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ABSTRACT

Recent deep music generation studies have put much emphasis on long-term gen-
eration with structures. However, we are yet to see high-quality, well-structured
whole-song generation. In this paper, we make the first attempt to model a
full music piece under the realization of compositional hierarchy. With a focus
on symbolic representations of pop songs, we define a hierarchical language, in
which each level of hierarchy focuses on the semantics and context dependency at
a certain music scope. The high-level languages reveal whole-song form, phrase,
and cadence, whereas the low-level languages focus on notes, chords, and their
local patterns. A cascaded diffusion model is trained to model the hierarchical
language, where each level is conditioned on its upper levels. Experiments and
analysis show that our model is capable of generating full-piece music with recog-
nizable global verse-chorus structure and cadences, and the music quality is higher
than the baselines. Additionally, we show that the proposed model is controllable
in a flexible way. By sampling from the interpretable hierarchical languages or
adjusting pre-trained external representations, users can control the music flow
via various features such as phrase harmonic structures, rhythmic patterns, and
accompaniment texture.1

1 INTRODUCTION

In recent years, we have witnessed a lot of progress in the field of deep music generation. With
significant improvements on the quality of generated music (Copet et al., 2023; Thickstun et al.,
2023) on short segments (typically ranging from a measure up to a phrase), researchers start to put
more emphasis on long-term structure as well as how to control the generation process in a musical
way. The current mainstream approach of structural generation involves first learning disentangled
latent representations and then constructing a predictive model that can be controlled by the learned
representations or external labels (Yang et al., 2019; Wang et al., 2020b; Wei et al., 2022; Chen
et al., 2020). However, generating an entire song remains an unresolved challenge. As composi-
tions extend in length, the number of involved music representations and their combinations grow
exponentially, and therefore it is crucial to organize various music representations in a structured
way.

We argue that compositional hierarchy of music is the key to the solution. In this study, we focus
on symbolic pop songs, proposing a computational hierarchical music language and modeling such
language with cascaded diffusion models. The proposed music language has four levels. The top-
level language describes the phrase structure and key progression of the piece. The second-level
language reveals music development using a reduction of the melody and a rough chord progression,
focusing on the music flow within phrases. The third-level language consists of the complete lead
melody and the finalized chord progression, which is usually known as a lead sheet, further detailing
the local music flow. At the last level, the language is defined as piano accompaniment. Intuitively,
the language aims to characterize the intrinsic homophonic and tonal features of most pop songs—
a verse-chorus form, a chord-driven tonal music flow, and a homophonic accompaniment texture.

1We release the complete source code and model checkpoints at https://github.com/ZZWaang/
whole-song-gen. The demo page is available at https://wholesonggen.github.io.
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We represent all levels of the symbolic languages as multi-channel images and train four layers
of image diffusion models in a cascaded fashion, one for each level of the music language. The
generation scope of the first layer is full-song and up to 256 measures, the scope of the second
layer is 32 measures, and the third and the fourth layer each has a scope of 8 measures. Additional
autoregressive controls are added to the low-level diffusion models to strengthen long-term temporal
coherency. Experimental results show that our model is capable of generating well-structured full-
piece music with recognizable verse-chorus structure and high music quality.

Moreover, at each level, optional external conditions can be added via the cross-attention mechanism
of diffusion models to control the generation process at each level of the hierarchy. As a demonstra-
tion, we add long-term control of chord progression, local control of rhythmic and accompaniment
pattern to the corresponding levels of the hierarchy. All the external controls uses pre-trained la-
tent codes from existing music representation learning models. We show that these controls can
effectively guide hierarchical generation in a more customizable way.

In summary, the contribution of the paper is as follows:

• We achieve high-quality and well-structured whole-song generation with cascaded dif-
fusion models. Objective and subjective measurement show that both monophonic lead
sheets and polyphonic accompaniment generated by our model have more identifiable
phrase boundaries, better-structured phrase development in similarity and contrast, and
higher music quality compared to baselines.

• We propose a computational hierarchical music language as a structural inductive bias,
making the training process decomposable and efficient in terms of data and computing
power utilization. Also, the hierarchical languages can be extracted automatically without
manual annotation of music structure.

• Our model enables flexible and interpretable controls, with not only our proposed hier-
archical language but also with external pre-trained latent representations, such as chord,
melodic rhythm and accompaniment texture.

2 RELATED WORK

In this section, we first review music structure in musicology in Section 2.1, followed by music struc-
ture modeling in deep music generation approaches in Section 2.2. Finally, in Section 2.3 we review
the state-of-the-art deep generative methods relevant to the problem of whole-song generation.

2.1 MUSIC STRUCTURE MODELING

Traditional music theory focuses on the analysis of music structure in terms of counterpoint
(Clementi et al., 2010), harmony (Schoenberg, 1983), forms (Koch, 1787), etc. In the early 20th
century, a more comprehensive theory, Schenkerian analysis (Schenker, 1979), emerged with a fo-
cus on the generative procedure of music. The theory introduces a compositional hierarchy of
music, aiming to show how a piece is composed from its background, the normal form of music, to
its middle ground, where music form and rough music development are realized, and finally to the
foreground, the actual composition.

Nowadays, compositional hierarchy is still prevalent in modern musicology. Notable developments
include Tagg (1982), a general compositional hierarchy for pop music, and Generative Theory of
Tonal Music (GTTM) (Lerdahl & Jackendoff, 1996), a theory focusing on the definition and analysis
of formal musical syntax. From a computational perspective, these studies provide more formal
music features and computer-friendly generative processes (Hamanaka et al., 2015; 2016). The
focus of this paper is to further leverage the compositional hierarchy of music to develop a fully
computable language and to model it with deep neural networks.

2.2 STRUCTURED DEEP MUSIC GENERATION

Recent advances in deep generative models have greatly improved music generation quality, pri-
marily by more effective modeling of the local musical structure in two ways: implicit and explicit.

2



Published as a conference paper at ICLR 2024

Implicit approaches, exemplified by models such as Music Transformer (Huang et al., 2019), Muse-
BERT (Wang & Xia, 2021), and Jukebox (Dhariwal et al., 2020), learn structures by predicting
and filling musical events, often revealing context dependencies via attention weights. Explicit ap-
proaches leverage domain knowledge to define music features or extract interpretable music repre-
sentations, allowing the learning of structures like measure-level pitch contour and accompaniment
(Yang et al., 2019; Wang et al., 2020b; Dai et al., 2021; Zhao et al., 2023). This study aims to
combine both explicit and implicit approaches and further model phrase and whole-song structures.
The explicit modeling lies in our definition of a computational hierarchical music language, and the
implicit modeling of the structure lies in the cascaded diffusion models.

2.3 DIFFUSION AND CASCADED MODELING FOR MUSIC GENERATION

Diffusion models, after their success in image and audio domains, have very recently been applied
to music generation (Mittal et al., 2021; Li & Sung, 2023; Min et al., 2023). Besides high sample
quality, diffusion models naturally lead to coherent local structures with the innate inpainting method
Lugmayr et al. (2022), i.e., by generating music segments conditioned on surrounding contexts. As
for long-term structures, we recently saw the design of cascaded diffusion modeling in Moûsai
Schneider et al. (2023), which generates high-fidelity audios using multi-scale sampling.

In this study, our focus is on symbolic music and we adopt the idea of multi-scale generation with
cascaded models. Additionally, we integrate the cascaded process with the proposed hierarchical
music language, so that each layer of the diffusion model focuses on a certain interpretable aspect
of music composition. In particular, all levels of music languages are defined as image-like rep-
resentations. Inspired by sketch- and stroke-based image synthesis Cheng et al. (2023), we model
hierarchical music generation by regarding high-level and low-level music languages as the back-
ground and foreground “strokes”, respectively.

3 METHODOLOGY

Our model for whole-song generation is a realization of the music compositional hierarchy. In this
section, we first introduce the definition of our hierarchical music languages in Section 3.1. Then,
we discuss how to model these languages via cascaded diffusion models, where each level of the
language is conditioned on its upper levels. We show the data representation of these languages in
Section 3.2. The training and inference of the model are discussed in Section 3.3 and Section 3.4,
respectively.

3.1 DEFINITION OF HIERARCHICAL MUSIC LANGUAGES

We define a hierarchical music language with four levels to reveal the generative procedure of music,
as shown in Table 1. The highest level, Form, includes music keys and phrases. This is followed
by Reduced Lead Sheet, which contains reduced melody and simplified chords. The third level,
Lead Sheet, includes the lead melody and chords. The final level, Accompaniment, consists of the
piano accompaniment. The key idea behind this hierarchical design lies in the relationship among
the four levels—more abstract music concepts at higher levels are realized by stylistic specifications
at lower levels. For example, a lead sheet is an abstraction implying many possible ways to ar-
range the accompaniment that share the same melodic and harmonic structure, while an instantiated
accompaniment is one of the possible realizations showing the accompaniment structure in more
detail.

Note that for Form, Lead Sheet and Accompaniment, there are established music information re-
trieval algorithms for labeling. In contrast, the Reduced Lead Sheet is a unique design, which we
refer the readers to Appendix A for details.

3.2 DATA REPRESENTATION

While music scores are inherently symbolic, we transform them into continuous, image-like piano-
roll representations for better compatibility with diffusion models. Specifically, languages at all
levels are represented by multi-channel images (examples are shown in Appendix A). The image
width represents sequence length under different resolutions, and the height represents 128 MIDI
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Table 1: Definition of the four-level hierarchical music language. We use m for measure, b for beat,
s for step, to represent the temporal resolution. M denotes the number of measures in a piece, γ
denote the number of beats in a measure, and δ denotes the number of steps in a beat.

Languages (res.) Specification Data Representation Structural Focus

Form (m) Key changes
X1 ∈ R8×M×12 Music formPhrases

Reduced Lead Sheet (b) Melody reduction
X2 ∈ R2×γM×128 Phrase similarity, phrase

development & cadenceSimplified chord

Lead Sheet (s) Lead melody
X3 ∈ R2×δγM×128 Melodic pattern, similarity

& coherenceChord

Accompaniment (s) Accompaniment X4 ∈ R2×δγM×128 Acc. pattern, similarity &
coherence, Mel-acc relations

pitches or 12 pitch classes. We denote the piece length to be M measures, each measure containing
γ beats, and each beat containing δ steps. In this paper, we consider γ ∈ {3, 4} and δ = 4.

The language Form is a sequence of keys and phrases under the resolution of one measure. Keys
are represented by K ∈ R2×M×12, where tonic information and scale information are stored on the
two channels with binary values. For phrases, we use P ∈ R6×M×1, where six channels correspond
to six phrase types (e.g., verse and chorus, see Table 3 for more detail), and the pixel values indicate
measure countdown. Formally, let m0, ...,m0 +L− 1 be the indices of a L-measure phrase of type
i0, then for m0 ≤ m < m0 + L,

P [i,m, :] := 1{i=i0}(1−
m−m0

L
). (1)

We broadcast P to match the pitch-axis of K and define the first-level language Form as
X1 := concat(K,P ) ∈ R8×M×12. The other levels of languages use a piano-roll representa-
tion. Reduced Lead Sheet is represented by X2 ∈ R2×γM×128 under the resolution of one beat,
where two channels correspond to note onset and sustain. Both melody reduction and simplified
chord progression share the same piano-roll using different pitch registers. Similarly, Lead Sheet
uses X3 ∈ R2×δγM×128 to represent the actual melody and chords, and Accompaniment uses
X4 ∈ R2×δγM×128 to represent the accompaniment, both in the same resolution of one step.

Note that for the four levels k = 1, . . . , 4, Xk have different shapes. In the following sections,
we write {Xk|k ⊂ {1, 2, 3, 4}} to denote the concatenation along the channel axes with possible
broadcasting and repetition operations. For example, X1 can be expanded γ times in width and
repeated 11 times in height to be concatenated with X2, resulting in a tensor X≤2 ∈ R10×γM×128.
Additionally, we write the time-series expression Xk

t to denote Xk[:, t, :] for simplicity.

3.3 MODEL ARCHITECTURE

Whole-song music generation is achieved by generating the four levels of hierarchical music lan-
guages one after another in a top-down order (as shown in Figure 1). For each level, we train a
diffusion model to realize the current-level language based on the existing upper-level languages.
The actual scopes (image widths) of these diffusion models are generally the same, yet the music
scopes vary significantly since the resolution in lower-level languages is finer. In this paper, for level
k = 1, ..., 4, we set the actual scope bk to be b1 = 256 and b2:4 = 128, which means the music
scopes for these levels are 256 measures, 128 beats, 128 steps, and 128 steps, respectively. In the
usual setting when γ = δ = 4, the music scopes of the models are 256 measures, 32 measures, 8
measures, and 8 measures, respectively. Consequently, except that the first layer is an unconditional
generation of the whole sequence, the generation at all the other layers are essentially conditional
generation of music segments sliced from the entire sequences.

The generation of a music language slice Xk
t:t+bk

at level k ̸= 1 can be conditioned on multiple
resources inside and outside the defined hierarchy. In this study, our model is designed to take in
three sources of structural conditions:

Background condition. We regard the generation as a realization of existing higher-level languages
at the corresponding scope X<k

t:t+bk
, where the higher-level language segments are like sketch images
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Stage 4: Accompaniment GenerationStage 3: Lead Sheet Generation

Stage 2: Reduced Lead Sheet GenerationStage 1: Form Generation
Form

Reduced Lead Sheet

Lead sheet

Accompaniment

Current Generation Segments

DM

Hierarchical Music Languages

Backbone model

Generated/Known Segments

Gaussian Noise

Diffusion Models

External Controls

Cross-attn. for 
autoregressive control
Cross-attn. for external 
control (optional)

Figure 1: The diagram of cascaded diffusion models for hierarchical symbolic music generation.

directly guiding the current generation. Background condition is applied by concatenating the input
with X<k

t:t+bk
along the channel axis.

Autoregressive condition. The segment should not only be a realization of the background condi-
tion, but also coherent with prior realizations X≤k

<t . For example, the realization of a verse phrase
in the end of the composition is usually similar to the realization in the beginning. In our model,
we make an autoregressive assumption that Xk

<t are known. We select Sk relevant music segments
prior to t based on a defined similarity metric on X1. These music segments are encoded into latent
representations and being cross-attended in the diffusion models.

External condition. Besides the compositional hierarchy, music generation can be controlled by
other external conditions. These conditions can be stylistic controls of multiple scopes (Wei & Xia,
2021; Yang et al., 2019; Wang et al., 2020b), or cross-modality controls of text (Zhang et al., 2020)
or audio (Wang et al., 2022). As an illustration of our model compatibility, we use pre-trained latent
representations of chords, rhythmic pattern, and accompaniment texture as the control for Reduced
Lead Sheet, Lead Sheet, and Accompaniment generation, respectively. At each level k, we denote
the array of external latent codes by Zk

t:t+bk
, which are cross-attended in our diffusion models.

For all four levels, we adopt a 2D-UNet with cross-attention similar to Min et al. (2023) as the
backbone neural architecture and make several modifications. First, the input channels are increased
to allow background condition. Second, autoregressive and external conditions are fed through
cross-attention layers with classifier-free guidance (Baykal et al., 2023). In Appendix B we include
more details on the model architecture and training. Mathematically, we use diffusion to model the
conditional probability of multiple levels of music segments. Let the backbone model at level k be
denoted by

ϵθk(xn, n, y
bg, yar, yext), (2)

where θk is the model parameter, n = 0, ..., N is the diffusion step, xn is the input image mixed
with Gaussian noise at diffusion step n, and ybg, yar, and yext are background, autoregressive, and
external control, respectively. Our training objective is to model the probability

pθk(X
k
t:t+bk

|X<k
t:t+bk

,X≤k
<t ,Z

k
t:t+bk

) (3)
under the loss function

L(θk) = E
X,t

ℓθk(X
k
t:t+bk

,X<k
t:t+bk

,X≤k
<t ,Z

k
t:t+bk

), (4)

where
ℓθk(x, y

bg, yar, yext) = Eϵ,n||ϵ− ϵθk(xn, n, y
bg, yar, yext)||22. (5)
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3.4 WHOLE-SONG GENERATION ALGORITHM

At the inference stage, we leverage the conditional probability (see Equation 3) to achieve whole-
song generation by autoregressively inpainting the generated segments. Inpainting is a commonly-
used method in diffusion models for image editing, and is developed as a quasi-autoregressive
method for sequential generation (Min et al., 2023). In our algorithm, we use a hop length of
hk := bk � 2 for inpainting, and the algorithm is shown in Algorithm 1. Note that in training, we
zero-pad X1 to 256 measures, so during inference, we derive the actual song length by finding the
first all-zero entries of the generated X1. This process is denoted by INFERSONGLENGTH(·). Here,
we use

Xk
t+hk:t+bk

∼ pθ0(·|Xk
t:t+hk

;X<k
t:t+bk

,X≤k
<t ,Z

k
t:t+bk

) (6)

to indicate the distribution of the second half of the sequence conditioned on the first half via in-
painting, together with the background, autoregressive, and external conditions.

Algorithm 1 Whole-song generation algorithm.
Constants: Resolution factor for each level r1 = 1, r2 = γ, r3 = r4 = δγ
Input: External control Zk(2 ≤ k ≤ 4) (optional)

1: X1 ∼ pθ1(·|∅, ∅, ∅)
2: M ← INFERSONGLENGTH(X1)
3: for k = 2, . . . , 4 do
4: Xk

0:hk
∼ pθk(·|X<k

0:bk
, ∅,Zk

0:bk
)

5: for t = 0, hk, 2hk, . . . , rkM − bk do
6: Xk

t+hk:t+bk
∼ pθk(·|Xk

t:t+hk
;X<k

t:t+bk
,X≤k

<t ,Z
k
t:t+bk

)
7: end for
8: end for
9: return {Xk|1 ≤ k ≤ 4}

4 ANALYSIS OF STRUCTURAL MUSIC GENERATION

In this section, we show an example of whole-song music generation of 40 measures in Figure 2.
The given Form of the piece has a simple verse-chorus structure with 4-measure verse and 8-measure
chorus phrases appearing multiple times.

The generated music shows a clear music structure. The melodies of three verses all consist of
syncopated rhythm in a narrow pitch range, while the melodies of two choruses are both relatively
lyrical with a broader pitch range (indicated by shaded rectangles). The accompaniment pattern pre-
dominantly features eighth notes in verses and sixteenth notes in choruses. Moreover, the cadences
at phrase boundaries are clearly indicated by the tonic or dominant chords and the “fill” in the ac-
companiment (indicated by dotted red rectangles). Furthermore, we notice the music intensity in the
second half is stronger than in the first half, realized by more active pitch and rhythm movements and
higher pitches (indicated by shaded rectangles with dotted borders). Such intensity changes make
the composition go to a climax point before ending, showing a well-formed chronological structure.

In Appendix C, we break down the hierarchical generation process and show examples of structural
controllability of each level. More generation results are available at the demo page.

5 EXPERIMENTS

We focus our experiments on the generation of Lead Sheet and Accompaniment, the two lower
levels of languages. The rationale is that the information of higher-level languages is difficult to
evaluate directly, and they are implied at the lower levels. In this section, we first evaluate the
structure of full pieces based on a proposed objective metric, and then subjectively evaluate both
structure and quality on music segments (8-measure) and whole-song samples (32 measures). For
more evaluations, we refer the readers to the appendices.
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Figure 2: An example of whole-song generation of 40 measures under a given Form (A♭ major key
and "i4A4A4B8b4A4B8o4" phrases). The three staves (from top to bottom) show the generated
Reduced Lead Sheet, Lead Sheet, and Accompaniment. Here, rectangles with colored background
are used to indicate the appearance of the same motifs in verse and chorus sections. Dashed border
rectangles with colored background indicate a variation of motifs. We use red dotted rectangles
to show where the generated score show a strong implication of phrase boundary or cadence. The
generated chord progressions in Reduced Lead Sheet and Lead Sheet are identical, shown by the
chord symbols.
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5.1 DATASET

We use the POP909 dataset to train our model (Wang et al., 2020a). POP909 is a pop song dataset of
909 MIDI pieces containing lead melodies, secondary melodies, piano accompaniment tracks, key
signatures, and chord annotations. We pad each song to 256 measures to train Stage 1, and segment
each song into corresponding time scopes (128 beats for stage 2 and 128 steps for Stage 3 and 4)
with a hop size of one measure. 90% of the songs are used for training and the rest 10% are used for
testing. Training samples are transposed to all 12 keys. In Appendix A, we introduce more details
on data processing.

5.2 BASELINE SETTINGS

We construct two baseline models for whole-song Lead Sheet and Accompaniment generation tasks.
The two models are modified from two state-of-the-art phrase-level generation models: a diffusion-
based one, and a Transformer-based one.

Diffusion-based (Polyff.+ph.l.). We add phrase label control to Polyffusion (Min et al., 2023) as the
external condition, and use the iterative inpainting technique to generate full pieces. We train two
separate diffusion models for Lead Sheet and Accompaniment generation on POP909, both adopting
the same data representations as the proposed method. This also serves as an ablation study on the
effectiveness of our cascaded model design.

Transformer-based (TFxl(REMI)+ph.l.). Naruse et al. (2022) enables phrase label control on the
REMI representation (Huang & Yang, 2020) with Transformer-XL as the model backbone. Simi-
larly, we train two versions for Lead Sheet and Accompaniment generation on POP909.

5.3 EVALUATION

Objective evaluation. For whole-song well-structuredness, we design the Inter-Phrase Latent Sim-
ilarity (ILS) metric to measure music structure based on content similarity. The metric encourages
similarity between music with same phrase labels (e.g., two verses), and distinctiveness between
music with different phrase labels (e.g., verse and chorus). We leverage pre-trained disentangled
VAEs that encode music notes into latent representations and compare cosine similarities in the la-
tent space. Given a similarity matrix showing pairwise similarity of 2-measure segments within a
song, ILS is defined as the ratio between average similarity between phrases of the same types and
average similarity between all phrases, and therefore higher values indicate better structure.

Table 2: Objective evaluation of music structure via the proposed inter-phrase latent similarity.

Lead Melody Chord Accompaniment
ILSp ↑ ILSr ↑ ILSchd ↑ ILStxt ↑

Ground Truth 2.28± 0.14 2.30± 0.13 1.42± 0.07 1.68± 0.09
Cas.Diff. (ours) 2.05 ± 0.14 1.49± 0.07 1.32 ± 0.05 1.19 ± 0.06
Polyff. + ph.l. 0.60± 0.12 0.76± 0.05 0.52± 0.06 0.61± 0.04
TFxl(REMI) + ph.l. 1.89± 0.15 1.71 ± 0.13 0.68± 0.06 0.74± 0.04

We compute ILS on lead melody, chord, and accompaniment. Using pre-trained VAEs from Yang
et al. (2019) and Wang et al. (2020b), we compute the latent representations of pitch contour and
rhythm (i.e., zp, zr) for lead melody, latent zchd for chord, and latent texture ztxt for accompaniment.
We pre-define four types of common phrases and let models generate 32 samples for each phrase
type, resulting in 128 full songs in total. ILSθ, θ ∈ {p, r, chd, txt} are calculated for each song, and
we show their mean and standard deviation in Table 2. The results show our model significantly
outperforms baselines on the phrase content similarity of chord and accompaniment, indicating its
effectiveness in preserving long-term structure.

Subjective evaluation. We design a double-blind online survey that consists of two parts: short-
term (8 measures) evaluation of music quality, and whole-song (32 measures) evaluation of both
music quality and well-structuredness. Participants rate Creativity, Naturalness, and Musicality for
short-term music segments. For whole-song evaluation, we drop Creativity but introduce two more
criteria: Boundary Clarity and Phrase Similarity to focus on the structure of the generation. All
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Creativity Naturalness Musicality
0
1
2
3
4
5

(a) Short-term lead sheet generation
Cas.Diff. (ours)
TFxl(REMI)+ph.l.

TFxl(REMI)
Polyff.+ph.l.

Polyff.
GT

Creativity Naturalness Musicality
0
1
2
3
4
5

(b) Short-term accompaniment generation
Cas.Diff. (ours)
TFxl(REMI)+ph.l.

TFxl(REMI)
Polyff.+ph.l.

Polyff.
GT

Boundary
Clarity

Phrase
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1
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4
5

(c) Whole-song lead sheet generation
Cas.Diff. (ours)
TFxl(REMI)+ph.l.

TFxl(REMI)
Polyff.+ph.l.

Boundary
Clarity

Phrase
Similarity

Naturalness Musicality
0
1
2
3
4
5

(d) Whole-song accompaniment generation
Cas.Diff. (ours)
TFxl(REMI)+ph.l.

TFxl(REMI)
Polyff.+ph.l.

Figure 3: Subjective evaluation results on music quality and well-structuredness. GT indicates
ground truth samples composed by humans.

metrics are rated based on a 5-point scale. We constrain whole-song length to 32 measures so that
the participants can better memorize the samples and the survey can have a reasonable duration.
These generated pieces still preserve a condensed pop-song structure by specifying Form to contain
intro, outro and repetitive verses or choruses.

Additionally, for short-term evaluation, we use two more reference models: Polyff. and TFxl(REMI),
two baseline models without phrase label conditions. This is to investigate whether the introduction
of phrase control causes degradation in music quality. For each model, we select three samples for
both short-term and whole-song evaluation as well as both lead sheet and accompaniment genera-
tion, resulting in 3× 2× 2 = 12 groups of samples. Each group of samples shares the same prompt
(2 measures for 8-measure samples, and 4 measures for 32-measure samples) and phrase labels (for
whole-song evaluation). In the survey, both the group order and the sample order are randomized.

A total of 57 people participated in our survey, and the evaluation result is shown in Figure 3. The
bar height shows the mean rating, and the error bar shows the 95% confidence interval (computed
by within-subject ANOVA). We show that our model significantly outperforms baselines in the
structural metrics of whole-song generation, especially in accompaniment generation. Our model
consistently outperforms baselines in terms of music quality in both short-term and whole-song
generation, proving that the introduction of compositional hierarchy does not hinder the generation
quality.

6 CONCLUSION

In conclusion, we contribute the first hierarchical whole-song deep generative algorithm for sym-
bolic music. The current study focuses on the pop music genre, and experimental results demon-
strate that our model consistently generates more structured, natural, and musical outputs compared
to baseline methods, both at the whole-song and the phrase scales. Additionally, our model offers
extensibility, allowing flexible external controls via pre-trained music embeddings. Our approach
relies on two key components: a hierarchical music language that balances human interpretability
with computational tractability, and a cascaded diffusion architecture that effectively captures the
hierarchical structure of entire compositions through both top-down and context-dependent mecha-
nisms. It demonstrates that a strong structural inductive bias can lead to more effective and efficient
learning for deep music generative models, and such methodology is potentially useful for other
domains as well. In the future, we plan to extend our hierarchical language and generation approach
to both multi-track symbolic music and music audio.
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APPENDICES

The appendices included in this paper are designed to provide more technical details, generation
samples, and discussions about our study. They are organized into three parts. Appendices A-B
introduce more detailed information about data data representation and processing, model archi-
tecture, and training; Appendix C provides some more generation samples; and Appendices D-G
include more discussions on the external control efficacy, model’s memorization v.s. generation
ability, model efficiency, and limitations.

A DATA REPRESENTATION AND PROCESSING DETAILS

In this section, we introduce the methods to extract the four levels of music languages defined in
Section 3.1. We begin by quantizing MIDI files from the POP909 dataset using the provided beat
annotations. For the Form language, we simplify the phrase labeling from Dai et al. (2020) to
include only six phrase types (see Table 3 for reference), and extract keys by pitch profile matching,
similar to the method described in Krumhansl (2001). In the Reduced Lead Sheet language, melody
reduction is computed through a shortest path reduction algorithm,2 and chords are downsampled
by merging consecutive chords that share the same triad structure (root, third, and fifth) within one
measure. The Lead Sheet language uses the vocal melody (i.e., “MELODY” track) and the provided
chord annotations. The Accompaniment language combines the secondary melody (i.e., “BRIDGE”
track) with the accompaniment (i.e., “PIANO” track).

As discussed in Section 3.2, the processed data is converted to image-like data representation. A
visualization of the data representation is provided in Figure 4.

Table 3: Definition of phrase type

Phrase Type Channel ID Meaning
"A" 0 Verse section phrases
"B" 1 Chorus section phrases
"X" 2 Other phrases with lead melody
"i" 3 Intro section phrases
"o" 4 Outro section phrases
"b" 5 Bridge section phrases

B MODEL ARCHITECTURE AND TRAINING DETAILS

In this section, we elaborate on the model architecture and training. We first discuss the three condi-
tioning methods introduced in Section 3.3 in more detail. The configurations of the four generation
stages are summarized in Table 4.

Detail on background condition. At each level k > 1, the background condition X<k
t:t+bk

is repre-
sented by an image having the same width and height as the diffusion output. Thus, the background
condition can be concatenated with the input along channel axis at each step of the diffusion process.
The background condition will be set to all −1.0 under the probability puncond = 0.2, following
classifier-free guidance (Baykal et al., 2023).

Detail on autoregressive condition. At each level k > 1, the generation of Xk
t:t+bk

is dependent
on past generation X≤k

<t . Here we select top-Sk past segments of length b′k based on their phrase
type similarity to the current segment. These music segments are embedded using a 3-layer 2d-
convolutional network and fed to the backbone diffusion models by cross-attention mechanism. In
our implementation, we set S2 = 3, b′2 = 32, S3 = S4 = 2, and b′3 = b′4 = 64. The autoregressive
condition will be set to all −1.0 under the probability puncond = 0.1.

Detail on external condition. The condition for Reduced Lead Sheet is four 8-measure latent codes
of chord progression encoded from the chord encoder in Min et al. (2023). The condition for Lead

2Code for melody reduction is available at https://github.com/ZZWaang/melody-reduction-algo.
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(a) The first-level language Form. The six channels of phrases are shown at the top and brightness indicates
phrase countdown (see Equation 1). The two channels of keys are shown at the bottom and brightness indicates
one-hot tonic and multi-hot scale.
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(b) The second-level language Reduced Lead Sheet. Brightness indicates onset and sustain channels.
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(c) The third-level language Lead Sheet. Brightness indicates onset and sustain channels.
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(d) The fourth-level language Accompaniment. Brightness indicates onset and sustain channels.
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(e) Zoom-in views of the segments in Figure 4b (left), Figure 4c (middle), and Figure 4d (right) marked with
rectangles.

Figure 4: An example data representation of our proposed hierarchical music language.
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Sheet is four 2-measure latent codes of rhythmic pattern encoded from the EC2-VAE encoder in
Yang et al. (2019). The condition for Accompaniment is four 2-measure latent codes of accompa-
niment texture encoded from the texture encoder in Wang et al. (2020b). These latent codes are
fed to the backbone diffusion models by cross-attention mechanism and set to all −1.0 under the
probability puncond = 0.2.

The diffusion models for all four stages use the same noise schedule and training methods. Similar
to Min et al. (2023), the backbone model is a 2D-UNet model, the encoder and decoder of which
contain 4 layers of 2d-convolution with spatial attention at the third and fourth layers. We summarize
these common details in Table 5.

Table 4: Configuration of the conditioning methods in four stages of the proposed model.

Form Red. Lead Sheet Lead Sheet Accompaniment
Time scope 256 measures 128 beats 128 steps 128 steps
Output shape (6, 256, 12) (2, 128, 128) (2, 128, 128) (2, 128, 128)
Background cond.: shape N/A (6, 128, 128) (8, 128, 128) (10, 128, 128)
Background cond.: puncond N/A 0.2 0.2 0.2
Autoreg. cond.: # of seg. N/A 3 2 2
Autoreg. cond.: shape N/A (8, 32, 128) (10, 64, 128) (12, 64, 128)
Autoreg. cond.: puncond N/A 0.1 0.1 0.1
Ext. cond.: # of latent codes N/A 4 4 4
Ext. cond.: latent dimension N/A 512 128 256
Ext. cond.: puncond N/A 0.2 0.2 0.2

Table 5: The hyperparameter configuration of diffusion model training. The listed attributes are the
same across all four stages.

Hyperparameter Configuration
Diffusion Steps (N ) 1000
Noise Schedule Linear from 1 to 1e− 4
UNet Channels 64
UNet Channel Multipliers 1, 2, 4, 4
Batch Size 16
Attention Levels 3, 4
Number of Heads 4
Learning Rate 5e− 5

C MORE EXAMPLES ON STRUCTURAL GENERATION

In this section, we break down each level of the hierarchical language and show more generation
examples. For each level, we fix the upper level, and demonstrate a variety of generation results
under the upper level control. We also show generation samples that are controlled by external
conditions.

Form generation. Below shows examples of Form generated by our model:

(i8)(A8B16A8B16)(b6)(B14)(o2)
(i12)(A4A4B12)(b4b4)(A4A4B12)(b4b4(B16)o4o1)
(i4)(A4A4B4X5)(b4)(A4b5B4X4X5)(o2)
(i4)(A8B9A8B9X18)(o2o1)
(i8)(A4A4B4B4)(b7)(A4A4B4B4B4B4)(o4)
(i8)(A4A4B4B4)(b7)(A4A4B4B4B4B4)(o4)
(i8)(A8B8X8X8)(b4b4)(A8B8X8X8X4)(o6o1)
(i4)(A4A4B9)(b3)(A4B10B9X1)(o2)
(i4)(A4A4B9)(b3)(A4B10B9X1)(o2)
(i12)(A16B16)(b4b4b4)(A16B16B16)(o10o1)
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Here, we use parentheses to manually group music sections for better readability. The results show
the model captures verse-chorus form of pop songs: the composition usually starts with intro and
ends with outro; verse and chorus appear multiple times with bridge phrases in between. Phrases
are usually 4 or 8 measures long, similar to real music samples.
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Figure 5: Examples of generated Reduced Lead Sheet of "A8" phrase in E♭ major. The samples
marked with * are controlled by the external condition meaning “unchanging chord progression”.
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Figure 6: Examples of generated Lead Sheet of "A8" phrase in E♭ major given the upper-level
Reduced Lead Sheet Figure 6a. The samples marked with * are controlled by the external condition
meaning “sixteenth-note rhythm”.
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Figure 7: Examples of generated Accompaniment of "A8" phrase in E♭ major given the upper-level
Lead Sheet Figure 7a. The sample marked with * are controlled by the external condition meaning
“Alberti bass”.
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(a) The external music sample used to control the gen-
eration of Figure 6h-i.
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(b) The external music sample used to control the gen-
eration of Figure 7e.

Figure 8: The music samples for external control.
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Reduced Lead Sheet generation with external harmony control. Figure 5a-f show examples of
8-measure generation of the Reduced Lead Sheet level. The results are all controlled by the same
Form: an 8-measure verse phrase in E♭ major key. The generated samples show many ways to
develop the melody (different contour and melodic climax positions) and the harmony (different
chord types and harmonic rhythm). Moreover, each of the samples has a consistent style and usually
ends in a tonic or dominant chord indicating the ending of a phrase. Moreover, we also apply
the external control of “unchanging chord” to generate Figure 5g-h. Such a control is achieved
by encoding the latent chord representation of a sequence of all Eb:maj chords using the pre-
trained VAE encoder (Min et al., 2023). The results have fewer changes in harmony and the melody
reduction alters accordingly.

Lead Sheet generation with external rhythm control. Figure 6b-g show examples of 8-measure
Lead Sheet generation controlled by the same Reduced Lead Sheet, shown in Figure 6a. The gener-
ated samples follow the pitch contour in the melody reduction and differ in local pitch and rhythm
patterns. At this level, we also use latent control of “sixteenth-note rhythm” to generate Figure 6h-i.
Such a control is achieved by encoding the latent rhythm representation of the sample in Figure 8a
using the pre-trained VAE encoder (Yang et al., 2019). The generation examples show melody
realization with more frequent onsets accordingly.

Accompaniment generation with external texture control. Figure 7b-d show examples of 8-
measure Accompaniment generation controlled by the same Lead Sheet, shown in Figure 7a. The
generated samples mainly use arpeggios but are different in the exact patterns. Some of the gener-
ation has a “fill” in the fourth and eighth measures to indicate phrasing. At this level, we also use
latent control of “Alberti bass” to generate Figure 7e. Such a control is achieved by encoding the
latent texture representation of the sample in Figure 8b using the pre-trained VAE encoder (Wang
et al., 2020b). The generation adopts the Alberti bass figure and makes reasonable variations.

D EVALUATION OF EXTERNAL CONTROL EFFICACY

In this section, we evaluate the efficacy of external controls. These controls are achieved by feed-
ing pre-trained representations as external condition to each layer of the cascaded diffusion model
(introduced in Section 3.3). Specifically, we evaluate three scenarios: (1) chord control in Reduced
Lead Sheet generation (Stage two), (2) rhythm control in Lead Sheet generation (Stage three), and
(3) texture control in Accompaniment generation (Stage four). In this section, we let zext denote the
external control in one of the three scenarios and let xext denote the actual observation from which
zext is encoded from. Let xout denote the conditional generation results.

Efficacy of control can be evaluated by computing the similarity between the input control and the
generation result. We propose a rule-based metric and a latent metric. The rule-based metric directly
computes the distance between xout and xext in terms of the corresponding features. In particular,
for chord control, we compute the ℓ2 distance between the given chord condition and the generated
chord at each time step; and for rhythm or texture control, we compute the ℓ2 distance of note onsets
between the given control and the generated lead sheets or accompaniments. Such distance-based
metric has previously been used to evaluate control efficacy in Ren et al. (2020) and Min et al.
(2023). In the latent metric, we encode the generation xout back to the latent code zout using the
same pre-trained encoders and measure the cosine similarity between zout and zext.

There are two reference methods for comparison. First, we use the unconditional mode of our
method to serve as a baseline where control is ineffective. Second, we generate samples by sampling
from the Variational Autoencoders (VAEs) that the pre-trained encoders belong to. Specifically,
we sample zext from the VAE posterior distribution and sample the rest of the latent codes from
Gaussian prior to decode results. By the well-disentangled property shown in the original paper
(Yang et al., 2019; Wang et al., 2020b), this reference method indicates the maximum attainable
level of controllability.

For each of the three scenario, we randomly selected 32 versions of external control from the test
set and generate 128 music segments for each methods. In Table 6, we show the rule-based distance
(denoted by disrb) and latent similarity (denoted by simlt) for the three generation stages. Experi-
mental results show that the use of external condition significantly yields controllability for all three
scenarios.
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Table 6: Objective evaluation of external control efficacy of chord, rhythm and texture in the three
diffusion stages. disrb denotes the rule-based distance-based metric and simlt denotes the latent
similarity-based metric.

Stage 1: Chord Stage 2: Rhythm Stage 3: Texture
disrb ↓ simlt ↑ disrb ↓ simlt ↑ disrb ↓ simlt ↑

Cas.Diff. (uncond) 2.09± 0.80 0.37± 0.09 2.27± 0.53 0.14± 0.23 3.94± 1.46 0.02± 0.11
VAE Sampling 0.19± 0.47 0.97± 0.07 0.14± 0.42 0.96± 0.04 0.33± 0.59 0.90± 0.06
Cas.Diff. (cond) 1.73± 1.02 0.48± 0.14 1.10± 0.74 0.75± 0.16 0.87± 0.80 0.89± 0.06

E DOES THE MODEL JUST COPY THE TRAINING DATA?

In generative modeling, a critical consideration is whether the model overfits and the generation
copies the training data. This section includes a quantitative evaluation focused on the similarity
between generated segments and the entire training set. We primarily focus on melody similarity, a
most recognizable aspect of music composition.

Our goal is to measure the Degree of Copying (DoC) with respect to a set of generated samples. Let
x be a two-measure melody segment from a generated piece, we define Similarity to the Training
Set of segment x as:

S(x) := max
x′∈T

sim(x,x′), (7)

where T denotes the training set, x′ is a two-measure segment from the training set, and sim(x,x′)
computes the similarity between x and x′. Here S(x) ∈ [0, 1], and a larger S(x) shows a higher
degree of copying. The DoC can be represented by the histogram of S(x). In our experiments, we
report the mean and standard deviation of the histogram. We consider a rule-based similarity metric
and a latent similarity metric as follows:

Rule-based similarity metric. We compute the note-wise similarity between two segments by
matching the exact onsets and pitches. Let nx∩x′ denote the number of notes that appear in both x
and x′ with the same pitch class and onset, and let nx and nx′ denote the number of notes in x and
x′, respectively. The rule-based similarity metric is defined as:

simrb(x,x′) :=
2nx∩x′

nx + nx′
. (8)

Latent similarity metric. We also measure the melodic similarity in the latent space because rule-
based methods cannot detect indirect copying (e.g., same pitch contour or rhythm). We leverage the
pre-trained EC2-VAE (Yang et al., 2019), which learns a semantically meaningful and disentangled
latent space of pitch contour and rhythmic pattern. We extract the latent code of pitch (denoted as
zx
p ) and rhythm (denoted as zx

r ) of melody segments and compute the cosine similarity in terms of
both pitch and rhythm:

simlt
p (x,x

′) :=
⟨zx

p , z
x′

p ⟩
||zx

p || · ||zx′
p ||

, (9)

simlt
r (x,x

′) :=
⟨zx

r , z
x′

r ⟩
||zx

r || · ||zx′
r ||

. (10)

For both of the metrics, the samples in the training set are transposed to 12 keys to account for
relative pitch similarity. Segments that only contain rests are discarded beforehand.

In Table 7, we show the mean and standard deviation of S(x) on the data samples generated using
our proposed methods and other baselines used for whole-song generation. We compute the statistics
of the test set of POP909 as a reference for no risk of copying, since no song in the training set (or
their cover-song versions) appears in the test set. We also design two copy-bots as references for
potential risk of copying. The first copy-bot copies a different part of the training set at each measure,
which emulates a direct copying behavior. The second copy-bot encodes the melodies from the
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Table 7: Evaluation on whether the generative models copy the training data. The highlighted data
in red indicate potential copying the training set.

Sample Source Sample Size Similarity Metric
simrb ↓ simlt

p ↓ simlt
r ↓

Test set (no plag.) 88 pieces 0.6567± 0.1141 0.8637± 0.0486 0.8320± 0.0680
Copy-bot 1 (plag.) 128 pieces 0.7108± 0.1159 0.8616± 0.0526 0.8276± 0.0699
Copy-bot 2 (plag.) 128 pieces 0.6888± 0.1628 0.9086± 0.0340 0.8555± 0.0411
Cas.Diff. (ours) 128 pieces 0.6530± 0.1321 0.8743± 0.0491 0.8180± 0.0710
Polyff. + ph.l. 128 pieces 0.6117± 0.1162 0.8639± 0.0487 0.8424± 0.0622
TFxl(REMI) + ph.l. 128 pieces 0.6088± 0.1053 0.8599± 0.0446 0.8154± 0.0642

training set and adds noise to the latent representation before reconstruction, which emulates an
indirect copying behavior. Experimental results show that our proposed method (as well as the
baseline whole-song generation methods) have similar DoC compared to that of the test set. Also,
the proposed metrics successfully detect both direct and indirect copying behaviors as the DoCs of
copy-bots are noticeably higher. Thus, we conclude that our model has a very low risk of copying
the training set.

F DISCUSSION: EFFICIENCY OF THE CASCADED METHOD

In this section, we conduct a theoretical comparison between the efficiency of our cascaded diffusion
models and an alternative end-to-end approach, which generates a full-piece music with a single
diffusion model. We evaluate the time and model parameter complexities of both methods. As
summarized in Table 8, we demonstrate that end-to-end approaches exhibit quadratic complexities
in both time and model parameters relative to data length, whereas the cascaded approach achieves
linear time complexity and logarithmic model parameter complexity.

We base our analysis on a diffusion architecture with a UNet backbone, identical to the proposed
architecture. We assume the sequential data has length T (corresponding to image width in UNet),
and the dimension of each time step is D (corresponding to image height in UNet). The UNet will
first embed the input image to have shape (C, T,D) regardless of the number of input channels,
where C is called the base channel size. Additionally, our computation assumes a typical UNet
configuration as follows:

1. In the contracting path of the UNet, the number of channels at each layer doubles, and the
width of the feature maps are halved due to max pooling.

2. The expanding path of the UNet mirrors the contracting path.

3. The number of the levels (or model depth) MT ′ scales logarithmically with the input se-
quence length T ′, i.e., MT ′ = log2 T

′ + c0, where c0 is a constant.

Complexity of end-to-end approach. At each level i = 0, . . . ,MT = log2 T + c0, the width of
the feature map is T

2i , the number of input channels is C · 2i, and the number of output channels is
C · 2i+1. The time complexity of the convolution per layer can be computed as:

O
(
(
T

2i
·D) · (C · 2i) · (C · 2i+1)

)
= O(T ·D · C2 · 2i+1) = O(T · 2i+1). (11)

In Equation 11, we regard D and C as constants, therefore removing from the complexity term.
Summing Equation 11 over all levels results in the total time complexity:

MT∑
i=0

O(T · 2i+1) = O(T 2). (12)

Similarly, at each level i = 0, . . . ,MT , the number of model parameters can be computed as:

O
(
(C · 2i) · (C · 2i+1)

)
= O(C2 · 22i+1) = O(22i+1), (13)
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Table 8: Theoretical comparison of time and model parameter complexity between cascaded ap-
proach and end-to-end approach. η denotes the resolution scaling factor. L denotes the time scope
(i.e., receptive field) of cascaded models.

Cascaded Approach End-to-End Approach

Time Complexity O(L2T ) O(T 2)
Model Parameter Complexity O(L2 logη T ) O(T 2)

resulting in the total model parameter complexity:

MT∑
i=0

O(22i+1) = O(T 2). (14)

In conclusion, the time and model parameter complexity for end-to-end approach are both O(T 2).

Complexity of cascaded approach.The cascaded models proposed in this paper is tailored for
music data. For the analysis in this section, we define a theoretical cascaded approach as follows.
To generate a sequential data of length T , we define a K-level compositional hierarchy, and the
resolution at each level is scaled by a factor η. The top-level (k = 1) has a resolution of L, and for
each level k = 2, . . . ,K, the resolution is L · ηk−1, such that at the final level K, the resolution is
L · ηK−1 = T . We train K diffusion models in total, all having the same generation scope L. Thus,
the diffusion model at level k = 1 generates the whole sequence, and the diffusion models for level
k = 2, . . . ,K generate only a slice of the sequence. The model parameter complexity of a single
level can be computed by substituting MT with ML in Equation 14:

log2L+c0∑
i=0

O(L · 2i+1) = O(L2). (15)

Summing up the parameters in K separate models results in the total model parameter complexity:

O(L2 ·K) = O(L2 logη T ). (16)

Similarly, for time complexity, each model call is O(L2) (see Equation 12); and at all levels, the
generation requires (2ηk−1 − 1) autoregressive iterations (see Algorithm 1). So, the total time
complexity is:

K∑
k=1

O(L2 · ηk−1) = O(L2T ). (17)

Therefore, the cascaded approach has a time complexity of O(L2T ) and a model parameter com-
plexity of O(L2 logη T ). The computation implies that the efficiency of cascaded approach will be
more significant when T >> L. Theoretically, if L is a constant (e.g., bounded by the computational
resources available), the time and model parameter complexity will become O(T ) and O(logη T ),
respectively.

G LIMITATIONS AND FUTURE PLAN

Our current model supports a maximum generation scope of 256 measures, typically adequate for
pop songs, but insufficient for other genres (e.g., classical music), which may require longer lengths.
While our model can generate irregular phrase lengths and theoretically supports both 3/4 and 4/4
time signatures, it does not support meter change, and the capability of 3/4 song generation is lim-
ited, since the proportion of 3/4 songs in the dataset is pretty low. Additionally, we observe that
the generated endings are sometimes not ideal, such as failing to resolve on the tonic harmony. We
suspect the issue is related to imprecise quantization in the POP909 dataset’s outro sections. More-
over, there is room for improvement in overall music quality, as the model occasionally produces
obvious flawed samples, such as blank measures. To address these issues, we plan to enhance model
performance with a more refined architecture and more extensive data training.

21


	Introduction
	Related Work
	Music Structure Modeling
	Structured Deep Music Generation
	Diffusion and Cascaded Modeling for Music Generation

	Methodology
	Definition of Hierarchical Music Languages
	Data Representation
	Model Architecture
	Whole-Song Generation Algorithm

	Analysis of Structural Music Generation
	Experiments
	Dataset
	Baseline Settings
	Evaluation

	Conclusion
	Data Representation and Processing Details
	Model Architecture and Training Details
	More Examples on Structural Generation
	Evaluation of External Control Efficacy
	Does the Model Just Copy the Training Data?
	Discussion: Efficiency of the Cascaded Method
	Limitations and Future Plan

