The Impact of Initialization
on LoRA Finetuning Dynamics

Soufiane Hayou Nikhil Ghosh Bin Yu
Simons Institute Dept of Statistics Dept of Statistics
UC Berkeley UC Berkeley UC Berkeley

hayou@berkeley.edu nikhil_ghosh@berkeley.edu binyu@berkeley.edu

Abstract

In this paper, we study the role of initialization in Low Rank Adaptation (LoRA)
as originally introduced in Hu et al. [19]. Essentially, to start from the pretrained
model as initialization for finetuning, one can either initialize B to zero and A
to random (default initialization in PEFT package), or vice-versa. In both cases,
the product BA is equal to zero at initialization, which makes finetuning starts
from the pretrained model. These two initialization schemes are seemingly sim-
ilar. They should in-principle yield the same performance and share the same
optimal learning rate. We demonstrate that this is an incorrect intuition and that
the first scheme (initializing B to zero and A to random) on average yields better
performance compared to the other scheme. Our theoretical analysis shows that
the reason behind this might be that the first initialization allows the use of larger
learning rates (without causing output instability) compared to the second initial-
ization, resulting in more efficient learning of the first scheme. We validate our
results with extensive experiments on LLMs.

1 Introduction

The pretrain-finetune paradigm (e.g., [7, 9]) has revolutionized deep learning, replacing task-specific
models trained from scratch with finetuning of pretrained base models. These base models, trained
on generic unsupervised objectives, learn powerful features that can be rapidly adapted to down-
stream tasks. The most effective models are consistently the largest ones [14, 25], with state-of-
the-art models reaching hundreds of billions of parameters. While many such models are openly
available (e.g., Llama by Touvron et al. [38]), full finetuning remains computationally prohibitive
for most practitioners. This has led to parameter-efficient finetuning methods, including adapters
[11], prompt tuning [20], and (1 A)3 [24].

Low Rank Adaptation (LoRA) [19] has emerged as a leading parameter-efficient method, training
only low-rank adapter matrices added to pretrained weights, typically using Adam [3]. LoRA often
matches or exceeds full-finetuning performance [35, 39], though it may underperform on complex
generation tasks. While prior work has examined rank [31] and learning rate [44] hyperparame-
ters, initialization schemes remain understudied. This work provides experimental and theoretical
justification for choosing between seemingly equivalent initialization approaches.

In standard LoRA training, one of the two LoRA matrices is initialized with random values and the
other is initialized to zero (see Section 2.1). Recently, in Meng et al. [48] the authors proposed an al-
ternative initialization scheme to LoRA which uses the top singular vectors of the pretrained weights
as opposed to a random initialization and showed improved training on several tasks. To further im-
prove LoRA training with quantization, Li et al. [34] introduced a new method called LoftQ for
computing a better initialization for quantized training [27]. However, to the best of our knowledge,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



there has not been any study concerning the random initialization in vanilla LoRA. Specifically, it is
not clear from prior work which of the two LoRA matrices should be initialized to be zero. Empirical
results by Zhu et al. [50] suggested that the two initialization schemes mentioned above yield simi-
lar performance, but it is not clear if the learning rate was well-tuned for each initialization scheme.
Our findings suggest that these two initialization schemes lead to fundamentally different finetuning
dynamics, and that one of these schemes generally yields better result compared to the other.

LoRA Variations. Beyond alter-
ing the LoRA initialization scheme,
there have been a series of works

which try to address limitations of S aenoum | A4=0

vanilla LoRA using different varia- e -2 Y CR V) Proana
tions. To further reduce the num- Minitia] > Minit(B] W::m
ber of trainable parameters, LoRA-

FA [42] freezes the A matrix which
leads to small performance loss while
reducing memory consumption by
up to 1.4x. The performance of " Width n
this training scheme is also investi-
gated in Zhu et al. [50]. VeRA [33]
freezes random weight tied adapters
and learns vector scalings of the in- — Init[A] (generally) leads to better performance
ternal adapter activations. LoRA-XS
[43] initializes the A and B matri-
ces using the SVD of the pretrained
weights and trains a low-rank update
of the form BRA where R is a train-
able r X r matrix and B, A are fixed.
NOLA [32] parametrizes the adapter
matrices to be linear combinations of
frozen random matrices and optimizes the linear coefficients of the mixtures. VB-LORA [46] shares
adapter parameters using a global vector bank. In order to improve the learning ability for more chal-
lenging finetuning tasks, Kalajdzievski [31] proposes a scaling rule for the scalar adapter multiplier
to unlock increased gains with higher adapter ranks. MoRA [45] learns high-rank updates while
still preserving parameter efficiency by applying hand-designed compress and decompress opera-
tions before and after a trainable adapter matrix. DoRA [47] decomposes the pretrained weight into
magnitude and direction components to allow for better training dynamics.

Optimal
Learning Rate
E)
+

More Efficient Stability with
Feature Learning with suboptimal Feature
some instability Learning A

Finetuning
Dynamics

Figure 1: Summary of our contributions in this paper: a de-
scription of the difference between the finetuning dynamics
when LoRA weights A and B are initialized with Init [A]
or Init[B].

Contributions. We study the impact of Initialization in LoRA through a theory of large width
for neural networks. The core approach is to take the width of a neural network to infinity and
determine how the behavior of the limit depends on the choice of the hyperparameters, such as
the learning rate and initialization. This approach allows to derive principled scaling choices for
these hyperparameters such that desired properties (e.g. stable feature learning) are achieved as the
network size grows (see Appendix A.2 for more details). Examples of the infinite-width limit include
works on initialization (e.g. He et al. [4]), and training dynamics (e.g. [21]). Examples for the depth
limit include initialization strategies [6, 10, 30], and depth scaling (see e.g. [18, 23, 28, 29, 37,
41]). A similar strategy was used to derive scaling rules for the LoRA learning rate in Hayou et al.
[44] (LoRA+) that concluded that the learning rates for different LoORA matrices should be scaled
differently to ensure optimal feature learning. In this work we use the same approach to provide
a systematic comparison between two different random initialization schemes for vanilla LoRA
finetuning (using the same learning rate for the A and B matrices). Using the notation Init [A] to
refer to the case where A is initialized to random and B to zero (as in [19]) and Init [B] for the
opposite, we show that Init[A] and Init [B] lead to fundamentally different training dynamics
(as shown in Figure 1):

1. Init[A] allows the use of larger learning rates compared to Init [B]

2. Init[A] leads to ‘internal instability’ where the features Az (for some input z) are large
but LoRA output BAz is small. This form of instability allows more efficient feature
learning. We identify a feature learning / stability tradeoff in this case.



3. Init[B] does not cause any instabilities but training is suboptimal (B is undertrained).

4. Empirical results confirm the theory and show that Init [A] generally leads to better per-
formance than Init [B].

2 Setup and Definitions
We consider a general neural network model of the form

Yi(z) = F(Wi, Yi1(x)), L € [L], @
Yout(m) = WoutYL($)7

where 2 € R? is the input, L > 1 is the network depth, (F1)ie(r) are mappings that define the layers,
and W; € R™ ™ are the hidden weights, where n is the network width, and Wy,,, W, are input
and output embedding weights.! This model will represent the pretrained model that will later be
finetuned on some new task.

To finetune a (large) pretrained model with a limited amount of computational resources, a popular
resource efficient approach is to use the LoRA finetuning method defined below.

Definition 1 (Low Rank Adapters (LoRA) from [19]). To apply LoRA to a weight matrix W &
R™ "2 jn the model, we constrain its update in the fine-tuning process by representing the latter
with a low-rank decomposition W = W* + < BA. Here, only the weight matrices B € R™*",
A € R"™"2 are trainable and the original pretrained weights W* remain frozen. The rank r <
min(ny, ne) and o € R are tunable constants.

As the width n grows,? the network initialization scheme and the learning rate should be adapted to
avoid numerical instabilities and ensure efficient learning. For instance, the variance of the initial-
ization weights (in hidden layers) should scale like 1/n to prevent the pre-activations from blowing
up as we increase model width n (e.g., He initialization [4]). To derive proper scaling rules, a prin-
cipled approach consist of analyzing the statistical properties of key quantities in the model (e.g.
second moment of the pre-activations) as n grows and then adjust the initialization variance, the
learning rate, and the architecture to achieve desirable properties in the limit n — oo [5, 10, 13,
40]. We use this approach to study the effect of initialization on the feature learning dynamics of
LoRA in the infinite-width limit. For more details about the theory of scaling of neural networks,
see Appendix A.2.

Throughout the paper, we will be using asymptotic notation to describe the behaviour of several
quantities as the width n grows. Note that the width n will be the only scaling dimension of neural
network training which grows and all other scaling dimensions such as the LoRA rank r, number
of layers L, sequence length, number of training steps, etc., will be considered as fixed. We use the
following notation for the asymptotic analysis.

Notation. Given sequences ¢, € R and d, € RT, we write ¢, = O(d,), resp. ¢, = Q(dy),
to refer to ¢, < kd,, resp. ¢, > kd,, for some constant £ > 0. We write ¢,, = O(d,,) if both
cn = O(d,) and ¢, = Q(d,,) are satisfied. For vector sequences ¢, = (c},)1<i<r € R* (for some
k > 0), we write ¢,, = O(d,,) when ¢!, = O(d!,) for all i € [k], and same holds for other asymptotic
notations. Finally, when the sequence c,, is a vector of random variables, convergence is understood
to be convergence in second moment (Lo norm).

2.1 Initialization of LoRA Adapters

The standard way to initialize trainable weights is to take an iid initialization of the entries A;; ~
N(0,02%), B;j ~ N(0,0%) for some 04,05 > 0 (this includes initialization with zeros if o5 or 0 4

"'We use the same notation from Hayou et al. [44].
’The width in SOTA models is typically large, i.e. of width n > 10°.



are set to 0).°. Due to the additive update structure of LoRA, we want to initialize the product BA
to be 0 so that finetuning starts from the pretrained model [19]. This can be achieved by initializing
one of the weights A and B to 0. If both are initialized to 0, no learning occurs in this case since this
is a saddle point and the parameter gradients will remain zero. Thus, we should initialize one of the
parameters A and B to be non-zero and the other to be zero. If we choose a non-zero initialization
for A, then following standard initialization schemes (e.g., He Init [4], LeCun Init [1]), one should
set 04 = ©(n™1) to ensure Az does not explode for large n. This is justified by the Central Limit
Theorem (CLT). On the other hand, if we choose a non-zero initialization for B, one should make
sure that 02 = ©(r~!) = ©(1). This leaves us with two possible initialization schemes:

* Init[A]: 0% = 0,0% = O(n~!) (default initialization in LoRA [19]).
e Init[B]: 0123 =0(r 1) = (9(1)7031 =04

These two initialization achieve the goal of starting finetuning from the pretrained model. A priori,
it is unclear if there is a material difference between the two initialization schemes. Surprisingly,
as we will show later in this paper, these two initialization schemes lead to fundamentally different
training dynamics when model width is large.

2.2 LoRA Features

Notation. For a given LoRA layer in the network, we use Z to denote the input to that layer and Z
for the output after adding the pretrained weights. More precisely, we can write the layer operation
as Z =W*Z+ ¢BAZ.

Our main analysis relies on a careful estimation of the magnitude of several quantities involving
LoRA features. Let us first give a formal definition.

Definition 2 (LoRA Features). Given a general neural architecture and a LoRA layer (Definition 1),
we define LoRA features (Za, Zp) as Za = AZ and Zp = BZ 4 = BAZ. At fine-tuning step t, we
use the superscript t to denote the value of LoRA features Z'y, Z', and the subscript t to denote the
weights Ay, Bs.

3 LoRA Finetuning Dynamics in the Large Width Limit

We fix the LoRA rank 7 throughout the analysis and examine the finetuning dynamics in the limit
of large width. This setup aligns well with practical scenarios where the rank is much smaller
than the width (i.e., r < n ). Typically, for Llama models the rank r is generally of order 2* for
k € {2,...,6}, and model width n is generally larger than 2'2. We will refer to a layer of the
network to which LoRA is applied (see Definition 1) as a LoRA layer. For the theoretical analysis,
we adopt a simplified setting that facilitates a rigorous yet intuitive derivations of the results.

3.1 Simplified Setting

The following simplified setup was considered in Hayou et al. [44] to derive asymptotic results
concerning the learning rates in LoRA. We use the same setup in our analysis to investigate the
impact of initialization.

Finetuning Dataset. We assume that the dataset used for finetuning consists of a single datapoint
(x,y),” and the goal is to minimize the loss calculated with the model with adjusted weights W* +
BA for all LoRA layers (here @ = { A, B, for all LoRA layers in the model}). Z' is the input to the
LoRA layer, computed with data input z. Similarly, we write dZ* to denote the gradient of the loss
function with respect to the layer output features Z evaluated at data point (z, y).

3Gaussianity is not important and can be replaced by any zero-mean distribution with finite-variance for our
purposes.

*Here, we assumed that » = ©(1) (in width), i.e. it doesn’t grow with width. In general, the right scaling
for Init[B] is 0 = ©(r™1).

3 Although this a simplifying assumption for our analysis, the results can be extended to mini-batched gra-
dients without affecting the conclusions. Such results will require additional assumptions to be fully rigorous.



Single LoRA Module. Given a LoRA layer, LoRA feature updates are not only driven by the
change in the A, B weights, but also the changes in Z,dZ which are updated as we finetune the
model (assuming there are multiple LoRA layers). To isolate the contribution of individual LoRA
layers to feature learning, we assume that only a single LoRA layer is trainable and all other LoORA
layers are frozen.® For this LoRA layer the layer input Z is fixed and does not change with ¢, whereas
dZ changes with step ¢ (because Z' = (W* + £ B, A;)Z). After step t, Zp is updated as follows

AZL = B, 1 AZY + ABZ'T + ABAZY. )
—— ———
51 82 o3

As discussed in Hayou et al. [44], the terms 6}, 67 represent ‘linear’ feature updates that we obtain
if we fix one weight matrix and only train the other. The third term &3 represents the ‘multiplicative’
feature update which captures the compounded update due to updating both A and B.

3.2 Stability and Feature Learning

Hayou et al. [44] introduced the notion of stability of LoRA features as width grows. We introduce
here a slightly more relaxed notion of stability.

Definition 3 (Feature Stability). We say that LoRA finetuning is stable if for all LoRA layers in the
model, and all training steps t, we have Z, Zp = O(1), as the width n goes to infiniry.

Here, feature stability implies that LoRA output Zp remains bounded (in L? norm) as width grows.
To achieve such stability, hyperparameters (initialization, learning rate) should be scaled as n grows.
We will show that the dependence of the optimal learning rate on n is highly sensitive to the choice
of initialization (Init [A] or Init [B]).

Note that feature stability also requires that Z = (O(1) which is directly related to pretraining dynam-
ics since it depends on some pretrained weights W*. We assume that pretraining parameterization
(how initialization and learning rate are parametrized w.r.t width) ensures this kind of stability (see
Appendix A for more details).’

As discussed above, feature updates are driven by the terms (5;')7;6{1,2737}. As n grows, these feature
updates might become trivial (i.e. vanish as n — 00) or unstable (i.e. grows unbounded). To avoid
such scenarios, we want to ensure that AZp = ©(1). Such conditions are the main ideas behind
wP [26] and Depth-uP [41], which are network parametrizations that ensure stability and feature
learning in the large width and depth limits for pretraining. We recall this definition from [44].

Definition 4 (Feature Learning). We say that LoRA finetuning induces stable feature learning in the
limit of large width if the dynamics are stable (Definition 3), and for all finetuning steps t, we have

Azt %z gt — 9(1).

AZp is the sum of the terms 52’5 (Equation (2)). To achieve optimal feature learning, we want to
ensure that 6} = ©(1) and §? = ©(1) which means that both weight matrices A and B are efficiently
updated and contribute to the update in Zp. An intuitive explanation is provided in Appendix A.1.
This leads us to the following definition of efficient learning with LoRA.

Definition 5 (Efficient Learning with LoRA). We say that LoRA fine-tuning is efficient if it is stable
(Definition 3), and for all LoRA layers in the model, and all fine-tuning steps t > 1, we have

si=0(1), iec{1,2}).

Next, we introduce the ~y-operator, an essential tool in our analysis of the large width dynamics.

SThis is equivalent to having only a single LoRA layer in the model since LoRA layers are initialized to
Zero.

"When taking the infinite width limit, we can for instance assume that pretraining parameterization is pP
[26]. This is a technicality for the infinite-width limit and does not have any implications on practical scenarios
where the width is finite. The most important implications of this assumption is that in the pretrained network
(before introducing LoRA layers), we have Z = (1), Z = ©(1), which holds for a general input-output pair

(z,y).



3.3 Introduction to the y-operator

In the theory of scaling, one usually tracks the asymptotic behavior of key quantities as we scale
some model ingredient. For instance, if we scale the width n of a neural network, we are interested
in quantifying how certain quantities in the network behave as n grows. This is a standard approach
for (principled) model scaling and it has so far been used to derive scaling rules for initialization [5],
activation function [10], network parametrization [41], amongst other things.

With Init [A] and Init [B], initialization weights are of order ©(n~") for some 3 > 0. Assuming
that the learning rate also scales polynomialy with n, it is straightforward that preactivations, gra-
dients, and weight updates are all asymptotically polynomial in n. Note that this is only possible
because all neural computations consists of sums of ©(n®) terms, where typically o € {0,1}. For
instance, when calculating the features AZ, each entry is a sum of n terms, while when calculating
BZ 4, each entry is a sum of r terms (r fixed as n goes to infinity). This is true for general neural
computation that can be expressed as Tensor Programs [15].

Consequently, for some quantity v in the computation graph, it is natural to track the exponent that
determines the asymptotic behavior of v with respect to n. We write v = ©(v[v]) to capture this
polynomial dependence. Elementary operations with the ~y-operator include:

Zero. When v = 0, we write y[v] = —oo (as a limit of v[n "] when 8 — 0).
Multiplication. Given two real-valued variables v, v/, we have y[v x v'] = v[v] + y[v'].

Addition. Given two real-valued variables v, v’, we generally have y[v + v'] = max(y[v], y[v']).
The only case where this is violated is when v’ = —wv. This is generally a zero probability event if v
and v’ are random variables that are not perfectly (negatively) correlated, which is the case in most
situations where we make use of this formula. See Appendix A.3 for discussion.

We have now introduced all required notions for the subsequent analysis. For better readability, we
defer all the proofs to the appendix.

3.4 Recursive formulas

Using the y-operator, we can track the asymptotic behavior of the finetuning dynamics as model
width n grows. At finetuning step ¢, the weights are updated as follows

Ay =A1 — 779271, B = Bi_1 — ﬂgtgfl,

where g4, gp are processed gradients (e.g. normalized gradients with momentum as in AdamW).
We assume that the gradients are processed in a way that makes their entries ©(1). This is gen-
erally satisfied in practice (with Adam for instance) and has been considered in [40] to derive the
p-parametrization for general gradient processing functions. From this, we obtain the following
recursive formulas for v[Z%] and [B], which characterizes their behavior in the large width limit.

Lemma 1 (Informal). For t fixed, the asymptotic dynamics of Z', and By follow the recursive
formula
1Z4] = max(v[Z ], v [n) + 1)

v[By] = max(y[B;_1j], v[n))- 3)

The formal proof of Lemma 1 is provided in Appendix A and relies on Assumption 1 which fairly
represents practical scenarios (see Appendix A for a detailed discussion). Lemma 1 captures the
change in asymptotic behavior of quantities Z and B; as width grows. Naturally, the dynamics
depend on the the initialization scheme which lead to completely different behaviors as we show in
the next two results.

3.5 Init[A] leads to more efficient feature learning but suffers “internal’ instability

Next, we provide a precise characterization of stability and feature learning when using Init [A].
Theorem 1 (Informal). For t fixed, with Intt [A] and learning rate 1), we have

8The ~-operator is a mapping from the set {v, s.tv = ©(n®) for 8 € RU {—o0}} to the set R U {—oc}.



e Stability: Z% = O(1) if and only if y[n] < —1/2.

e Feature Learning: AZY = O(1) if and only if y[n] = —1/2. In this case, we also have
51,62 = ©(1) (efficient feature learning, Definition 5).

Moreover, “internal” instability (Z', = Q(1)) occurs when y[n] € (—1,1/2].

With Init [A], the maximal learning rate’ that does not lead to instability in Zp scales as ©(n~1/2).
This can be seen as an asymptotic form of the edge of stability phenomenon [17] where if we increase
the learning rate beyond some level, instability occurs. Interestingly, in this case (i.e. with ©(n~1/2)
learning rate) the features are efficiently updated (Definition 5). However, this comes with caveat:
the features Z', grow as @(nl/ 2) which can potentially cause numerical instabilities. We call this
phenomenon internal instability: only the features Z 4 (internal LoRA features) grows, LoRA output
Zp remains ©(1) in this case.

The fact that ©(n~'/2) is the maximal learning rate that does not cause instability in Zp does not
mean it is the optimal learning rate. As the width n grows, this internal instability in Z4 will become
more and more problematic. Intuitively, we expect that a trade-off appears in this case: the optimal
learning rate (found by grid search) to be larger than ©(n~') but smaller than ©(n~'/2), i.e. the
network will try to achieve a balance between optimal feature learning (7y[] = —1/2) and internal
stability Z% = ©(1) (y[n] = —1). We verify this empirically in the next section.

3.6 Init[B] leads to suboptimal feature learning with internal stability

In the next result, we show that the maximal learning rate allowed with Init [B] is different from
that with Init [A], leading to completely different dynamics.

Theorem 2 (Informal). Fort fixed, with Init [B], we have
e Stability: Z& = O(1) if and only if vy[n] < —1.
e Feature Learning: AZ% = O(1) if and only if v[n] = —1.

Moreover, efficient feature learning cannot be achieved with Init [B] for any choice of learning rate
scaling ~y[n] (that does not violate the stability condition). More precisely, with ©(n™1) learning
rate, the limiting dynamics (when n — o) are the same if B was not trained and A is trained.

With Init [B], the maximal learning rate (that does not violate stability) scales as @(n_l) (for any
€ > 0, a learning rate of ©(n~17¢) leads to Zp = Q(1)).

Because of this bound on the maximal learning rate, no internal instability occurs with Init [B]. In
this case, feature learning is suboptimal since the B weight matrix is undertrained in the large width
limit (67 — 0).

Conclusions from Sections 3.5 and 3.6. The results of Theorem 1 and Theorem 2 suggest that
Init [A] allows the use of larger learning rates compared to Init [B], which might lead to better
feature learning and hence better performance at the expense of some internal instability. Here,
‘larger’ learning rate should be interpreted in asymptotic terms: with Init [A] the maximal learning
rate that does not cause instability satisfies v[n] = —1/2. With Init[B], we have v[n] = —1
instead. Note that because of the constants in ©(n”) learning rates (for some j3) , the optimal
learning rate with Init [A] is not systematically larger than Init [B] for finite width. However, as
width grows, we will see that it is case.

Another important insight from this analysis is that with both initializations, the dynamics are sub-
optimal in the limit: internal instability with Init [A] and undertraining of B with Init [B].!" We
will later discuss possible solutions to this behavior.

9Maximal ~y[r)] that does not cause instability in Zp
""More precisely, one can show that with Init [B], for fixed ¢, in the limit n — co, B converges to B, i.e.
B is untrained in this limit.



Width = 128

Init[A]

Init[B]

1=4.2e-04, n=1.6e-02

£=5.3e-04, n=8.1e-03

Width = 8192

Init[A]

Init[B]

£=2.4e-04, n=1.4e-03

1=3.7e-04, n=4.8e-04

1.5 1.5 6 6

— Az
1.0 1 1.0 4 4 — [BAZ| 2
=
0.51 0.51 2 24 -
0.0 0.0 0 0
1 =3.0e-04, n=2.3e-02 1=3.0e-04, n=1.2e-02 £ =2.9e-04, n=1.2e-03 {=3.6e-04, n=9.8e-04
1.51 1.51
41 44 v
1.01 1.01 K4
/\/\/ 2
054 054 /Aeh—d 24 24 ﬁ N}
0.0 T ~ 0.0 - T T 0 T ~ 0H T T
0 50 100 0 50 100 0 50 100 0 50 100
step step step step

Figure 3: Evolution of the norms of the Z 4, Zp features, averaged over training data. We compute the average

|Z Al ef N1 SN [Za(2:)|| (and same for Zg), where the x;’s are the training data. The dynamics are
shown for widths n = 128 and n = 8192, two seeds, and for both Init [A] and Init [B]. Train loss and the
(optimal) learning rate are shown on top of each plot. We observe that the magnitude of Z4 is significantly
higher with Init [A] compared to Init [B] at large width (n = 8192). Interestingly, the train loss is smaller
with Init [A], as compared to Init [B]. Results with other seeds and widths are shown in Appendix B.

3.7 Toy Model

To validate our theory in a controlled setting, we con-

sider the following simple model: 2 B I i
2—7 4

}/:i = Winxa 2-8

Yo=Y, + (Wh + BA)(b(Y;n) @ n 2-9

Yout = Woutd(Yh) 271 niwiag
where W;,, € R™*4 W), € R™" W,,, € R*", - o

T
and B, A E RTXTL. 2'3 2’9 2’10 2’11 2’12 2’13
We generate synthetic data from the teacher model n
using the following config: d = 5,7teacher =
20,n = 1000,N = 1000 .(train data Si;e), Figure 2: Optimal Learning rate for the fine-
and Niesy = 100 (test data size). The weight tuning of synthetic model Equation (4) with

szﬁacher’ Wgzgcher7 Ateacher7 and Bteacher are ran-

domly initialized, and W,ﬁe‘wh” = 0."" We train stu-
dent models with d = 5,7 = 4, and varying widths
nef{2r k=1,...,13}"7

Init[A] and Init[B] as initialization. The
optimal LRs are shown as a function of width
n. Theoretical lines n~! and n~'/2 are shown
as well (constants C, C> are chosen to provide
suitable trend visualization). As model width n
grows, the optimal learning rate with Init [A]
becomes larger than the optimal learning rate
with Init [B]. This is in agreement with the the-
oretical results.

Optimal Learning Rate. We finetune model (4) on
synthetic data generated from the teacher model. In
Figure 2, we show the optimal learning rate when us-
ing either Init [A] or Init [B] to initialize the fine-
tuning, as a function of width n. For n >> 1 (typically n > 27), the optimal learning rate with
Init[A] is larger than the optimal learning rate with Init [B]. This is in agreement with the the-
oretical results obtained in Theorem | and Theorem 2 which predict asymptotic maximal learning
rates (that satisfy the stability condition) of ©(n~1/2) and ©(n ') respectively.

With Init [A], we observe the stability/feature learning trade-off for large n. The optimal learning
rate with Init [A] in this regime (e.g. n = 2'3) is smaller than the maximal theoretical learning

"Here, the pretrained model is effectively given by Yo.: = WZIee e ¢(Wieeeher ), and the finetuning
dataset is simulated by injecting the LoRA weights A‘eacher pteacher
I this setup, a student model can have larger width n than the teacher model.



rate 7~ /2 that achieves optimal feature learning (Theorem 1). Here, the model seems to balance

the internal instability that occurs in the Z4 features with feature learning and thus favors smaller
learning rates: the optimal learning rates is smaller than ©(n~'/2) and larger than ©(n~1).

Internal Instability and Feature Learning.  Figure 3 shows the average magnitude of Z4 and
Zp for Init[A] and Init[B] for widths n € {128,8192}. With Init[A], the magnitude of
Z 4 features seem to grow with width, hence trading off internal stability for more efficient feature
learning. This behavior is consistent across random seeds as shown in the figure, and as further
confirmed by experiments in Appendix B. The train loss is consistently smaller with Init [A], which
can be explained by the fact that Init [A] allows more efficient feature learning at the cost of some
internal instability. This flexibility cannot be achieved with Init [B]. Note also that Zp features
tends to get smaller with n with Init[A] as predicted by theory: the trade-off between internal
instability and feature learning implies that * = o(n~'/2), which implies that Z4 = o(1), i.e. the
Z p features vanish as width grows. While this might problematic, it only becomes an issue when
the width is extremely large: if the optimal learning rate scales as ©(n~?) for some 3 € (1/2,1) (so
that the learning rate is between ©(n ') and ©(n~'/2), balancing internal instability and efficient
feature learning), the LoRA output feature scales as Zgp = B, AZ = @(n’B“). Therefore, if
B ~ 0.7 for instance, the vanishing rate of LoRA output feature is Zg ~ O(n~%%) which is slow
given the order of magnitude of width in practice (for n = 2'2, we have n=%3 ~ 0.08).

4 Experiments with Language Models

Our theoretical results from earlier provides a detailed asymptotic analysis of the finetuning dy-
namics when LoRA modules are initialized with Init [A] or Init [B]. The main conclusions are
that Init [A] generally leads to more efficient feature learning (which can be justified by the fact
that optimal learning rate is larger when using Init [A] compared to when using Init[B]). To
provide evidence of this claim on real-world tasks, we use LoRA to finetune a set of language
models on different benchmarks. Details about the experimental setup and more empirical re-
sults are provided in Appendix B. We use LoRA+ code [44] for our experiments (available at
https://github.com/nikhil-ghosh-berkeley/loraplus).

4.1 GLUE tasks with RoBERTa

The GLUE benchmark (General Language Understanding Evaluation) consists of several language
tasks that evaluate the understanding capabilities of langugage models [8]. Using LoRA, we fine-
tune Roberta-large from the RoOBERTa family [12] on MNLI, SST2, and QNLI tasks with varying
learning rates 7 and initialization schemes (Init [A] or Init [B]). We use the same experimental
setup of [19] for Roberta-Large to compare our results with theirs (see Appendix B for more details).

0.91

0.81

g o7
<

?}06
©

Init[A]: Acc =90.69, n* = 8.0e-05
Init[B]: Acc =89.47, n* =1.0e-05

Init[Al: Acc = 96.67, n* = 1.6e-04
Init[B]: Acc = 96.44, n* = 4.0e-05

Init[A]: Acc =95.09, n* = 8.0e-05
Init[B]: Acc =93.61, n* =8.0e-05

— Init[B]
Init[A]

0.9

Test Acc
e o
I

o
o

— Init[B]
Init{A]

0.950
0.925
0.900

o

9

< 0.875

k]

@ 0.850
0.825

0.800

—— Init[B]
Init[A]

o
[

1073 1074 1073

n n n

1074

Figure 4: Test Accuracy for RoBERTa-Large finetuned on GLUE tasks. The results are shown after con-
vergence of finetuning with LoRA, initialized with either Init [A] or Init [B]. Models were finetuned using
LoRA rank r = 8 and FP16 precision. Optimal learning rate and corresponding accuracy are shown on top of
each panel for both initializations. The experimental setup is provided in Appendix B.

The results in Figure 4 are aligned with our theory: we observe that Init [A] generally leads to bet-
ter performance, and the optimal learning rate with Init [A] is generally larger than with Init [B].
Models initialized with Init [A] match the performances reported in [19], while those initialized
with Init [B] generally underperform that baseline. For MNLI task (the hardest one amongst the


https://github.com/nikhil-ghosh-berkeley/loraplus

three tasks), we observe a significant difference in the best test accuracy (over 3 random seeds) with
90.69 with Init [A] and 89.47 with Init [B]. We also observe that for MNLI, the optimal learn-
ing rate with Init[A] (n* = 8e-5) is much larger than the optimal learning rate with Init [B]
(n* = le-5), which aligns with our theoretical predictions. However, note that for QNLI for in-
stance (an easier task), while the optimal test accuracy is significantly better with Init[A], the
optimal learning rate (from the grid search) is the same for Init [A] and Init [B]. There are many
possible explanations for this: 1) the width is not large enough in this case to see the gap between
optimal learning rates (for ROBERTa-Large, the width is n = 2'°) 2) The constants in ©(n ") are
@(n‘l/ 2) are significantly different in magnitude due to dependence on finetuning task. We notice
similar behaviour with LLama experiments below. A precise analysis of this observation is beyond
the scope of this paper, we leave it for future work.

4.2 Llama

TinyLlama on Wi

init[A]: PPL = 7.089,
init[B]: PPL = 7.151,

Llama-7b on Flan-v2 Llama-7b on GSM8k

init[A]: Acc = 0.410, n* = 4.0e-04 init[A]: Acc = 0.260, n* = 1.0e-03
init[B]: Acc = 0.406, n* = 4.0e-04 init[B]: Acc = 0.239, n* = 1.0e-03

inie]
int(a) 0.40 0261 — init(B]
8.2 0.24 init[A]
> 5038 N /\
£s0 \ go22 \

@
Cosey € om0
3

I+
Zo34

8
<o.18
716 032 % /
] s 8 016
Fra =030 =
02s] — init[B] 0.14
72 - init[A]

012
0.26
10-° 107* 102 107* 103 10 10 103
n n n

Figure 5: (Left) Test perplexity (lower is better) of TinyLlama LoRA on WikiText-2 with Init[A] and
Init[B]. (Center) MMLU accuracy of Llama-7b LoRA finetuned on the Flan-v2 dataset. (Right) GSM8k
test accuracy of Llama-7b LoRA finetuned on the GSM8k dataset. More experimental details are provided in
Appendix B.

To further validate our theoretical findings on more modern models and datasets, we report the
results of finetuning the Llama-7b model [38] on the Flan-v2 dataset [36] and the GSM8k dataset
[16], and finetuning the TinyLlama model [49] on WikiText-2 using LoRA. Each trial is averaged
over two seeds and the shaded region indicates one standard error. In the left panel of Figure 5 we
see that when finetuning TinyLlama using LoRA the optimal learning rate using Init [A] is larger
than with Init [B] and the corresponding test perplexity is lower. Similarly, for the center panel of
Figure 5, when finetuning the Llama-7b model on Flan-v2, the optimal learning rates for Init [A]
and Init [B] are the same (for the learning rate grid we used), but the the optimal MMLU accuracy
for Init [A] is slightly higher than for Init [B]. For learning rates close to the optimal choice, the
accuracy using Init[A] is generally higher than for Init [B]. An analagous result holds for the
GSM&k dataset as shown in the rightmost panel of Figure 5. More details about this setting are
provided in Appendix B.

5 Conclusion and Limitations

We showed that LoRA dynamics are highly sensitive to initialization. Init [A] is associated with
larger optimal learning rates, compared to Init [B]. Larger learning rates typically result in better
performance, as confirmed by our empirical results. Note that this is a zero-cost adjustment with
LoRA finetuning: we simply recommend using Init [4] instead of Init [B].

One limitation of our work is that we only define feature learning via the magnitude of feature
updates in the limit of large width. In this way, our definition of feature learning is data-agnostic
and therefore no conclusion about generalization can be obtained with this analysis. The constants
in ©(.) asymptotic notation naturally depend on the data (the finetuning task) and therefore such
data-agnostic approach does not allow us to infer any information about the impact of the data on
the finetuning dynamics.

More importantly, our results indicate that both initialization schemes lead to suboptimal scenarios,
although Init [A] allows more efficient feature learning. In both cases, instability and/or suboptimal
feature learning present fundamental issues, which can potentially be mitigated by approaches such
as LoRA+ [44]. Understanding the interaction of LoRA+ and related efficiency methods with the
initialization scheme is an important question for future work.

10



6 Acknowledgement

We thank Gradient Al for cloud credits under the Gradient Al fellowship awarded to SH and thank
AWS for cloud credits under an Amazon Research Grant awarded to the Yu Group. We also grate-
fully acknowledge partial support from NSF grants DMS-2209975, 2015341, 20241842, NSF grant
2023505 on Collaborative Research: Foundations of Data Science Institute (FODSI), the NSF and
the Simons Foundation for the Collaboration on the Theoretical Foundations of Deep Learning
through awards DMS-2031883 and 814639, and NSF grant MC2378 to the Institute for Artificial
CyberThreat Intelligence and OperatioN (ACTION).

11



References

(1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller. “Efficient backprop”. In: Neural networks:
Tricks of the trade. Springer, 2002, pp. 9-50.

L. Yang, S. Hanneke, and J. Carbonell. “A theory of transfer learning with applications to
active learning”. In: Machine learning 90 (2013), pp. 161-189.

D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770—
778.

S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. “Deep Information Propagation”.
In: International Conference on Learning Representations. 2017.

S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep Information Propaga-
tion. 2017. arXiv: 1611.01232 [stat.ML].

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. “Improving language understand-
ing by generative pre-training”. In: (2018).

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding. 2018. arXiv: 1804 .
07461 [cs.CL].

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding”. In: arXiv preprint arXiv:1810.04805
(2019).

S. Hayou, A. Doucet, and J. Rousseau. “On the Impact of the Activation function on Deep
Neural Networks Training”. In: Proceedings of the 36th International Conference on Ma-
chine Learning. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, Sept. 2019, pp. 2672-2680.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M.
Attariyan, and S. Gelly. ‘“Parameter-efficient transfer learning for NLP”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 2790-2799.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. arXiv:
1907.11692 [cs.CL].

G. Yang. “Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation”. In: arXiv preprint
arXiv:1902.04760 (2019).

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. “Scaling laws for neural language models”. In: arXiv preprint
arXiv:2001.08361 (2020).

G. Yang. “Tensor programs iii: Neural matrix laws”. In: arXiv preprint arXiv:2009.10685
(2020).

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J.
Hilton, R. Nakano, et al. “Training verifiers to solve math word problems”. In: arXiv preprint
arXiv:2110.14168 (2021).

J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. “Gradient Descent on Neural Net-
works Typically Occurs at the Edge of Stability”. In: International Conference on Learning
Representations. 2021.

S. Hayou, E. Clerico, B. He, G. Deligiannidis, A. Doucet, and J. Rousseau. “Stable ResNet”.
In: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics.
Ed. by A. Banerjee and K. Fukumizu. Vol. 130. Proceedings of Machine Learning Research.
PMLR, 13-15 Apr 2021, pp. 1324-1332.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. “LoRA:
Low-Rank Adaptation of Large Language Models”. In: arXiv preprint arXiv:2106.09685
(2021).

B. Lester, R. Al-Rfou, and N. Constant. “The power of scale for parameter-efficient prompt
tuning”. In: arXiv preprint arXiv:2104.08691 (2021).

12


https://arxiv.org/abs/1611.01232
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1907.11692

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Yang and E. J. Hu. “Tensor programs iv: Feature learning in infinite-width neural net-
works”. In: International Conference on Machine Learning. PMLR. 2021, pp. 11727-11737.
J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las
Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den
Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals,
and L. Sifre. Training Compute-Optimal Large Language Models. 2022. arXiv: 2203 . 15556
[cs.CL].

M. Li, M. Nica, and D. Roy. “The Neural Covariance SDE: Shaped Infinite Depth-and-Width
Networks at Initialization”. In: Advances in Neural Information Processing Systems. Ed. by
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Asso-
ciates, Inc., 2022, pp. 10795-10808.

H. Liu, D. Tam, M. Mugeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel. “Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning”. In: Advances
in Neural Information Processing Systems 35 (2022), pp. 1950-1965.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, et al. “Emergent abilities of large language models”. In: arXiv preprint
arXiv:2206.07682 (2022).

G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen,
and J. Gao. “Tensor programs v: Tuning large neural networks via zero-shot hyperparameter
transfer”. In: arXiv preprint arXiv:2203.03466 (2022).

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. “QLoRA: Efficient Finetuning of
Quantized LLMSs”. In: arXiv preprint arXiv:2305.14314 (2023).

S. Hayou. “On the infinite-depth limit of finite-width neural networks”. In: Transactions on
Machine Learning Research (2023). 1SSN: 2835-8856.

S. Hayou and G. Yang. “Width and Depth Limits Commute in Residual Networks”. In: Pro-
ceedings of the 40th International Conference on Machine Learning. Ed. by A. Krause, E.
Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett. Vol. 202. Proceedings of Ma-
chine Learning Research. PMLR, 23-29 Jul 2023, pp. 12700-12723.

B. He, J. Martens, G. Zhang, A. Botev, A. Brock, S. L. Smith, and Y. W. Teh. Deep Trans-
formers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation. 2023.
arXiv: 2302.10322 [cs.LG].

D. Kalajdzievski. “A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA”. In:
arXiv preprint arXiv:2312.03732 (2023).

S. A. Koohpayegani, K. Navaneet, P. Nooralinejad, S. Kolouri, and H. Pirsiavash.
“NOLA: Networks as linear combination of low rank random basis”. In: arXiv preprint
arXiv:2310.02556 (2023).

D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. “VeRA: Vector-based Random Matrix
Adaptation”. In: arXiv preprint arXiv:2310.11454 (2023).

Y. Li, Y. Yu, C. Liang, P. He, N. Karampatziakis, W. Chen, and T. Zhao. “Loftq: Lora-fine-
tuning-aware quantization for large language models”. In: arXiv preprint arXiv:2310.08659
(2023).

H. Liu, C. Li, Y. Li, and Y. J. Lee. “Improved baselines with visual instruction tuning”. In:
arXiv preprint arXiv:2310.03744 (2023).

S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B. Zoph, J.
Wei, et al. “The flan collection: Designing data and methods for effective instruction tuning”.
In: arXiv preprint arXiv:2301.13688 (2023).

L. Noci, C. Li, M. B. Li, B. He, T. Hofmann, C. Maddison, and D. M. Roy. The Shaped
Transformer: Attention Models in the Infinite Depth-and-Width Limit. 2023. arXiv: 2306 .
17759 [stat.ML].

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P.
Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J.
Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura,
M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P.
Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R.
Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan,

13


https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2302.10322
https://arxiv.org/abs/2306.17759
https://arxiv.org/abs/2306.17759

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]
[49]

[50]

P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:
arXiv preprint arXiv:2307.09288 (2023).

Y. Wang, H. Ivison, P. Dasigi, J. Hessel, T. Khot, K. R. Chandu, D. Wadden, K. MacMillan,
N. A. Smith, I. Beltagy, et al. “How Far Can Camels Go? Exploring the State of Instruction
Tuning on Open Resources”. In: arXiv preprint arXiv:2306.04751 (2023).

G. Yang and E. Littwin. “Tensor programs ivb: Adaptive optimization in the infinite-width
limit”. In: arXiv preprint arXiv:2308.01814 (2023).

G. Yang, D. Yu, C. Zhu, and S. Hayou. “Tensor Programs VI: Feature Learning in Infinite-
Depth Neural Networks”. In: arXiv preprint arXiv:2310.02244 (2023).

L. Zhang, L. Zhang, S. Shi, X. Chu, and B. Li. “Lora-fa: Memory-efficient low-rank adapta-
tion for large language models fine-tuning”. In: arXiv preprint arXiv:2308.03303 (2023).

K. Batazy, M. Banaei, K. Aberer, and J. Tabor. “LoRA-XS: Low-Rank Adaptation with Ex-
tremely Small Number of Parameters”. In: arXiv preprint arXiv:2405.17604 (2024).

S. Hayou, N. Ghosh, and B. Yu. LoRA+: Efficient Low Rank Adaptation of Large Models.
2024. arXiv: 2402.12354 [cs.LG].

T. Jiang, S. Huang, S. Luo, Z. Zhang, H. Huang, F. Wei, W. Deng, F. Sun, Q. Zhang, D. Wang,
et al. “MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning”. In: arXiv preprint
arXiv:2405.12130 (2024).

Y. Li, S. Han, and S. Ji. “VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector
Banks”. In: arXiv preprint arXiv:2405.15179 (2024).

S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and M.-H. Chen.
“DoRA: Weight-Decomposed Low-Rank Adaptation”. In: arXiv preprint arXiv:2402.09353
(2024).

F. Meng, Z. Wang, and M. Zhang. “PiSSA: Principal Singular Values and Singular Vectors
Adaptation of Large Language Models”. In: arXiv preprint arXiv:2404.02948 (2024).

P. Zhang, G. Zeng, T. Wang, and W. Lu. “Tinyllama: An open-source small language model”.
In: arXiv preprint arXiv:2401.02385 (2024).

J. Zhu, K. Greenewald, K. Nadjahi, H. S. de OCAiriZ Borde, R. B. Gabrielsson, L. Choshen,
M. Ghassemi, M. Yurochkin, and J. Solomon. Asymmetry in Low-Rank Adapters of Founda-
tion Models. 2024. arXiv: 2402.16842 [cs.LG].

14


https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/2402.16842

A Theory and Proofs

A.1 Role of A and B weight matrices

Recall the feature update decomposition

AZL = B, 1AZY + ABZ'T + ABAZY. (5)
—_— Y~
5} 52 53

To achieve optimal feature learning, we want to ensure that §; = ©(1) and 67 = ©(1) which means
that both weight matrices A and B are efficiently updated and contribute to the update in Zg. To
justify why this is a desirable property, let us analyze how changes in matrices A and B affect LoRA
feature Zgp = BAZ.

Let (B:,i)lgq;gr denote the columns of B. We have the following decomposition of Zp:

s

Zp =Y (AZ),B.;,

i=1

where (AZ); is the it" coordinate of AZ. This decomposition suggests that the direction of Zp is a
weighted sum of the columns of B, and A modulates the weights. With this, we can also write

6 =3 ((AAZ)i(B.i)i—1
6 =31 [(A1Z)i(AB.;)¢-1,

where (B. ;); refers to the columns of B at time step ¢. Having both &} and 67 of order ©(1) means
that both A and B are ‘sufficiently’ updated to induce a change in weights (AZ); and directions B, ;.
If one of the matrices A, B is not efficiently updated, we might end up with suboptimal finetuning,
leading to either non updated directions B or direction weights (A;_1 7). For instance, assuming
that the model is initialized with Init [B], and that B is not efficiently updated, the direction of Zp
will be mostly determined by the vector (sub)space of dimension r generated by the columns of B
at initialization.

This intuition was discussed in details in [44].

A.2 Scaling of Neural Networks

Scaling refers to the process of increasing the size of one of the ingredients in the model to improve
performance (see e.g. [22]). This includes model capacity which can be increased via width (em-
bedding dimension) or depth (number of layers) or both, compute (training data), number of training
steps etc. In this paper, we are interested in scaling model capacity via the width n. This is motivated
by the fact that most state-of-the-art language and vision models have large width.

It is well known that as the width n grows, the network initialization scheme and the learning should
be adapted to avoid numerical instabilities and ensure efficient learning. For instance, the initial-
ization variance should scale 1/n to prevent arbitrarily large pre-activations as we increase model
width n (e.g. He init [4]). To derive such scaling rules, a principled approach consist of analyzing
statistical properties of key quantities in the model (e.g. pre-activations) as n grows and then adjust
the initialization, the learning rate, and the architecture itself to achieve desirable properties in the
limit n — oo [5, 10, 13].

In this context, Yang et al. [26] introduces the Maximal Update Parameterization (or uP), a set of
scaling rules for the initialization scheme, the learning rate, and the network architecture that ensure
stability and maximal feature learning in the infinite width limit. Stability is defined by Y}’ = ©(1)
for all [ and ¢ where the asymptotic notation ‘©(.)’ is with respect to width n (see next paragraph
for a formal definition), and feature learning is defined by AY; = O(1), where A refers to the
feature update after taking a gradient step. uP guarantees that these two conditions are satisfied at
any training step t. Roughly speaking, uP specifies that hidden weights should be initialized with
O©(n~'/?) random weights, and weight updates should be of order ©(n ). Input weights should be
initialized ©(1) and the weights update should be ©(1) as well. While the output weights should be

15



initialized ©(n~!) and updated with ©(n ). These rules ensure both stability and feature learning
in the infinite-width limit, in contrast to standard parameterization (exploding features if the learning
rate is well tuned), and kernel parameterizations (e.g. Neural Tangent Kernel parameterization where
AY; = ©(n~1/2), i.e. no feature learning in the limit).

A.3 When does y-Operator fail to capture asymptotic behavior?

When non-polynomial dependencies (in terms of n) appear in neural computations, then the + oper-
ator cannot capture asymptotic behavior of the learning dynamics. For instance, if one of the layers
has embedding dimension €™ or n x log(n), polynomial exponents are no longer sufficient to capture
the asymptotic dynamics. Fortunately, such cases are generally not considered in practice.

A.4 Proof of Lemma 1

In this section, we provide the formal proof of Lemma 1. The proof relies on the following assump-
tion on the processed gradient g4. This assumption was used in [44] to derive scaling rules for the
optimal learning rates for A and B weight matrices. Here, we use it to study the sensitivity of LoRA
dynamics to initialization. We provide an intuitive discussion that shows why this assumption is
realistic.

Assumption 1. With the same setup of Section 3, at training step t, we have Z,dZ = O(1) and
t
94Z = O(n).

Assumption 1 consists of two parts: that 1) Z,dZ = ©(1) and 2) g4, Z = ©(n). The first condition
is mainly related to pretraining paramterization which we assume satisfied such conditions.'? The
second condition is less intuitive, so let us provide an argument to justify why it is sound in practice.
Let us study the product g% Z in the simple case of Adam with no momentum, a.k.a SignSGD which

is given by
=sign | —
ga g HA )

where the sign function is applied element-wise. At training step ¢, we have

oL _
aTxt _ %Bj_leH ®Z,

Let S* = 2B, |dZ"~'. Therefore we have

ga = sign(8' © Z) = (sign(S{Z;))1<ij<n-

However, note that we also have
sign(S}Z;) = sign(S})sign(Z;),
and as a result
g'y = sign(S*) ® sign(Z).
Hence, we obtain
94Z = (sign(Z) " Z)sign(S") = O(n),
where we used the fact that sign(Z) 'Z = ©(n).

This intuition should in-principle hold for the general variant of Adam with momentum as long as
the gradient processing function (a notion introduced in [2]) roughly preserves the sign(Z) direction.
This reasoning can be made rigorous for general gradient processing function using the Tensor Pro-
gram framework and taking the infinite-width limit where the components of g4, Z, dZ all become

BThere is a technical intricacy on this point. While Z depends only on pretraining, the Jacobian dZ depends
on finetuning. However, under the stability conditions mentioned in Definition 3, if dZ = ©(1), it should
remain so during finetuning as well.

16



iid. However this necessitates an intricate treatment of several quantities in the process, which we
believe is an unnecessary complication and does not serve the main purpose of this paper.

Lemma 1. Under Assumption 1, the asymptotic behaviour of Z', and By follow the recursive for-
mula

V124] = max(y[Z} '], y[n] + 1)
v[B:] = max(y[B;_y], v[n])-

Proof. At finetuning step ¢, the weights are updated as follows
A=A — 779271, By = Bi_1 — 7793371-
Using the elementary operations with the y-operator, we obtain

v124] = max(y[Z '], v[ng'y ' Z]) = max(v[Z5 7], vl + gk 'Z]).

We conclude for Z% using Assumption 1. The formula for v[B;] follows using the same techniques.

O
A.5 Proof of Theorem 1
Theorem 1. Under Assumption 1, For t fixed, with Init[A] and learning rate 7, we have
o Stability: Z% = O(1) if and only if y[n] < —1/2.
e Feature Learning: AZ% = O(1) if and only if y[n] = —1/2. In this case, we also have

81,62 = O(1) (efficient feature learning, Definition 5).

Moreover, “internal” instability (Z% = Q(1)) occurs when y[n] € (—1,1/2).

Proof. With Init[A], we have y[By] = —oo and v[ApZ] = 0. As a result, we have for all ¢

Y[A+Z] = max(0, y[n] + 1)
Y[Bi] = v[n]

To achieve Zp = O(1), we should therefore have

¥[n] + max(0,~[n] + 1) <0,

which is equivalent to y[n] < —1/2.

This implies that the maximum learning rate that does not cause instability is ©(n~'/2). Such
learning rate causes internal instability, i.e. the feature Z4 explodes with width. Why? Because,
with this learning rate, we have v[4,Z] = 1/2, i.e. A4;Z = ©(n'/?) which diverges as n grows.
However, this growth is compensated with the fact that v[B,] = —1/2, i.e. B; = ©(n~'/?). This
analysis is valid for any v[n] € (—1,1/2].

In this case, feature learning is efficient in the sense of Definition 5: 6} = ©(1) and 67 = O(1). To
see this, recall that §; = B;_1 AZ} which yields y[0}] = v[Bi—1] +v[AZ4] = v[n] +[n]+1 =0
and y[67] = Y[AB,] +~[Z'] = ~[n] + max(y[n] + 1,0) = 0. So both weights contribute
significantly to feature updates at the expense of benign exploding in Z, = A,Z.

O

17



A.6 Proof of Theorem 2
Theorem 2. Under Assumption 1, for t fixed, with Intt [B] and learning rate 1, we have

e Stability: Z& = O(1) if and only if v[n] < —1.
e Feature Learning: AZY = ©(1) if and only if y[n] = —1.

Moreover, efficient feature learning cannot be achieved with Init [B] for any choice of learning rate
scaling ~y[n] (that does not violate the stability condition). More precisely, with ©(n~1) learning
rate, the limiting dynamics (when n — o) are the same if B was not trained and A is trained.

Proof. Here, we show that maximal learning rate that does not cause instability in LoRA output
features Zp is ©(n~!) and no internal instability occurs in this scenario.
With Init [B], we have that v[By] = 0 and v[A(Z] = —oc. From Equation (3), we obtain that
YNAZ] = ~[n) +1
7[Bi] = max(0, y[n))-
As aresult, LORA output stability is achieved if and only if
[n] + 1+ max(0,4[n]) <0,

which is equivalent to having v[n] < —1.

Moreover, with n = ©(n~!) we have that v[6}] = v[B;_1] + v[AZ4] = 0+ 4[] +1 = 0 and
v[62] = v[AB;] +4[Z' '] = v[n] + 0 = —1. As a result, feature learning is not efficient in this
case, and the learning dynamics are asymptotically equivalent to not training matrix B (because
62 = 0). O

B Additional Experiments

This section complements the empirical results reported in the main text. We provide the details of
our experimental setup, and show the acc/loss heatmaps for several configurations.

B.1 Empirical Details

B.1.1 Toy Example

In Figure 2, we trained a simple model with LoRA layers to verify the results of the analysis in ??.
Here we provide the empirical details for these experiments.

Model. We consider a simple model given by
f(:t) = Woutd)(Winx + (Wh + BA)(ZS(Wznx));

where W, € R™*¢ W,,, € RI*" A € R™™ B € R™ " are the weights, and ¢ is the ReLU
activation function.

Dataset. Here, we used d = 5, n = 1000, and » = 20 to simulate synthetic data (the teacher
model). Synthetic dataset generated by X ~ N(0,1;),Y = f(X). The number of training
examples 1S Nipqin = 1000, and the number of test examples is Nyess = 100. the weights
Win, Wh, Wout, B, A are randomly sampled from a Gaussian distribution with normalized variance
(1/fan-in).

Training. We train the model with AdamW with 3; = 0.9 and 5> = 0.99 for a range for values of

7. The weights are initialized as follows: W;,, ~ N(0,1/d), W), ~ N(0,1/n), Wour ~ N (0,1/n)
and fixed. Only the weight matrices A, B are trainable.

18



B.1.2 GLUE tasks with RoOBERTa

For our experiments with ROBERTa models, finetuned on GLUE tasks, we use the following setup:

Training Alg Details
Model Roberta-Large
Learning Rates {2% x 1072, for k = 0,1,2,...,10}
B1 0.9
Ba 0.999
£ 1x10°8
LR Schedule Linear with Warmup Ratio 0.06
Weight Decay 0.0
Train Batch Size 4
Number of Epochs 10
LoRA Hyperparameters
LoRA Rank 8
LoRA « 16
LoRA Dropout 0.1
Target Modules ‘query, value’
Other Hyperparameters
Sequence Length Tiarger = 128
Random Seeds 3
Precision FP16
GPUs. Nvidia A10 with 24GB VRAM.

19




B.1.3 TinyLlama WikiText-2

For our experiments using the TinyLlama model finetuned on Wikitext-2, we use the following setup

training with AdamW.

Training Algorithm Details

Learning Rates 1x107% 5x1075, 1x107%, 2x107* 4x107%, 7x107%, 1x 1073, 2x 1073
B1 0.9
B2 0.999
£ 1x10°°
LR Schedule Linear with Warmup Ratio 0.03
Weight Decay 0.0
Train Batch Size 8
Number of Epochs 1
LoRA Hyperparameters
LoRA Rank 64
LoRA « 16
LoRA Dropout 0.0
Target Modules ‘q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj’
Other Hyperparameters
Sequence Length 1024
Random Seeds 2
Precision BF16
GPUs. Nvidia A10 with 24GB VRAM.

20




B.1.4 Llama-7b Flan-v2

For our experiments using the Llama-7b model finetuned on a size 100k random subset of flan-v2,
we use following setup training with AdamW

Training Algorithm Details

Learning Rates 1x107°%5x107°% 1x1074,2x107% 4x 1074, 7x 1074, 1 x 1073
B1 0.9
B2 0.999
£ 1x10°°
LR Schedule Linear with Warmup Ratio 0.03
Weight Decay 0.0
Train Batch Size 16
Number of Epochs 1
LoRA Hyperparameters
LoRA Rank 64
LoRA « 16
LoRA Dropout 0.0
Target Modules ‘q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj’
Other Hyperparameters
Sequence Length Tsource = 1536, Tiarger = 512
Random Seeds 2
Precision BF16
MMLU Evaluation: We evaluate average accuracy on MMLU using 5-shot prompting.

GPUs: Nvidia A10 with 24GB VRAM.

21




B.1.5 Llama-7b GSM8k

For our experiments using the Llama-7b model finetuned on the GSM8k training dataset, we use
following setup training with AdamW

Training Algorithm Details

Learning Rates 1x107°%5x107°% 1x1074,2x107% 4x 1074, 7x 1074, 1 x 1073

B1 0.9

B2 0.999

£ 1x10°°

LR Schedule Linear with Warmup Ratio 0.03

Weight Decay 0.0

Train Batch Size 16

Number of Epochs 1
LoRA Hyperparameters

LoRA Rank 64

LoRA « 16

LoRA Dropout 0.0

Target Modules ‘q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj’
Other Hyperparameters

Sequence Length Tsource = 1536, Ttarget =512

Random Seeds 2

Precision BF16

GPUs: Nvidia A10 with 24GB VRAM.

B.2 Additional Exps

22




Width = 64

Init[A]

Init[B]

Width = 256

Init[A] Init[B]

1=7.7e-04, n=6.7e-02

1=17.4e-04, n=6.7e-02

1=4.9e-04, n=1.4e-02 £ =5.5e-04, n=9.7e-03

2 2 2-

11 Nf/_\ 1/ — A 11
///f\’ — BAz]

0 0 0

1=5.6e-04, N=5.6e-02

1= 6.56-04, N=4.7¢-02

£=4.0e-04, n=1.6e-02 £=3.9e-04, n=6.8e-03

24 24 24 2 1
14 f/ 1A KN 1A /\/—\ 1 1 f\_
0-H T T 0 -+ T T 0 -+ T T 0 - T T
0 50 100 0 50 100 0 50 100 0 50 100
step step step step
Width = 512 Width = 1024
Init[A] Init[B] Init[A] Init[B]

£1=2.1e-04, n=1.2e-02

£=3.0e-04, n=3.4e-03

£=13.5e-04, n=4.8e-03 £=4.5e-04, n=2.0e-03

3 3 — Az 3 3 — Az
2 2 —— |BAZ| 2 2 —— |BAZ|
1_/\_,__// 1_K_——= 1 1_(\_
0 0 0 0

£=2.5e-04, n=6.8e-03

£ =4.4e-04, n=1.4e-03

£=2.5e-04, n=4.0e-03 £=3.9e-04, n=2.8e-03

31 31 31 31
24 2 A 2 4 24
1. /\/W__- 1 1. /"’\—M 1 5
0L ; 1 9 //—_ oL - d ol : '
0 50 100 0 50 100 0 50 100 0 50 100
step step step step
Width = 2048 Width = 4096
Init[A] Init[B] Init[A] Init[B]

{=3.4e-04, n=4.0e-03

£=3.1e-04, n=2.0e-03

£=4.1e-04, n=2.8e-03 1=4.7e-04, n=8.2e-04

6 6 . .
— |AZ| 6 6 — Az

44 44 — [BAZ| N ] — |BAZ|

2_ Z'ﬁ 2- 2-

0 0 0 0l

L=2.7e-04, n=1.7e-03

1=3.7e-04, n=1.2e-03

1=1.8e-04, n=1.7e-03

4 A 41 34 3
24 2 1
21 21

r/: 14 14

/__—’—‘

0 - T r  0- T T 0 - T r  0-f T T

0 50 100 0 50 100 0 50 100 0 50 100
step step step step

Figure 6: Same as Figure 3 with differents widths.

23



NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction we clearly state the main contribution of the
paper which is to compare the difference between the two natural initializations for LoORA
and to conclude using theoretical justification based on large width theory and extensive
experiments that one is the superior choice. In our theoretical sections we provide rigorous
statements with clearly stated assumptions which provide intuition for the main claims. We
provide experiments on synthetic tasks which give fine-grained support for the theoretical
claims and show that for several real-world LLM tasks the main claims are supported,
illustrating the generality and relevance of our results. Limitations are discussed in the
final section.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide a comprehensive discussion of the limitations in Section 5.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are clearly stated and referenced in the theorem statement.
The main intuitions for the results are provided in the main paper and complete proofs are
provided in the appendix.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details to fully reproduce the experiments are provided in the main pa-
per in combination with the Appendix. Experiments were performed on standard public
datasets using standard public libraries. The algorithmic complexity of the experiments is
fairly minimal as it involves just adjusting hyperparameters.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The validity of the experiments should already be believable without code, but
we plan to fully release code soon. The main claims should already be easily reproducible
using standard libraries.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This is provided in Appendix B.

. Experiment Statistical Significance

24



10.

11.

12.

13.

14.

15.

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We average all results over multiple random seeds and plot both the average
and 1-sigma error bars shaded in the plots.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute resource details in Appendix B.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper does not meet any of the concerns for potential harms.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is concerned with an abstract problem of choosing an appropriate
initialization in an extremely general setting and is not closely tied to any societal concerns.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There are no such risks for this paper.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA|
Justification: There are no licensing concerns.
New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: No new assets are created.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

25


https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: The paper does not involve crowdsourcing nor research with human subjects.

26



	Introduction
	Setup and Definitions
	Initialization of LoRA Adapters
	LoRA Features

	LoRA Finetuning Dynamics in the Large Width Limit
	Simplified Setting
	Stability and Feature Learning
	Introduction to the -operator
	Recursive formulas
	Init[A] leads to more efficient feature learning but suffers ``internal'' instability
	Init[B] leads to suboptimal feature learning with internal stability
	Toy Model

	Experiments with Language Models
	GLUE tasks with RoBERTa
	Llama

	Conclusion and Limitations
	Acknowledgement
	Theory and Proofs
	Role of A and B weight matrices
	Scaling of Neural Networks
	When does -Operator fail to capture asymptotic behavior?
	Proof of lemma:recursiveforms
	Proof of thm:initA
	Proof of thm:initB

	Additional Experiments
	Empirical Details
	Toy Example
	GLUE tasks with RoBERTa
	TinyLlama WikiText-2
	Llama-7b Flan-v2
	Llama-7b GSM8k

	Additional Exps


