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Abstract

Few-shot learning aims to learn representations that can tackle novel tasks given
a small number of examples. Recent studies show that task distribution plays
a vital role in the performance of the model. Conventional wisdom is that task
diversity should improve the performance of meta-learning. In this work, we find
evidence to the contrary; we study different task distributions on a myriad of models
and datasets to evaluate the effect of task diversity on meta-learning algorithms.
For this experiment, we train on two datasets - Omniglot and miniImageNet and
with three broad classes of meta-learning models - Metric-based (i.e., Protonet,
Matching Networks), Optimization-based (i.e., MAML, Reptile, and MetaOptNet),
and Bayesian meta-learning models (i.e., CNAPs). Our experiments demonstrate
that the effect of task diversity on all these algorithms follows a similar trend, and
task diversity does not seem to offer any benefits to the learning of the model.
Furthermore, we also demonstrate that even a handful of tasks, repeated over
multiple batches, would be sufficient to achieve a performance similar to uniform
sampling and draws into question the need for additional tasks to create better
models.

1 Introduction

It is widely recognized that humans can learn new concepts based on very little supervision, i.e.,
with few examples (or "shots"), and generalize these concepts to unseen data as mentioned by [8].
Recent advances in deep learning, on the other hand, have primarily relied on datasets with large
amounts of labeled examples, primarily due to overfitting concerns in low data regimes. Although the
development of better data augmentation and regularization techniques can alleviate these concerns,
many researchers now assume that future breakthroughs in low data regimes will emerge from
meta-learning, or "learning to learn." Here, we study the effect of task diversity in the low data regime
and its effect on various models. In this meta-learning setting, a model is trained on a handful of
labeled examples at a time under the assumption that it will learn how to correctly project examples
of different classes and generalize this knowledge to unseen labels at test time.
Although this setting is often used to illustrate the remaining gap between human capabilities and
machine learning, we could argue that the domain of meta-learning is still nascent. The domain of
task selection has remained virtually unexplored in this setting. Conventional wisdom is that the
performance of the model will improve as we train on more diverse tasks. To test this hypothesis to
its limits, we define various task samplers which either limit task diversity by selecting a subset of
overall tasks or improving task diversity using approaches such as Determinantal Point Processes
(DPPs).

Our contributions in this work are as follows:

• We show that, against conventional wisdom, task diversity does not significantly boost
performance in meta-learning. Instead, limiting task diversity and repeating the same tasks

∗ Work done during an internship at Mila; Correspondence author ramnathkumar181@gmail.com. 1Mila,
Québec Artificial Intelligence Institute. 2Université de Montréal. 3CIFAR, IVADO.

5th Workshop on Meta-Learning at NeurIPS 2021, held virtually.

mailto:ramnathkumar181@gmail.com


over the training phase allows the model to obtain performances similar to models trained
on Uniform Sampler without any adverse effects.

• We also show that increasing task diversity using sophisticated samplers such as DPP
or Online Hard Task Mining (OHTM) Samplers do not significantly boost performance.
Instead, the dynamic-DPP Sampler harms the model due to the increased task diversity.

• We empirically show that repeating tasks over the training phase can perform similarly to a
model trained on the Uniform Sampler, achieving similar performance with only a fragment
of data. This key finding questions the need to increase the support set pool to improve the
model’s performance.

2 Related Works

Meta-learning formulations typically rely on episodic training, wherein an algorithm adapts to a task,
given its support set, to minimize the loss incurred on the query set. Meta-learning methods differ
in terms of the algorithms they learn, and can be broadly classified under four prominent classes:
Metric-based, Model-based, Optimization-based and Bayesian-based approaches. Metric-based
methods such as [5, 22, 20, 21] operate on the core idea similar to nearest neighbors algorithm and
kernel density estimation. These methods are also called non-parametric approaches. Model-based
methods such as [17, 12] depend on a model designed specifically for fast learning, which updates
its parameters rapidly with a few training steps, achieved by its internal architecture or controlled
by another meta-learner model. Generic deep learning models learn through backpropagation of
gradients, which are neither designed to cope with a small number of training samples nor converge
within a few optimization steps. To address this, Optimization-based methods such as [15, 2, 13] were
proposed, which were better suited to learn from a small number of samples. However, all the above
approaches are deterministic and are not the most suited for few-shot problems, generally ambiguous.
Hence, Bayesian-based methods such as [24, 16] were proposed which helped address the above
issue.

Although research in meta-learning models has attracted much attention recently, the effect of task
diversity is virtually unexplored in the domain of meta-learning. However, task sampling and task
diversity have been more extensively studied in other closely related problems such as active learning.
Active learning involves selecting unlabeled data items to the label in order to improve an existing
classifier best. Although most of the approaches in this domain are based on heuristics, there are few
approaches to sample a batch of samples for active learning. [14] proposed an approach to sample
a batch of samples using a protonet as the backbone architecture. The model tries to maximize the
query set, given support set and unlabeled data. Other works such as [4] proposed a framework named
CACTUs, which samples tasks/examples using relatively simple task construction mechanisms such
as clustering embeddings. The unsupervised representations learned via these samples lead to a good
performance on various downstream human-specified tasks.

Although nascent, a few recent works aim to improve meta-learning by explicitly looking at the task
structure and relationships. Among these, [23] proposed an approach to handle the lack of mutual ex-
clusiveness among different tasks through an information-theoretic regularized objective. In addition,
several popular meta-learning methods [9, 20], in order to improve the meta-test performance, change
the number of ways or shots of the sampled meta-training tasks, thus increasing the complexity
and diversity of the tasks. Other works such as [10] proposed an approach to sample classes using
class-pair-based sampling and class-based sampling. The Class-pair based Sampler selects pairs of
classes that confuse the model the most. The class-based Sampler samples each class independently
and does not consider the task’s difficulty as a whole. Our OHTM sampler is similar to the Class-pair
based Sampler. Other works such as [11] propose to augment the set of possible tasks by augmenting
the pre-defined set of classes that generate the tasks with varying degrees of rotated inputs as new
classes. Other works such as [18] look at the structure and diversity of tasks specifically through the
lens of support set diversity, and show that, surprisingly, reducing diversity (by fixing support set) not
only maintains—but in many cases, significantly improves—the performance of meta-learning. This
experiment is very similar to our No Diversity Task Sampler if the size of the support set is equal to
the number of classes per task. However, in this work, we extend their work on MetaOptNet, Protonet
to many other models and a myriad of samplers to better understand task diversity in meta-learning.
To the best of our knowledge, we are the first to study the effect of task diversity in meta-learning to
this extent.
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Figure 1: Illustration of (a) the Uniform Sampler, (b) the No Diversity Task Sampler, and (c) the No
Diversity Batch Sampler.

3 Background

Here, we review some of the fundamental ideas required to understand our few-shot learning
experiments better.

3.1 Episodic few-shot learning

In episodic few-shot learning, an episode is represented as an K-way, N-shot classification problem
where N is the number of examples per class and K is the number of unique class labels. During
training, the data in each episode is provided as a support set S = {(x1,1, y1,1), ..., (xN,K , yN,K)}
where xi,j ∈ RD is the i-th instance of the j-th class, and yj ∈ {0, 1}K is its corresponding one-hot
labeling vector. Each episode aims to optimize a function f that classifies new instances provided
through a "query" set Q, containing instances of the same class as S. This task is difficult because N
is typically very small (e,g, 1 to 10). The classes change every episode. The actual test set used to
evaluate a model does not contain classes seen in support sets during training. In the task-distribution
view, meta-learning is a general-purpose learning algorithm that can generalize across tasks and
ideally enable each new task to be learned better than the last. We can evaluate the performance of
ω over a distribution of tasks p(T ). Here we loosely define a task to be a dataset and loss function
T = {D,L}. Learning how to learn thus becomes:

min
ω

E
τ∼p(τ)

L(D;ω) (1)

where L(D;ω) measures the performance of a model trained using ω on dataset D and p(τ) indicates
the task distribution. In this experiment, we extend this setting such that we vary the task diversity in
the train split to study the effects on test split, which remains to use uniform or random sampling for
tasks.

3.2 Determinantal Point Processes (DPPs)

A DPP is a probability distribution over subsets of a ground setY , where we assumeY = {1, 2, ..., N}
and N = |Y|. An L-ensemble defines a DPP using a real, symmetric, and positive-definite matrix L
indexed by the elements of Y . The probability of sampling a subset Y = A ⊆ Y can be written as:

P (Y = A) ∝ det LA, (2)

where LA := [Li,j ]i,j∈A is the restriction of L to the entries indexed by the elements of A. As L is a
positive semi-definite, there exists a d×N matrix Ψ such that L = ΨTΨ where d ≤ N . Using this
principle, we define the probability of sampling as:

P (Y = A) ∝ det LA = Vol2({Ψi}i∈A), (3)

where the RHS is the squared volume of the parallelepiped spanned by {Ψi}i∈A. In Eq. 3, Ψi is
defined as the feature vector of element i, and each element Li,j in L is the similarity measured by dot
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Figure 2: Illustration of (a) the No Diversity Task per Batch Sampler, and (b) the Single Batch
Uniform Sampler.

products between elements i and j. Hence, we can verify that a DPP places higher probabilities on
diverse sets because the more orthogonal the feature vectors are, the larger the volume parallelepiped
spanned by the feature vector is. In this work, these feature embeddings represent class embeddings,
which are derived using either a pre-trained protonet model or the model being trained as discussed
in Sec. 3.3.

In a DPP, the cardinality of a sampled subset, |A|, is random in general. A k-DPP is an extension of
the DPP proposed in the work of [6], where the cardinality of subsets are fixed as k (i.e., |A| =k). In
this work, we use k-DPPs as an off-the-shelf implementation to retrieve classes that represent a task
used in the meta-learning step.

3.3 Task Sampling

In this work, we experiment with eight distinct task samplers, each offering a different level of task
diversity. To demonstrate the task samplers, we use a 2-way classification problem with a meta-batch
size of 2 and denote each class with a unique alphabet.

Uniform Sampler This is the most widely used Sampler used in the setting of meta-learning. The
Sampler gives equal probability to every task and is intuitively a random sampler. An illustration of
this Sampler is shown in Figure 1.

No Diversity Task Sampler In this setting, we uniformly sample one set of the task at the beginning
and propagate the same task across all batches and meta-batches. Note that repeating the same class
over and over again does not simply repeat the same images/inputs as we episodically retrieve
different images for each class. An illustration of this Sampler is shown in Figure 1.

No Diversity Batch Sampler In this setting, we uniformly sample one set of tasks for batch one
and propagate the same tasks across all other batches. Furthermore, we shuffle these tasks to enforce
that the model does not overfit. An illustration of this Sampler is shown in Figure 1.

No Diversity Tasks per Batch Sampler In this setting, we uniformly sample one set of tasks for a
given batch and propagate the same tasks for all meta-batches. We then repeat this same principle
for sampling the next batch. Furthermore, we shuffle these tasks to enforce that the model does not
overfit. An illustration of this Sampler is shown in Figure 2.

Single Batch Uniform Sampler In this setting, we set the meta-batch size to one. This Sampler
is intuitively the same as no diversity task per batch sampler, without the repetition of tasks. This
Sampler would be an ideal ablation study for the repetition of tasks in the meta-learning setting. An
illustration of this Sampler is shown in Figure 2.
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Figure 3: Illustration of (a) Online Hard Task Mining Sampler, (b) the Static DPP Sampler, and (c)
the Dynamic DPP Sampler.

Online Hard Task Mining Sampler This setting is inspired by the works of [19] where they
proposed OHEM, which yielded significant boosts in detection performance on benchmarks like
PASCAL VOC 2007 and 2012. However, to reproduce OHEM for meta-learning, we only apply
the OHEM sampler for half the meta-batch size and uniform sampler for the remaining half. This
approach would allow us to involve many tasks and not restrict us to only known tasks. Furthermore,
to avoid OHEM in the initial stages, we sample tasks with a uniform sampler until the buffer of tasks
seen by the model becomes sufficiently big, say 50 in our case. An illustration of this Sampler is
shown in Figure 3.

Static DPP Sampler Determinantal Point Processes (DPP) have been used for several machine
learning problems such as the works of [7]. They have also been used in other problems such as
the active learning settings in the works of [1] and mini-batch sampling problems in the works of
[25]. These algorithms have also inspired other works in active learning in the batch mode setting,
such as [14]. In this setting, we use DPP as an off-the-shelf implementation to sample tasks based
on task embeddings. These task embeddings are generated using our pre-trained protonet model.
The DPP instance is used to sample the most diverse tasks based on these embeddings, and used for
meta-learning. An illustration of this Sampler is shown in Figure 3.

Dynamic DPP Sampler In this setting, we extend the previous sDPP setting such that the model
in training generates the task embeddings. The Sampler is motivated by the intuition that selecting
the most diverse tasks for a given model will help learn better. Furthermore, to avoid DPP in the
initial stages, we sample tasks with a uniform sampler until the model becomes sufficiently trained,
say 500 batches in our case. An illustration of this Sampler is shown in Figure 3.

4 Experiments

The experiment aims to answer the following questions: (a) How does task diversity affect meta-
learning? (b) Do sophisticated samplers such as OHEM or DPP offer any significant boost in
performance? (c) Are there any rule of thumb or general good practices when it comes to sampling
tasks?

To make an exhaustive study on the effect of task diversity in meta-learning, we train on two datasets
- Omniglot and miniImageNet. We train three broad classes of meta-learning models on these datasets
- Metric-based (i.e., Protonet, Matching Networks), Optimization-based (i.e., MAML, Reptile, and
MetaOptNet), and Bayesian meta-learning models (i.e., CNAPs). More details about the datasets
which were used in our experiments are discussed in Sec A.1. More details about the models and
their hyperparameters are discussed in Sec A.2. We created a pool of 1024 tasks used for testing in
our experiments to make an accurate comparison.

The code and implementation of all our experiments are publicly available at https://github.
com/RamnathKumar181/Task-Diversity-meta-learning.
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Figure 4: Average accuracy on Omniglot 5-way 1-shot & miniImageNet 5-way 1-shot, with 95%
confidence interval. All samplers are poorer than the Uniform Sampler and are statistically significant
(with a p-value p = 0.05). We use the symbol ∗ to represent the instances where the results are not
statistically significant and similar to the performance achieved by Uniform Sampler.

4.1 Results

In this section, we present the results of our experiments. Figure-4 presents the performance of the
six models on the Omniglot and miniImageNet under different task samplers in the 5-way 1-shot
setting. Table-1 presents the same results with higher precision.

We also reproduce our experiments on the 20-way 1-shot setting on the Omniglot dataset to establish
that these trends are shared across different settings. Figure-5 presents our the performance of the
models under this setting. Furthermore, the results on the 20-way 1-shot experiments are presented in
Table-2 with higher precision.

The above plots are sufficient to convey the crux of our work. We empirically show that task diversity
does not lead to any significant boost in the performance of the models. In the subsequent section, we
discuss some of the other key findings from our work.

5 Discussion

In this section, we discuss few empirical results from our experiments and shed light on some of the
key findings from our research.

Poor performance by NDT Sampler The lowest performance is consistently obtained by the
No Diversity Task Sampler, which is reasonable since the model only sees one task throughout its
training. What is fascinating is that just one task is sufficient for the model to reach a reasonably
decent performance in most cases.

Disparity between Single Batch Uniform and NDTB Sampler Another exciting result is the
Disparity between Single Batch Uniform Sampler and No Diversity Tasks per Batch Sampler. As
mentioned earlier, the only difference between the two samplers is that tasks are repeated in the latter.
However, this repetition seems to offer a great deal of information to the model and allows the model
to perform on par with the Uniform Sampler. It might be possible that the Single Batch Uniform
Sampler obtains the performance observed by the No Diversity Tasks per Batch Sampler if trained
for enough epochs. However, it would be safe to comment that the convergence of the model is
significantly faster in the latter. Thus, repeating tasks might help speed up the convergence of the
model when we have a fixed and handful amount of data.
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Figure 5: Average accuracy on Omniglot 20-way 1-shot, with a 95% confidence interval. We denote
all samplers that are worse than the Uniform Sampler and are statistically significant (with a p-value
p = 0.05) with H, and those that are significantly better than the Uniform Sampler with N.

Disparity between s-DPP and d-DPP Sampler We also note that s-DPP and d-DPP samplers do
not offer any boost in performance when compared to the regular Uniform Sampler. Furthermore,
there seems to be a significant disparity between these two samplers. We believe that d-DPP, which
computes the most diverse tasks at regular intervals, harms the model with the diverse tasks since we
observe that the model’s performance degrades over epochs, especially for methods such as matching
networks, protonet, and reptile. For example, consider the scenario where the model is trained on
tasks involving dogs and tractors. This task is relatively easy to learn and would not require the
model to fine-tune a great deal. However, during test time, suppose our task involves classifying cats
and dogs; this would be a problem since the model has not learned the intricacies of the two classes.
Thus, diversity seems to do more harm than good in this case. The best example of this is observed
by Matching Networks in Omniglot 5-way 1-shot setting as shown in Figure 6, where each instance
of diverse sampling harms the model significantly.

OHTM Sampler offers no significant performance boost The OHTM Sampler is quite sophisti-
cated since it regularly samples diverse tasks, as well as selects the most challenging tasks to improve
the model. It is needless to say; the model requires more computational power and time than the
Uniform Sampler. However, the OHTM Sampler offers no significant boost in performance when
compared to the Uniform Sampler.

Comparison between NDTB, NDB, and Uniform Sampler From our experiments, we also notice
that the No Diversity Tasks per Batch Sampler and No Diversity Batch Sampler are pretty similar to
the Uniform Sampler in terms of performance. This would suggest that the model trained on only a
data fragment can perform similarly to a model trained on the Uniform Sampler.

Abnormal run of matching networks d-DPP (20-way 1-shot) In our run on the matching net-
works with the d-DPP Sampler under the 20-way 1-shot setting, we ran across a peculiar error. The
prototypes generated by the matching networks were sometimes not fit to be used by the d-DPP
Sampler to sample 20 unique classes. The reason being that the rank of the matrix generated using the
embeddings was lower than the required number of classes per task (i.e., 20). To create a workaround
for this sole experiment, we chose to sample 5 diverse classes at a time and append them to create the
task. We hypothesize that the prototypes created by matching networks are unsuitable for downstream
tasks and warrant further research regarding this behavior.

Peculiar behavior with MetaOptNet model Compared to all other models, MetaOptNet seems
to be immune to the effects of task diversity to a great extent. The convergence of the model seems
to follow a general pattern and achieve similar performance across task distributions except for the
Single Batch Uniform Sampler and No Diversity Task sampler. Furthermore, we do not observe the
expected pattern of d-DPP Sampler, where the performance drops upon mining diverse tasks. We
present the convergence graph of the MetaOptNet model on Omniglot 5-way 1-shot run in Figure-7
with an added smoothing factor of 1.

General Trend From our experiments, we notice that there are generally two classes of samplers:
High Performing Samplers and Low Performing Samplers. The High Performing Samplers include
No Diversity Batch, No Diversity Tasks per Batch, Uniform, OHTM, and s-DPP Sampler. The Low
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Performing Samplers include No Diversity Task, Single Batch Uniform, and d-DPP Sampler. This
trend is shared across all datasets and models. There are some perturbations in ranking within the two
classes, but the High Performing Samplers tend to perform better than the Low Performing Samplers.

6 Conclusion

In this paper, we have studied the effect of task diversity in meta-learning. We have empirically shown
that task diversity does not lead to any significant boost in performance in meta-learning. Instead,
limiting task diversity and repeating the same tasks over the training phase allows us to obtain similar
performances to the Uniform Sampler without any significant adverse effects. Furthermore, We also
show that sophisticated samplers such as OHEM or DPP samplers do not offer any significant boost
in performance. In contradiction, we notice that increasing task diversity using the d-DPP Sampler
hampers the performance of the meta-learning model. Our experiments using the NDTB and NDB
empirically show that a model trained on only a data fragment can perform similarly to a model
trained using Uniform Sampler. This is a crucial finding since this questions the need to increase the
support set pool to improve the models’ performance. We believe that the experiments we performed
lay the roadwork to further research for the effect of task diversity domain in meta-learning and lay
some groundwork and rules of thumb for task sampling for meta-learning.
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A Appendix

A.1 Dataset

Omniglot Omniglot is a benchmark dataset proposed by [8] for few-shot image classification tasks.
Omniglot dataset consists of 20 instances and 1623 characters from 50 different alphabets. We
experiment with both 5-way 1-shot and 2-way 1-shot in this work.

miniImageNet miniImageNet is another benchmark dataset proposed by [15] for few-shot image
classification tasks. The miniImageNet dataset involves 64 training classes, 12 validation classes, and
24 test classes. We run under the setting 5-way 1-shot for this experiment.

A.2 Models

This section describes some of the models we used for our experiments and the hyperparameters used
for their training.

A.2.1 Prototypical Networks

Prototypical Networks proposed by [20] constructs a prototype for each class and then classifies
each query example as the class whose prototype is ’nearest’ to it under Euclidean distance. More
concretely, the probability that a query example x∗ belongs to class k is defined as:

p(y∗ = k|x∗,S) =
exp(−‖g(x∗)− ck‖22)∑

k′∈{1,...,N} exp(−‖g(x∗)− ck′‖22)
(4)

Where ck is the ’prototype’ for class k: the average embeddings of class k’s support examples.

Hyperparameters In our experiments on Omniglot and miniImageNet under a 5-way, 1-shot
setting, we run the model for 100 epochs with a batch size of 32 and a meta-learning rate of 0.001.
We use an Adam optimizer to make gradient steps and a StepLR scheduler with step size 0.4 and
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gamma 0.5. The same hyperparameters are used for training our model on Omniglot under a 20-way
1-shot setting.

A.2.2 Matching Networks

Matching Networks proposed by [22] labels each query example as a cosine distance-weighted linear
combination of the support labels:

p(y∗ = k|x∗,S) =

|S|∑
i=1

α(x∗, xi)Φyi=k, (5)

where ΦA is the indicator function and α(x∗, xi) is the cosine similarity between g(x∗) and g(xi),
softmax normalized over all support examples xi, where 1 ≤ i ≤ |S|.
We had trouble reproducing the results from matching networks using cosine distance since the
convergence seemed to be slow and the final performance dependent on the random initialization. This
is similar to what is observed by other repositories such as https://github.com/oscarknagg/
few-shot. Since we are focused on the relative performance of the samplers for a given model, this
discrepancy would not affect our study of task diversity in any manner.

Hyperparameters In our experiments on Omniglot and miniImageNet under a 5-way, 1-shot
setting, we run the model for 100 epochs with a batch size of 32 and an Adam optimizer with a
meta-learning rate of 0.001 and a weight decay of 0.0001. The same hyperparameters are used for
training our model on Omniglot under a 20-way 1-shot setting.

A.2.3 MAML

MAML proposed by [2] uses a linear layer parametrized by W and b on top of the embedding
function g(.; θ) and classifies a query example as:

p(y∗|x∗,S) = softmax (b′ + W′g(x∗; θ′)), (6)

where the output layer parameters W’ and b’ and the embedding function parameters θ′ are obtained
by performing a small number of within-episode training steps on the support set S, starting from
initial parameter values (b,W, θ).

Hyperparameters In our experiments on Omniglot and miniImageNet under a 5-way, 1-shot
setting, we run the model for 150 epochs with a batch size of 32, with the Adam optimizer with a
meta-learning rate of 0.001, number of inner adaptations as 1, and step size 0.4. For our experiments
on Omniglot under the 20-way 1-shot setting, we set the step size of 0.1 and the number of inner
adaptations to 5, batch size of 16, and kept all other hyperparameters constant.

A.2.4 Reptile

Like MAML, Reptile proposed by [13] learns an initialization for the parameters of a neural network
model, such that when we optimize these parameters at test time, learning is fast - i.e., the model
generalizes from a small number of test tasks. Reptile converges towards a solution φ that is close
(in Euclidean distance) to each task τ ’s manifold of optimal solutions. Let φ denote the network
initialization, and W = φ+ ∆φ denote the network weights after performing some sort of update.
LetW∗τ denote the set of optimal network weights for task τ . We want to find φ such that the distance
D(φ,W∗τ ) is small for all tasks:

min
φ

Eτ [
1

2
D(φ,W∗τ )2] (7)

The official repository seems to train the model with a 5-way 15-shot and test the model on a 5-way
1-shot. However, we do not consider this to be an accurate study for the effect of task diversity. In our
work, we train and test the model in a 5-way 1-shot setting to ensure fair and accurate comparison
with other models. We believe this to be the source of discrepancy in our performance scores. Since
we are focused on the relative performance of the samplers for a given model, this discrepancy would
not affect our study of task diversity in any manner.
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Hyperparameters In our experiments on Omniglot and miniImageNet under a 5-way, 1-shot
setting, we run the model for 150 epochs with a batch size of 32, a learning rate of 0.01, a meta-
learning rate of 0.001, number of inner adaptations as 5, and a step size of 0.4. For our experiments
on Omniglot under the 20-way 1-shot setting, we set the meta-learning rate to 0.0005 and the number
of inner adaptations to 10 and kept all other hyperparameters constant. Furthermore, we only run the
model for 50 epochs due to the very high training time.

A.2.5 CNAPs

Conditional Neural Adaptive Processes proposed by [16] is able to efficiently solve new multi-class
classification problems after an initial training phase. The proposed approach, based on Conditional
Neural Processes (CNPs) mentioned in [3], adapts a small number of task-specific parameters for each
new task encountered at test time. These parameters are conditioned on a set of training examples for
the new task. They do not require any additional tuning to adapt both the final classification layer and
feature extraction process. This allows the model to handle various input distributions. The CNPs
construct predictive distributions given x∗ as:

p(y∗|x∗, θ,Dτ ) = p(y∗|x∗, θ,Ψτ = Ψφ(Dτ )), (8)

where θ are global classifer parameters shared across tasks, Ψτ are local task-specific parameters,
produced by a function Ψφ(.) that acts of Dτ . Ψφ(.) has another set of global parameters φ called
adaptation network parameters. θ and φ are the learnable parameters in the model.

Hyperparameters In all our experiments with CNAPs, we run the model for ten epochs with a
batch size of 16 and a meta-learning rate of 0.01.

A.2.6 MetaOptNet

MetaOptNet proposed by [9] proposes a linear classifier as the base learner for a meta-learning based
approach for few-shot learning. The approach uses a linear support vector machine (SVM) to learn a
classifier given a set of labeled training examples. The generalization error is computed on a novel
set of examples from the same task. The objective is to learn an embedding model φ that minimizes
generalization (or test) error across tasks given a base learner A. Formally, the learning objective is:

min
φ

ET [Lmeta(Dtest ; θ, φ), where θ = A(Dtest ;φ)]. (9)

The choice of base learner A has a significant impact on the above equation. The base learner
that computes θ = A(Dtest ;φ) has to be efficient since the expectation has to be computed over a
distribution of tasks. This work considers base learners based on multi-class linear classifiers such as
SVM, where the base learner’s object is convex. Thus, the base learner can be simplified as:

θ = A(Dtest ;φ) = arg min
{wk}

min
ξi

1
2

∑
k ‖wk‖22 + C

∑
n ξn; subject to:

wyn .fφ(xn)−wk.fφ(xn) ≥ 1− δyn,k − ξn,∀n, k
(10)

whereDtrain = {(xn, yn)}, C is the regularization parameter and δ.,. is the Kronecker delta function.

Furthermore, the official repository seems to train the model with a 5-way 15-shot and test the model
on a 5-way 1-shot. However, we do not consider this to be an accurate study for the effect of task
diversity. In our work, we train and test the model in a 5-way 1-shot setting to ensure fair and accurate
comparison with other models. We believe this to be the source of discrepancy in our performance
scores. Since we are focused on the relative performance of the samplers for a given model, this
discrepancy would not affect our study of task diversity in any manner.

Hyperparameters In our experiments on Omniglot and miniImageNet under a 5-way, 1-shot
setting, we run the model for 60 epochs with a batch size of 32 and a meta-learning rate of 0.01.
We use an SGD optimizer with a momentum of 0.9 and a weight decay of 0.0001 to make gradient
steps. We also use a LambdaLR scheduler to train our model. The same hyperparameters are used for
training our model on Omniglot under a 20-way 1-shot setting.
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A.3 Additional Results

In this section, we present the results with higher precision from our earlier experiments in a Table-1
and Table-2. Subsequently, we also plot convergence curves to aid better visualizations of findings
mentioned earlier in Figure-6 and Figure-7.

Dataset Sampler MAML Reptile Protonet Matching Networks MetaOptNet CNAPs

Omniglot

Uniform Sampler 98.38 ± 0.17 94.64 ± 0.32 97.82 ± 0.23 94.71 ± 0.39 98.04 ± 0.22 95.01 ± 0.35
No Diversity Task Sampler 85.46 ± 0.59 81.59 ± 0.57 84.55 ± 0.56 64.41 ± 0.74 84.15 ± 0.57 62.06 ± 0.83
No Diversity Batch Sampler 97.17 ± 0.25 93.83 ± 0.34 96.67 ± 0.27 76.10 ± 0.65 97.11 ± 0.26 91.07 ± 0.46

No Diversity Tasks per Batch Sampler 97.76 ± 0.20 94.55 ± 0.31 † 97.18 ± 0.25 93.97 ± 0.40 96.80 ± 0.27 90.84 ± 0.47
Single Batch Uniform Sampler 93.84 ± 0.37 92.60 ± 0.38 95.95 ± 0.31 92.98 ± 0.44 95.76 ± 0.31 75.86 ± 0.73

OHTM Sampler 97.74 ± 0.20 93.89 ± 0.34 97.22 ± 0.25 93.48 ± 0.43 96.12 ± 0.29 91.51 ± 0.47
s-DPP Sampler 97.61 ± 0.21 94.79 ± 0.30 † 97.22 ± 0.24 92.29 ± 0.44 95.83 ± 0.30 95.00 ± 0.33 †
d-DPP Sampler 97.69 ± 0.21 94.25 ± 0.33 97.28 ± 0.24 93.71 ± 0.40 95.59 ± 0.30 94.84 ± 0.34 †

MiniImagenet

Uniform Sampler 48.86 ± 0.62 41.42 ± 0.56 48.56 ± 0.60 43.84 ± 0.58 55.02 ± 0.66 64.48 ± 0.71
No Diversity Task Sampler 36.70 ± 0.53 32.38 ± 0.48 37.83 ± 0.53 35.08 ± 0.53 36.62 ± 0.55 46.51 ± 0.63
No Diversity Batch Sampler 48.78 ± 0.60 † 40.80 ± 0.54 47.32 ± 0.62 42.15 ± 0.58 53.50 ± 0.63 60.92 ± 0.68

No Diversity Tasks per Batch Sampler 48.17 ± 0.62 41.49 ± 0.56 † 47.73 ± 0.60 42.54 ± 0.53 50.60 ± 0.62 64.11 ± 0.68 †
Single Batch Uniform Sampler 41.76 ± 0.56 22.96 ± 0.33 41.35 ± 0.56 40.00 ± 0.54 39.10 ± 0.54 45.47 ± 0.67

OHTM Sampler 48.30 ± 0.58 40.44 ± 0.54 47.45 ± 0.59 43.05 ± 0.55 47.11 ± 0.58 59.62 ± 0.69
s-DPP Sampler 48.14 ± 0.59 40.19 ± 0.56 47.22 ± 0.58 42.66 ± 0.56 52.74 ± 0.63 63.26 ± 0.69
d-DPP Sampler 48.99 ± 0.60 40.40 ± 0.54 46.73 ± 0.60 42.37 ± 0.56 48.26 ± 0.60 61.44 ± 0.67

Table 1: Performance metric of our models on different task samplers in the 5-way 1-shot setting.

Dataset Sampler MAML Reptile Protonet Matching Networks MetaOptNet CNAPs

Omniglot

Uniform Sampler 91.28 ± 0.22 90.09 ± 0.22 93.72 ± 0.20 74.62 ± 0.38 90.20 ± 0.23 92.09 ± 0.22
No Diversity Task Sampler 83.39 ± 0.29 59.49 ± 0.33 85.84 ± 0.27 26.50 ± 0.32 88.40 ± 0.26 73.82 ± 0.39
No Diversity Batch Sampler 89.07 ± 0.25 88.23 ± 0.23 93.18 ± 0.20 71.77 ± 0.38 91.24 ± 0.22 ‡ 89.56 ± 0.24

No Diversity Tasks per Batch Sampler 90.77 ± 0.23 91.15 ± 0.21‡ 93.85 ± 0.19 † 61.31 ± 0.41 89.59 ± 0.24 89.99 ± 0.24
Single Batch Uniform Sampler 82.45 ± 0.31 80.89 ± 0.27 92.67 ± 0.20 54.01 ± 0.40 70.81 ± 0.35 77.54 ± 0.37

OHTM Sampler 91.25 ± 0.22 † 89.92 ± 0.22 93.33 ± 0.20 72.20 ± 0.38 91.56 ± 0.23 ‡ 89.51 ± 0.25
s-DPP Sampler 88.79 ± 0.24 85.40 ± 0.25 90.90 ± 0.22 72.86 ± 0.37 91.47 ± 0.22 ‡ 90.98 ± 0.22
d-DPP Sampler 85.36 ± 0.30 85.60 ± 0.25 91.74 ± 0.22 85.36 ± 0.30 ‡ 90.40 ± 0.24 † 91.95 ± 0.22 †

Table 2: Performance metric of our models on different task samplers in the 20-way 1-shot setting.

Statistical Results We compare the performance of different models to the Uniform Sampler. All
samplers are poorer than the Uniform Sampler and are statistically significant with a confidence
interval of 95%. We use the symbol † to represent the instances where the results are not statistically
significant and similar to the performance achieved by Uniform Sampler. We only observe four
instances where a sampler performs significantly better than the Uniform Sampler, which we represent
using the symbol ‡.
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Matching Networks : Omniglot 5-way 1-shot
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Figure 6: Convergence curve of Matching Networks model on Omniglot 5-way 1-shot.

MetaOptNet: Omniglot 5-way 1-shot
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Figure 7: Convergence curve of MetaOptNet model on Omniglot 5-way 1-shot.
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