xj with mean 0 and variance 1, such that Xj =
1√
b
X ′
j − a√

b
and the same observation with a different nonlinear transformation gj and decision

boundary dj , such that

X̃j = 1(gj(Xj) > dj) = 1(Xj > g−1
j (dj)) = 1(X ′

j >
√
bg−1
j (dj) + a)

As long as the observation X̃j is the same, we should have
√
bg−1
j (dj)+a = g′−1

j (dj). Our assumed
model Xj clearly mimics the "groundtruth" X ′

j . Besides, according to Lem. B.3, we have one-to-
one mapping between τ̂j1j2 with the estimated covariance for fixed ĥj1 , ĥj2 . Thus, as long as the
observation is the same, the estimation of covariance σ̂j1j2 remains unaffected by our assumptions
regarding the mean and variance of X , so do the following inference.

We further conduct casual discovery experiments to empirically validate our statement, which is
shown in App. E.3.

B.9.2 DISCUSSION OF LINEAR GAUSSIAN ASSUMPTION

Discretization of continuous variables inevitably leads to information loss in the original data.
Compared to the original distributional information, the recovered covariance matrix is naturally less
accurate. Given this, constructing a valid statistical inference procedure, rather than solely relying on
estimated covariance values for drawing conditional independence conclusions, is desirable.

One major limitation of DCT is its reliance on the assumption that latent continuous variables follow
a multivariate normal distribution. Violations of this assumption can lead to erroneous conclusions.
For instance, consider a scenario where the relationship between latent variables is nonlinear, such
as Xj1 = X2

j2
. In this case, the covariance σj1j2 equals zero despite a deterministic dependency

between Xj1 and Xj2 . Consequently, even if the correlation is perfectly estimated, the model fails to
capture the true underlying relationship, leading to incorrect inferences.

Nevertheless, although the theoretical framework of DCT requires latent continuous variables to
follow a multivariate Gaussian distribution, experimental results in various settings, even in situations
in which this assumption is violated, demonstrate the usefulness and robustness of DCT, suggesting
the development of this technique is essential to causal discovery from discretized continuous data.
Further details of the empirical validations are provided in Appendix E.
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C FIGURE OF MAIN EXPERIMENTS: CAUSAL DISCOVERY

(a) fixed nodes p = 8, changing sample size n = (500, 1000, 5000, 1000)
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(b) fixed sample size n = 5000, changing node p = (4, 6, 8, 10)

Figure 4: Experiment result of DAG discovery on synthetic data for changing sample size (a) and
changing number of nodes (b). Fisherz_nodis is the Fisher-z test applied to original continuous data.
We evaluate F1 (↑), Precision (↑), Recall (↑) and SHD (↓).
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D PSEUDO CODE

Algorithm 1 DCT: Discretization-Aware CI Test

1: Require:
• Observed data matrix X̃ ′ ∈ Rn×d
• Tested pair indices j1, j2 with j1 ̸= j2
• Conditioning set S ⊆ {1, . . . , d} \ {j1, j2}
• Significance level α

2: Rearrange Data Matrix

X̃ =
[
X̃ ′[:, j1], X̃

′[:, j2], X̃
′[:,S]

]
∈ Rn×p, where p = 2 + |S|

3: Initialize Covariance Matrix

Σ̂← Ip (identity matrix of size p× p)

4: for q ← 1 to p do
5: for k ← q + 1 to p do
6: if both X̃[:, q] and X̃[:, k] are continuous then
7: Compute sample covariance σ̂qk using equation 5
8: else
9: Compute covariance σ̂qk using Equation equation 6

10: end if
11: Update covariance matrix:

Σ̂[q, k]← σ̂qk

Σ̂[k, q]← σ̂qk (ensuring symmetry)
12: end for
13: end for
14: Extract Submatrices (j1 and j2 correspond the first and second column of X̃ due to the

regroup)
• Let Σ̂−1−1 ∈ Rp−1×p−1← the submatrix of Σ̂ without 1st column and 1st row
• Let Σ̂−11 ∈ Rp−1 be the 1st column of Σ̂ with first row removed

15: Compute Test Statistics
β̂1,2 ← Σ̂−1

−1−1Σ̂−11

16: Formulate Null Distribution

Φ(z)← Cumulative distribution function of the Normal Distribution defined in Thm. 3.8

17: Calculate P-value
p-value← 2 ·

(
1− Φ

(
|β̂1,2|

))
18: Make Decision
19: if p-value > α then
20: Conclude: Xj1 ⊥⊥ Xj2 | XS

21: else
22: Conclude: Xj1 ̸⊥⊥ Xj2 | XS

23: end if
24: return The conditional independence decision

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 LINEAR NON-GAUSSIAN AND NONLINEAR

Our model requires that the original data must adhere to the hypothesis of following a multivariate
normal distribution, which appears to potentially limit the generalizability. Therefore, it is worthwhile
to explore its robustness when such assumptions are violated. In this regard, we conducted several
experiments, including scenarios involving linear non-Gaussian and nonlinear Gaussian.

For both cases, we follow the setting of our experiment where there are p = 8 nodes and p− 1 edges.
We explore the effect of changing sample size n = (100, 500, 2000, 5000). Specifically for linear
non-Gaussian case, we adhere to some of the settings outlined by (Shimizu et al., 2011), conducting
experiments where the original continuous data followed: (1) a Student’s t-distribution with 3 degrees
of freedom, (2) a uniform distribution, and (3) an exponential distribution. Each variable is generated
as Xi = f(PAi) + noise, where noise follows the distribution in (1), (2), (3) correspondingly and
f is an arbitrary linear function. The first three rows of Fig. 5 and Fig. 6 show the result of the linear
non-Gaussian case.

For the nonlinear cases, we follow setting in (Li et al., 2024), where every variable Xi is generated
as Xi = f(WPAi + noise), noise ∼ N(0, 1) and f is a function randomly chosen from (a)
f(x) = sin(x), (b) f(x) = x3, (c) f(x) = tanh(x), and (d) f(x) = ReLU(x). W is a linear
function. Similarly, we set the number of nodes at p = 8 and change the number of samples
n = (500, 2000, 5000). For both cases, we run 10 graph instances with different seeds and report the
result of skeleton discovery in Fig. 5 and DAG in Fig. 6 (The same orientation rules (Dor & Tarsi,
1992) used in the main experiment are employed to convert a CPDAG (Chandler Squires, 2018) into
a DAG). The last row of Fig. 5 and Fig. 6 shows the result of the nonlinear case.

Based on the experimental outcomes, DCT demonstrates marginally superior or comparable efficacy
in terms of the F1-score, precision, and SHD relative to both the Fisher-Z test and the Chi-square test
when dealing with small sample sizes. Nevertheless, as the sample size increases, DCT’s performance
clearly surpasses that of the aforementioned tests across all three evaluated metrics, especially in the
linear case. Consistent with observations from the main experiment, DCT exhibits a lower recall in
comparison to the baseline tests. This discrepancy can be attributed to the baseline tests being prone
to incorrectly infer conditional dependence and connect a large proportion of nodes. According to
the results, our test shows notable robustness under the case assumptions are violated, confirming its
practical effectiveness.

E.2 DENSER GRAPH

DCT primarily works on cases where CI is mistakenly judged as conditional dependence due
to discretization. Consequently, its efficacy is more pronounced in scenarios characterized by a
relatively sparse graph, as numerous instances are truly conditionally independent. Nevertheless, the
investigation of causal discovery with a dense latent graph is essential for evaluating the power of a
test, i.e., its ability to successfully reject the null hypothesis when the tested pairs are conditionally
dependent. Thus, we conduct the experiment where p = 8, n = 10000 and changing edges (p +
2, p + 4, p + 6). Similarly, the latent continuous data follows a multivariate Gaussian model and
the true DAG G is constructed using BP model. We run 10 graph instances with different seeds and
report the result of the skeleton discovery and DAG in Fig. 7.

According to the experiment results, DCT exhibits better performance in terms of the F1-score,
precision, and SHD relative to both the Fisher-Z test and the Chi-square test. As the graph becomes
progressively denser, the superiority of the DCT correspondingly diminishes as there are few condi-
tional independent cases in the true DAG. Due to the same reason, The recall remains lower than that
of other baseline methods.

E.3 MULTIVARIATE GAUSSIAN WITH NONZERO MEAN AND NON-UNIT VARIANCE

We employed a setting nearly identical to the main experiment, with the only difference being the
alteration in data generation: instead of using a standard normal distribution, we used a Gaussian
distribution with mean sampled from U(−2, 2) and variance sampled from U(0, 3). We fix the
number of variables as p = 8 and change the number of samples n = (100, 500, 2000, 5000). The
Fig. 8 shows the result and demonstrates the effectiveness of our method.
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(a) Linear Exponential.

(b) Linear Student.

(c) Linear Uniform.

(d) Nonlinear Gaussian.

Figure 5: Experiment result of causal discovery on synthetic data with p = 8, n =
(100, 500, 2000, 5000) where the data generation process violates our assumptions. The data are
generated with either nongaussian distributed (a), (b), (c) or the relations are not linear (d). The figure
reports F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on skeleton.

E.4 REAL-WORLD DATASET

To further validate DCT, we employ it on a real-world dataset: Big Five Personality
https://openpsychometrics.org/, which includes 50 personality indicators and over 19000 data sam-
ples. Each variable contains 5 possible discrete values to represent the scale of the corresponding
questions, where 1=Disagree, 2=Weakly disagree, 3=Neutral, 4=Weakly agree and 5=Agree, e.g.,
"N3=1" means "I agree that I worry about things". This scenario clearly suits DCT, where the degree
of agreement with a certain question must be a continuous variable while we can only observe the
result after categorization. We choose three variables respectively: [N3: I worry about things], [N10:
I often feel blue ], [N4: I seldom feel blue]. We then do the casual discovery using PC algorithm with
DCT and compare it with the Chi-square test and Fisher-Z test. The result can be found in Fig. 9.

Based on the experimental outcomes, despite the absence of a groundtruth for reference, we observe
that the results obtained via DCT appear more plausible than those derived from Fisher-Z and Chi-
square tests. Specifically, DCT suggests the relationship N3 ⊥⊥ N4|N10, which is reasonable as
intuitively, the answer of ’I often feel blue’ already captures the information of ’I seldom feel blue’.
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(a) Linear Exponential.

(b) Linear Student.

(c) Linear Uniform.

(d) Nonlinear Gaussian.

Figure 6: Experiment result of causal discovery on synthetic data with p = 8, n =
(100, 500, 2000, 5000) where the data generation process violates our assumptions. The data are
generated with either nongaussian distributed (a), (b), (c) or the relations are not linear (d). The figure
reports F1 (↑), Precision (↑), Recall (↑) and SHD (↓) on DAG.

As a comparison, both Fisher-Z and Chi-square return a fully connected graph. The results directly
correspond to our illustrative example shown in Fig. 1, substantiating the necessity of our proposed
test.
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Figure 7: Experimental comparison of causal discovery on synthetic datasets for denser graphs with
p = 8, n = 10000 and edges varying p+ 2, p+ 4, p+ 6. We evaluate F1 (↑), Precision (↑), Recall
(↑) and SHD (↓) on both skeleton and DAG.

Figure 8: Experimental comparison of causal discovery on synthetic datasets for multivariate Gaussian
model with p = 8, n = (100, 500, 2000, 5000) and where mean is not zero. We evaluate F1 (↑),
Precision (↑), Recall (↑) and SHD (↓) on both skeleton and DAG.

F RELATED WORK

Testing for CI is pivotal in the field of causal discovery (Spirtes et al., 2000), and a variety of
methods exist for performing CI tests (CI tests). An important group of CI test methods involves the
assumption of Gaussian variables with linear dependencies. For example, under this assumption,
Gaussian graphical models are extensively studied (Yuan & Lin, 2007; Peterson et al., 2015; Mohan
et al., 2012; Ren et al., 2015). To address CI test under Gaussian assumption, partial correlation
serves as a viable method for CI testing (Baba et al., 2004). To evaluate the independence of variables
X1 and X2 conditional on Z, The technique proposed by (Su & White, 2008) determines CI by
comparing the estimations of p(X1|X2,Z) and p(X1|X2).
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[N3] I worry about things

[N10]

I often feel blue

[N4]

I seldom feel blue

(a) Fisher-Z test

[N3] I worry about things

[N10]

I often feel blue

[N4]

I seldom feel blue

(b) Chi-square test

[N3]

I seldom feel blue

[N10]

I often feel blueI worry about things

[N4]

(c) DCT

Figure 9: Experimental comparison of causal discovery on the real-world dataset.

Another approach involves discretizing Z and performing independent tests within each resulting bin
(Margaritis, 2005). Our work, however, diverges from these existing methods in two significant ways.
Firstly, we are equipped to handle data, where partial variables are discretized. Additionally, we
postulate that discrete variables are derived from the transformation of continuous variables in a latent
Gaussian model. With the same assumption, the most closely related study is by (Fan et al., 2017),
where the authors developed a novel rank-based estimator for the precision matrix of mixed data.
However, their work stops short of providing a CI test for this method. Our research fills this gap,
offering the ability to estimate the precision matrix for both discrete and mixed data and providing a
rigorous CI test for our methodology.

Recent advancements in CI testing have utilized kernel methods for continuous variables influenced
by nonlinear relationships. (Fukumizu et al., 2004) describes non-parametric CI relationships using
covariance operators in reproducing kernel Hilbert spaces (RKHS). KCI test (Zhang et al., 2012)
assesses the partial associations of regression functions linking x, y, and z, while RCI test (Strobl
et al., 2019) aims to enhance the KCI test’s efficiency. In KCIP test (Doran et al., 2014) employs
permutations of samples to emulate CI scenarios. CCI test (Sen et al., 2017) further reformulates
testing into a process that leverages the capabilities of supervised learning models. For discrete
variable analysis, the G2 test (Aliferis et al., 2010) and conditional mutual information (Zhang et al.,
2010) are commonly employed. However, their method cannot deal with our setting where only
discretized version of latent variables can be observed.

G RESOURCE USAGE

All the experiments are run using Intel(R) Xeon(R) CPU E5-2680 v4 with 55 processors. It costs 4
hours to run experiments in Section 3.1.

H LIMIATION AND BROADER IMPACTS

Limitation So far, the largest limitation of our method is to treat discretized variables as binary,
which wastes the available information. Besides that, the parametric assumption limits its generaliz-
ability. However, we need to point out this is pretty normal in CI test fields.
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Broader Impacts The goal of our proposed method is to test the conditional independence relation-
ship given discretized observation. This task is essential and has broad applications. We are confident
that our method will be beneficial and will not result in negative societal impacts.
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