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ABSTRACT

Lattices are architected metamaterials whose properties strongly depend on their
geometrical design. The analogy between lattices and graphs enables the use of
graph neural networks (GNNs) as a faster surrogate model compared to tradi-
tional methods such as finite element modelling. In this work, we generate a big
dataset of structure-property relationships for strut-based lattices. The dataset is
made available to the community which can fuel the development of methods an-
chored in physical principles for the fitting of fourth-order tensors. In addition,
we present a higher-order GNN model trained on this dataset. The key features
of the model are (i) SE(3) equivariance, and (ii) consistency with the thermody-
namic law of conservation of energy. We compare the model to non-equivariant
models based on a number of error metrics and demonstrate its benefits in terms
of predictive performance and reduced training requirements. Finally, we demon-
strate an example application of the model to an architected material design task.
The methods which we developed are applicable to fourth-order tensors beyond
elasticity such as piezo-optical tensor etc.

1 INTRODUCTION
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Figure 1: (a) X-ray CT scan of 3d-printed lattice. A computer model of the unit cell is shown as an
inset. (b) Model schematic. The dimensionality of intermediary quantities is noted between layers
using e3nn convention. We omit simple linear layers from the diagram for clarity.

A relatively new class of materials, architected (meta-)materials, emerged in the last century. (Fleck
et al., 2010) These materials draw inspiration from nature, where many materials are light, yet
strong, because of their porosity and microscopic architecture. As a subclass of architected ma-
terials, lattices are a collection of struts (edges) which are connected at nodes. See Figure 1a and
Figure 5 in the Appendix. Lattices are especially mechanically efficient, offering a very high specific
stiffness (stiffness divided by density). For instance, it is possible to make materials with the density
of water and the strength of steel.

∗ig348@cam.ac.uk † Work done outside of Amazon Science through an informal collaboration.
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The established tool for computational analysis of lattices is the finite element (FE) method, which is
also the industry standard for other structures from buildings to cars and airplanes. There are a num-
ber of principles which the FE solution satisfies (subject to a suitable PDE and constitutive model).
First, force equilibrium is satisfied at all nodes and the computed displacements are compatible.
Second, the strain energy under any deformation is nonnegative as required by energy conservation.
Third, results are equivariant to rigid body transformations: rotating the lattice does not change its
fundamental properties; they rotate accordingly.

Although the FE method is robust and physically grounded, its high computational cost can be
prohibitive: for example, if each unit cell of size 1cm is discretized into 100 elements, a wing
structure of ∼ 20m length would require n ∼ 109 elements.

Machine learning methods have been used to overcome the computational cost of FE methods. In-
durkar et al. (2022) employed message-passing GNN to classify lattices based on their mechanical
response. Karapiperis & Kochmann (2023) used GNN to predict the crack path in disordered lat-
tices. Xue et al. (2023) build a GNN to learn the non-linear dynamics of mechanical metamaterials.
Maurizi et al. (2022) use GNN to predict the mechanical response of composites and lattices. Meyer
et al. (2022) have presented a GNN framework to predict the stiffness tensor of shell-based lattices.
Machine learning methods have also been used to do inverse design of materials. Kumar et al.
(2020) couple inverse and forward models to design spinodoid materials with orthotropic symmetry.
Bastek et al. (2022) use a similar models for strut-based lattices with fully tailorable 3D anisotropic
stiffness. Zheng et al. (2023) build a VAE model for generation of lattices with up to 27 nodes and
cubic symmetry.

While these machine learning models offer a much higher speed than FE, they lack grounding in
physical principles. This might not be an issue when the application is restricted to a particular
lattice symmetry class and when the model is deployed for data that are close to the training distri-
bution. However, models without encoded equivariance and energy conservation principles could
fail dramatically if deployed to out-of-distribution lattice topologies – the predictions for the same
lattice at different orientations might not be self-consistent, and negative deformation energy could
be predicted, implying the ability to extract energy from passive material.

In this work, we rely on the equivariant methods which have been introduced by the computational
chemistry community. (Thomas et al., 2018; Batzner et al., 2022; Batatia et al., 2022) As key
contributions:

• We introduce a new task into the ML community and provide a real-world dataset which can
be used by researchers in the future to improve higher order physics-focused models.

• We present one such model – the first equivariant model trained for prediction of the fourth-
order elasticity tensor whose predictions are always energy conserving (consistent with the laws
of physics).

• We benchmark the model against non-equivariant models and show the benefits of key model
components and training strategies.

2 BACKGROUND

2.1 EQUIVARIANCE

In the domain of physical sciences, invariance or equivariance under some physical transformations
is an important property. For example, in chemistry, the energy of a molecule needs to be the
same regardless of the coordinate system chosen to represent the coordinates of the atoms. In our
modeling of lattices, model predictions need to satisfy similar rules. Let L represent a lattice that
has attributes of the following types: scalars (e.g. edge lengths L), vectors (e.g. edge directions
v = vi), tensors (e.g. 4th order stiffness tensor C = Cijkl).

In the discussion of equivariance, we focus on two main actions: rigid body rotation and translation.
Let Q(. ;R) represent the rotation given by the rotation matrix R applied on the object, which is
the first argument of the function. The following analytical transformation rules apply for scalars L,
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vectors v, and higher order tensors K:

L̂ = Q(l;R) = L

v̂i = Q(v;R) = Rijvj

K̂ijk... = Q(K;R) = RiaRjbRkc...Kabc...

All these objects are invariant to rigid body translation.

The notation Q(L;R) represents the rotation of the lattice L, which implies the rotation of all
attributes of the lattice according to the aforementioned transformation rules. Translation of the
lattice T (L; t) simply means displacing the nodal positions by the vector t: x← x+ t.

Our task is to predict the stiffness tensor C for the lattice L. The prediction of modelM isM(L).
The equivariance requirement is then

M(T (L; t)) =M(L) ∀t
Q(M(L);R) =M(Q(L;R)) ∀R

2.2 EUCLIDEAN EQUIVARIANT MESSAGE PASSING NEURAL NETWORKS

Message Passing Neural Networks Euclidean Equivariant Message Passing Neural Networks
(MPNNs) (Liao & Smidt, 2023; Thomas et al., 2018; Weiler et al., 2018; Kondor et al., 2018;
Batzner et al., 2022; Brandstetter et al., 2022; Batatia et al., 2022; Satorras et al., 2021) are graph
neural networks that are equivariant to rotations and translations. MPNNs map a graph G with labels
called states σi on each node i, to a target y. At each layer t, MPNNs operate in four successive
steps, the edge embedding, the pooling, the update and the readout,

m
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where Mt is the edge embedding function,
⊕

j∈N (i) is the pooling operation (usually just a sum)
over the neighborhood of the node i, N (i). Ut is the update function. These steps are repeated T
times. Finally, the readoutRt maps the states to the target quantity.

Equivariant MPNNs Most Euclidean MPNNs expand their internal features in a spherical basis.
Node features carry an index lm specifying the order of the basis expansion.
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with Dl
m′,m(R) the Wigner-D matrices corresponding to the action of the rotation group on the

spherical basis. Therefore, this lm index is carried over to all internal features of the model.

Higher order MPNNs In full generality, the message can be a simultaneous function of all neigh-
boring atoms of the central atoms i. Therefore, one can expand the message in a many-body expan-
sion of the states,
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The number of simultaneous dependency is called the body-order. MPNN potentials were shown to
increase the body order of messages by stacking layers. An alternative route is to include higher-
order terms in the message construction. The MACE (Batatia et al., 2022) architecture, on which
we will be building in this work, introduced a systematic way to efficiently approximate equivariant
messages of an ordered arbitrary body.

2.3 SOLID MECHANICS

We consider lattices as infinite periodic tessellations of a unit cell. The resulting metamaterial can
be characterized by macroscopic (homogenized) properties. The key variables in solid mechanics
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under the assumption of small deformations are stress, σ = σij , which is a measure of force, and
strain ϵ = ϵkl, which is a measure of deformation. Both stress and strain are symmetric 3×3 second
order tensors (σij = σji, ϵkl = ϵlk).

A third key component in solving a solid mechanics problem is the constitutive law, which relates
stress and strain. Linear elasticity postulates that σij = Cijklϵkl where C = Cijkl is the fourth-order
stiffness tensor.

Deformation energy ψ under deformation ϵ is given by the following tensor contraction. Impor-
tantly, thermodynamic laws prescribe non-negative deformation energy ψ ≥ 0 for any admissible
deformation ϵ:

ψ =
1

2
σijϵij =

1

2
ϵijCijklϵkl ≥ 0 ∀ϵ (4)

Since this has to be true for all strains ϵ, all eigenvalues of the stiffness tensor C must be non-
negative. The stiffness tensor must be positive semi-definite.

The 4th order stiffness tensor Cijkl is a 3×3×3×3 tensor. While a tensor with such dimensionality
could have up to 81 components, it can be easily shown that the tensor has only 21 independent
components, because it possesses both minor and major symmetries (Section A.1):

Cijkl = Cjikl = Cijlk = Cklij

3 RELATED WORK

Finite element (FE) modelling The gold standard in computational methods in mechanics has
been finite element modelling. In the FE framework, the properties of constituent material (e.g.
steel) are known, and FE is used to calculate the structural response. The structure has degrees
of freedom uj , and it is loaded by external forces fi. The first step to solving a FE problem is to
assemble stiffness matrix Kij , which relates displacements and forces: fi = Kijuj . The next step
is to solve this matrix equation for u (usually by LU factorization). If properties of the material
are known, FE provides very accurate predictions of the overall structural response. However, the
computational complexity of the matrix inversion (or LU factorization) can be very high.

Dataset Lumpe & Stankovic (2021) explored the property space of a large dataset of mechanical
lattices. The dataset which they used and made available comes from two crystallographic databases
(Ramsden et al., 2009; O’Keeffe et al., 2008). The assembled dataset includes nodal positions,
edge connectivity, crystal constants, and some elastic properties (Young’s moduli, shear moduli and
Poisson’s ratios in the three principal directions). We use the crystallographic structures from this
dataset as a basis for our dataset here.

Crystal Graph Convolutions (CGC) and modified CGC (mCGC) To our knowledge, the only
existing GNN model used to predict the stiffness tensor of architected materials is due to Meyer
et al. (2022). Instead of beam-based lattices, the authors fitted the stiffness tensor of shell-based
lattices. Their model is not equivariant. They use a form of data augmentation whereby each lattice
is rotated 90◦ around the x−, y− and z− axis, and mirrored about the x−y, y−z, and x−z planes.
This increased the size of the training dataset 7-fold. The loss used in training is component-wise
smooth L1 on the 21 independent components of the stiffness tensor.

NNConv for 3d lattices Ross & Hambleton (2020) use GNN to model cubic lattices with 48
rotational and reflectional symmetries. Their model is based on the NNConv layer, which was
introduced by Gilmer et al. (2017). In the NNConv model, messages between nodes are formed as
a matrix-vector product, where the entries of the matrix are not constant but rather depend on the
features of the edge connecting the two nodes.

E(3)-Equivariant Message Passing Neural Networks Equivariant Message Passing Neural Net-
works (MPNNs) Anderson et al. (2019); Thomas et al. (2018); Brandstetter et al. (2022); Batzner
et al. (2022); Batatia et al. (2022) are a class of GNNs that respect Euclidean symmetries (rotations,
reflections, and translations). Messages are usually expanded in a spherical basis, and depending
on the order of expansion, not only vectors but also higher-order features such as tensors can be
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passed between layers. Equivariant MPNNs have emerged as a powerful architecture for learning
on geometric point clouds.

Methods for enforcing positive (semi-)definiteness Jekel et al. (2022) review a number of meth-
ods that can be used to ensure that the output of a model is positive semi-definite. These include
methods based on Cholesky factorization by (Xu et al., 2021; Van ’t Sant et al., 2023) and meth-
ods based on eigenvalue decomposition. Note that these methods cannot be used in our framework
because the eigenvalue decomposition often has unstable gradients and assembling the matrix by
Cholesky factorization is not SO(3) equivariant.

4 METHODS

4.1 DATASET

We created a dataset on the basis of the dataset from Lumpe & Stankovic (2021). We process the
dataset to fix or avoid problematic lattices which reduces the dataset size to 8954 base lattices. We
augment the dataset by introducing nodal perturbations: e.g. for perturbation level 0.1, each node of
a lattice is displaced from the original position by distance 0.1 in a random direction. After the new
perturbed lattice is obtained, its elastic properties have to be computed using FE analysis. Nodal
perturbations are applied at levels 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1. At each level, we formed
10 distinct realizations of nodal perturbations. (Perturbations could only be applied to lattices which
have at least 2 fundamental nodes.) This enlarged the entire database to 635 454 distinct geometries.
For each geometry, FE analysis was run at 3 relative densities (strut thicknesses).

For the machine learning tasks in this paper, we selected from base lattices: (i) 7000 training base
lattices, and (ii) 1296 validation/test base lattices. This split ensures that we do not have similar
perturbations of the same lattice in both training and test sets.

See the Appendix for the various compositions of the training dataset. Validation and test sets are
fixed for all training runs. Validation set consists of the 1296 lattices without any perturbations. Test
set consists of 3 realizations of nodal perturbations at level 0.1 for the 1296 lattices. Thus, testing is
done on OOD data.

4.2 ARCHITECTURE

The diagram in Figure 1b depicts the architecture of the model. Further details are explained in the
Appendix. We highlight the main components here. The model relies on the MACE architecture for
message passing which was adapted with minor changes. In particular, we used Gaussian embedding
of edge scalars and all node features were initialised as ones and expanded using a linear layer. We
modified the nonlinear readout to enable the processing of higher order tensors.

The significant contribution of this work is the positive semi-definite (PSD) stack. As a first step,
the fourth-order tensor is transformed to Cartesian basis and then represented in Mandel notation as
a matrix. Subsequently, a suitable PSD function is applied to the matrix, which enforces its positive
semi-definiteness. This ensures energy conservation which was the key requirement of this work.
The following section provides further details about the PSD stack.

4.3 MANDEL REPRESENTATION AND PSD LAYER

A fourth-order Cartesian tensor with major and minor symmetries Cijkl = Cijlk = Cjikl = Cklij

has 21 independent components. Suppose this fourth-order tensor is a map between second-order
stress and strain:

σij = Cijklϵkl

In Mandel notation, the second-order tensors can be written as 6-component vectors, and the fourth-
order tensor C can be represented as a 6× 6 symmetric matrix:

σ(M) =
[
σ11, σ22, σ33,

√
2σ23,

√
2σ13,

√
2σ12

]T
ϵ(M) =

[
ϵ11, ϵ22, ϵ33,

√
2ϵ23,

√
2ϵ13,

√
2ϵ12

]T
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C(M) =


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
The energy conservation requirement can be rewritten as

ψ =
1

2
σ(M),T ϵ(M) =

1

2
ϵ(M),TC(M)ϵ(M) ∀ϵ(M).

Therefore, positive-definite fourth-order C is equivalent to positive-definite matrix C(M).

We can apply various methods to enforce the positive definiteness of matrix C(M). These include
taking even powers of the matrix, A2 and A4, matrix exponential, and its truncated versions, eA,
(I +A/2)2, (I +A/4)4.

We prove in the Appendix that the PSD stack maintains equivariance of the framework.

4.4 TRAINING AND EVALUATION DETAILS

Base CGC and mCGC models are trained according to the procedure described in ref Meyer et al.
(2022). Model MACE is a plain version of MACE that is trained without data augmentation. Where
”+tr” is added to the model name, it denotes that the model was trained using our training method
as outlined below. The suffix ”+ve” denotes a model which includes the positive semi-definite
layer and was trained using our training method. In our training method, we use dynamic data
augmentation, whereby every time a lattice is accessed from the dataset, it is returned at a different
random orientation (and target stiffness is transformed accordingly). Further details about training
including the equations for the various types of loss (Lcomp, Ldir, Ldir,rel, Lequiv, λ−%) are in the
Appendix.

5 RESULTS

In this section we compare the performance of our model with other models and identify the key
components of both the model and training procedures. We also show an example of a downstream
application of the GNN model in a design task.

5.1 EQUIVARIANT MODELS OUTPERFORM NON-EQUIVARIANT MODELS

In Table 1, we show the performance of three main classes of models: CGC, NNConv, and MACE
for dataset 1imp (find dataset details in the Appendix).1 Crystal graph convolution (CGC) is based
on works by Xie & Grossman (2018) and Meyer et al. (2022). In CGC, a constant learnt matrix
multiplies node and edge features to create messages. Models NNConv and MACE are different in
the nature of their message passing: the matrix which multiplies node features to obtain messages is
a function of edge features. Details of all the models are explained in the appendix. Comparing the
errors, it is evident that the equivariant MACE model class achieves lowest errors by all metrics.

We observe the following. (i) By adding data augmentation to CGC and NNConv models, models
CGC+tr and NNConv+tr achieve substantially reduced stiffness-based errors (Lcomp, Ldir, Ldir,rel), as
well as equivariance loss, Lequiv. However, these models are more prone to predict negative eigen-
values (λ−%). (ii) Adding data augmentation to equivariant MACE model leads to a much smaller
improvement. The percentage of predicted negative eigenvalues, λ−%, is not significantly affected.
(iii) Models CGC+ve, NNConv+ve, and MACE+ve with encoded positive semi-definite output suf-
fer in terms of increased stiffness-based errors. (iv) CGC-based models outperform NNConv-based
models. NNConv models will therefore not be considered in the following sections.

1The choice of lattice representation. Meyer et al. (2022) combined message passing on primal and dual
graph in model mCGC. We do not observe any performance gain from using dual graph representation on
our data, therefore this model is omitted from the main discussion. We report more details in the Appendix
(Table 8).
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Table 1: Performance of the different models and training strategies
CGC CGC+tr CGC+ve NNConv NNConv+tr NNConv+ve MACE MACE+tr MACE+ve

Lcomp 8.37 4.47 5.47 8.99 5.57 7.07 3.88 3.47 3.61
Ldir 8.77 5.23 5.86 9.65 6.90 8.08 4.17 4.11 4.21
Ldir,rel 0.42 0.24 0.26 0.44 0.38 0.35 0.21 0.20 0.21
Lequiv 0.33 0.15 0.17 0.39 0.25 0.22 0 0 0
λ−% 4 26 0 8 16 0 30 34 0
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Figure 2: The evolution of (a) component loss, Lcomp, (b) equivariance loss, Lequiv, and (c) per-
centage of negative eigenvalues, λ−%, during training.

5.2 INDUCTIVE BIASES SUPERIOR TO OBSERVATION AND LEARNING BIASES

As outlined by Karniadakis et al. (2021), there are three conceptual pathways to embedding physics
knowledge into machine learning models: observation bias, learning bias and inductive bias. Here
we evaluate the efficacy of these biases from the viewpoint of equivariance and energy conservation.

Table 2: Performance of various bias types for the learning of equivariance and energy conservation
Equivariance Energy conservation

none observation inductive none learning inductive
CGC CGC+tr MACE MACE MACE+lb MACE+ve

Lequiv 0.64 0.13 0 λ−% 30 29 0
Lcomp 9.31 4.47 3.88 Lcomp 3.88 3.63 3.61

Equivariance learning We achieve observation bias for equivariance by rotating the data that the
model is trained on. As explained in section 4, models which end in “+tr” suffix were trained using
data augmentation by rotation. Table 2 shows that the equivariance error reduces dramatically when
we incorporate rotation augmentation of data. During training of model CGC in Table 2, all lattices
were processed at a single orientation. Note that this is different from model CGC in Table 1 which
was trained with 7-fold data augmentation as presented by Meyer et al. (2022). Figure 2b shows that
the equivariance error reduces during training for both CGC and CGC+tr models. Not only is the
final equivariance loss for model CGC+tr lower, but also the rate at which Lequiv reduces is faster.
It is instructive to note further that while validation loss keeps reducing during training (Figure 2a),
the equivariance loss is not a monotonously decreasing function. Model MACE is equivariant by
design, therefore equivariance loss, Lequiv, is zero both in Table 2 and Figure 2. Furthermore, the
equivariant MACE model also has a lower component loss, Lcomp.

Energy conservation learning A second physical principle that our model should be aligned with
is the positive semi-definiteness of stiffness. We evaluate this for the MACE model in Table 2 and
Figure 2c. The base MACE model trained on the data predicts negative eigenvalues for 30% of
lattices. We attempt to introduce learning bias in model MACE+lb as follows. Loss is modified
to include a penalty which is calculated from directional projections cq the of predicted stiffness
tensor, C̃, into 250 random directions dq: cq = C̃ijkldqidqjdqkdql. The penalty is then computed as
k × relu(−cq) where k is a suitably chosen multiplier. This penalty is added to loss during training.

7



Published as a conference paper at ICLR 2024

103 104 105

Training dataset size

2

3

4

6

L
co

m
p

-0.10

-0.15

-0.25

a

CGC

CGC+ve

MACE+ve

2 3 4
Lmax

0

1

2

3

4

5

L
co

m
p

b

1 2 3
ν

0

1

2

3

L
co

m
p

c

Figure 3: (a) Convergence with the amount of data for various model classes. (b) Sensitivity to the
maximum ‘frequency’ Lmax and (c) correlation order ν for MACE model.

Table 3: Various methods for ensuring positive semi-definiteness for equivariant model
eA A2 A4 (I +A/2)2 (I +A/4)4

Lcomp 4.58 3.61 4.41 3.87 3.62
Ldir 5.12 4.21 5.17 4.63 4.41
Ldir,rel 0.35 0.21 0.28 0.24 0.26

Table 2 shows that this learning bias is not very effective in guiding the model towards positive
semi-definite predictions. Figure 2c shows that the learning bias can have a positive effect during
the dynamics of learning, but the final values of λ−%are similar whether or not learning bias is used.

Scaling with dataset size Using more training data is effectively an observation bias which should
lead to better results for all models. In Figure 3a we plot component loss, Lcomp, for base CGC
model, CGC with data augmentation and positive semi-definite layer (CGC+ve) and MACE model
with positive semi-definite layer (MACE+ve). The composition of training datasets is explained in
the Appendix. At any dataset size, the equivariant MACE+ve model outperforms the CGC-based
models. The CGC model with data augmentation outperforms the base CGC model. The scaling
slope was calculated as linear fit on log-log axes and is displayed on the graph. It is evident that the
MACE+ve model has the most favourable scaling.

5.3 CHOICE OF POSITIVE (SEMI-)DEFINITE LAYER AND MACE-SPECIFIC PARAMETERS

We evaluate a number of methods for making the output positive (semi-)definite for MACE model
class. 2 The results are displayed in Table 3. We empirically observe that the matrix square method,
A2, achieves most favourable results. Moreover, this method also has the lowest associated compu-
tational cost. For these reasons, we use the matrix square method throughout the paper whenever
“+ve” suffix is used, unless stated otherwise.

Spherical frequency Lmax and degeneracy One of the most important hyperparameters of the
MACE model is the maximum frequency of expansion in spherical basis, Lmax. In Figure 3b we
show the sensitivity of model accuracy to the degree of expansion Lmax. Empirically, we observe
that degree Lmax = 4 is required to achieve good accuracy. This is in line with the spherical form of
the fourth-order stiffness tensor, which contains L = 4 components. Moreover, it has been remarked
by Joshi et al. (2023) that certain types of highly symmetric graphs require high order of tensors L.
More specifically, to identify the orientation of neighbourhood with L -fold symmetry, at least L-
order tensors are required. In the Appendix, we show how model which is internally truncated to
Lmax = 2 or 3 is unable to predict anisotropic behaviour of a simple cubic lattice (Section A.14,
Figure 7).

2Positive definite vs semi-definite The physical principle of energy conservation requires non-negative
deformation energy ψ = ϵijCijklϵkl/2 ≥ 0∀ϵ. The case of zero eigenvalue of C does not violate energy
conservation. A structure whose stiffness tensor has zero eigenvalue is a mechanism – it is possible to deform
it without exerting any work. However, it is a feature of our dataset that all eigenvalues are positive. Therefore,
we have the freedom to try both positive definite and positive semi-definite layers.
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Figure 4: (a) Unit cell of the lattice used as the starting point for optimization. (b ) Original stiffness
surface and (c) optimized stiffness surface. Inset shows projections into x − y plane of the starting
point, optimization target, and the result of ML-based optimization.

Correlation order ν In Figure 3c we show the sensitivity of test error to the body-order of mes-
sages. Model with ν = 1 does not contain the equivariant product layer and it equivalent to Tensor
Field Network (TFN) with 2-body messages. We observe that increasing the order of messages to
three- and four-body (ν = 2 and 3) significantly reduces error over the test dataset.

5.4 SPEEDUP USING MACHINE LEARNING METHODS

Table 4 shows a comparison of inference time for the three classes of investigated GNN models
as well as for finite-element calculation. Time is reported for computation of stiffness tensor for
5000 lattices. The tests were run on desktop computer with Intel i7-11700 CPU, 96GB RAM and
Nvidia RTX3070 GPU. While the equivariant MACE-based architecture is slower than the more
standard CGC- and NNConv-based models, all these models are 3 orders of magnitude faster than
FE calculation.

Table 4: Comparison of inference speed for the different ML models and the FE baseline
CGC NNConv MACE FE

t5000(s) 5 5 15 1.1× 104

5.5 EXAMPLE APPLICATION: DESIGN OF AN ARCHITECTED MATERIAL

An important application of architected solids is to achieve complex anisotropic stiffness tensor
that cannot be found in existing materials. In Figure 4 we show an example application of our
GNN model in a gradient-based optimization scheme for the design of specific stiffness tensor.
The starting unit cell, as correctly predicted by the GNN model, has the same stiffness in x− and
y−directions. The task is to perturb nodal positions to break the x−y symmetry and reduce stiffness
in the y−direction. We use gradients returned from backpropagation and execute 50 steps of gradient
descent algorithm. The optimization scheme produced the desired result with great accuracy as
verified post-optimization using FE baseline. Error between the desired output and FE-verified
ground truth is Lcomp = 1.84. Based on the speedup of the GNN model compared to FE, we
estimate the GNN-based optimisation to also be 3 orders of magnitude faster than the FE baseline.

6 CONCLUSION

In this work, we present the application of Euclidean equivariant GNNs to the prediction of the
4th order stiffness tensor of architected lattice metamaterials. In addition to the intrinsic equiv-
ariance to rigid body rotations and translations, we designed the model to also preserve positive
semi-definiteness of the predicted stiffness, in line with energy conservation. We benchmark the
model against other architectures that were previously used for property prediction of lattice mate-
rials and demonstrate superior performance by all the metrics studied. Finally, we demonstrate a
possible downstream use of the model in ML-based structural optimization. Fast and accurate prop-
erty prediction models, such as the one we are presenting, achieve a significant improvement over
the high computational cost of traditional FE methods and they are applicable to tensors beyond the
stiffness tensor such as piezo-optical, elasto-optical and the flexoelectric tensors.
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A APPENDIX

A.1 SYMMETRIES OF THE STIFFNESS TENSOR

From equation 4, stiffness tensor can be expressed as the derivative of strain energy with respect to
strain:

C = Cijkl =
∂2ψ

∂ϵij∂ϵkl

The order of ϵij and ϵkl is interchangeable, which results in the major symmetry for the stiffness
tensor: Cijkl = Cklij .

Furthermore, strain is defined as the symmetric gradient of displacement, u:

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
Therefore, ϵij = ϵji, which gives rise to the minor symmetry of the stiffness tensor.

All in all, the stiffness tensor C has both minor and major symmetries:

Cijkl = Cjikl = Cijlk = Cklij

As a result, 21 of the 3× 3× 3× 3 = 81 components of the stiffness tensor are independent.

A.2 METHODS FOR ENFORCING POSITIVE (SEMI-)DEFINITENESS

Here we outline methods which can be used to enforce positive (semi-)definiteness for n×nmatrices
Rn → Rn. Section A.4 explains how the 4th order stiffness tensor can be efficiently represented in
a matrix form which justifies the use of these methods.

A.2.1 CHOLESKY-BASED METHOD

Cholesky decomposition is defined for a Hermitian positive-definite matrix A : Rn → Rn as:

A = LL∗

where L is a lower diagonal matrix and L∗ is its conjugate transpose. The diagonal entries of L are
positive.

Machine learning methods (Xu et al., 2021; Jekel et al., 2022; Van ’t Sant et al., 2023) can use
Cholesky factorization as follows. Suppose we require n×n positive definite matrix A : Rn → Rn.
A neural network outputs k = n(n+1)/2 entries: a0, ..., ak. They are arranged into lower diagonal
matrix L with the diagonal elements passed through a suitable function ρ : R → R>0 (such as
ρ(x) = exp(x)):

L =


ρ(a0) 0 0 . . .
a1 ρ(a2) 0 . . .
a3 a4 ρ(a5) . . .
...

...
...

. . .


Matrix product LL∗ then guarantees a symmetric (Hermitian) positive-definite matrix. Note that if
zero eigenvalues are admissible, a different function ρ : R→ R≥0 can be used (e.g. relu).

Such construction, while simple, will not produce equivariant output because components of the
matrix a0, ...ak are treated independent scalars.
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A.2.2 EIGENVALUE-BASED METHOD

Symmetric matrix A is positive definite iff all its eigenvalues are positive. The eigenvalue-based
methods operate on this premise (Jekel et al., 2022).

Suppose we require n × n positive definite matrix A : Rn → Rn. A neural network again outputs
k = n(n+ 1)/2 entries: a0, ..., ak. They are arranged into a symmetric matrix M :

M =


a0 a1 a3 . . .
a1 a2 a4 . . .
a3 a4 a5 . . .
...

...
...

. . .


Eigenvalue decomposition is performed on this matrix: M = UΛUT . Next, a suitable function
ρ : R→ R>0 is applied to the eigenvalue matrix Λ:

Λ+ =

ρ(λ1) 0 . . .
0 ρ(λ2) . . .
...

...
. . .


and positive definite matrix A is assembled as A = UΛ+UT . Similarly, for positive semi-
definiteness, function ρ : R→ R≥0 should be used.

The advantage of this method, as opposed to the Cholesky-based method, is that the geometric rep-
resentation of eigenvectors is maintained – in other words, if the overall model had been equivariant
with respect to vectors in U , it will remain equivariant after eigenvalues are made positive. The
significant disadvantage of this method is that eigenvalue decomposition is not a stable operation
with respect to gradients, which is also noted in the official PyTorch documentation.

A.2.3 MATRIX POWER AND MATRIX EXPONENTIAL

To avoid the computational complexity and gradient instability of eigenvalue decomposition, we can
look for methods which will provide the same result – matrix with positive eigenvalues – without ex-
plicitly computing the eigenvalue decomposition. We have experimented with a number of methods
which are based on taking even powers of matrix and calculating matrix exponential.

Matrix exponential The action of matrix exponential on square symmetric n× n matrix M is

A = matrix exp(M) = UeΛUT

i.e. eigenvalues of A are exponentiated eigenvalues of M .

The method is usually implemented as an iterative algorithm in which the explicit calcula-
tion of eigenvectors is not required. While it is stable with respect to gradients, its exe-
cution takes 1.5 times longer than computing eigenvalue decomposition (comparing PyTorch
linalg.matrix exp(M) and linalg.eigh(M)). The key difference between matrix ex-
ponential and matrix powers is that it produces strictly positive eigenvalues (and hence positive
definite matrix).

Matrix power Even powers of a symmetric n× n matrix ensure non-negative eigenvalues:

A = Mn = UΛnUT

Therefore, it has the same effect as carrying out the eigenvalue decomposition and raising the eigen-
values to power n. However, it has a lower complexity and could be up to 80 times faster (comparing
PyTorch linalg.matrix power(M , 2) and linalg.eigh(M)).

We evaluate the performance of 2nd and 4th power in Section 5.3.

Truncated matrix exponential One of the ways to write matrix exponential is

eM = lim
k→∞

(
I +

A

k

)k
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We evaluate the performance of a positive semi-definite layer for k = 2 and 4 in Section 5.3.

An important advantage of these methods as opposed to Cholesky-based methods is that they can be
made equivariant. However, that is predicated on using the Mandel notation as opposed to the more
traditional Voigt notation, as discussed in the following section.

A.3 SPECTRUM OF THE 4TH ORDER TENSOR

As outlined by Lord Kelvin (Thomson, 1856), there are 6 principal strains ϵ = E(i) such that stress
is parallel to strain under that deformation:

σ
(
ϵ = E(i)

)
= C : E(i) = λ(i)E(i)

where λ(i) is a scalar eigenvalue of the stiffness tensor and E(i), i = 1, ..., 6 are the six 2nd order
eigentensors. See also a more recent text by Basser & Pajevic (2007)

The equivalence between tensor notation using C, ϵij , σij and vector/matrix notation using
C(M), ϵ(M), σ(M) provides a way to calculate the eigenvalues and eigentensors of the 4th or-
der tensor C. The eigenvalues λ(i) for tensor C are the eigenvalues of matrix C(M), and
the eigentensors E(i) are obtained by rearranging the eigenvectors of C(M). Suppose x =[
ϵ11, ϵ22, ϵ33,

√
2ϵ23,

√
2ϵ13,

√
2ϵ12

]
is an eigenvector of C(M). The corresponding eigentensor for

C is

E =

[
ϵ11 ϵ12 ϵ13
ϵ12 ϵ22 ϵ23
ϵ13 ϵ23 ϵ33

]

A.4 MANDEL/KELVIN NOTATION VS VOIGT NOTATION

Stress σij and strain ϵij are 2nd order symmetric tensors:

σ =

[
σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

]
; ϵ =

[
ϵ11 ϵ12 ϵ13
ϵ12 ϵ22 ϵ23
ϵ13 ϵ23 ϵ33

]
They have 6 independent components: three direct components (indexed by 11,22,33), and three
shear components (indexed by 12,13,23). They are often arranged in vector form using Voigt nota-
tion.

σ(V ) =


σ11
σ22
σ33
σ23
σ13
σ12

 ; ϵ(V ) =


ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12


The factor of 2 in front of shear components of strain is to preserve the dot product equivalence
for strain energy: in 2nd order notation, strain energy can be written as the contraction of stress and
strain:

ψ =
1

2
σ : ϵ =

1

2
σ(V ) · ϵ(V )

Following this notation, the 4th order stiffness tensor can be represented as 6× 6 matrix C(V ) such
that σ(V ) = C(V )ϵ(V ):

C(V ) =


C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1312 C1312

C1211 C1222 C1233 C1223 C1213 C1212


The disadvantage of this approach is that stress and strain are expressed in contravariant and co-
variant bases, respectively, which do not coincide (Helnwein, 2001; Mánik, 2021). This makes the
Voigt notation unsuitable for our GNN model. In particular, if the equivariant GNN model outputs
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4th order tensor C which are arranged into 6× 6 matrix C(V ) using the Voigt notation, and we then
apply a positive definite layer (e.g. matrix square), the output matrix loses equivariance property (as
further explained in the following section).

This issue can be resolved using the Mandel/Kelvin notation. In Mandel notation, the second order
stress and strain tensors are also written as 6-dimensional vectors, but they take the following form:

σ(M) =


σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

 ϵ(M) =


ϵ11
ϵ22
ϵ33√
2ϵ23√
2ϵ13√
2ϵ12


Strain energy can still be expressed as contraction

ψ =
1

2
σ : ϵ =

1

2
σ(M) · ϵ(M)

Moreover, the norm of stress and strain is preserved under this notation

||ϵ|| = ϵ : ϵ = ϵ(M) · ϵ(M); ||σ|| = σ : σ = σ(M) · σ(M)

The corresponding stiffness tensor C(M) can be written such that σ(M) = C(M)ϵ(M):

C(M) =


C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2211 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3311 C3322 C3333

√
2C3323

√
2C3313

√
2C3312√

2C2311

√
2C2322

√
2C2333 2C2323 2C2313 2C2312√

2C1311

√
2C1322

√
2C1333 2C1323 2C1312 2C1312√

2C1211

√
2C1222

√
2C1233 2C1223 2C1213 2C1212


Using this notation, both stress and strain are expressed in the same orthonormal basis. Contrary to
using Voigt notation, we can use the Mandel notation in an equivariant framework. If equivariant
GNN model outputs 4th order tensor C, we can arrange the components into 6× 6 stiffness matrix,
and apply a positive definite layer to this matrix. Importantly, this pipeline will satisfy equivariance
as shown below.

A.5 PROOF OF EQUIVARIANCE OF PSD LAYER IN MANDEL NOTATION

Let M be the output (arranged in Mandel notation) of equivariant MACE backboneM for lattice L

M(L) = M

and let Q(. ;R) represent the rotation given by the rotation matrix R applied on the object, which
is the first argument of the function. We postulate that the representation of the rotation group in
Mandel basis can be written in terms of matrix R(M) such that the rotated output M̂ is given by

M̂ =M(Q(L);R)) = R(M)MR(M),T

After pass through the PSD layer (for instance using matrix square), the output and its rotated version
are given by

A = M2 (5)

Â = M̂2 = R(M)MR(M),TR(M)MR(M),T (6)

Therefore, the PSD layer constructed in this way is equivariant iff matrix R(M) is orthonormal:
R(M),TR(M) = I . In this section, we prove both the postulate that the rotation of stiffness tensor in
Mandel basis can be expressed using matrix R(M) and the statement that this matrix is orthonormal.
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We first consider the basis of representation of stress in Mandel notation. For stress σ(M) with
components [u1, ..., u6], the basis is formed by the following second order tensors

σ(M) =


u1
u2
u3
u4
u5
u6

 =

u1e
(1) ⊗ e(1)+

+u2e
(2) ⊗ e(2)+

+u3e
(3) ⊗ e(3)+

+ u4√
2

(
e(2) ⊗ e(3) + e(3) ⊗ e(2)

)
+

+ u5√
2

(
e(1) ⊗ e(3) + e(3) ⊗ e(1)

)
+

+ u6√
2

(
e(1) ⊗ e(2) + e(2) ⊗ e(1)

)
(7)

We now proceed to derive the representation of SO(3) rotation group in Mandel notation. With-
out loss of generality, we assume that the basis vectors e(1), e(2), e(3) are originally aligned with
the Cartesian axes. Therefore, the i-th component of vector e(j) is equivalent to Kronecker delta:
e
(j)
i = δij . The effect of rotation on the basis vectors e(1), e(2), e(3) can be expressed by matrix

multiplication with the conventional rotation matrix Rij as

ê
(p)
i = Rije

(p)
j

where ê(p) is the basis vector e(p) expressed in the rotated basis and we use standard Einstein
summation convention for repeated indices. The elements of the rotation matrix are therefore

Rij = ê(i) · e(j)

We now express stress σ in the rotated frame σ̂ in terms of the components of Mandel representation
u1, ..., u6:

σ̂ij = RipRjp

(
u1e

(1)
p e(1)q + ...+

u4√
2

(
e(2)p e(3)q + e(3)p e(2)q

)
+ ...

)
= RipRjp

(
u1δ1pδ1q + ...+

u4√
2
(δ2pδ3q + δ3pδ2q) + ...

)
This can be written as a matrix-vector product in Mandel representation

σ̂(M) = R(M)σ(M)

=



R2
11 R2

12 R2
13

√
2R12R13

√
2R11R13

√
2R11R12

R2
21 R2

22 R2
23

√
2R22R23

√
2R21R23

√
2R21R22

R2
31 R2

32 R2
33

√
2R32R33

√
2R31R33

√
2R31R32√

2R21R31

√
2R22R32

√
2R23R33 R22R33 +R23R32 R21R33 +R23R31 R21R32 +R22R31√

2R11R31

√
2R12R32

√
2R13R33 R12R33 +R13R32 R11R33 +R13R31 R11R32 +R12R31√

2R11R21

√
2R12R22

√
2R13R23 R12R23 +R13R22 R11R23 +R13R21 R11R22 +R12R21




u1

u2

u3

u4

u5

u6


Matrix R(M) is the representation of SO(3) rotation in Mandel notation. We can now proceed to
derive the corresponding rotation rule for the stiffness matrix C(M). In the original frame,

σ(M) = C(M)ϵ(M) (8)

while in the rotated frame:

σ̂(M) = Ĉ(M)ϵ̂(M)

R(M)σ(M) = Ĉ(M)R(M)ϵ(M)

σ(M) = R(M),−1Ĉ(M)R(M)ϵ(M) (9)

comparing equations equation 8 and equation 9, we obtain the rotation rule for stiffness matrix
C(M):

Ĉ(M) = R(M)C(M)R(M),−1 (10)
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We now proceed to show that matrix R(M) is orthonormal. This can be done by expanding the
product R(M),TR(M) and showing that R(M)

pi R
(M)
pj = δij , but we choose an alternative route: by

considering the double contraction of stress as dot product in Mandel basis.

From equation equation 7, it is straightforward to show that

σijσij = σ
(M)
i σ

(M)
i ∀σij

We then consider this contraction in rotated basis:

σ̂
(M)
i σ̂

(M)
i = R

(M)
ip σ(M)

p R
(M)
iq σ(M)

q = σ(M),TR(M),TR(M)σ(M)

Therefore, to show that matrix R(M) is orthonormal, it suffices to show that σ̂(M)
i σ̂

(M)
i =

σ
(M)
i σ

(M)
i .

σ̂
(M)
i σ̂

(M)
i = RipRjqRiaRjb

(
u1δ1pδ1q + ...+

u4√
2
(δ2pδ3q + δ3pδ2q) + ...

)(
u1δ1aδ1b + ...+

u4√
2
(δ2aδ3b + δ3aδ2b) + ...

)
= δpaδqb

(
u1δ1pδ1q + ...+

u4√
2
(δ2pδ3q + δ3pδ2q) + ...

)(
u1δ1aδ1b + ...+

u4√
2
(δ2aδ3b + δ3aδ2b) + ...

)
= u2

1 + u2
2 + u2

3 + u2
4 + u2

5 + u2
6 = σ

(M)
i σ

(M)
i

where we used the fact that the conventional 3× 3 rotation matrix R is orthonormal RipRia = δpa.
Therefore

R(M),−1 = R(M),T

We can now reformulate the rotation rule for stiffness in Mandel notation from equation equation 10:

Ĉ(M) = R(M)C(M)R(M),−1

which validates the postulate of this proof. This combined with equation equation 6 proves that our
PSD layer is equivariant.

A.6 PROOF OF NON-EQUIVARIANCE OF PSD LAYER IN VOIGT NOTATION

Analogous analysis can be performed for the stress/strain in Voigt basis. However, in Voigt notation,
the bases for strain and stress are different:

σ(V ) =


u1
u2
u3
u4
u5
u6

 =

u1e
(1) ⊗ e(1)+

+u2e
(2) ⊗ e(2)+

+u3e
(3) ⊗ e(3)+

+u4
(
e(2) ⊗ e(3) + e(3) ⊗ e(2)

)
+

+u5
(
e(1) ⊗ e(3) + e(3) ⊗ e(1)

)
+

+u6
(
e(1) ⊗ e(2) + e(2) ⊗ e(1)

)

ϵ(V ) =


u1
u2
u3
u4
u5
u6

 =

u1e
(1) ⊗ e(1)+

+u2e
(2) ⊗ e(2)+

+u3e
(3) ⊗ e(3)+

+u4

2

(
e(2) ⊗ e(3) + e(3) ⊗ e(2)

)
+

+u5

2

(
e(1) ⊗ e(3) + e(3) ⊗ e(1)

)
+

+u6

2

(
e(1) ⊗ e(2) + e(2) ⊗ e(1)

)
18



Published as a conference paper at ICLR 2024

10 cm
1 mm 10 μm

Metamaterial Microarchitecture Strut-based
unit cell

Shell-based
unit cell

r

a b

Figure 5: (a) The assembly of millions of unit cells effectively behaves as continuum material,
hence the name metamaterial. In this work we assume all unit cells have cylindrical struts with
radius r. (b ) Different types of unit cells could be used, such as triply periodic minimal surfaces
(TPMS) which lead to shell-based lattices.

It can be shown through analogous process that the corresponding representations of the rotation
group are matrices R(V,σ) and R(V,ϵ):

σ̂(V ) = R(V,σ)σ(V )

=


R2

11 R2
12 R2

13 2R12R13 2R11R13 2R11R12

R2
21 R2

22 R2
23 2R22R23 2R21R23 2R21R22

R2
31 R2

32 R2
33 2R32R33 2R31R33 2R31R32

R21R31 R22R32 R23R33 R22R33 +R23R32 R21R33 +R23R31 R21R32 +R22R31

R11R31 R12R32 R13R33 R12R33 +R13R32 R11R33 +R13R31 R11R32 +R12R31

R11R21 R12R22 R13R23 R12R23 +R13R22 R11R23 +R13R21 R11R22 +R12R21




u1

u2

u3

u4

u5

u6


ϵ̂(V ) = R(V,ϵ)ϵ(V )

=


R2

11 R2
12 R2

13 R12R13 R11R13 R11R12

R2
21 R2

22 R2
23 R22R23 R21R23 R21R22

R2
31 R2

32 R2
33 R32R33 R31R33 R31R32

2R21R31 2R22R32 2R23R33 R22R33 +R23R32 R21R33 +R23R31 R21R32 +R22R31

2R11R31 2R12R32 2R13R33 R12R33 +R13R32 R11R33 +R13R31 R11R32 +R12R31

2R11R21 2R12R22 2R13R23 R12R23 +R13R22 R11R23 +R13R21 R11R22 +R12R21




u1

u2

u3

u4

u5

u6


and it can be shown that

R(V,σ),−1 = R(V,ϵ),T .

We can now derive the rotation rule for stiffness in Voigt notation as

σ(V ) = C(V )ϵ(V )

σ̂(V ) = Ĉ(V )ϵ̂(V )

R(V,σ)σ(M) = Ĉ(V )R(V,ϵ)ϵ(V )

σ(V ) = R(V,σ),−1Ĉ(V )R(V,ϵ)ϵ(V )

Ĉ(V ) = R(V,σ)C(V )R(V,ϵ),−1 = R(V,σ)C(V )R(V,σ),T .

Importantly, matrices R(V,σ) and R(V,ϵ) are not orthonormal
(
R(V,σ),TR(V,σ) ̸= I

)
which implies

that using Voigt representation in PSD layer breaks equivariance.

A.7 LATTICE METAMATERIALS, GRAPH REPRESENTATION OF LATTICE UNIT CELLS AND FE

Figure 5 outlines the concept of metamaterials. We consider periodic lattices which are constructed
by repeating a predefined building block in three dimensions. This building block is called unit cell.
When the unit cell is repeated over a distance much longer than its size, there will be millions of
unit cells in the sample of interest and its overall response can be characterized by effective material
properties.

In this work, we model strut-based lattices. There is a clean analogy between such lattice and the
mathematical concept of a graph. The struts in a lattice can be thought of as edges, while their
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intersections are nodes. We wish to model large samples of metamaterials, which comprise millions
of unit cells. Rather than converting such sample into a graph with billions of nodes and edges, we
use the concept of periodicity: the lattice can be fully defined by its unit cell and we wish to predict
the stiffness of the material from the geometry of the unit cell.

All unit cells can be represented in a reduced coordinate system, where the unit cell is a unit cube
(0 ≤ xi ≤ 1). The real positions of nodes, transformed coordinates x̄, can be expressed as an affine
transformation of the reduced coordinates: x̄ = Ax, where A is a suitable matrix. Unit cells that
we study in this work range from very simple geometries with just a few nodes to very complex unit
cells with hundreds of nodes. We define four node types based on the following conditions:

1. inner nodes, where 0 < xi < 1 ∀i,
2. face nodes, where xi ∈ {0, 1} for only one index i,

3. edge nodes, where xi ∈ {0, 1} for two indices i,

4. corner nodes, where xi ∈ {0, 1} for all three indices i.

Figure 6 illustrates the 4 node types. Further note that face, edge and corner nodes are shared by 2,
4 and 8 neighboring unit cells, respectively.

The unit cells are representation of the infinite periodic lattice. Therefore, it is possible to shift the
window of observation to perceive a different unit cell of the same lattice. This is illustrated in
Figure 6a-c. The simple cubic lattice is typically represented as a square with four edges on the
boundaries and four edge nodes.3 Displacing the unit cell window, we obtain a view with 4 face
nodes and 1 inner node.

The fundamental representation of a lattice is such where only the inner nodes are kept and edges
are connected across periodic boundaries. In Figure 6d, we show the fundamental representation of
the simple cubic lattice. The lattice has 1 inner node (N0) and 2 fundamental edges (E0, E1). The
edges are defined by edge adjacency, and edge shifts:

adjacency shift
E0 : N0→ N0; [1, 0]

E1 : N0→ N0; [0, 1]

If edge has adjacencyNi → Nj and shift t(ij), then the edge vector will be v(ij) = x(j)−x(i)+t(ij)

Graph representation is obtained when graph is connected according to the fundamental edge adja-
cency and edge shifts are stored with the graph (Fig. 6e).

Note that finite element simulations are run on the windowed representation of lattices, because
it makes the handling of periodicity much simpler. In particular, when macroscopic strain ϵij is
applied to the material, the following equations are prescribed in FE setup:

uBi − uAi =
∑
j

ϵij
(
xBj − xAj

)
θBi − θAi = 0

A.8 DATASET

The full dataset contains 8954 base lattices. We selected from this dataset: (i) 7000 training base
names, and (ii) 1296 validation/test base names.

Training sets of various sizes are formed as follows:

3note that intuitively, we might call these nodes corner nodes, but to adhere to definitions above, in 2d
xi ∈ {0, 1} for two indices i
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Windowed representation

Infinite periodic lattice

Typical unit cell representation
(4 nodes, 4 edges) (1 node, 2 edges)

(1 node, 2 edges)

(5 nodes, 4 edges)

Fundamental representation

Graph representation

inner node
face
node

edge
node

N0

N0

E0

E0

E1

E1

corner node

a

b

c

d

e
f

Figure 6: The representation of lattice unit cell in our framework. For simplicity, we show a two-
dimensional simple cubic lattice as an example (a). The typical representation of the unit cell is a
square (b ). However, to simplify the periodicity conditions in FE calculations, we transform this
unit cell to a windowed representation (c). The fundamental representation connects edges across
periodic boundaries and only inner node types remain (d ). The graph used for GNN comes directly
from the fundamental representation (e). For completeness, we illustrate the remaining edge node
type in part (f ).

# graphs Description
0imp quarter 1750 1750 lattices with no perturbations
0imp half 3500 3500 lattices with no perturbations
0imp 7000 7000 lattices with no perturbations
1imp 27847 7000 lattices with 1 realization at 0.0,0.02,0.04,0.07 levels
2imp 48681 7000 lattices with 1 realization at 0.0 and 2 realizations at 0.02,0.04,0.07 levels
4imp 90336 7000 lattices with 1 realization at 0.0 and 4 realizations at 0.02,0.04,0.07 levels

Note that three relative densities (strut radii) of each distinct geometry are used.

A.9 GRAPH ATTRIBUTES

Vanilla CGC In the base CGC model, we use the same node, edge and graph features as Meyer
et al. (2022) with the addition of strut radius. Node features of the graph are nodal positions:

h = [x1, x2, x3]

Edge features are unit vector, length, and radius:

e = [u1, u2, u3, L, r]

Augmented GCG-based models We wish to have a model which is invariant to rigid body trans-
lation, therefore we drop nodal positions from node features. The following input features are used.

h = [1]

e = [u1, u2, u3, L, r]

A.10 ARCHITECTURE

We consider lattices as geometric graphs, with node positions, xi ∈ R3, edge adjacency, {{i, j}},
edge shifts4, ui ∈ R3, and edge thickness, rij ∈ R+. Note that edge adjacency is a multiset as
there can be multiple edges between the same set of nodes. The role of edge shifts is to account for
periodic connections. Further detail can be found in the Appendix. The model we develop acts in
three steps, first the embedding, then S layers of MACE, and finally the readout.

4As defined in Section A.7 of the Appendix
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Embeddings The length and thickness of the edges are encoded using Gaussian embeddings with
6 bases: GL, Gr : R→ R6. They are then concatenated and used as edge attributes

zij = {e−γc(∥xi−xj∥2−µc)
2}c ⊕ {e−γc(rij−µc)

2}c (11)

where ⊕ denotes concatenation and (γc, µc) are a collection of fixed parameters of the Gaussians
and they depend on the number of bases. The edge vectors are expanded in a spherical basis up to
Lmax = 4. Unlike atoms of various elements in chemistry, all our nodes are of the same type. There-
fore, the node features are initialized as ones and are expanded to the desired number of dimensions
using a linear layer: h(0)i = wi.

MACE layer At each layer s of MACE, edge embedding ϕ(s)ij are formed by taking the tensor
product between the node features hj and the edge vectors expanded in a spherical basis. This
tensor product is weighted with a non-linear function of the edge attributes zij ,

ϕ
(s)
ij,kη1l3m3

=
∑

l1l2m1m2

Cl3m3

η1,l1m1l2m2
R

(s)
kη1l1l2l3

(zij)Y
m1

l1
(x̂ij)h

(s)
j,kl2m2

(12)

Where k indexes feature channels, l,m index angular momenta, Cl3m3η1,l1m1l2m2
are the Clebsch-

Gordan coefficients that enforce the equivariance5, and η indexes combinations of lmwhich preserve
equivariance. The Atomic Basis A(s)

i of the node i at layer s is constructed by summing edge
embeddings over the edges of i:

A
(s)
i,kl3m3

=
∑
k̃,η1

W
(s)

kk̃η1l3

∑
j∈N (i)

ϕ
(s)

ij,k̃η1l3m3
(13)

A tensor product is applied to the Atomic Basis ν times to increase the body order of the feature, and
the resulting features are symmetrized using a set generalized Clebsch-Gordan coefficients CLM

ην lm
.

B
(s),ν
i,ηνkLM =

∑
lm

CLM
ην lm

ν∏
ξ=1

A
(s)
i,klξmξ

(14)

where B(s),ν
i,ηνkLM are called sketched product basis. The B−features are then linearly mixed to form

a many-body message,

m
(s)
i,kLM =

∑
ν

∑
ην

W
(t),ν
ziηνkL

B
(s),ν
i,ηνkLM (15)

Finally the message is used to update the next node features using an update function.

Readout After S layers of MACE, we use an equivariant non-linear readout followed by global
graph pooling. Invariance to tessellation is maintained by mean pooling operation which ensures
that the predicted stiffness will not grow if nodes with identical neighborhoods are added to the
graph. 6 Finally, another linear layer outputs two scalars, two l = 1 vectors and one l = 4 vector,
corresponding to the spherical component of a 4th order tensor with the correct permutation symme-
try. This is converted to Cartesian basis and assembled into Mandel notation to form the final matrix
output A (see the Appendix for details).

Positive Semi-Definite Layer The positive semi-definite layer is the key step to ensure that the
final output is positive semi-definite, in line wih the law of energy conservation. We evaluate a
number of methods to make the stiffness tensor positive semi-definite. These include taking even
powers of the matrix, A2 and A4, matrix exponential, and its truncated versions, eA, (I +A/2)2,
(I +A/4)4.

5For further details, see the original MACE paper by Batatia et al. (2022)
6This is another fundamental inductive bias of our model: the outputs for a unit cell and its n × n × n

tessellation are identical.
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A.11 TRAINING AND EVALUATION DETAILS

Definitions of loss metrics If Cp = Cpij and C̃p = C̃pij are the predicted and target stiffnesses
for lattice p (in Mandel notation), respectively, and Cp = Cpijkl and C̃p = C̃pijkl are the predicted
and target stiffnesses for lattice p (in 4th order notation), respectively, the loss used during training
is calculated as:

γp =
1

36

∑
ij

C̃pijC̃pij Lcomp,p =
∑
ij

(
Cpij − C̃pij

)2
Ltrain =

1

B
∑
p

Lcomp,p

γp
(16)

where B denotes the total number of lattices p, γp the mean stiffness, Lcomp,p the component loss
and Ltrain the overall loss. For testing purposes, in addition to loss Lcomp, we define directional loss,
Ldir, and relative directional loss, Ldir,rel,p which are calculated using N = 250 random directions
on the unit sphere (dq, q = 1...N ):

Ldir,p =
1

N

∑
q

∣∣∣∣∣∣
∑
ijkl

(
Cpijkl − C̃pijkl

)
dqidqjdqkdql

∣∣∣∣∣∣ Ldir,rel,p = Ldir,p/
√
γp (17)

with Ldir,p the directional loss and Ldir,p the relative directional loss. We further report the percent-
age of lattices with negative eigenvalues, λ−%, and equivariance loss, Lequiv which is calculated as
follows. We choose S random orientations (here S = 10) parameterized by corresponding rotation

matrices R(s) = R
(s)
ij , (s = 1...S). The predicted stiffness tensor in the original orientation is Ĉ

(p)
.

For each lattice in the test dataset L(p), we calculate the predictions for each of the 10 rotations:
C

(p,s)
ijkl . Equivariance loss is defined as

Lequiv =
1

SNB
∑
pqs

∣∣∣∣∣∣
∑
ijkl

(
Q

(
Ĉ

(p)
;R(s)

)
ijkl

− C(p,s)
ijkl

)
dqidqjdqkdql

∣∣∣∣∣∣
Note that the equivariance loss is calculated purely from predictions, disregarding the mismatch
from the ground truth.

All models were trained on a single NVIDIA A100 GPU with 80GB of memory. The training
routines were handled by Pytorch Lightning. Specifics vary between models and are outlined below.

A.11.1 CGC AND MCGC

Hyperparameters were searched on a grid (Table 5). Every experiment was run with constant learn-
ing rate for up to 100 000 steps. Optimizer AdamW was used with settings (β1, β2) = (0.9, 0.999),
ϵ = 1 × 10−8, weight decay=1 × 10−8. Validation loss was checked every 100 steps and training
was stopped by early stopping callback with patience 50 if validation loss has not reduced.

The setup of the vanilla CGC and mCGC followed as closely as possible the methods used by Meyer
et al. (2022). Key differences between our training routines for CGC-based models and the vanilla
versions are as follows.

• Static 7-fold data augmentation was used for training set. Each lattice was rotated by 90 deg
around the x−, y− and z−axes, and mirrored about the x−y, x−z, and y−z planes. This added
six more versions of the lattice into the dataset.

• The 21 components of stiffness tensor were independently normalized to lie between 0 and 1.

• Optimizer RAdam was used

• Loss smooth l1 was used

A.12 NNCONV

In model NNConv, linear learnable layers were used as node and edge feature embeddings to in-
crease latent dimensionality. The message passing NNConv layer was composed of 3-layer neural
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Table 5: Hyperparameter search for CGC and mCGC models

ndim 16, 32, 64, 128, 256, 512
message passes 2, 3, 4, 6
aggregation min, max, mean
batch size 256
lr 0.0003, 0.001, 0.003, 0.01

# parameters 16K – 10M

Table 6: Hyperparameter search for NNConv models

ndim 16, 32, 64
message passes 2, 3, 4, 6
aggregation min, max, mean
batch size 256
lr 0.0003, 0.001, 0.003, 0.01

# parameters 22K – 1.6M

network with ReLU nonlinearity. “Sum” aggregation was used to aggregate messages from neigh-
bors, after which ReLU layer was applied. The layers of message passing were not shared, but inde-
pendent. A residual connection between layers was used. Hyperparameters were searched on a grid
(Table 6). Every experiment was run with constant learning rate for up to 100 000 steps. Optimizer
AdamW was used with settings (β1, β2) = (0.9, 0.999), ϵ = 1 × 10−8, weight decay=1 × 10−8.
Validation loss was checked every 100 steps and training was stopped by early stopping callback
with patience 50 if validation loss has not reduced.

A.12.1 MACE

Hyperparameters for MACE-based models were searched on a grid in Table 7. Every experiment
was run with a constant learning rate for up to 30 000 steps. Optimizer AdamW was used with
settings (β1, β2) = (0.9, 0.999), ϵ = 1 × 10−8, weight decay=1 × 10−8. A smaller batch size
of 64 was used because of the higher memory requirements of the MACE model. To maintain
consistency with the batch size of 256 from CGC models, gradient accumulation over 4 batches
was used. Validation loss was checked every 100 steps and training was stopped by early stopping
callback with patience 50 if validation loss has not reduced. Value-based gradient clipping was used
with cutoff 10.0.

A.13 PRIMAL, DUAL AND COMBINED GRAPHS

The choice of graph over which message passing is run is important. For instance, some studies
in the mechanics community use the dual graph where the centres of lattice cells are converted to
nodes, and the neighbouring cells are connected by graph edges.(Karapiperis & Kochmann, 2023)

Meyer et al. (2022) combine the primal graph, with a line graph. The original (primal) graph can
be converted to a line graph as follows. The nodes of line graph are the edges of primal graph. Two

Table 7: Hyperparameter search for MACE models

hidden dim 8, 16, 32, 64
readout dim 8, 16, 32
message passes 2
aggregation mean
batch size 64
lr 0.0003, 0.001, 0.003

# parameters 50K – 600K
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Table 8: Performance of CGC model for primal, dual, and combined graph representation of lattice
unit cells

Static augmentation Dynamic augmentation
primal dual combined primal dual combined
CGC mCGC CGC mCGC

Lcomp 7.81 11.90 8.49 4.63 9.10 5.36
Ldir 8.31 15.46 8.71 5.29 12.03 5.84
Ldir,rel 0.38 1.14 0.42 0.25 0.76 0.27
λ−% 10 1 2 26 0 28

x

x
y

yz
a b c

x y

z

Figure 7: (a) Unit cell and (b ) the true stiffness surface of simple cubic lattice. (c) Projection into
x− y plane and comparison of models with various Lmax.

nodes in the line graph are connected if the two corresponding edges of the primal graph meet at a
node.

Here we investigate the performance of GNN based on the choice of graph over which message
passing is done. Table 8 shows the results for various models and training strategies. Primal and
combined correspond to models CGCNN and mCGCNN from Meyer et al. (2022). Dual is message
passing done purely on the line graph. Static augmentation corresponds to the training routine from
Meyer et al. (2022) as described in Section A.11.1. Dynamic augmentation corresponds to our
training routine whereby each time a lattice is retrieved from the dataset, it is obtained at a different
orientation.

In summary, we empirically do not see any benefit of incorporating the line graph into our model.
Therefore, we do not consider these models in the main text.

A.14 TRAINING WITH Lmax < 4 AND DEGENERACY OF HIGHLY-SYMMETRIC LATTICES

In Figure 7 we show the unit cell of the simple cubic lattice. The lattice has a high degree of sym-
metry which has profound consequences for message passing. If the maximum degree of spherical
expansion, Lmax, inside the model is lower than 4, the model is restricted to fitting an isotropic
stiffness tensor for this lattice. When the Lmax ≥ 4, the anisotropy can be captured.

Note that even when the model is trained with Lmax < 4, it still needs to output a fourth-order
tensor whose spherical form includes L = 4 component: 2 × 0e + 2 × 2e + 1 × 4e. 7 We enable
this by incorporating a tensor product expansion layer. Suppose the message passing is done up
to Lmax = 2. After message passing and graph pooling, each graph has features of the form
N × 0e + N × 1o + N × 2e, where N is the number of channels (N chosen even). We split the
channels into two sets of size m = N/2 and do a tensor product between them:

[m×0e+m×1o+m×2e]⊗ [m×0e+m×1o+m×2e]→ [(3m2)×0e+(4m2)×2e+(m2)×4e]
The output is passed through a linear layer with learnable weights which reduces it to the correct
dimensionality 2× 0e+ 2× 2e+ 1× 4e.

7The notation used here is specific to the software implementation of e3nn (Geiger et al., 2022).
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