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Abstract

In this paper, we revisit the problem of smoothed online learning, in which the
online learner suffers both a hitting cost and a switching cost, and target two per-
formance metrics: competitive ratio and dynamic regret with switching cost. To
bound the competitive ratio, we assume the hitting cost is known to the learner
in each round, and investigate the simple idea of balancing the two costs by an
optimization problem. Surprisingly, we find that minimizing the hitting cost alone
is max(1, 2

α )-competitive for α-polyhedral functions and 1 + 4
λ -competitive for

λ-quadratic growth functions, both of which improve state-of-the-art results signi-
ficantly. Moreover, when the hitting cost is both convex and λ-quadratic growth,
we reduce the competitive ratio to 1 + 2√

λ
by minimizing the weighted sum of the

hitting cost and the switching cost. To bound the dynamic regret with switching
cost, we follow the standard setting of online convex optimization, in which the
hitting cost is convex but hidden from the learner before making predictions. We
modify Ader, an existing algorithm designed for dynamic regret, slightly to take
into account the switching cost when measuring the performance. The proposed al-
gorithm, named as Smoothed Ader, attains an optimal O(

√
T (1 + PT )) bound for

dynamic regret with switching cost, where PT is the path-length of the comparator
sequence. Furthermore, if the hitting cost is accessible in the beginning of each
round, we obtain a similar guarantee without the bounded gradient condition, and
establish an Ω(

√
T (1 + PT )) lower bound to confirm the optimality.

1 Introduction

Online learning is the process of making a sequence of predictions given knowledge of the answer to
previous tasks and possibly additional information [Shalev-Shwartz, 2011]. While the traditional
online learning aims to make the prediction as accurate as possible, in this paper, we study smoothed
online learning (SOL), where the online learner incurs a switching cost for changing its predictions
between rounds [Cesa-Bianchi et al., 2013]. SOL has received lots of attention recently because in
many real-world applications, a change of action usually brings some additional cost. Examples
include the dynamic right-sizing for data centers [Lin et al., 2011], geographical load balancing [Lin
et al., 2012], real-time electricity pricing [Kim and Giannakis, 2014], video streaming [Joseph and
de Veciana, 2012], spatiotemporal sequence prediction [Kim et al., 2015], multi-timescale control
[Goel et al., 2017], and thermal management [Zanini et al., 2010].

Specifically, SOL is performed in a sequence of consecutive rounds, where at round t the learner is
asked to select a point xt from the decision set X , and suffers a hitting cost ft(xt). Depending on the
performance metric, the learner may be allowed to observe ft(·) when making decisions, which is
different from the traditional online learning in which ft(·) is revealed to the learner after submitting
the decision [Cesa-Bianchi and Lugosi, 2006]. Additionally, the learner also incurs a switching cost
m(xt,xt−1) for changing decisions between successive rounds. The switching cost m(xt,xt−1)
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could be any distance function, such as the `2-norm distance ‖xt − xt−1‖ and the squared `2-norm
distance ‖xt − xt−1‖2/2 [Goel et al., 2019]. In the literature, there are two performance metrics for
SOL: competitive ratio and dynamic regret with switching cost.

Competitive ratio is popular in the community of online algorithms [Borodin and El-Yaniv, 1998].
It is defined as the worst-case ratio of the total cost incurred by the online learner and the offline
optimal cost: ∑T

t=1

(
ft(xt) +m(xt,xt−1)

)
minu0,u1,...,uT∈X

∑T
t=1

(
ft(ut) +m(ut,ut−1)

) . (1)

When focusing on the competitive ratio, the learner can observe ft(·) before picking xt. The problem
is still nontrivial due to the coupling created by the switching cost. On the other hand, dynamic
regret with switching cost is a generalization of dynamic regret—a popular performance metric in the
community of online learning [Zinkevich, 2003]. It is defined as the difference between the total cost
incurred by the online learner and that of an arbitrary comparator sequence u0,u1, . . . ,uT ∈ X :

T∑
t=1

(
ft(xt) +m(xt,xt−1)

)
−

T∑
t=1

(
ft(ut) +m(ut,ut−1)

)
. (2)

Different from previous work [Chen et al., 2018, Goel et al., 2019], we did not introduce the
minimization operation over u0,u1, . . . ,uT in (2). The reason is that we want to bound (2) by certain
regularities of the comparator sequence, such as the path-length

PT (u0,u1, . . . ,uT ) =

T∑
t=1

‖ut − ut−1‖. (3)

When focusing on (2), ft(·) is generally hidden from the learner before submitting xt. The conditions
for bounding the two metrics are very different, so we study competitive ratio and dynamic regret
with switching cost separately. To bound the two metrics simultaneously, we refer to Andrew et al.
[2013] and Daniely and Mansour [2019], especially the meta-algorithm in the latter work.

This paper follows the line of research stemmed from online balanced descent (OBD) [Chen et al.,
2018, Goel and Wierman, 2019]. The key idea of OBD is to find an appropriate balance between the
hitting cost and the switching cost through iterative projections. It has been shown that OBD and
its variants are able to exploit the analytical properties of the hitting cost (e.g., polyhedral, strongly
convex) to derive dimension-free competitive ratio. At this point, it would be natural to ask why not
use the greedy algorithm, which minimizes the weighted sum of the hitting cost and the switching
cost in each round, i.e.,

min
x∈X

ft(x) + γm(x,xt−1) (4)

to balance the two costs, where γ ≥ 0 is the trade-off parameter. We note that the greedy algorithm is
usually treated as the baseline in competitive analysis [Borodin and El-Yaniv, 1998], but its usage for
smoothed online learning is quite limited. One result is given by Goel et al. [2019], who demonstrate
that the greedy algorithm as a special case of Regularized OBD (R-OBD), is optimal for strongly
convex functions. Besides, Lin et al. [2020] have analyzed the greedy algorithm with γ = 0, named
as the naive approach below, for polyhedral functions and quadratic growth functions.

In this paper, we make the following contributions towards understanding the greedy algorithm.

• For α-polyhedral functions, the competitive ratio of the naive approach is max(1, 2
α ), which

is a significant improvement over the 3 + 8
α competitive ratio of OBD [Chen et al., 2018]

and the 1 + 2
α ratio proved by Lin et al. [2020, Lemma 1]. When α > 2, the ratio becomes

1, indicating that the naive approach is optimal in this scenario.
• For λ-quadratic growth functions, the competitive ratio of the naive algorithm is 1 + 4

λ ,
which matches the lower bound of this algorithm [Goel et al., 2019, Theorem 5], and is
better than the max(1 + 6

λ , 4) ratio obtained by Lin et al. [2020, Lemma 1].
• If the hitting cost is both convex and λ-quadratic growth, the greedy algorithm with γ > 0

attains a 1+ 2√
λ

competitive ratio, which demonstrates the advantage of taking the switching
cost into considerations. Our 1 + 2√

λ
ratio is on the same order as Greedy OBD [Goel et al.,

2019, Theorem 3] but with much smaller constants.
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• Our analysis of the naive approach and the greedy algorithm is very simple. In contrast,
both OBD and Greedy OBD rely on intricate geometric arguments.

While both OBD and R-OBD are equipped with sublinear dynamic regret with switching cost, they
are unsatisfactory in the following aspects:

• The regret of OBD depends on an upper bound of the path-length instead of the path-length
itself [Chen et al., 2018, Corollary 11], making it nonadaptive.

• The regret of R-OBD is adaptive but it uses the squared `2-norm to measure the switching
cost, which may not be suitable for general convex functions [Goel et al., 2019].1

• Both OBD and R-OBD observe ft(·) before selecting xt, which violates the convention of
online learning.

To avoid the above limitations, we demonstrate that a small change of Ader [Zhang et al., 2018a],
which is an existing algorithm designed for dynamic regret, is sufficient to minimize the dynamic
regret with switching cost under the setting of online convex optimization [Shalev-Shwartz, 2011].
Ader runs multiple online gradient descent (OGD) [Zinkevich, 2003] with different step sizes as
expert-algorithms, and uses Hedge [Freund and Schapire, 1997] as the meta-algorithm to aggre-
gate predictions from experts. The only modification is to incorporate the switching cost into the
loss of Hedge. The proposed algorithm, named as Smoothed Ader (SAder), attains the optimal
O(
√
T (1 + PT )) dynamic regret, where PT is the path-length defined in (3). Thus, our regret bound

is adaptive because it automatically becomes small when the comparators change slowly. Finally, we
also investigate the case that the hitting cost is available before predictions, and establish a similar
result without the bounded gradient condition. To this end, we design a lookahead version of SAder,
which chooses the greedy algorithm in (4) as the expert and utilizes the cost of the current round
in Hedge. To show the optimality of this algorithm, we further establish an Ω(

√
T (1 + PT )) lower

bound under the lookahead setting.

2 Related work

This section reviews related work on smoothed online learning (SOL) and dynamic regret.

2.1 Smoothed online learning

SOL has been investigated under the setting of multi-armed bandits [Agrawal et al., 1990, Guha
and Munagala, 2009, Dekel et al., 2014, Koren et al., 2017a,b], prediction with expert advice [Cesa-
Bianchi et al., 2013], and online convex optimization [Lin et al., 2011, Bansal et al., 2015, Zhao et al.,
2020b]. In the following, we mainly discuss smoothed online convex optimization (SOCO).

The early works on SOCO focus on designing competitive algorithms in the low-dimensional
setting [Lin et al., 2011]. In particular, Bansal et al. [2015] show that for SOCO on the real line,
the competitive ratio can be upper bounded by 2, which is proved to be optimal [Antoniadis and
Schewior, 2018]. They also establish a competitive ratio of 3 under the memoryless setting. In the
study of SOCO, it is common to assume that the learner has access to predictions of future hitting
costs, and several algorithms [Lin et al., 2012, Chen et al., 2015, 2016, Li et al., 2018, Li and Li,
2020] have been developed based on receding horizon control (RHC) [Kwon and Han, 2005]. In fact,
the greedy algorithm in (4) can be treated as a variant of RHC. However, previous results for RHC
are limited to special problems, and (4) remains under-explored. For example, when the learner can
observe the next W hitting costs, Li et al. [2018] demonstrate that both the competitive ratio and the
dynamic regret with switching cost decay exponentially fast with W . But their analysis relies on very
strong conditions, including strong convexity and smoothness.

One milestone is the online balanced descent (OBD) [Chen et al., 2018], which has dimension-
free competitive ratio even when the learner can only observe the hitting cost of the current round.
Specifically, OBD iteratively projects the previous point onto a carefully chosen level set of the hitting
cost so as to balance the switching cost and the hitting cost. When the hitting cost is α-polyhedral
and convex, and the switching cost is the `2-norm distance, OBD attains a 3 + 8

α competitive ratio.
Furthermore, OBD can also be tuned to control the dynamic regret with switching cost. Let L be

1We usually assume the convex function is Lipschitz continuous, and in this case choosing the `2-norm
distance as the switching cost makes it on the same order as the hitting cost.
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an upper bound of the path-length of the comparator sequence, i.e., PT (u0,u1, . . . ,uT ) ≤ L. Chen
et al. [2018, Corollary 11] have proved that

T∑
t=1

(
ft(xt) + ‖xt − xt−1‖

)
− min
PT (u0,u1,...,uT )≤L

T∑
t=1

(
ft(ut) + ‖ut − ut−1‖

)
= O

(√
TL
)

(5)

leading to sublinear regret when L = o(T ). However, the upper bound is nonadaptive because it
depends on L instead of the actual path-length PT .

Later, Goel and Wierman [2019] demonstrate that OBD is 3 + O( 1
λ )-competitive for λ-strongly

convex functions, when the switching cost is set to be the squared `2-norm distance. In a subsequent
work, Goel et al. [2019, Theorem 4] propose Regularized OBD (R-OBD), which improves the

competitive ratio to 1
2 + 1

2

√
1 + 4

λ , matching the lower bound of strongly convex functions exactly
[Goel et al., 2019, Theorem 1]. R-OBD includes (4) as a special case, which also enjoys the optimal
competitive ratio for strongly convex functions. Furthermore, Goel et al. [2019, Theorem 6] have
analyzed the dynamic regret of R-OBD and the following result can be extracted from that paper

T∑
t=1

(
ft(xt) +

1

2
‖xt − xt−1‖2

)
−

T∑
t=1

(
ft(ut) +

1

2
‖ut − ut−1‖2

)
= O


√√√√T

T∑
t=1

‖ut − ut−1‖2


Compared with (5), this bound is adaptive because the upper bound depends on the switching cost
of the comparator sequence. However, it chooses the squared `2-norm as the switching cost, which
may not be suitable for general convex functions. When the hitting cost is both quasiconvex and λ-
quadratic growth, Goel et al. [2019, Theorem 3] have demonstrated that their Greedy OBD algorithm
attains an O(1/

√
λ) competitive ratio, as λ→ 0.

Lin et al. [2020] have analyzed the naive approach which ignores the switching cost and simply
minimizes the hitting cost in each round, i.e., the greedy algorithm with γ = 0. It is a bit surprising that
this naive approach is 1 + 2

α -competitive for α-polyhedral functions and max(1 + 6
λ , 4)-competitive

for λ-quadratic growth functions, without any convexity assumption [Lin et al., 2020, Lemma 1].
Argue et al. [2020a] have investigated a hybrid setting in which the hitting cost is both λ-strongly
convex and H-smooth, but the switching cost is the `2-norm distance instead of the squared one.
They develop Constrained OBD, and establish a 4 + 4

√
2H/λ competitive ratio. However, their

analysis relies on a strong condition that the hitting cost is non-negative over the whole space, i.e.,
minx∈Rd ft(x) = 0, as opposed to the usual condition minx∈X ft(x) = 0.

Finally, we note that SOCO is closely related to convex body chasing (CBC) [Friedman and Linial,
1993, Antoniadis et al., 2016, Bansal et al., 2018, Argue et al., 2019, Bubeck et al., 2019, 2020]. In
this problem, the online learner receives a sequence of convex bodies X1, . . . ,XT ⊆ Rd and must
select one point from each body, and the goal is to minimize the total movement between consecutive
output points. Apparently, we can treat CBC as a special case of SOCO by defining the hitting
cost ft(·) as the indicator function of Xt, which means that the domains of hitting costs are allowed
to be different. On the other hand, we can also formulate a d-dimensional SOCO problem as a
d+ 1-dimensional CBC problem [Lin et al., 2020, Proposition 1]. For the general setting of CBC,
the competitive ratio exhibits a polynomial dependence on the dimensionality, and the state-of-the-art
result is O(min(d,

√
d log T )) [Argue et al., 2020b, Sellke, 2020], which nearly match the Ω(

√
d)

lower bound [Friedman and Linial, 1993]. Our paper aims to derive dimensionality-independent
competitive ratios and sublinear dynamic regret for SOCO, under appropriate conditions.

2.2 Dynamic regret

Recently, dynamic regret has attained considerable interest in the community of online learning
[Zhang, 2020]. The motivation of dynamic regret is to deal with changing environments, in which the
optimal decision may change over time. It is defined as the difference between the cumulative loss of
the learner and that of a sequence of comparators u1, . . . ,uT ∈ X :

D-Regret(u1, . . . ,uT ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut). (6)
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In the general form of dynamic regret, u1, . . . ,uT could be an arbitrary sequence [Zinkevich, 2003,
Hall and Willett, 2013, Zhang et al., 2018a, 2020, Cutkosky, 2020, Zhao et al., 2020a], and in the
restricted form, they are chosen as the minimizers of online functions, i.e., ut ∈ argminx∈X ft(x)
[Jadbabaie et al., 2015, Besbes et al., 2015, Yang et al., 2016, Mokhtari et al., 2016, Zhang et al., 2017,
2018b, Wan et al., 2021, Zhao and Zhang, 2021]. While it is well-known that sublinear dynamic
regret is unattainable in the worst case, one can bound the dynamic regret in terms of some regularities
of the comparator sequence. An instance is given by Zinkevich [2003], who introduces the notion of
path-length defined in (3) to measure the temporal variability of the comparator sequence, and derives
an O(

√
T (1 + PT )) bound for the dynamic regret of OGD. Later, Zhang et al. [2018a] develop

adaptive learning for dynamic environment (Ader), which achieves the optimal O(
√
T (1 + PT ))

dynamic regret. In this paper, we show that a small change of Ader attains the same bound for
dynamic regret with switching cost.

3 Competitive ratio

In this section, we focus on competitive ratio. Without loss of generality, we assume the hitting cost
is non-negative, since the competitive ratio can only improve if this is not the case.

3.1 Polyhedral functions

We first introduce the definition of polyhedral functions.

Definition 1 A function f(·) : X 7→ R with minimizer v is α-polyhedral if

f(x)− f(v) ≥ α‖x− v‖, ∀x ∈ X . (7)

We note that polyhedral functions have been used for stochastic network optimization [Huang and
Neely, 2011] and geographical load balancing [Lin et al., 2012].

Following Chen et al. [2018], we set the switching cost as m(xt,xt−1) = ‖xt − xt−1‖. Intuitively,
we may expect that the switching cost should be taken into consideration when making decisions.
However, our analysis shows that minimizing the hitting cost alone yields the tightest competitive
ratio so far. Specifically, we consider the following naive approach that ignores the switching cost
and selects

xt = argmin
x∈X

ft(x). (8)

The theoretical guarantee of (8) is stated below.

Theorem 1 Suppose each ft(·) : X 7→ R with minimizer vt is α-polyhedral. We have

T∑
t=1

(
ft(xt) + ‖xt − xt−1‖

)
≤ max

(
1,

2

α

) T∑
t=1

(
ft(ut) + ‖ut − ut−1‖

)
, ∀u0,u1, . . . ,uT ∈ X

where we assume x0 = u0.

Remark: Our max(1, 2
α ) competitive ratio is much better than the 3 + 8

α ratio of OBD [Chen et al.,
2018], and also better than the 1 + 2

α ratio established by Lin et al. [2020] for (8). When α > 2, the
ratio becomes 1, indicating that the naive approach is optimal in this scenario. Furthermore, the proof
of Theorem 1 is much simpler than that of OBD, and refines that of Lin et al. [2020, Lemma 1].

We have analyzed the greedy algorithm (4) with γ > 0, but the competitive ratio does not improve.
So, the current knowledge suggests that there is no need to consider the switching cost when facing
polyhedral functions. It is unclear whether this is an artifact of our analysis or an inherent property,
and will be investigated in the future. Due to space limitations, all the proofs are deferred to the
supplementary.

3.2 Quadratic growth functions

In this section, we consider the quadratic growth condition.
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Definition 2 A function f(·) : X 7→ R with minimizer v is λ-quadratic growth if

f(x)− f(v) ≥ λ

2
‖x− v‖2, ∀x ∈ X . (9)

The quadratic growth condition has been exploited by the optimization community [Drusvyatskiy
and Lewis, 2018, Necoara et al., 2019] to establish linear convergence, and this condition is weaker
than strong convexity [Hazan and Kale, 2011].

Following Goel et al. [2019], we set the switching cost as m(xt,xt−1) = ‖xt − xt−1‖2/2. We also
consider the naive approach in (8) and have the following theoretical guarantee.

Theorem 2 Suppose each ft(·) : X 7→ R with minimizer vt is λ-quadratic growth. We have

T∑
t=1

(
ft(xt) +

1

2
‖xt − xt−1‖2

)
≤
(

1 +
4

λ

) T∑
t=1

(
ft(ut) +

1

2
‖ut − ut−1‖2

)
,

for all u0,u1, . . . ,uT ∈ X , where we assume x0 = u0.

Remark: The above theorem implies that the naive approach achieves a competitive ratio of 1 + 4
λ ,

which matches the lower bound of this algorithm [Goel et al., 2019, Theorem 5]. Furthermore, it is
also much better than the max(1 + 6

λ , 4) ratio established by Lin et al. [2020] for (8). Similar to the
case of polyhedral functions, it seems safe to ignore the switching cost here.

3.3 Convex and quadratic growth functions

When ft(·) is both quasiconvex and λ-quadratic growth, Goel et al. [2019] have established an
O(1/

√
λ) competitive ratio for Greedy OBD. Inspired by this result, we introduce convexity to

further improve the competitive ratio. In this case, the switching cost plays a role in deriving tighter
competitive ratios. Specifically, we choose the greedy algorithm with γ > 0 to select xt, i.e.,

xt = argmin
x∈X

(
ft(x) +

γ

2
‖x− xt−1‖2

)
. (10)

The theoretical guarantee of (10) is stated below.

Theorem 3 Suppose the domain X is convex, and each ft(·) : X 7→ R with minimizer vt is
λ-quadratic growth and convex. By setting γ = λ/(λ+

√
λ), we have

T∑
t=1

(
ft(xt) +

1

2
‖xt − xt−1‖2

)
≤
(

1 +
2√
λ

) T∑
t=1

(
ft(ut) +

1

2
‖ut − ut−1‖2

)
,

for all u0,u1, . . . ,uT ∈ X , where we assume x0 = u0.

Remark: The above theorem shows that the competitive ratio is improved to 1 + 2√
λ

under the
additional convexity condition. According to the lower bound of strongly convex functions [Goel
et al., 2019, Theorem 1], the ratio in Theorem 3 is optimal up to constant factors. Compared with
Greedy OBD [Goel et al., 2019, Theorem 3], our assumption is slightly stronger, since we require
convexity instead of quasiconvexity. However, our algorithm and analysis are much simpler, and the
constants in our bound are much smaller.

4 Dynamic regret with switching cost

When considering dynamic regret with switching cost, we adopt the common assumptions of online
convex optimization (OCO) [Shalev-Shwartz, 2011].

Assumption 1 All the functions ft’s are convex over their domain X .

Assumption 2 The gradients of all functions are bounded by G, i.e.,

max
x∈X
‖∇ft(x)‖ ≤ G, ∀t ∈ [T ]. (11)
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Algorithm 1 SAder: Meta-algorithm
Require: A step size β, and a setH containing step sizes for experts

1: Activate a set of experts {Eη|η ∈ H} by invoking the expert-algorithm for each step size η ∈ H
2: Sort step sizes in ascending order η1 ≤ η2 ≤ · · · ≤ ηN , and set wηi1 = C

i(i+1)

3: for t = 1, . . . , T do
4: Receive xηt from each expert Eη
5: Output the weighted average xt =

∑
η∈H w

η
t x

η
t

6: Observe the loss function ft(·)
7: Update the weight of each expert by (14)
8: Send gradient∇ft(xt) to each expert Eη
9: end for

Assumption 3 The diameter of the domain X is bounded by D, i.e.,

max
x,x′∈X

‖x− x′‖ ≤ D. (12)

Assumption 2 implies that the hitting cost is Lipschitz continuous, so it is natural to set the switching
cost as m(xt,xt−1) = ‖xt − xt−1‖.

4.1 The standard setting

We first follow the standard setting of OCO in which the learner can not observe the hitting cost when
making predictions, and develop an algorithm based on Ader [Zhang et al., 2018a]. Specifically, we
demonstrate that a small change of Ader, which modifies the loss of the meta-algorithm to take into
account the switching cost of experts, is sufficient to minimize the dynamic regret with switching
cost. Our proposed method is named as Smoothed Ader (SAder), and stated below.2

Meta-algorithm The meta-algorithm is similar to that of Ader [Zhang et al., 2018a, Algorithm
3], and summarized in Algorithm 1. The inputs of the meta-algorithm are its own step size β, and
a setH of step sizes for experts. In Step 1, we active a set of experts {Eη|η ∈ H} by invoking the
expert-algorithm for each η ∈ H. In Step 2, we set the initial weight of each expert. Let ηi be the i-th
smallest step size inH. The weight of Eηi is chosen as

wηi1 =
C

i(i+ 1)
, and C = 1 +

1

|H|
. (13)

In each round, the meta-algorithm receives a set of predictions {xηt |η ∈ H} from all experts (Step 4),
and outputs the weighted average (Step 5):

xt =
∑
η∈H

wηt x
η
t

where wηt is the weight assigned to expert Eη. After observing the loss function, the weights of
experts are updated according to the exponential weighting scheme (Step 7) [Cesa-Bianchi and
Lugosi, 2006]:

wηt+1 =
wηt e

−β`t(xηt )∑
η∈H w

η
t e
−β`t(xηt )

(14)

where
`t(x

η
t ) = 〈∇ft(xt),xηt − xt〉+ ‖xηt − xηt−1‖. (15)

When t = 1, we set xη0 = 0, for all η ∈ H. As can be seen from (15), we incorporate the switching
cost ‖xηt − xηt−1‖ of expert Eη to measure its performance. This is the only modification made to
Ader. In the last step, we send the gradient ∇ft(xt) to each expert Eη so that they can update their
own predictions.

2In a concurrent work, Zhao et al. [2021] independently develop a similar algorithm for OCO with memory.
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Algorithm 2 SAder: Expert-algorithm
Require: The step size η

1: Let xη1 be any point in X
2: for t = 1, . . . , T do
3: Submit xηt to the meta-algorithm
4: Receive gradient∇ft(xt) from the meta-algorithm
5:

xηt+1 = ΠX
[
xηt − η∇ft(xt)

]
6: end for

Expert-algorithm The expert-algorithm is the same as that of Ader [Zhang et al., 2018a, Algorithm
4], which is OGD over the linearized loss or the surrogate loss

st(x) = 〈∇ft(xt),x− xt〉. (16)

For the sake of completeness, we present its procedure in Algorithm 2. The input of the expert is its
step size η. In Step 3 of Algorithm 2, each expert submits its prediction xηt to the meta-algorithm,
and receives the gradient∇ft(xt) in Step 4. Then, in Step 5, it performs gradient descent

xηt+1 = ΠX
[
xηt − η∇ft(xt)

]
to get the prediction for the next round. Here, ΠX [·] denotes the projection onto the nearest point in
X .

We have the following theoretical guarantee.

Theorem 4 Set

H =

{
ηi = 2i−1

√
D2

T (G2 + 2G)

∣∣∣∣∣ i = 1, . . . , N

}
(17)

where

N =

⌈
1

2
log2(1 + 2T )

⌉
+ 1, and β =

2

(2G+ 1)D

√
2

5T

in Algorithm 1. Under Assumptions 1, 2 and 3, for any comparator sequence u0,u1, . . . ,uT ∈ X ,
SAder satisfies

T∑
t=1

(
ft(xt) + ‖xt − xt−1‖

)
−

T∑
t=1

ft(ut) (18)

≤3

2

√√√√T (G2 + 2G)

(
D2 + 2D

T∑
t=1

‖ut − ut−1‖

)
+ (2G+ 1)D

√
5T

8
[1 + 2 ln(k + 1)]

=O
(√

T (1 + PT ) +
√
T (1 + log logPT )

)
= O

(√
T (1 + PT )

)
where we define x0 = 0, and

k =

⌊
1

2
log2

(
1 +

2PT
D

)⌋
+ 1. (19)

Remark: Theorem 4 shows that SAder attains an O(
√
T (1 + PT )) bound for dynamic regret

with switching cost, which is on the same order as that of Ader for dynamic regret. From the
Ω(
√
T (1 + PT )) lower bound of dynamic regret [Zhang et al., 2018a, Theorem 2], we know that

our upper bound is optimal up to constant factors. Compared with the regret bound of OBD in (5)
[Chen et al., 2018], the advantage of SAder is that its regret depends on the path-length PT directly,
and thus becomes tighter when focusing on comparator sequences with smaller path-lengths. Finally,
note that in (18), we did not minus the switching cost of the comparator sequence, i.e., PT , that is
because it is always smaller than

√
DT (1 + PT ) and does not affect the order.
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Algorithm 3 Lookahead SAder: Meta-algorithm
Require: A step size β, and a setH containing step sizes for experts

1: Activate a set of experts {Eη|η ∈ H} by invoking the expert-algorithm for each step size η ∈ H
2: Sort step sizes in ascending order η1 ≤ η2 ≤ · · · ≤ ηN , and set wηi0 = C

i(i+1)

3: for t = 1, . . . , T do
4: Observe the loss function ft(·) and send it to each expert Eη
5: Receive xηt from each expert Eη
6: Update the weight of each expert by (20)
7: Output the weighted average xt =

∑
η∈H w

η
t x

η
t

8: end for

Algorithm 4 Lookahead SAder: Expert-algorithm
Require: The step size η

1: for t = 1, . . . , T do
2: Receive the loss ft(·) from the meta-algorithm
3: Solve the optimization problem in (21) to obtain xηt
4: Submit xηt to the meta-algorithm
5: end for

4.2 The lookahead setting

It is interesting to investigate whether we can do better if the hitting cost is available before predictions.
In this case, we propose a lookahead version of SAder, and demonstrate that the regret bound remains
on the same order, but Assumption 2 can be dropped. That is, the gradient of the function could be
unbounded, and thus the function could also be unbounded.

Meta-algorithm We design a lookahead version of Hedge, and summarize it in Algorithm 3.
Compared with Algorithm 1, we make the following modifications.

• In the t-th round, the meta-algorithm first sends ft(·) to all experts so that they can also
benefit from the prior knowledge of ft(·) (Step 4).

• After receiving the prediction from experts (Step 5), the meta-algorithm makes use of ft(·)
to determine the weights of experts (Step 6):

wηt =
wηt−1e

−β`t(xηt )∑
η∈H w

η
t−1e

−β`t(xηt )
(20)

where `t(x
η
t ) is defined in (15).

Expert-algorithm To exploit the hitting cost of the current round, we choose an instance of the
greedy algorithm in (4) as the expert-algorithm, and summarize it in Algorithm 4. The input of the
expert is its step size η. After receiving ft(·) (Step 2), the expert solves the following optimization
problem to obtain xηt (Step 3):

min
x∈X

ft(x) +
1

2η
‖x− xηt−1‖2. (21)

We have the following theoretical guarantee of the lookahead SAder.

Theorem 5 Set

H =

{
ηi = 2i−1

√
D2

T

∣∣∣∣∣ i = 1, . . . , N

}
(22)

where

N =

⌈
1

2
log2(1 + 2T )

⌉
+ 1, and β =

1

D

√
2

T
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in Algorithm 3. Under Assumptions 1 and 3, for any comparator sequence u0,u1, . . . ,uT ∈ X , the
lookahead SAder satisfies

T∑
t=1

(
ft(xt) + ‖xt − xt−1‖

)
−

T∑
t=1

ft(ut)

≤3

2

√√√√T (D2 + 2D

T∑
t=1

‖ut − ut−1‖) +D

√
T

2
[1 + 2 ln(k + 1)]

=O
(√

T (1 + PT ) +
√
T (1 + log logPT )

)
= O

(√
T (1 + PT )

)
where x0 = 0, and k is defined in (19).

Remark: Similar to SAder, the lookahead SAder also achieves an O(
√
T (1 + PT )) bound for

dynamic regret with switching cost. In the lookahead setting, we do not need Assumption 2 any more,
and the constants in Theorem 5 are independent from G.

Lower Bound To show the optimality of Theorem 5, we provide the lower bound of dynamic regret
with switching cost under the lookahead setting.

Theorem 6 For any online algorithm with lookahead ability and any τ ∈ [0, TD], there exists a
sequence of functions f1, . . . , fT and a sequence of comparators u1, . . . ,uT satisfying Assumptions 1
and 3 such that (i) the path-length of u1, . . . ,uT is at most τ and (ii) the dynamic regret with switching
cost w.r.t. u1, . . . ,uT is at least Ω(

√
T (D2 +Dτ)).

Remark: The above theorem indicates an Ω(
√
T (1 + PT )) lower bound, which implies that the

lookahead SAder is optimal up to constant factors. Thus, even in the lookahead setting, it is impossible
to improve the O(

√
T (1 + PT )) upper bound.

5 Conclusion and future work

We investigate the problem of smoothed online learning (SOL), and derive constant competitive
ratio or sublinear dynamic regret with switching cost. For competitive ratio, we demonstrate that the
naive approach, which only minimizes the hitting cost, is max(1, 2

α )-competitive for α-polyhedral
functions and 1 + 4

λ -competitive for λ-quadratic growth functions. Furthermore, we show that the
greedy algorithm, which minimizes the weighted sum of the hitting cost and the switching cost, is
1 + 2√

λ
-competitive for convex and λ-quadratic growth functions. For dynamic regret with switching

cost, we propose smoothed Ader (SAder), which attains the optimal O(
√
T (1 + PT )) bound. We

also develop a lookahead version of SAder to make use of the prior knowledge of the hitting cost,
and establish an Ω(

√
T (1 + PT )) lower bound.

The research on SOL is still on its early stage, and there are many open problems.

1. Although we can upper bound the sum of the hitting cost and the switching cost, we do not
have a direct control over the switching cost. However, in many real problems, there may
exist a hard constraint on the switching cost, motivating the study of switch-constrained
online learning, in which the times of switches are limited [Altschuler and Talwar, 2018,
Chen et al., 2020]. It would be interesting to investigate how to impose a budget on the
switching cost [Wang et al., 2021].

2. This work investigates competitive ratio and dynamic regret with switching cost separately.
To bound the two metrics simultaneously, one possible way is to create two experts which are
designed for competitive ratio and dynamic regret with switching cost respectively, and then
aggregate their predictions by the meta-algorithm of Daniely and Mansour [2019, Algorithm
2]. But we need to assume the hitting cost is bounded, because that meta-algorithm cannot
make use of the lookahead ability.

3. As aforementioned, for polyhedral functions and quadratic growth functions, the best
competitive ratio is obtained by the naive approach which ignores the switching cost, and
this fact is counterintuitive. To better understand the challenge, it is important to reveal the
lower bound of polyhedral functions and quadratic growth functions.
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