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Abstract

Teaching text-to-image models to be creative involves using style ambiguity loss. In this
work, we explore using the style ambiguity training objective, used to approximate creativity,
on a diffusion model. We then experiment with forms of style ambiguity loss that do not
require a labeled dataset, and find that the models trained with style ambiguity loss can
generate better images than the baseline diffusion models.

1 Introduction

With every new invention comes a new wave of possibilities. Humans have been making pictures since
before recorded history, so its only natural that there would be interest in computational image generation.
Artificially generating photographs that are indistinguishable from real ones has become so easy and effective
that there is even concern over "deepfakes" being used for propaganda or illicit purposes (Pawelec, 2022).
However, there is also demand for machine-generated images that are not just realistic but artistic, as
exemplified by the picture that sold for nearly half a million dollars (Christie’s, 2018) at auction, or the picture
used in the sitcom Silicon Valley (AICAN, 2024). While the definition of art is somewhat philosophical and
beyond the scope of this paper, it most certainly has to be creative. Creative assets are usually defined
as being "novel and useful" (Diedrich et al., 2015). A string of random characters is novel in that we
cannot predict the next characters. However, if the purpose of characters is to compose words that compose
sentences that communicate a message, then a string of random characters is not useful. Most people would
not consider a string of random characters to be creative or art. If the utility of an image is to depict
objects and scenes that humans understand and can recognize, then generative models perform well in that
regard. Novelty, on the other hand has been underexplored. A breakthrough was the invention of the
Creative Adversarial Network (Elgammal et al., 2017), which used a style ambiguity loss to train a generator
network to generate images that could not be classified as belonging to a particular style. However, this style
ambiguity loss requires a pretrained classifier: Every set of styles or concepts requires training a classifier
before even training a model to generate images, which itself takes time and requires a labeled dataset, the
collection and curation of which can be expensive. To circumvent these issues, we propose using a classifier
for style ambiguity that does not require any additional training and can be easily applied to any dataset,
labeled or unlabeled. Additionally, the Creative Adversarial Network was based off of the GAN framework,
which have fallen out of favor compared to the more powerful diffusion models (Luo, 2022), so we propose
training a diffusion model with style ambiguity loss. Our contributions are as follows:

• We applied style ambiguity loss to diffusion models via reinforcement learning

• We developed versatile CLIP-based and K-Means-based creative style ambiguity losses that do not
require training a separate style classifier on a labeled dataset.

• Empirically, we find that training a diffusion model with style ambiguity loss teaches the model to
generate very novel outputs that may score higher on empirical metrics than models trained without
style ambiguity loss
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2 Related Work

2.1 Creativity

Creative work has been formulated as work having novelty, in that it differs from other similar objects,
and also utility, in that it still performs a function (Cropley, 2006). For example, a Corinthian column has
elaborate, interesting, unexpected adornments (novelty) but still holds up a building (utility). A distinction
can also be made between "P-creativity", where the work is novel to the creator, and "H-creativity" where
the work is novel to everyone (Boden, 1990). Computational techniques to be creative include using genetic
algorithms (DiPaola & Gabora, 2008), reconstructing artifacts from novel collections of attributes (Iqbal
et al., 2016), and most relevantly to this work, using Generative Adversarial Networks (Elgammal et al.,
2017) with a style ambiguity loss.

2.2 Computational Art

One of the first algorithmic approaches dates back to the 1970s with the now primitive AARON (McCorduck,
1991), which was initially only capable of drawing black and white sketches. Generative Adversarial Networks
(Goodfellow et al., 2014), or GANs, were some of the first models to be able to create complex, photorealistic
images and seemed to have potential to be able to make art. Despite many problems with GANs, such as
mode collapse and unstable training (Saxena & Cao, 2023), GANs and further improvements (Arjovsky
et al., 2017; Karras et al., 2019; 2018) were state of the art until the introduction of diffusion Sohl-Dickstein
et al. (2015). Diffusion models such as IMAGEN (Saharia et al., 2022) and DALLE-3 (Betker et al.) have
attained widespread commercial success (and controversy) due to their widespread adoption.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a method of training a model by having it take actions that generate a
reward signal and change the environment, thus changing the impact and availability of future actions Qiang
& Zhongli (2011). RL has been used for tasks as diverse as playing board games (Silver et al., 2017), protein
design (Lutz et al., 2023), self-driving vehicles (Kiran et al., 2021) and quantitative finance (Sahu et al.,
2023). Policy-gradient RL (Sutton et al., 1999) optimizes a policy π that chooses which action to take at any
given timestep, as opposed to value-based methods that may use a heuristic to determine the optimal choice.
Examples of policy gradient methods include Soft Actor Critic (Haarnoja et al., 2018), Deep Deterministic
Policy Gradient (Lillicrap et al., 2019) and Trust Region Policy Optimization (Schulman et al., 2017a).

3 Background

3.1 Creative Adversarial Network

A Generative Adversarial Network, or GAN (Goodfellow et al., 2014), consists of two models, a generator and
a discriminator. The generator generates samples from noise, and the discriminator detects if the samples are
drawn from the real data or generated. During training, the generator is trained to trick the discriminator
into classifying generated images as real, and the discriminator is trained to classify images correctly. Given
a generator G : Rnoise → Rh×w×3, a discriminator D : Rh×w×3 → [0, 1] real images x ∈ Rh×w×3, and noise
Z ∈ Rnoise, the objective is:

min
G

max
D

Ex[log(D(x)] + EZ [log(1 − D(G(Z))]

Elgammal et al. (2017) introduced the Creative Adversarial Network, or CAN, which was a DCGAN (Rad-
ford et al., 2016) where the discriminator was also trained to classify real samples, minimizing the style
classification loss. Given N classes of image (such as ukiyo-e, baroque, impressionism, etc.), the classifica-
tion modules of the Discriminator DC : Rh×w×3 → RN that returns a probability distribution over the Ns

style classes for an image and the real labels ℓ ∈ RN , the style classification loss was:

LSL = Ex,ℓ[CE(DC(x), ℓ)]
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Where CE is the cross entropy function.

The generator was also trained to generate samples that could not be easily classified as belonging to one
class. This stylistic ambiguity is a proxy for creativity or novelty. Given a vector U ∈ RN , where each entry
u1, u2, , , uN = 1

N , and the classification modules of the discriminator DC the style ambiguity loss is:

LSA = EZ [CE(C(G(Z)), U)]

The discriminator was additionally trained to minimize LSL and the generator was additionally trained to
minimize LSA.

3.2 Diffusion

A diffusion model aims to learn to iteratively remove the noise from a corrupted sample to restore the original.
Starting with x0, the forward process q iteratively adds Gaussian noise to produce the noised version xT ,
using a noise schedule β1...βT , which can be learned or manually set as a hyperparameter:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI)

More importantly, we also want to model the reverse process p, that turns a noisy sample xT back into x0,
conditioned on some context c. As xT is the fully noised version, p(xT |c) = N (xT ; 0, I)

pθ(xt−1|xt, c) = N (xt−1; µθ(xt, t, c), Σθ(xt, t, c))

Once the model has been trained, the reverse process, aka inference, generates a sample from noise xT ∼
N (0, 1). We use the DDIM technique (Song et al., 2022) for sampling. In this work, we use a variant of
diffusion known as Stable Diffusion (Rombach et al., 2022), where x is replaced with a latent embedding
E(x), where E : Rh×w×3 → Rhz×wz×cz is a frozen autoencoder (Kingma & Welling, 2022), and hz < h, wz <
w, cz > 3.

4 Methods

4.1 Denoising Diffusion Proximal Optimisation

Introduced by Black et al. (2023), Denoising Diffusion Proximal Optimisation, or DDPO, represents the
reverse Diffusion Process as a Markov Decision Process (Bellman, 1957). A similar method was also
pursued by Fan et al. (2023). Reinforcement learning training was then applied to a pretrained diffu-
sion model. Following Schulman et al. (2017b), Black et al. (2023) also implemented clipping to protect
the policy gradient ∇θJDDRL from excessively large updates, and per prompt stat tracking to normal-
ize rewards. We largely follow their method but use a different reward function. We fine-tune off of
the pre-existing stabilityai/stable-diffusion-2-base checkpoint (Rombach et al., 2022) downloaded from
https://huggingface.co/stabilityai/stable-diffusion-2-base.

4.2 Text Prompts

DDPO does not require any new data, given that we are fine-tuning off of a pretrained checkpoint. However,
each time we train the model, we must decide which text prompts to use to condition the generation of
images. We used the set of (painting, drawing, art) as our text prompts

4.3 Datasets and Labels

Training the CAN, of course, requires a labeled dataset. We used two different real datasets based off of
WikiArt (Saleh & Elgammal, 2015):

1. Full: the WikiArt dataset as is. Consists of roughly 80k images.
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2. Mediums: given the the text prompt set (painting, drawing, art), we used BLIP (Li et al., 2022) to
generate captions, and then selected the 10 classes that had the highest fraction of their descriptions
containing any of the words in Mediums. We then used the images in WikiArt that belonged to
those classes. Consists of roughly 20k images.

This also meant we had two different sets of style class labels: Lfull, all 27 class labels, used with Full and
Lmed, the 10 labels used in Mediums. For implementation details regarding the captions, and a list of the
class labels used for Mediums refer to appendix C

4.4 DDPO Reward Function

In the original DDPO paper, the authors used four different reward functions for four different tasks. For
example, they used a scorer trained on the LAION dataset (Schuhmann & Beaumont, 2022) as the reward
function to improve the aesthetic quality of generated outputs. In this paper, we use the reward model based
on Elgammal et al. (2017), where the model is rewarded for stylistic ambiguity, combined with a reward for
utility. Given a pretrained CLIP (Radford et al., 2021) model, that can return a similarity score for each
image-text pair: CLIP : Rtext × Rh×w×3 → R, image x0 ∈ Rh×w×3 generated with text prompt s, cross
entropy CE, uniform distribution U ∈ RN and a classifier C : Rh×w×3 → RN we want to maximize:

R(x0) = −λnoveltyCE(C(x0), U) + λutilityCLIP (s, x0)

The first term on the left side of the equation represents style ambiguity loss, and the second term maintains
alignment between text and image, essentially keeping the model from straying "too far" from the text
prompt; these terms approximate novelty and utility, respectively. We actually have multiple choices of
classifier, which we dicuss.

4.4.1 Discriminator Classifier

We can use the classification module of the CAN discriminator as the classifier in the reward function,
setting C = DC . This is the traditional method of style ambiguity loss, and the baseline against which we
are comparing the other two types of classifier with.

4.4.2 CLIP-Based Style Classifier

For each generated image x0, for each class name si, 1 ≤ i ≤ Ns in the style class label set we want to use, we
find CLIP (si, x0). We can then create a vector (CLIP (s1, x0), CLIP (s2, x0), , , CLIP (sNs

, x0)) and then
use softmax to normalize the vector and define the result as CC(x0). Formally:

CC(x0) = softmax((CLIP (s1, x0), CLIP (s2, x0), , , CLIP (sNs , x0))

Then we set C = CC. Given the four sets of labels, we had four different types of CLIP-Based classifier
CCfull, CCmed, CCsub and CCsyn, using Lfull, Lmed, Lsub and Lsyn respectively.

4.4.3 K-Means Image Based Classifiers

Alternatively, NI source images in a dataset, we can embed the labels or images into the CLIP em-
bedding space ∈ R768 and perform k-means clustering to generate k centers. Given a CLIP Embedder
E : Rh×w×3 → R768 mapping images to embeddings, and the k centers c1, c2, , , ck we can create a vector
( 1

||E(x0)−c1|| ,
1

||E(x0)−c2|| , , , , 1
||E(x0)−ck|| and then use softmax to normalize the vector and define the result as

KM(x0)). Formally:

KMEANS(x0) = softmax( 1
||E(x0) − c1||

,
1

||E(x0) − c2||
, , , ,

1
||E(x0) − ck||

)

Then we set C = KM .
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Letter λnovelty λutility Classifier? Dataset Inference Steps
M0 1 0.25 Discriminator Full 30
M1 1 0.25 CLIP-Based Full 30
M2 1 0.25 K-Means Based Full 30
M3 1 0.25 Discriminator Mediums 30
M4 1 0.25 CLIP-Based Mediums 30
M5 1 0.25 K-Means Based Mediums 30
M6 0 1 None N/A 30
M7 0 1 None N/A 10
M8 0 0 None N/A 30
M9 0 0 None N/A 10

Table 1: Diffusion Methods

5 Results

Given three types of classifier and two datasets, we had six models. We refer to those models as the "creative"
models. We also wanted to compare these models to a model trained with just utility loss and a model that
was not trained at all off of the benchmark. For the non-creative models, we also generate samples with a
smaller amount of inference steps, to dispel the notion that the "creative" models are just learning blurrier,
noisier versions of normal models. A breakdown on all the models is in table 1. Note that for methods M1
and M4, we don’t use the data in the data for the classifier per se; however, we use the style class labels,
which are unique to the datasets in question. M1 uses Lfull and M3 uses Lmediums.

We generated all images with width and height = 512. The authors used width and height = 256 in the
original CAN paper. However, given that larger, more detailed images are preferred by most people, we
thought it more relevant to focus on larger images.

5.1 Quantitative Evaluation

For each dataset, for each choice of classifier, we an evaluation dataset of 100 images. We used the exact
same prompts and random seeds for each. I.e. if the nth image generated by M0 used prompt "painting"
and random seed = z ∈ Z, so would the nth image generated by M1, M2, etc. We used two scoring metrics
to score the models:

• AVA Score: (AVA) Consisting of CLIP+Multi-Layer Perceptron (Haykin, 2000), the AVA model
was trained on the AVA dataset (Murray et al., 2016) of images and average rankings by human
subjects, in order to learn to approximate human preferences given an image. We used the CLIP
model weights from the clip-vit-large-patch14 checkpoint and the Multi-Layer Perceptron weights
downloaded from https://huggingface.co/trl-lib/ddpo-aesthetic-predictor.

• Image Reward: (IR) The image reward model (Xu et al., 2023) was trained to score images given
their text description based on a dataset of images and human rankings. We used the image-reward
python library found at https://github.com/THUDM/ImageReward/tree/main.

Results of our experiments are shown in tables 2. Each cell contains the mean (and standard deviation).
Evidently, some creative models perform better than the uncreative models; the highest IR score was attained
by M0, and the highest AVA score was attained by M5. However, we note that using fewer labels dramatically
improves the IR of the CLIP classifier (comparing M1 to M4, and using a smaller dataset improves the IR and
AVA of the K Means classifier (comparing M2 to M5). We see the opposite trend with using a discriminator;
M0 scores higher than M3 for both. We further visualize these results in table 3. We see that IR tends to
be rather skewed.
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Model AVA IR
M0 5.49 ( 0.47 ) 1.33 ( 0.34 )
M1 5.49 ( 0.38 ) 0.84 ( 1.06 )
M2 4.98 ( 0.4 ) -0.88 ( 0.31 )
M3 5.12 ( 0.31 ) -0.84 ( 0.31 )
M4 5.39 ( 0.38 ) 1.08 ( 0.87 )
M5 5.89 ( 0.39 ) 1.27 ( 0.37 )
M6 5.12 ( 0.29 ) 0.85 ( 0.87 )
M7 5.18 ( 0.33 ) 0.73 ( 0.78 )
M8 4.12 ( 0.88 ) -1.87 ( 0.58 )
M9 4.22 ( 0.84 ) -2.07 ( 0.43 )

Table 2: Aesthetic Scores by Models

Table 3: Score Box Plots

5.2 Visual Results

We also provide a few visual results in figure 2. Each image in each row was generated with the same prompt
and random seed. For more pictures, consult appendix A.

Figure 1: Image Comparisons (Only Creative Models and M6)
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Figure 2: Image Comparisons
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Curiously, many of the creative models generate faces. However, given that M6 and M7 do this as well, we
suspect that may be a product of the utility function. On the other hand, the M2 and M3 models tend
to mostly generate abstract noise. This is somewhat similar to the outputs generated in the original CAN
paper.

5.3 Content and Style Similarities

We also compared the similarities between each model. Given that the nth image generated by each model
used the same prompt and seed across all models, we could compare the cosine distance of the embeddings
of the nth image for each model with the embeddings of the nth image of every other model, and average
them. We used style and content embeddings from the dino-vits16 checkpoint (Caron et al., 2021) from
https://huggingface.co/facebook/dino-vits16. Many other works have commented on the ability to
extract separable style and content from vision transformers (Tumanyan et al., 2022; Kwon & Ye, 2023).

Unsurprisingly, M6 and M7, as well as M8 and M9, have very high similarities, given that they are the same
models. The creative models are generally more similar to each other, and more distinct from the uncreative
models.

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9
M0 1.0 0.4 0.27 0.26 0.43 0.41 0.35 0.35 0.23 0.23
M1 0.4 1.0 0.31 0.29 0.43 0.39 0.34 0.34 0.22 0.23
M2 0.27 0.31 1.0 0.4 0.26 0.24 0.18 0.19 0.22 0.24
M3 0.26 0.29 0.4 1.0 0.26 0.23 0.19 0.19 0.24 0.26
M4 0.43 0.43 0.26 0.26 1.0 0.45 0.35 0.35 0.23 0.22
M5 0.41 0.39 0.24 0.23 0.45 1.0 0.42 0.41 0.22 0.21
M6 0.35 0.34 0.18 0.19 0.35 0.42 1.0 0.85 0.24 0.22
M7 0.35 0.34 0.19 0.19 0.35 0.41 0.85 1.0 0.24 0.22
M8 0.23 0.22 0.22 0.24 0.23 0.22 0.24 0.24 1.0 0.53
M9 0.23 0.23 0.24 0.26 0.22 0.21 0.22 0.22 0.53 1.0

Table 4: Average Content Similarities

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9
M0 1.0 0.54 0.35 0.3 0.65 0.64 0.34 0.37 0.18 0.19
M1 0.54 1.0 0.41 0.35 0.58 0.54 0.33 0.35 0.18 0.19
M2 0.35 0.41 1.0 0.41 0.29 0.3 0.12 0.13 0.14 0.18
M3 0.3 0.35 0.41 1.0 0.31 0.29 0.15 0.18 0.19 0.22
M4 0.65 0.58 0.29 0.31 1.0 0.65 0.36 0.39 0.2 0.19
M5 0.64 0.54 0.3 0.29 0.65 1.0 0.44 0.45 0.2 0.19
M6 0.34 0.33 0.12 0.15 0.36 0.44 1.0 0.91 0.14 0.11
M7 0.37 0.35 0.13 0.18 0.39 0.45 0.91 1.0 0.15 0.12
M8 0.18 0.18 0.14 0.19 0.2 0.2 0.14 0.15 1.0 0.63
M9 0.19 0.19 0.18 0.22 0.19 0.19 0.11 0.12 0.63 1.0

Table 5: Average Style Similarities

5.4 Visualizing The Possibility Space

For each model, we combined each pair of evaluation datasets and then then performed dimensionality
reduction using PCA and TSNE to embed images into 2 dimensions. Thus, we could visualize the overlap,
or lack thereof, between the possibility space of each model. We see that there are some stark contrasts
between the uncreative and creative models, often breaking into very distant clusters.
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Figure 3: Possibility Space
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6 Conclusion

In this paper, we introduced innovative techniques to incorporate style ambiguity loss into diffusion models
through reinforcement learning. Our primary contributions include the development of versatile CLIP-based
and K-Means-based creative style ambiguity losses, which eliminate the need for training a separate style
classifier on labeled datasets. Our empirical results demonstrate that training diffusion models with style
ambiguity loss significantly enhances their ability to generate novel outputs. These models consistently
achieve higher scores on empirical metrics compared to models trained without style ambiguity loss. Our
findings suggest that incorporating style ambiguity can be a powerful approach to foster creativity and
diversity in generated content, opening new avenues for future research in the field of generative models.
Further work remains. As noted, the use of the CLIP alignment function for utility tends to product a
lot of faces for the prompts we used. Use of another alignment technique may be better, or it could be
supplemented with some sort of method to increase output diversity (Sadat et al., 2024). Furthermore, this
method can likely be applied to different datasets, consisting of different images or even different modalities
like audio or video. Using the K-Means Classifier for style ambiguity loss is particularly adept at this, given
there is no need for any labels.

Broader Impact Statement

Many are concerned about the impacts of generative AI. By making art, this work infringes upon a domain
once exclusive to humans. Companies have faced scrutiny for possibly using AI (Gutierrez, 2024), and many
creatives, such as screenwriters and actors, have voiced concerns about whether their jobs are safe (del
Barco, 2023). Nonetheless, using AI can help humans by making them more efficient, providing inspiration,
and generating ideas (Fortino, 2023; Campitiello, 2023; Darling, 2022). It’s also not certain how copyright
protection will function for AI-generated art (Watiktinnakorn et al., 2023), given copyright law is based on
the premise that creative works originate solely from human authorship. Clear, consistent policies, both at
the government level and by industry and/or academic groups, will be needed to mitigate the harm and
maximize the benefits for all members of society.
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A Additional Images

We display a few more images in figures 4, 5 and 6. Once again, each image in each row was generated with
the same seed and same prompt.

B WikiArt Classes

We host the original WikiArt-Full dataset on REDACTEDWHILEUNDERBLINDREVIEW. The 27 WikiArt style
classes, Lfull are listed in table 6

contemporary-realism art-nouveau-modern abstract-expressionism
northern-renaissance mannerism-late-renaissance early-renaissance

realism action-painting color-field-painting
pop-art new-realism pointillism

expressionism analytical-cubism symbolism
fauvism minimalism cubism

romanticism ukiyo-e high-renaissance
synthetic-cubism baroque post-impressionism

impressionism rococo na-ve-art-primitivism

Table 6: Styles

C Medium Subset

C.1 Captions

All captions were generated using the Salesforce/blip-image-captioning-base checkpoint downloaded
from https://huggingface.co/Salesforce/blip-image-captioning-base.

C.2 Subset

The categories of images that had the highest percentage of images in the categories with text captions that
contained one of the words in the relevant text prompt set, as well as the percentage of images that did
so, and the quantity of images in said category are shown in table 7 . We host the Mediums datasets at
REDACTEDWHILEUNDERBLINDREVIEW.
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Figure 4: More Images

style class quantity percentage
expressionism 6054 91.56

post-impressionism 5832 89.25
fauvism 841 96.08

abstract-expressionism 2518 89.95
na-ve-art-primitivism 2148 93.39

cubism 2027 91.61
synthetic-cubism 197 89.85
analytical-cubism 105 91.43

new-realism 280 96.07
action-painting 93 93.55

Table 7: Mediums
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Figure 5: More Images
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Figure 6: More Images
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D Training

For reproducibility and transparency, the hyperparameters are listed in table 8 and table 9. All experiments
were implemented in Python, building the models in pytorch (Paszke et al., 2017) using accelerate (Gugger
et al., 2022) for efficient training. The diffusion models also relied on the trl (von Werra et al., 2020),
diffusers (von Platen et al., 2022) and peft (Mangrulkar et al., 2022) libraries. The K-Means clustering
was done using the k means implementation from scikit-learn (Pedregosa et al., 2011). A repository
containing all code can be found on github at REDACTEDWHILEUNDERREVIEW. Each experiment was run using
two NVIDIA A100 GPUs with 40 GB RAM.

Hyperparameter Value
Epochs 25

Effective Batch Size 8
Batches per Epoch 32

Inference Steps per Image 30
LORA Matrix Rank 4

LORA α 4
Optimizer AdamW

Learning Rate 0.0015
AdamW β1 0.9
AdamW β2 0.99

AdamW Weight decay 1e-4
AdamW ϵ 1e-8

Table 8: DDPO Hyperparameters

Hyperparameter Value
Epochs 100

Batch Size 32
Optimizer Adam

Learning Rate 0.001
Adam β1 0.9
Adam β2 0.99

Adam Weight decay 0.0
Adam ϵ 1e-8

Noise Dim 100
Wasserstein λ 10

Leaky ReLU negative slope 0.2
Convolutional Kernel 4
Convolutional Stride 2

Transpose Convolutional Kernel 4
Transpose Convolutional Stride 2

Table 9: CAN Hyperparameters

D.1 Architecture

For diffusion model training, the text encoder, autoencoder and unet were all loaded from https:
//huggingface.co/stabilityai/stable-diffusion-2-base. These model components were all frozen,
but we added trainable LoRA weights to the cross-attention layers of the Unet. Parameter counts are shown
in table 10. The diffusion model components used the same amount of parameters regardless of image size,
but the generator and discriminator had more parameters as image size increased.
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Model Component Total Parameters Trainable Parameters Percent Trainable
Text Encoder 34,0387,840 0 0%
Autoencoder 83,653,863 0 0%

UNet 866,740,676 829,952 0.1%
Generator (Image Dim 512) 48,014,784 48,014,784 100%

Discriminator (Image Dim 512) 20,115,932 20,115,932 100%

Table 10: Parameter Counts

We used the convolutional neural network (Dumoulin & Visin, 2018) architecture described in Elgammal
et al. (2017) for the CAN but had to use more/less layers to produce higher/lower dimension images. The
generator takes a 1 × 100 gaussian noise vector ∈ R100 ∼ N (0, I) and maps it to a 4 × 4 × 2048 latent space,
via a convolutional transpose layer with kernel size = 4 and stride =1, followed by 6 transpose convolutional
layers each upscaling the height and width dimensions by two, and halving the channel dimension (for
example one of these transpose convolutional layers would map R4×4×2048 → R8×8×1024) followed by batch
normalization (Ioffe & Szegedy, 2015) and Leaky ReLU (Maas et al., 2013), and then one final convolutional
transpose layer with output channels = 3 and tanh (Dubey et al., 2022) activation function. Diagrams of
the generator is shown in the figure 7.

For the discriminator, we first applied a convolution layer to downscale the input image height width dimen-
sions by 2 and mapped the 3 input channel dimensions to 32 (R512×512×3 → R256×256×32) with Leaky
ReLU activation. Then we had 5 convolutional layers each downscaling the height and width dimen-
sions by 2 and doubling the channel dimension (for example, one of these convolutional layers would map
R256×256×32 → R128×128×64) with batch normalization and Leaky ReLU activation. Then we had two more
convolutional layers, each downscaling the height and width dimensions but keeping the channel dimensions
constant (using the prior layer’s channel dimensions), with batch normalization and Leaky ReLU activation.
The output of the convolutional layers was then flattened. The discriminator had two heads- one for style
classification (determining which style a real image belongs to) and one for binary classification (determining
whether an image was real or fake). The binary classification head consisted of one linear layer with one
output neuron. The style classification layer consisted of 2 linear layers with LeakyReLU activation and
Dropout, with output 1024 output neurons and 512 output neurons, respectively, followed by a linear layer
with 27 output neurons for the 27 artistic style classes. Diagrams of the discriminator is shown in 8.
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Figure 7: Generator Architecture (Image Dim 512)
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Figure 8: Discriminator Architecture
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