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ABSTRACT

In the age of Bigdata, Federated Learning (FL) provides machine learning (ML)
practitioners with an indispensable tool for solving large-scale learning problems.
FL is a distributed optimization paradigm where multiple nodes each having ac-
cess to a local dataset collaborate (with or without a server) to solve a joint prob-
lem. Federated Averaging (FedAvg) although the algorithm of choice for many
FL applications is not very well understood especially in the interpolation regime,
a common phenomenon observed in modern overparameterized neural networks.
In this work, we address this challenge and perform a thorough theoretical per-
formance analysis of FedAvg in the interpolation regime. Specifically, we ana-
lyze the performance of FedAvg in two settings: (i) Server: When the network
has access to a server that coordinates the information sharing among nodes, and
(ii) Decentralized: The server-less setting, where the local nodes communicate
over an undirected graph. We consider a class of non-convex functions satisfying
the Polyak-Lojasiewicz (PL) condition, a condition that is satisfied by overpa-
rameterized neural networks. For the first time, we establish that FedAvg un-
der both Server and Decentralized settings achieves linear convergence rates of
O(T 3/2 log(1/ϵ)) and O(T 2 log(1/ϵ)), respectively, where ϵ is the desired solu-
tion accuracy, and T is the number of local updates at each node. In contrast to the
standard FedAvg analysis, our work does not require bounded heterogeneity, vari-
ance, and gradient assumptions. Instead, we show that sample-wise (and local)
smoothness of the local loss functions suffices to capture the effect of heterogene-
ity in FL training. Finally, we conduct experiments on multiple real datasets to
corroborate our theoretical findings.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning scenario which allows the edge devices to
learn a shared model while maintaining the training data decentralized at the edge devices Konečnỳ
et al. (2016); McMahan et al. (2017). This avoids the need to share the data with a central server and
hence preserves privacy of the individual clients (edge devices). Assuming a supervised learning
setting, where each of the N clients having access to some local data (x, y) ∼ Dk from distribution
Dk with k ∈ [N ] aim to solve the FL Problem:minw∈Rd Φ(w) := 1

N

∑N
k=1 Φk(w), where

Φk(w) := E(x,y)∼Dk
lk(fw(x), y) is the average loss at the client k ∈ [N ] for the input feature

vector x ∈ X , and the corresponding output label y ∈ Y . Here, fw(x) is the output of the model
parameterized by w ∈ Rd.

The de-facto standard for solving the above FL Problem is the simple Federated Averaging (Fe-
dAvg) algorithm McMahan et al. (2017). In recent years, many works have attempted to characterize
the convergence of FedAvg under different settings (Stich, 2018; Li et al., 2019; Woodworth et al.,
2020a; Ma et al., 2018; Yu et al., 2019b). For example, the authors in Stich (2018) show a conver-
gence rate of O (1/Nϵ) for minimizing strongly convex functions while Haddadpour & Mahdavi
(2019) establishes similar rates for minimizing functions satisfying Polyak-Lojasiewicz (PL) condi-
tion. Here, ϵ refers to the desired solution accuracy. For minimizing non-convex smooth functions,
FedAvg achieves a convergence rate of O(1/Nϵ2) (Karimireddy et al., 2020b; Yang et al., 2021).
However, in practice, it has been observed that FedAvg converges at a much faster rate compared
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Figure 1: log-training loss versus communication rounds for overparameterized Deep Neural Net-
works (DNNs) and a simple regression model.

to the rates demonstrated in these works. To illustrate this fact, in Figure 1 we plot the behavior
of the training loss (on a log scale) as a function of communication rounds for FedAvg to solve
classification tasks on MNIST, FMNIST and CIFAR-10 data sets (for experimental details please
see Section 4). It is clear from the plots that the losses decrease linearly as a function of commu-
nication rounds. This implies that the standard analyses of FedAvg lacks theoretical explanation
of this linear convergence as shown in Fig. 1. In this work, we attempt to fill this gap and per-
form a thorough theoretical analysis of FedAvg in the interpolation regime under two settings; the
Server setting, when the network has access to a server that coordinates the information sharing
among clients, and the Decentralized setting also referred to as the server-less setting, where the lo-
cal nodes communicate over an undirected graph. Under both these settings we establish the linear
convergence of FedAvg for minimizing a class of non-convex functions satisfying the PL inequality.
We note that PL inequality plays a key role in the training of overparameterized systems. Specifi-
cally, many works have shown that the loss function of an overparamterized neural network satisfies
the PL inequality (Bassily et al., 2018; Liu et al., 2020). Furthermore, our analysis reveals that the
standard but restrictive assumptions of bounded gradients (Yu et al., 2019b; Stich, 2018; Li et al.,
2019; Koloskova et al., 2020), heterogeneity (Yu et al., 2019a; Woodworth et al., 2020b; Yu et al.,
2019a), and variance (Woodworth et al., 2020b; Qu et al., 2020) can be avoided while guaranteeing
this linear convergence of FedAvg. Next, we list the major contributions of our work.

• We analyze the convergence of FedAvg in the Server setting which consists of a single server
communicating with several clients (McMahan et al., 2017). In this setting, we show that to achieve
an ϵ-accurate solution FedAvg in the interpolation regime requires R ∼ O

(
T 3/2 log (1/ϵ)

)
rounds

of communication, where T is the number of local SGD updates.
• We consider the Decentralized setting whereN distributed clients communicate over an undirected
graph G. Similar to the Server setting, we show that to achieve an ϵ-accurate solution Decentralized
FedAvg requires R ∼ O

(
T 2 log (1/ϵ)

)
rounds of communication. We also characterize the effect

of the network topology on the performance of Decentralized FedAvg. Moreover, our proof tech-
nique utilizes a novel induction based analysis for establishing this convergence.
• Our theoretical results under both the Server and the Decentralized settings do not require assump-
tions such as bounded heterogeneity, gradient and variance. We show that sample-wise smoothness
of the stochastic loss functions suffices to capture the effect of data heterogeneity among different
clients (Bassily et al., 2018) while avoiding the need to impose these restrictive assumptions.
• Finally, to corroborate our theoretical findings we present experimental results using various
datasets such as MNIST, FMNIST, CIFAR-10 and Shakespeare, under different settings.

Related Work: FedAvg first proposed in (McMahan et al., 2017), has been extensively studied
in the server setting and with homogeneous data (see Stich (2018); Wang & Joshi (2018); Khaled
et al. (2019); Yu et al. (2019b); Wang et al. (2019); Yang et al. (2021)). Recently, many works have
adapted the analyses of FedAvg for minimizing the non-convex losses in the heterogeneous data
settings. We note that most of the works (see Yu et al. (2019a); Yang et al. (2021); Karimireddy et al.
(2020b)) establish the convergence rate of O(1/Nϵ2) to an ϵ-stationary point under the bounded
heterogeneity setting. It is also worth noting that numerous works have proposed variants of FedAvg
with different local update rules (e.g., variance reduction, momentum SGD, adaptive updates, etc.)
with the goal of improving the performance of FedAvg (Karimireddy et al., 2020b; Sharma et al.,
2019; Liang et al., 2019; Khanduri et al., 2021; Karimireddy et al., 2020a). However, in practice
FedAvg remains the algorithm of choice for training large FL systems.
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Table 1: Comparisons with the existing work. Here, (s), (d), SC, C and NC represent Server,
Decentralized, Strongly convex, Convex and Non-convex settings, respectively.

ALGORITHM CONVERGENCE EXTRA ASSUMPTIONS SETTING

Local SGD (Stich, 2018) (s) O (1/Nϵ) Bounded gradient SC
Local SGD (Yu et al., 2019b) (s) O

(
1/Nϵ2

)
Bounded variance, smoothness NC

Local SGD (Haddadpour et al., 2019) (s) O (1/Nϵ) Bounded variance, smoothness NC
FedAvg (Qu et al., 2020) (s) O (T log(1/ϵ)) Bounded Gradient, Bounded Variance Overparameterized SC

Local SGD (Woodworth et al., 2020b) (s) O
(
1/Nϵ2

)
Bounded Variance C

Local SGD (Woodworth et al., 2020a) (s) O
(
1/Nϵ2

)
Bounded Variance C

PR-SGD (Yu et al., 2019a) (s) O
(
1/Nϵ2

)
Bounded Variance NC

FedAvg (Karimireddy et al., 2020b) (s) O
(
1/Nϵ2

) Bounded gradient dissimilarity
Bounded heterogeneity NC

OUR WORK (s) O(T 3/2 log(1/ϵ)) Smoothness Overparameterized NC
NFSGD (Haddadpour & Mahdavi, 2019) (d) O

(
1
Nϵ2

)
Bounded local variance NC

DECENTRALIZED SGD (Koloskova et al., 2020) (d) O (log (1/ϵ)) Bounded Variance, Bounded heterogeneity Overparameterized SC
OUR WORK (d) O(T 2 log(1/ϵ)) Smoothness Overparameterized NC

A few works that have also analyzed the performance of Fedvg in the decentralized setting as well.
In (Haddadpour & Mahdavi, 2019; Yu et al., 2019a), the authors analyze the convergence of FedAvg
under both server and decentralized setting with bounded gradient dissimilarity assumption and
establish a convergence rate of O(1/Nϵ2) for minimizing smooth non-convex objectives. We note
that all the above works provide a sublinear rate of convergence for FedAvg, however, as illustrated
in Fig. 1, FedAvg converges at a much faster rate in practice. To understand this behavior of FedAvg,
in this work we analyze the performance of FedAvg under both server and decentralized settings for
minimizing a special class of non-convex functions satisfying PL inequality under the interpolation
regime. We note that overparameterized neural networks/systems usually operate in the interpolation
regime while their loss functions have been shown to satisfy the PL inequality.

The linear convergence of centralized SGD in the interpolation regime for minimizing PL objectives
was first established in Bassily et al. (2018). Recently, (Qu et al., 2020) showed linear convergence
rate of FedAvg in the server setting for minimizing strongly-convex objectives in the overparame-
terized regime. Similarly, the authors in (Koloskova et al., 2020) have also established the linear
convergence of FedAvg in the decentralized setting for minimizing strongly-convex losses in an
overparameterized setting. The above works only focus on analysis of FedAvg for the strongly-
convex objectives in the overparameterized regime while we focus on the more general class of
non-convex functions satisfying the PL inequality. Moreover, compared to other works that assume
restrictive bounded gradient, heterogeneity, and variance assumptions, we show that such assump-
tions can be avoided by using a sample-wise smoothness assumption. Table 1 presents a summary
of the above discussion. Please refer to Appendix A.2 for a detailed literature review.

2 Server FEDAVG

In this section, we present the classical FedAvg algorithm in the server setting and prove its conver-
gence. The FL setup consists of a set of N clients and a central server. The clients collaborate with
the help of the server to solve the FL Problem stated in Section 1. As noted earlier, a standard
algorithm to solve the FL Problem is FedAvg (McMahan et al., 2017). FedAvg executes in two
major steps, namely the local SGD step and the aggregation and broadcast step by the server. The
main steps of FedAvg are discussed below, and are outlined in Algorithm 1.

1. Initial Broadcast: The central server broadcasts the initial model parameters denoted
w0 to all the clients at the beginning, i.e., in the round r = 0. See steps 1 and 3 of Algorithm 1.

2. Local updates: Each client performs T local SGD updates starting from the initial model
received from the server. To compute the stochastic gradient, each client k ∈ [N ] uniformly
samples a batch of size b denoted by Br,tk . The resulting model after T local updates in the r-th
communication round, wr,T

k , is shared with the server. See steps 6 and 7 of Algorithm 1.
3. Aggregation and Broadcast: In the r-th global communication round, the central

server computes an average, wr, of the received models from the individual clients. The server
then broadcasts the aggregated model wr to all the clients. The steps (2) and (3) are repeated
for R communication rounds. See steps 11, 12 and 3 of Algorithm 1.
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Algorithm 1: FedAvg McMahan et al. (2017)

1 INITIALIZE {w0,0
k = w0}, wk ∈ Rd for k ∈ [N ]

2 for r = 0, 1, . . . , R− 1 do
3 BROADCAST wr to the nodes k ∈ [N ]

4

5 for t = 0, 1, . . . , T − 1 do
6 for devices k ∈ [N ] do
7 SAMPLE A BATCH Br,tk and |Br,tk | = b

8 SGD step on wr,t
k for k ∈ [N ]: wr,t+1

k = wr,t
k − η

b

∑
j∈Br,t ∇Φk,j

(
wr,t
k

)
9 end

10 end

11 RECEIVE wr,T
k from nodes k ∈ [N ]

12 AGGREGATION step : wr+1 = 1
N

∑N
k=1 w

r,T
k

13 end

In this work, we for the first time establish linear convergence of FedAvg in the interpolation setting
for non-convex loss functions (satisfying PL condition) (Bassily et al., 2018). It is important to
note that the proof of convergence provided in Bassily et al. (2018) for centralized SGD cannot be
directly extended to the FL setting of Algorithm 1. The major challenge in the analysis is presented
by the phenomenon referred to as client drift where the local models drift apart with multiple local
SGD updates because of data heterogeneity. Naturally, the analysis involves bounding the client
drift in terms of the loss function, which is challenging, and non-trivial. Moreover, without making
bounded gradient and bounded heterogeneity assumptions, it remains an open challenge on how to
control this client drift. In this work, we show that this drift can in fact be controlled with sample-
wise smoothness assumption and a careful analysis of the drift term. To analyze the convergence of
Server FedAvg, we make some standard assumptions as discussed next.

2.1 ASSUMPTIONS

In this section, we present the assumptions and definitions used in the paper.
Definition 1. (L-Smoothness): The function Φ (u) is said to be L smooth if there exist a constant
L > 0 such that ∥∇Φ (u1)−∇Φ (u2)∥2 ≤ L ∥u1 − u2∥2 for any u1,u2 ∈ Rd. Note that this
implies Φ (u1) ≤ Φ (u2) + ⟨∇Φ(u2),u1 − u2⟩+ L

2 ∥u1 − u2∥2 for any u1,u2 ∈ Rd.

Definition 2. (ϵ-accurate solution): A point w ∈ Rd is called an ϵ-accurate solution if Φ(w) −
Φ(w∗) ≤ ϵ, where w∗ ∈ argminw∈Rd Φ(w). A stochastic algorithm is said to achieve an ϵ-
accurate solution in r rounds if E[Φ(wr) − Φ(w∗)] ≤ ϵ, where expectation is taken over the
stochasticity of the algorithm.

Assumption 1. (Interpolation (Bassily et al., 2018)): We assume that there exists a w∗ ∈ Rd such
that the per sample loss Φk,j (w∗) = 0 for all samples j ∈ [b].
Assumption 2. (PL inequality): The loss function Φ (v) satisfies the PL inequality, i.e.,
∥∇Φ (v)∥2 ≥ µΦ (v) for some µ > 0 and for all v ∈ Rd. Further, the local loss functions
Φk (v) for all k ∈ [N ] are also assumed to satisfy the PL inequality, henceforth referred to as local
PL inequality, i.e., ∥∇Φk (v)∥2 ≥ µkΦk (v) for some µk > 0 and for all v ∈ Rd.
Assumption 3. (Sample-wise, Local and Global smoothness): The functions Φk,j(·) for all j ∈
[b], k ∈ [N ] are assumed to be lk,j-smooth. The local functions Φk(·) for all k ∈ [N ] are assumed
to be Lk-smooth. The above assumptions imply ∥∇Φk,j (v)∥2 ≤ 2lk,jΦk,j (v) and ∥∇Φk (v)∥2 ≤
2LkΦk (v) for all k ∈ [N ] and j ∈ [b]. We also assume the global loss Φ(·) to be L-smooth.
Assumption 4. (Unbiased Gradient and Loss function): We assume that the estimates of the gra-
dient and the loss function at each client k ∈ [N ] is unbiased, i.e., E [∇Φk,j (w)] = ∇Φk (w) and
E [Φk,j (w)] = Φk (w) for any j ∈ [b] and w ∈ Rd.

Note that the above assumptions, including interpolation, PL inequality and smoothness are stan-
dard assumptions made by several authors in the past (Bassily et al., 2018; Karimi et al., 2016; Ma
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et al., 2018; Nguyen & Mondelli, 2020). For example, the authors in Bassily et al. (2018); Liu et al.
(2022); Karimi et al. (2016); Haddadpour et al. (2019) assume PL inequality along with sample-wise
smoothness to prove linear convergence of SGD in a centralized setting for the interpolation regime.
Importantly, it must be noted that the PL inequality plays an important role in the analysis of overpa-
rameterized neural networks. Specifically, many works have shown that the overparameteried neural
networks satisfy the PL inequality (Liu et al., 2020; Nguyen & Mondelli, 2020; Nguyen et al., 2021;
Allen-Zhu et al., 2019). Moreover, we note that the assumption on sample-wise smoothness is not
very strict since any neural network with smooth activation will satisfy this assumption. Although
the above does not cover neural networks with non-smooth activations (like ReLU), it is known
that such activations can be approximated to arbitrary accuracy by a kernel based smooth activation
function (Nguyen & Mondelli, 2020, Eq. 2). Next, we present the first main result of the paper. The
detailed proof is presented in Appendix A.4.

2.2 CONVERGENCE OF Server FEDAVG

Theorem 1. Under Assumptions 1–4, choosing η ≤ min

{
4
µ ,

2
µmin

, µζ1 ,
L2

ζ2
, µmin

ζ3
,
(

µ
T 3ζ4

) 1
2

}
,

the iterates generated by Algorithm 1 satisfy

E [Φ (wr)] ≤
(
1− ηµ

8

)r
Φ
(
w0
)
. (1)

where, ζ1 := 4
(
2Llmax

bN + 2LLmax

N + 2LLmax
)
, ζ2 := 2

(
Ll2max

bN +
LL2

max

N + LL2
max

)
,

ζ3 := 2
(
lmaxLmax

b +
L2

maxb(b−1)
b2

)
and ζ4 := 8L2

(
2lmax

b + 2b(b−1)Lmax

b2

)
, µmin :=

mink∈[N ]{µk}, lmax := maxk,j lk,j and Lmax := maxk Lk.

Next, we characterize the sample complexity of FedAvg.

Corollary 1. Under the setting of Theorem 1 to achieve an ϵ-accurate solution, Algorithm 1
requires R = O

((
T 3/2/µ

)
log
(
Φ
(
w0
)
/ϵ
))

rounds of communication.

Corollary 1 establishes the linear convergence of FedAvg in terms of the number of rounds required
to achieve an ϵ-accurate solution. From Corollary 1, we also observe that as the number of local
updates, T , increase the global communication rounds also increase. Note that this is expected since
more local updates result in client drift, thereby, requiring more communication rounds to reach the
ϵ-accurate solution. Note that we can control the effect of client drift by choosing the learning rate
appropriately, i.e., η ∼ O(1/T 3/2), and as a consequence, we need to choose the global rounds to
be of the order of O(T 3/2). However, note that Corollary 1 captures the worst case behavior of Fe-
dAvg. Ideally, one would expect the convergence performance (in terms of communication rounds)
to first improve with T and then worsen as T increases beyond a threshold as also observed in Yu
et al. (2019b;b). A more fine grained study reveals that this is in fact the case for our analysis as
well. Below, we discuss the effect of the local updates on the performance of FedAvg.
Effect of Local Updates: Our analysis shows that the convergence performance is not always a
monotonic function of T . To see this, we refer the readers to equation 21 in the Appendix, which re-
veals that for a fixed η ≤ 4/µ, the first term decreases with T while the second term increases. This
implies that if T ≤ Tth the first term dominates (for η small enough) and the convergence perfor-
mance improves as T increases, however, as T ≥ Tth the second term dominates and the convergence
performance degrades as T increases. This implies that an optimal choice of T = Tth exists, and is a
solution to (1− ηµ/4)

T
= η3L2 (T − 1)

3 (
2lmax/b+ 2b(b− 1)Lmax/b

2
)
. Note that for a fixed η,

the optimal T is independent of the communication rounds r. Later we present experimental results
to corroborate this behavior. For the clarity of presentation and better interpretability of the result,
Corollary 1 only focuses on the general result establishing linear convergence of FedAvg.

We also note that the variance in our theoretical results is implicitly controlled by the smoothness
assumption of the loss function. In the theoretical analysis, the dependence on the batch size, b is
captured by the bound on the learning rate η in Theorem 1. It is clear from above that a smaller
batch size implies smaller η and, thereby, a slower convergence rate. In contrast, a larger batch-size
allows us to choose a larger step-size, thereby, leading to a faster convergence rate.
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The best known rate for FedAvg for minimizing the strongly-convex objectives in the overapram-
eterized regime is O(exp(−NR/T )) with bounded variance assumption Qu et al. (2020). These
assumptions are seldom satisfied, and hence are of limited applicability. In contrast, our analysis
without the need of any variance or heterogeneity assumptions achieves O(exp(−µR/8T 3/2) rate
for minimizing a much harder class of non-convex problems satisfying PL inequality. Further, note
that the theorem also reveals the effect of data heterogeneity on the performance of FedAvg, for ex-
ample, the choice of step-size will be limited by the worst case smoothness constants as well as the
PL inequality parameter µmin’s among all clients. Finally, we present the proof sketch of Theorem
1 and discuss the major challenges in the proof.

Proof Sketch of Theorem 1 and Challenges: In FedAvg setting, the individual nodes execute
multiple local updates. This leads to a phenomenon termed as “client drift”, wherein, the local
models drift apart from each other because of heterogeneity in the local datasets. The first step
is to establish descent in E

[
Φ
(
wr,t+1

)]
in terms of the client drift, see equation 18. Note that

this expression is independent of the variance, and proving this requires a careful application of the
smoothness and the PL inequality, as in equation 13 and equation 21. Next we bound the drift term
in Lemma 1. In standard FedAvg analyses, this drift is controlled using the bounded heterogeneity
(or gradient) assumptions. However, guaranteeing convergence of FedAvg without making bounded
heterogeneity (or gradients) assumption is unclear. Therefore, the challenge lies in bounding this
drift in terms of the local loss (see equation 7), and then relate it to the global loss (see Lemma
2). These steps require us to again carefully use the smoothness and PL inequality. Note that our
analysis is the first to establish fast (linear) convergence of FedAvg for minimizing PL functions in
the interpolation regime without imposing any assumptions on the local data distributions. In the
next section, we extend our analysis and results to a decentralized learning scenario.

3 Decentralized FEDAVG

In this section, we present the Decentralized FedAvg algorithm, and prove its convergence. The
Decentralized setting consists of N distributed edge devices which are represented using a connec-
tivity graph G ∈ (V, E). Here, V ∈ [N ] is the vertex set or clients, and E ⊆ {V × V} represents the
edges of the graph. Any edge (i, j) ∈ E represents a connection between node i and j. Further, the
connections are represented using mixing matrix P = [pi,k] ∈ RN×N , where pi,k = 0 if there is no
edge between node i and k i.e., (i, k) /∈ E , else pk,i > 0.1 The algorithm for Decentralized FedAvg
is presented in Algorithm 2 while in the following, we provide an outline:

1. Initialization: Each client k ∈ [N ] initializes the model parameters denoted by w0
k at

the beginning, i.e., in the round r = 0. See Step 1 of Algorithm 2.
2. Local updates: Each client performs T local SGD updates starting from the model pa-

rameters obtained by the aggregation of the updates from neighbouring clients. To compute the
stochastic gradient, each client k ∈ [N ] uniformly samples a batch size b denoted by Br,tk . The
resulting model parameters after T local rounds in the r-th global round are denoted by wr,T

k
which is sent to all the neighbouring clients of k. See Steps 6 and 7 of Algorithm 2. Note that
this procedure is similar to the local update step in the FedAvg case.

3. Aggregation: In the r-th global communication round, each client k ∈ [N ] computes a local
average of the model parameters received by its neighbors. The aggregate model is denoted by
wr
k. The steps (2) and (3) above are repeated for R rounds. See Steps 11, 12 of Algorithm 2.

Below, we present the convergence result of Decentralized FedAvg algorithm.

3.1 CONVERGENCE OF Decentralized FEDAVG

In this section, we prove that the Decentralized FedAvg algorithm converges linearly to the global
optimum for any smooth non-convex function satisfying PL inequality in the interpolated regime.
Compared to the FedAvg this case poses several challenges. In particular, for Decentralized FedAvg
we need to handle two drift terms, namely local drift and the global drift. Local drift refers to the
update at each client drifting away from the average obtained from the neighboring clients while

1In our analysis, we have assumed pi,k = 1
di

whenever pi,k > 0. Here, di is the degree of the i-th node.
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Algorithm 2: Decentralized Federated Averaging Algorithm (Decentralized FedAvg)

1 INITIALIZE {w0,0
k = w0

k}, wk ∈ Rd for k ∈ [N ]
2 for r = 0, 1, . . . , R− 1 do
3 INITIALIZE wr

k to the device k ∈ [N ]

4

5 for t = 0, 1, . . . , T − 1 do
6 for devices k ∈ [N ] do
7 SAMPLE A BATCH Br,tk and |Br,tk | = b

8 SGD step on wr,t
k for k ∈ [N ]: wr,t+1

k = wr,t
k − η

b

∑
j∈Br,t

k
∇Φk,j

(
wr,t
k

)
9 end

10 end

11 RECEIVE wr,T
k from clients k ∈ [N ]

12 AGGREGATION step : wr+1
k =

∑
i∈Nk

pk,iw
r,T
i

13 end

the global drift refers to the average obtained from the neighboring clients drifting away from the
global average. To derive the convergence of FedAvg, we employ a novel induction based proof
technique and perform a carefully calibrated analysis which can be of independent interest to the
research community. In addition to the Assumptions 1-4, our analysis also relies on the following
assumption on the mixing matrix (Koloskova et al., 2020).
Assumption 5. The mixing matrix P is assumed to be symmetric, i.e., P = PT , and doubly stochas-
tic, i.e., P1 = 1, 1TP = 1T .

The above assumption covers all networks that are symmetric, for example, fully connected, ring
topology etc. In the following, we provide our main result for the decentralized FedAvg. The
detailed proof is presented in Appendix A.5.

Theorem 2. Under Assumptions 1-5, choosing

η≤min

{
4

µ
,
1

L
,

2

µmin
,
µ

4ζ1
,
µ

2ζ2
,
1

8

(
µ

ζ3T 3

) 1
3

,

(
1

ζ4T 2

) 1
2

,
1

ζ5
,
Nµmin

ζ6T 2
,
µmin

ζ7
,

(
1

T 2ζ8

) 1
2

,

(
1

T 3ζ9

) 1
4

}
,

(2)

the average total loss of the Decentralized FedAvg algorithm satisfies

E[Φ
(
wr+1

)
] ≤ Λr

(
Λ + 4η4LLmβT

3λ2(r + 1)2
)
Φ
(
w0
)
, (3)

where λ ≜
(
1 + 1

ψ

)
λ22, ψ > 1

1

λ2
2
−1

, Lm := max
{
L2
max, 2LmaxN

}
, β := 4lmaxψ

2N
(1+ψ)µmin

,

µmin := mink∈[N ]{µk}, Lmax := maxk Lk and Λ := max
((
1− ηµ

8

)
, λ
)
. In the above,

ζ1 := 4
(
2Llmax

bN + 2LLmax

N + 2LLmax
)
, ζ2 := 2

(
Ll2max

bN +
LL2

max

N + LL2
max

)
, ζ3 :=

64lmaxLLmax

µmin
+ 16γLλ22Lmax, ζ4 :=

16lmaxL
2
max

µmin
+ 4λ22γL

2, ζ5 := 2
(

8lmaxT
2Lmax

µmin
+L),

ζ6 := 4lmaxL
2
max, ζ7 := 2

[
lmaxLmax

b +
L2

maxb(b−1)
b2

]
, ζ8 := βLmNRλ and ζ9 :=

4LLmβ(r + 1)3λ.

Now, in the following, we characterize the sample complexity of Decentralized FedAvg.

Corollary 2. Under Assumptions 1-5, to achieve an ϵ accurate solution, Algorithm 2 requires
R = O

(
T 2/µmin log

(
Φ
(
w0
)
/ϵ
))

number of communication rounds.

Corollary 2 shows that even in the Decentralized setting, FedAvg is capable of achieving linear
convergence. Observe from Theorem 2 and the corollary above that an ϵ-accurate solution can be
achieved if the number of global communications rounds R scales as O(T 2). We know that for the
Server FedAvg algorithm (complete graph), the second maximum eigenvalue λ2 is 0. In that case,
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Figure 2: Training loss on different datasets versus the communication rounds for FedAvg in the
Server (see (a) and (b)) and Decentralized (see (c) and (d)) setting.

the second term on the right hand side of equation 3 goes to zero and we are able to recover the
result in Theorem 1 for the Server FedAvg algorithm. However, R is of the order T 2 as apposed to
T 3/2 in the Server case. This is an artifact of our analysis, and we believe that an order of T 3/2 can
be recovered, which is relegated to the future work. By doing a fine grained analysis, one can show
that the effect of local updates T on the convergence is quite similar to the server setting. We do not
present the result that we obtain after the fine grained analysis in Theorem 2 and Corollary 2.

Effect of Network Topology : The effect of Decentralized clients is captured through the term
involving λ2. In particular, if λ2 ̸= 0, then the convergence is relatively slower due to the second
term, i.e., 4η4LLmβT 2λ2(r+ 1)2 and Γp. Although the above result holds good only for networks
with symmetric and doubly stochastic mixing matrix, we believe that similar results hold good even
in the general setting as well, and can be proved using the technique developed in this paper.

Again, this is the first result establishing linear convergence of FedAvg in the decentralized setting
when minimizing non-convex functions satisfying PL-inequality in the interpolation regime. Next,
we present a sketch of the proof and its challenges.

Proof Sketch of Theorem 2 and Challenges: In addition to the challenges mentioned in section 2.2,
the Decentralized setting poses several new challenges. Unlike server setting, as a consequence of
the execution of local updates within each communication round, the nodes do not have consensus.
This implies that in the decentralized setting, we need to control the consensus error in addition to
the client drift (see Sec. 2.2). We handle this challenge by bounding the loss in terms of the drift
term that captures both local and global drifts as in Lemma 3. Further, we bound the drift term
which depends on the average loss, leading to two coupled equations; this leads to a new challenge
in proving the result. We use a novel application of induction principle to prove linear convergence
of both the average loss and the drift. Many distributed machine learning problems lead to such
coupled equation, which can be handled in the way described in this paper. Hence, the technique
can be of independent interest. In the next section, we present the experimental results.

4 EXPERIMENTAL RESULTS

In this section, we experimentally validate our theoretical findings for the server and the decentral-
ized versions of FedAvg. First, we present the experimental setup for both the settings.

Server FedAvg: Here we consider the FedAvg algorithm with a central server that communicates
with 60 or 25 edge devices that run several rounds of local SGD before sharing the model with the
server. We consider the following models to validate our theory: (i) a simple regression and Deep
Neural Network (DNN) models under overparameterized setting for image classification tasks on
CIFAR-10, MNIST, and FMNIST datasets (no. of devices = 60), and (ii) DNN under underparame-
terized and overparameterized settings for next-character prediction task using Shakespeare dataset
(no. of devices = 25). Refer to Appendix A.7 for more details of the experimental setup.

Decentralized FedAvg: In this setting, we run Algorithm 2 for the following networks (i) ring,
(ii) random doubly stochastic, and (iii) torus topologies. The neural network architecture and the
datasets considered are same as the server setting discussed above.

In the above settings, we compare (a) the performance of server/decentralized FedAvg with both
underparametrized and overparameterized neural network models, (b) effect of topology on the con-
vergence (only decentralized case), and (c) effect of local updates on the convergence. Figure 2
plots the training loss for FedAvg in the Server and Decentralized setting for underparameterized
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Figure 3: Effect of T on the convergence of FedAvg in the Server (see (a) and (b)) and Decentralized
(see (c) and (d)) setting for simple regression and CNN model.

and overparameterized models on different datasets. As established in Theorems 1 and 2, the loss
of FedAvg in the Server and Decentralized settings diminishes rapidly for the overparameterized
models compared to the underparameterized models. This is due to the fact that the PL inequality
is satisfied for overparameterized systems which helps to reach the global optimum at a linear rate
as demonstrated by Theorems 1 and 2. Additional experiments depicting the testing performance of
FedAvg on different models and under different settings are included in Appendix A.7.

Figure 4: Training loss versus the com-
munication rounds for FedAvg in the
decentralized setting. Here, random
doubly stochastic case has 5 clients
while for others we have used 60 clients.

Effect of local updates T : Figure 3 shows plots of the
training losses on MNIST dataset for the FedAvg under
the Server and Decentralized settings on the overparame-
terized regression model and the CNN. From equation 21,
we see that as T increases, the convergence speed ei-
ther decreases or increases depending on the coefficient
of T 3 in the second term. We capture this phenomenon
in Fig. 3. In particular, as T increases, the rate of con-
vergence increases for simple regression model while it
decreases/saturates for the CNN based DNN model. One
plausible explanation is that the smoothness constants of
simple regression is small, and hence results in smaller
second term in equation 21. However, for CNN based
DNN, the second term dominates, and hence results in
slower convergence with T .

Comparison with different topologies in the Decentral-
ized case: Figure 4 shows the training loss versus the

communication rounds R for overparameterized CNN model using MNIST dataset with T = 10
for four different topologies. Since centralized topology has λ2 = 0, it outperforms the network
with ring topology and a random (doubly) stochastic matrix. However, the torus topology does not
satisfy the conditions required, i.e., symmetric and doubly stochastic matrix, and hence cannot be
used for corroborating our theoretical findings. Nevertheless, we have conducted experiments with
torus topology, and Figure 4 shows that the torus has the worst convergence performance. One rea-
son for this could be that the ring topology has more structure, i.e., it has a symmetric and doubly
stochastic mixing matrix P as opposed to the torus topology. The theoretical analysis of networks
with general topology is relegated to our future work.

Conclusion: In this work, we performed a theoretical analysis of the well known FedAvg algorithm
for the class of smooth non-convex overparameterized systems in the interpolation regime. We con-
sidered two settings, namely (i) Server setting where the central server coordinates the exchange of
information, and (ii) Decentralized setting where nodes communicate over an undirected graph. In
this regime, it is well know that neural networks with non-convex loss functions typically satisfy an
inequality called Polyak-Lojasiewicz (PL) condition. Assuming PL condition, we showed that in
both the settings, the FedAvg algorithm achieves linear convergence rates of O(T 3/2 log(1/ϵ)) and
O(T 2 log(1/ϵ)), respectively, where ϵ is the desired solution accuracy, and T is the number of local
SGD updates at each node. As opposed to standard analysis of FedAvg algorithm, we showed that
our approach does not require bounded heterogeneity, variance, and gradient assumptions. We cap-
tured the heterogeneity in FL training through sample-wise and local smoothness of loss functions.
Finally, we carried out experiments on multiple real datasets to confirm our theoretical observations.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S Dhillon, and Ufuk
Topcu. Faster non-convex federated learning via global and local momentum. In Uncertainty in
Artificial Intelligence, pp. 496–506. PMLR, 2022.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Local sgd optimizes overpa-
rameterized neural networks in polynomial time. In International Conference on Artificial Intel-
ligence and Statistics, pp. 6840–6861. PMLR, 2022.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in feder-
ated learning. arXiv preprint arXiv:1910.14425, 2019.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local
sgd with periodic averaging: Tighter analysis and adaptive synchronization. Advances in Neural
Information Processing Systems, 32, 2019.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based frame-
work for federated learning convergence analysis. arXiv preprint arXiv:2105.05001, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European conference on ma-
chine learning and knowledge discovery in databases, pp. 795–811. Springer, 2016.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebas-
tian U. Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms
in federated learning, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd on hetero-
geneous data. arXiv preprint arXiv:1909.04715, 2019.

Prashant Khanduri, Pranay Sharma, Swatantra Kafle, Saikiran Bulusu, Ketan Rajawat, and
Pramod K Varshney. Distributed stochastic non-convex optimization: Momentum-based variance
reduction. arXiv preprint arXiv:2005.00224, 2020.

Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, and Pramod
Varshney. Stem: A stochastic two-sided momentum algorithm achieving near-optimal sample and
communication complexities for federated learning. Advances in Neural Information Processing
Systems, 34:6050–6061, 2021.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized sgd with changing topology and local updates. In International Confer-
ence on Machine Learning, pp. 5381–5393. PMLR, 2020.

10



Under review as a conference paper at ICLR 2023

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
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A APPENDIX

A.1 NOTATION

We use bold small letters to denote vectors, and capital bold letters for matrices. We denote the
expected value of a random variableX by E [X]. We denote l2-norm by ∥.∥2 and the Frobenius norm
by ∥.∥F . Also ⟨., .⟩ denotes the inner product space. The cardinality of a any set B is represented by
|B|. We use the standard notation O(n) to denote the order of n. For a vector valued function Φ(w),
the gradient is denoted by ∇Φ(w), and the Hessian is denoted by ∇2Φ(w). We use 1 to represent
a column vector with all ones. We use [N ] to denote the set {1, 2, . . . , N}.

A.2 RELATED WORK

After the introduction of the FedAvg (McMahan et al., 2017), multiple works have analyzed the
convergence of FedAvg in the server setting and with homogeneous data, i.e., when the data is i.i.d
across clients (see Stich (2018); Wang & Joshi (2018); Khaled et al. (2019); Yu et al. (2019b); Wang
et al. (2019); Yang et al. (2021)). The authors in (Stich, 2018) were the first to obtain a rate of
O(1/Nϵ) for strongly convex and smooth problems. Later (Haddadpour et al., 2019; Haddadpour
& Mahdavi, 2019) proved a similar result but for non-convex functions satisfying PL inequality. In
(Woodworth et al., 2020a), the authors analyzed the trade-off between Minibatch and Local SGD
in the homogeneous settings and established O(1/Nϵ2) convergence rates for minimizing smooth
convex objectives. The analysis of FedAvg for the general non-convex settings was first performed
in Yu et al. (2019b) where the authors establish a rate of O(1/Nϵ2). Recently, many works have
adapted the analyses of FedAvg for minimizing the non-convex losses in the heterogeneous data
settings. For example, Yu et al. (2019a) extended the results of Yu et al. (2019b) for the heteroge-
neous data setting. Specifically, the authors in (Yu et al., 2019a) utilized a Momentum SGD updates
and established the convergence rate of O(1/Nϵ2) under bounded heterogeneity setting. The work
(Karimireddy et al., 2020b) also provided a tight analysis for FedAvg and established linear speed-
up with the number of clients. Recently, (Yang et al., 2021) analyzed the linear speed-up effect of
FedAvg while (Khanduri et al., 2021) analyzed the trade-off between the batch sizes and the local
updates. We note that all these works establish a convergence rate of O(1/Nϵ2) for minimizing non-
convex smooth losses in the bounded heterogeneity setting. It is also worth noting that numerous
works have proposed variants of FedAvg with different local update rules (e.g., variance reduction,
momentum SGD, adaptive updates, etc.) with the goal of improving the performance of FedAvg
(Karimireddy et al., 2020b; Sharma et al., 2019; Liang et al., 2019; Khanduri et al., 2021; 2020;
Karimireddy et al., 2020a; Das et al., 2022). However, in practice FedAvg remains the algorithm of
choice for training large FL systems.

There are a few works that have analyzed the performance of Fedvg in the decentralized settings.
One of the initial works, (Lian et al., 2017) considered a decentralized parallel SGD (D-PSGD) and
provided convergence rate of O(1/Nϵ2) for minimizing smooth non-convex functions. Later, (Had-
dadpour & Mahdavi, 2019) analyzed the convergence of FedAvg under both server and decentralized
setting with bounded gradient dissimilarity assumption. The authors showed a convergence rate of
O(1/Nϵ2) for minimizing non-convex functions in both the server and decentralized settings. The
authors in Yu et al. (2019a) also extended the analysis of Momentum SGD to decentralized networks
and established a convergence of O(1/Nϵ2) for minimizing non-convex functions. All the above
works provide a sublinear rate of convergence for FedAvg, however, as illustrated in Fig. 1, FedAvg
converges at a much faster rate in practice. To understand this behavior of FedAvg, in this work
we analyze the performance of FedAvg under both server and decentralized settings for minimiz-
ing a special class of non-convex functions satisfying PL inequality under the interpolation regime.
We note that overparameterized neural networks/systems usually operate in the interpolation regime
while their loss functions have been shown to satisfy the PL inequality (Liu et al., 2022).

The linear convergence of centralized SGD in the interpolation regime for minimizing PL objectives
was first established in Bassily et al. (2018). Recently, (Qu et al., 2020) showed linear convergence
rate of FedAvg in the server setting for minimizing strongly-convex objectives in the overparame-
terized regime. Similarly, the authors in (Koloskova et al., 2020) have also established the linear
convergence of FedAvg in the decentralized setting for minimizing strongly-convex losses in an
overparameterized setting. The above works only focus on analysis of FedAvg for the strongly-
convex objectives in the overparameterized regime while we focus on the more general class of
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non-convex functions satisfying the PL inequality. Moreover, compared to other works that assume
restrictive bounded gradient, heterogeneity, and variance assumptions, we show that such assump-
tions can be avoided by using a sample-wise smoothness assumption. Table 1 presents a summary
of the above discussion.

In a separate line of work, the linear convergence of SGD (and GD) for optimizing overparameter-
ized neural networks/systems with specific activation functions, network widths, and assumptions
on data and loss functions has been established (Zou et al., 2020; Li & Liang, 2018; Allen-Zhu et al.,
2019; Jacot et al., 2018; Du et al., 2018; Chizat et al., 2019; Nguyen & Mondelli, 2020). Recently,
the works in (Huang et al., 2021; Deng et al., 2022) have extended some of these specific neural net-
work architectures to FL settings. However, we note that these works are orthogonal to our setting
as we consider a general setting without assuming a specific model to be learned.

A.3 USEFUL LEMMAS

In this section, we state two Lemmas that will be used in proving our main results.

Lemma 1. For any matrices A ∈ CN×N and B ∈ CN×d, we have ∥AB∥2F ≤ N ∥A∥2op ∥B∥2F .

Lemma 2. (See Lemma 1 in Sun et al. (2021)) For any m ∈ N, the mixing matrix P satisfies
∥Pm −Q∥op ≤ λm2 , where λ2 is the second largest eigenvalue of the mixing matrix P , and Q :=
1
N 11T .

A.4 PROOF OF THEOREM 1

In this section, we present the proofs for the convergence of Algorithm 1.

A.4.1 USEFUL LEMMAS TO PROVE THEOREM 1

To start with, we briefly discuss some Lemmas to prove the main result. Using the following Lem-
mas, theorem 1 will be proved in Sec. A.4.2. The local model drift is bounded in terms of local loss.
The local model drifts away from the global averaged model during the local updates which is the
essence of the following lemma.

Lemma 1. The local drift 1
N

∑N
k=1 E

∥∥wr,t
k −wr,t

∥∥2 is bounded in terms of local weight i.e.,
Φk (w

r,τ
k ) as follows

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] .

where lmax := maxk,j lk,j and Lmax := maxk Lk

Proof: Using the step 7 of Algorithm 1, we have

wr,t
k = wr,t−1

k − η

b

∑
j∈Br,t

k

∇Φk,j

(
wr,t−1
k

)
.

Performing the telescopic sum over w, we get

wr,t
k = wr,0

k − η

t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) . (4)

Averaging over k ∈ [N ] results in

wr,t = wr,0 − η

N

N∑
k=1

t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) . (5)

14



Under review as a conference paper at ICLR 2023

Using equation 4 and equation 5 in 1
N

∑N
k−1

∥∥wr,t
k −wr,t

∥∥2 and noting the fact that wr,0 = wr,0
k ,

we get

1

N

N∑
k−1

∥∥wr,t
k −wr,t

∥∥2 ≤ 1

N

N∑
k=1

∥η
t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k )− η

N

N∑
k′=1

t−1∑
τ=0

∑
j′∈Br,τ

k′

∇Φk′,j′ (w
r,τ
k′ ) ∥

2.

For a sequence Xk for k ∈ [N ], we have
∑N
k=1 ∥Xk −X∥2 ≤

∑N
k=1 ∥Xk∥2. Applying this in the

above results in

1

N

N∑
k−1

∥∥wr,t
k −wr,t

∥∥2 ≤ 1

N

N∑
k=1

∥η
t−1∑
τ=0

1

b

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) ∥2 (6)

≤η
2t

N

N∑
k=1

t−1∑
τ=0

 1

b2

∑
j∈Br,τ

k

∥∇Φk,j (w
r,τ
k )∥2 + 1

b2

∑
j ̸=j′

Fr,τ
k

 .
where Fr,τ

k := ⟨∇Φk,j (w
r,τ
k ) ,∇Φk,j′ (w

r,τ
k )⟩. Taking expectation, we get

1
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E
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]
.

Further, using smoothness assumption (see assumption 3), we have

1

N
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E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N
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τ=0
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b
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≤ η2t

N
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b

E [Φk,j (w
r,τ
k )] +

2maxk Lkb(b− 1)

b2
Φk (w

r,τ
k )

]
(a)
≤ η2t

N

[
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b

+
2b(b− 1)Lmax

b2

]
N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] . (7)

where (a) follows from the fact that lmax := maxk,j lk,j and Lmax := maxk Lk.

Next, we show that the local loss is bounded in terms of global average weight. This is necessary to
obtain linear convergence of Algorithm 1.

Lemma 2. The local average loss E [Φk (w
r,τ
k )] is bounded in terms of global average weight

i.e., Φk (wr) as follows

E [Φk (w
r,τ
k )] ≤

(
1− ηµk

2

)τ
Φk (w

r) . (8)

Proof: Applying the smoothness assumption (see 3) for Φk (u), we have

Φk (w
r,τ
k ) ≤ Φk

(
wr,τ−1
k

)
+
〈
∇Φk

(
wr,τ−1
k

)
,wr,τ

k −wr,τ−1
k

〉
+
Lk
2

∥∥∥wr,τ
k −wr,τ−1

k

∥∥∥2
= Φk

(
wr,τ−1
k

)
+

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
wr,τ−1
k

)〉
+
η2Lk
2b2

∥∥∥Gr,τ−1
k

∥∥∥2 .
where Gr,τ−1

k :=
∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. The last equality follows from step 7 of Algorithm

1, i.e., wr,τ
k −wr,τ−1

k = −η
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. Taking expectation on both sides in the

above, we get

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 + Lkη
2

2b2

∥∥∥Gr,τ−1
k

∥∥∥2]
≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 + Lmaxη
2

2b2

∥∥∥Gr,τ−1
k

∥∥∥2] , (9)
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where Lmax := maxk Lk. The last term on the right side in equation 9 can be bounded as

1

b2
E

∥∥∥∥∥∥
∑

j∈Br,τ−1
k

∇Φkj

(
wr,τ−1
k

)∥∥∥∥∥∥
2

≤ E

 1

b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2 + 1

b2

∑
j ̸=j′

Fr,τ−1
k


(a)
≤

[
2lmax
b

E
[
Φk

(
wr,τ−1
k

)]
+

2Lmaxb(b− 1)

b2
E
[
Φk

(
wr,τ−1
k

)]]
,

where Fr,τ−1
k :=

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j′

(
wr,τ−1
k

)〉
, and (a) follows from smoothness as-

sumption and the fact that lmax := maxk,j lk,j and Lmax := maxk Lk. Now, plugging the above in
equation 9, we get

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 + η2
(
lmaxLmax

b
+
L2
maxb(b− 1)

b2

)
Lr,τ−1
k

]
.

where Lr,τ−1
k := Φk

(
wr,τ−1
k

)
. Using the local PL inequality i.e.,

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2 ≥

µminΦk

(
wr,τ−1
k

)
, where µmin := mink∈[N ]{µk}. (see definition 2), the above can be further

bounded as

E [Φk (w
r,τ
k )] ≤

[
1− ηµmin + η2

(
lmaxLmax

b
+
L2
maxb(b− 1)

b2

)]
E
[
Φk

(
wr,τ−1
k

)]
.

Choosing η ≤ µmin

2

(
lmaxLmax

b +
L2
maxb(b−1)

b2

) results in the following

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)
E
[
Φk

(
wr,τ−1
k

)]
.

It is easy to see that the above implies

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ
Φk (w

r) .

In the next subsection, we provide the proof of 1 using Lemmas proved above.

A.4.2 COMPLETING THE PROOF OF THEOREM 1

From the Assumption 1, Φ (w) can be written as

Φ
(
wr,t+1

)
≤ Φ

(
wr,t

)
+ ⟨∇Φ(wr,t),wr,t+1 −wr,t⟩+ L

2

∥∥wr,t+1 −wr,t
∥∥2 .

Now, using the stochastic gradient descent update wr,t+1 − wr,t =

− η
bN

(∑N
k=1

∑
j∈Br,t ∇Φk,j

(
wr,t
k

))
in the above and using Assumption 4, we get

Φ
(
wr,t+1

)
≤Φ

(
wr,t

)
− η

〈
∇Φ(wr,t),

1

bN

N∑
k=1

∑
j∈Br,t

∇Φk,j
(
wr,t
k

)〉
+
η2L

2

∥∥Gr,t∥∥2 .
where Gr,t := 1

bN

∑N
k=1

∑
j∈Br,t ∇Φk,j

(
wr,t
k

)
. Taking the expectation conditioning on wr,t

k , we
get2

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)]
− η

〈
∇Φ(wr,t),

1

N

N∑
k=1

∇Φk
(
wr,t
k

)〉
︸ ︷︷ ︸

A1

+

η2L

2

(
1

b2N2

N∑
k=1

∥∥∥∥∥∥
∑
j∈Br,t

∇Φk,j
(
wr,t
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
A2

+
1

b2N2

∑
k ̸=k′

〈 ∑
j∈Br,t

∇Φk,j
(
wr,t
k

)
,
∑
i∈Br,t

∇Φk′,i
(
wr,t
k′

)〉
︸ ︷︷ ︸

A3

)
.

(10)
2The conditional term is not explicitly written. However, it be clear from the context.
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The term A2 in equation 10 can be bounded as

A2 =
1

b2N2

N∑
k=1

∑
j∈Br,t

∥∥∇Φk,j
(
wr,t
k

)∥∥2 + 1

b2N2

N∑
k=1

∑
j ̸=j′

〈
∇Φk,j

(
wr,t
k

)
,∇Φk,j′

(
wr,t
k

) 〉
.

Now taking the expectation conditioning on wr,t
k , we get

E[A2] =
1

bN2

N∑
k=1

∥∇Φk,j
(
wr,t
k

)
∥2 + b(b− 1)

b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2. (11)

Taking the expectation of A3 in equation 10, we get

E[A3] =
1

N2

∑
k ̸=k′

〈
∇Φk

(
wr,t
k

)
,∇Φk′

(
wr,t
k′

)〉
(a)
≤ 1

2N2

∑
k ̸=k′

[
∥∇Φk

(
wr,t
k

)
∥2 + ∥∇Φk′

(
wr,t
k′

)
∥2
]

=
2(N − 1)

2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2

≤ 1

N

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (12)

where (a) follows from the fact that ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2. Next, the inner product term A1 in

equation 10 can be written as

A1 =
1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 + 1

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
−∇Φ

(
wr,t

)∥∥∥∥∥
2

(a)
≥ 1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − L2

2N

N∑
k=1

∥wr,t
k −wr,t∥2, (13)

where (a) follows from smoothness assumption (see 1). Substituting equation 11, equation 12 and
equation 13 in equation 10, we get the following

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+
ηL2

2N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + η2L

2bN2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)∥∥2
︸ ︷︷ ︸

:=A4

+

(
η2Lb(b− 1)

2b2N2
+
η2L

2N

) N∑
k=1

∥∥∇Φk
(
wr,t
k

)∥∥2
︸ ︷︷ ︸

:=A5

]
. (14)

The term A4 in equation 14 can be upper bounded as follows

A4

(a)
≤ 2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)
−∇Φk,j

(
wr,t

)∥∥2 + 2

N∑
k=1

∥∥∇Φk,j
(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

l2k,j
∥∥wr,t

k −wr,t
∥∥2 + 4

N∑
k=1

lk,jΦk,j
(
wr,t

)
(c)
≤ 2l2max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4lmax

N∑
k=1

Φk,j
(
wr,t

)
,
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where (a) follows by adding and subtracting ∇Φk,j (w
r,t) and using the fact that, ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2, (b) follows from Assumption 3, and (c) follows from the fact that lmax :=
maxk,j lk,j . Taking the expectation of A4, we get the following bound

E [A4] ≤ 2l2max

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 + 4lmax

N∑
k=1

Φk
(
wr,t

)
. (15)

Now, let us upper bound the term A5 in equation 14 as

A5

(a)
≤ 2

N∑
k=1

∥∥∇Φk
(
wr,t
k

)
−∇Φk

(
wr,t

)∥∥2 + 2

N∑
k=1

∥∥∇Φk
(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

L2
k

∥∥wr,t
k −wr,t

∥∥2 + 4

N∑
k=1

LkΦk
(
wr,t

)
(c)
≤ 2L2

max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4Lmax

N∑
k=1

Φk
(
wr,t

)
. (16)

In the above, (a) follows by adding and subtracting ∇Φk (w
r,t) and using the fact that, ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2, and (b) follows from Assumption 3 and (c) follows from the fact that Lmax :=
maxk Lk. Substituting upper bounds from equation 15 and equation 16 in equation 14, we get

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+

(
ηL2

2N
+
η2Ll2max
bN2

+
η2LL2

max

N2
+
η2LL2

max

N

) N∑
k=1

∥∥wr,t
k −wr,t

∥∥2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

)
Φ
(
wr,t

) ]
. (17)

Now, using PL inequality, i.e., ∥∇Φ (w)∥2 ≥ µΦ (w) , ∀w ∈ Rd and rearranging the terms, we get

E
[
Φ
(
wr,t+1

)]
≤ E

[(
1− ηµ

2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

))
Φ
(
wr,t

)
+

(
ηL2

2
+
η2Ll2max
bN

+
η2LL2

max

N
+ η2LL2

max

)
1

N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 ].
Choosing η ≤ min

{
µ

4( 2Llmax
bN + 2LLmax

N +2LLmax)
, L2

2

(
Ll2max

bN +
LL2

max
N +LL2

max

)
}

, the above can be

further bounded as

E
[
Φ
(
wr,t+1

)]
≤ E

(
1− ηµ

4

)
Φ
(
wr,t

)
+
ηL2

N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 . (18)

In order to prove linear convergence, it suffices to show that the second term above, i.e.,
1
N

∑N
k=1

∥∥wr,t
k −wr,t

∥∥2 is exponential in Φ (w). From Lemma 1, it follows that the second term
on the right hand side in equation 18, becomes

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] . (19)
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Substituting equation 8 of Lemma 2, i.e. E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ E [Φk (w
r)], in the above

results in

1

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 ≤ η2t

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

] N∑
k=1

t−1∑
τ=0

(
1− ηµmin

2

)τ
EΦk (wr)

(a)
≤ η2t2

N

[
2lmax
b

+
2b(b− 1)Lmax

b2

] N∑
k=1

Φk (w
r)

(b)
= η2t2

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
Φ (wr) , (20)

where (a) follows by choosing η ≤ 2
µmin

and (b) follows from the fact that 1
N

∑N
k=1 Φk (w

r) =

Φ (wr). Using recursion on equation 18, we get

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

4

)T
Φ (wr) +

ηL2

N

T−1∑
τ=0

(
1− ηµ

4

)τ N∑
k=1

∥∥∥wr,T−1−τ
k −wr,T−1−τ

∥∥∥2 .
It follows from the update step that 1

N

∑N
k=1

∥∥∥wr,T−1−τ
k −wr,T−1−τ

∥∥∥2 = 0 for τ = T − 1. Using

1
N

∑N
k=1 E

∥∥wr,t
k −wr,t

∥∥ ≤ η2t2
[
2lmax

b + 2b(b−1)Lmax

b2

]
Φ (wr) in the above results in

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

4

)T
Φ (wr)

+ ηL2
T−2∑
τ=0

(
1− ηµ

4

)τ
η2(T − 1)2

[
2lmax
b

+
2b(b− 1)Lmax

b2

]
Φ (wr) .

Setting η ≤ 4
µ gives

E
[
Φ
(
wr+1

)]
≤
[(

1− ηµ

4

)T
+ η3L2 (T − 1)

3

(
2lmax
b

+
2b(b− 1)Lmax

b2

)]
Φ (wr) . (21)

Using the fact
(
1− ηµ

4

)T ≤
(
1− ηµ

4

)
, and choosing η ≤

[
µ

8L2T 3( 2lmax
b +

2b(b−1)Lmax
b2

)

] 1
2

results in

the following exponential bound

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

8

)
E [Φ (wr)] .

A.5 PROOF OF THEOREM 2

In this section, we first present the overview of the proof. Then, we will state and prove Lem-
mas required to prove the Theorem. The proof mainly consists of three intermediate steps, namely
bounding i) the local loss, ii) the loss in terms of future iterates, and iii) the global drift. In the
Lemma 6, we bound the local loss. We use Lk smoothness (see definition 1) and local PL inequality
to show loss at local weight is bounded in terms loss at global average weight and the drift.

A.5.1 PROOF OF THEOREM 2

We simplify the presentation of the proof by using the following matrix notations. Let the local
average weights be denoted by W r

l := [wr
1,w

r
2, . . . ,w

r
N ]
T ∈ RN×d, where wr

k ∈ Rd. The
Aggregation step of Algorithm 2 can be compactly written in matrix form as

wr+1
k =

∑
i∈Nk

pk,iw
r,T
k ≡ W r+1

l = PW r, (22)

where Nk := {i : pk,i > 0}. Further, we define the global average as

wr :=
1

N

N∑
k=1

wr
k ≡ W r = QW r

l , (23)
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where the average matrix Q := 1
N 11T . Now, let us represent the gradients compactly in the matrix

form as

∂Φ̂
(
W r,t

)
=

1
b

∑
j∈Br,t

1

G
(r,t)
1,j ,

1

b

∑
j∈Br,t

2

G
(r,t)
2,j , . . . ,

1

b

∑
j∈Br,t

N

G
(r,t)
N,j

 , (24)

where G(r,t)
l,j := ∇Φl,j

(
wr,t
l

)
. The mixing matrix P also preserves the average, and hence QP =

P .

We start by proving an upper bound on the average loss E
[
Φ
(
wr+1

)]
in terms of the loss Φ (wr)

in the r-th communication round, and the drift Dr,0, as shown in the following Lemma.

Lemma 3. The average loss is bounded in terms of the drift as follows

E
[
Φ
(
wr+1

)]
≤
(
1− ηµ

8

)
Φ (wr) +

6η2L

N
Dr,0, (25)

where the drift Dr,0 :=
∥∥∥W r,0

l −W r,0
∥∥∥2
F

, and η is chosen according to equation 2.

Proof: The proof is provided in Appendix A.6.

It is easy to see from Lemma 3 that we can obtain the convergence result provided in theorem 2
provided the drift term on the right hand side of equation 25 is bounded in terms of loss. More
specifically, if Dr,0 ≤ constant × Φ (wr), then the linear convergence stated in Theorem 2 can
be easily proved by substitution. Before proving this, in the following lemma, we provide a recursion
of the drift in terms of the average loss and the past drift.

Lemma 4. The drift is bounded in terms of Φ
(
wτ,0

)
as follows

Dr,0 ≤ η2βT 2NLm

(
r−1∑
τ=0

λr−τDτ,0 +

r−1∑
τ=0

λr−τE
[
Φ
(
wτ+1,0

)])
, (26)

where Lm := max
{
L2
max, 2LmaxN

}
, β := 4lmaxψ

2N
(1+ψ)µmin

, λ ≜
(
1 + 1

ψ

)
λ22.

Proof: The proof is provided in Appendix A.6.

Next, our task is to show that the recursion in equation 26 satisfies a bound of the form Dr,0 ≤
constantr × Φ

(
w0
)
, which is the desired result. Here, the constant is less than one. We use

induction along with carefully choosing η to achieve this goal. The following lemma provides the
desired result.

Lemma 5. Using equation 26 and equation 25 and by induction on Dr+1,0 we get

Dr+1,0 ≤ (2r + 3)η2βT 2LmNλ
2Λr+1Φ

(
w0
)
, (27)

where Lm := max
{
L2
max, 2LmaxN

}
and β := 4lmaxψ

2N
(1+ψ)µmin

.

Proof: The proof is provided in Appendix A.6.1.

First, note that if the network is fully connected or centralized, i.e., λ2 = 0, then the drift term
becomes zero, as expected. Further, the drift increases with the number of clients N and the number
of local rounds T . Nevertheless, it goes down with Λ exponentially provided Λ < 1. This ensures
that the exponential bound in our main result holds good. Finally, the proof of Theorem 2 is complete
by using equation 26 and equation 27 in equation 25. In the next subsection, we state and prove some
useful Lemmas that are required to prove the main result.

A.5.2 USEFUL LEMMAS TO PROVE THEOREM 2
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Lemma 6. The function Φk (w
r,τ
k ) satisfies local PL inequality and can be bounded in terms

of global average weight i.e., Φk (wr) as follows

E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
2

µmin
E ∥∇Φk (w

r)∥2 , (28)

where µmin := mink∈[N ]{µk}.

Proof: From assumption 1, the function Φk (w
r,τ
k ) is written as

Φk (w
r,τ
k ) ≤ Φk

(
wr,τ−1
k

)
+
〈
∇Φk

(
wr,τ−1
k

)
,wr,τ

k −wr,τ−1
k

〉
+
Lk
2

∥∥∥wr,τ
k −wr,τ−1

k

∥∥∥2
2
. (29)

We know from step 7 of Algorithm 2, wr,τ
k −wr,τ−1

k = −η
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)
. Using

this in equation 29, we get

Φk (w
r,τ
k ) ≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
wr,τ−1
k

)〉
+
η2Lk
2

Gk(r, τ).

≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
w
r,τ−1)
k

)〉

+
η2Lk
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lk
2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j

(
wr,τ−1
k

)〉
.

≤ Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,
1

b

∑
j∈Br,τ−1

k

∇Φk,j

(
w
r,τ−1)
k

)〉

+
η2Lmax
2b2

∑
j∈Br,τ−1

k

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lmax
2b2

∑
j ̸=j′

〈
∇Φk,j

(
wr,τ−1
k

)
,∇Φk,j′

(
wr,τ−1
k

)〉
.

where Gk(r, τ) :=
∥∥∥ 1
b

∑
j∈Br,τ−1

k
∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2
, and Lmax := maxk Lk. Taking expectation

with respect to wr,τ−1
k in the above, gives us

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

〈
∇Φk

(
wr,τ−1
k

)
,∇Φk

(
wr,τ−1
k

)〉
+
η2Lmax

2b

∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2

+
η2Lmaxb(b− 1)

2b2

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2

]
.

Applying smoothness assumption of each sample, i.e.,
∥∥∥∇Φk,j

(
wr,τ−1
k

)∥∥∥2
2

≤

2lk,jΦk,j

(
wr,τ−1
k

)
, we have

E [Φk (w
r,τ
k )] ≤ E

[
Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lmaxlk,j

b
Φk,j

(
wr,τ−1
k

)
+

η2Lmaxb(b− 1)Lk
b2

[
Φk

(
wr,τ−1
k

)]]
.

≤ Φk

(
wr,τ−1
k

)
− η

∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2
+
η2Lmaxlmax

b
E
[
Φk,j

(
wr,τ−1
k

)]
+

η2Lmaxb(b− 1)Lmax
b2

[
Φk

(
wr,τ−1
k

)]
. (30)

where lmax := maxk Lk. From the local PL inequality (see definition 2), it follows that∥∥∥∇Φk

(
wr,τ−1
k

)∥∥∥2
2
≥ µminΦk

(
wr,τ−1
k

)
for k = {1, 2, . . . , N}, where µmin := mink∈[N ]{µk}.
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Using this in equation 30 results in

E [Φk (w
r,τ
k )] ≤

[
1− ηµmin + η2

(
lmaxLmax

b
+
L2
maxb(b− 1)

b2

)]
E
[
Φk

(
wr,τ−1
k

)]
.

By setting η ≤ µmin

2

[
lmaxLmax

b +
L2
maxb(b−1)

b2

] , the above can be further bounded as

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)
E
[
Φk

(
wr,τ−1
k

)]
.

Since wr,0
k = wr

k, the above can be written as

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ
E [Φk (w

r
k)] . (31)

Using the local PL inequality, i.e., Φk (wr
k) ≤ 1

µmin
∥∇Φk (w

r
k)∥

2
2 in equation 31, we have

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ 1

µmin
E ∥∇Φk (w

r
k)∥2 . (32)

Now, adding and subtracting the term ∇Φk (w
r) in the above, and using the fact that ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2, we get

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ 2

µmin
E
(
∥∇Φk (w

r
k)−∇Φk (w

r)∥22 + ∥∇Φk (w
r)∥22

)
.

Using Lk smoothness assumption (see Assumption 3), we have

E [Φk (w
r,τ
k )] ≤

(
1− ηµmin

2

)τ
E
(

2L2
k

µmin
∥wr

k −wr∥22 +
2

µmin
∥∇Φk (w

r)∥22

)
.

Choosing η ≤ 2
µmin

and using the fact that Lmax = maxk Lk, we get

E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
2

µmin
E ∥∇Φk (w

r)∥2 . (33)

Corollary 3. The function Φk (w
r,τ
k ) satisfies local PL inequality and can be bounded in terms

of global average weight i.e., Φk (wr) as follows

E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
4Lmax
µmin

E [Φk (w
r)] , (34)

where µmin := mink∈[N ]{µk} and Lmax := maxk Lk.

Proof: The proof directly follows from Lemma 6 by using the smoothness assumption, i.e.,
∥∇Φk (w

r)∥2 ≤ 2LmaxΦk (w
r). This completes the proof.

Next, we show that the loss can be bounded in terms of the future iterates as follows.

Lemma 7. The function Φ
(
wr−1,0

)
is bounded in terms of the future value of the function as

given below

E
[
Φ
(
wr−1,0

)]
≤2E

[
Φ
(
wr,0

)
+

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
.

Proof: It follows from the smoothness assumption that

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
+
〈
∇Φ

(
wr−1,0

)
,wr,0 −wr−1,0

〉
− L

2

∥∥wr,0 −wr−1,0
∥∥2 . (35)
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Telescoping the update in step 7 of Algorithm 2, we get
wr−1,T
i = wr−1,0

i − η
b

∑T−1
τ=0

∑
j∈Br−1,τ

k
∇Φi,j

(
wr−1,τ
i

)
. Averaging over all neighboring nodes

i ∈ Nk, we get

wr,0
k =

∑
i∈Nk

pk,iw
r−1,T
i =

∑
i∈Nk

pk,iw
r−1,0
i − η

b

T−1∑
τ=0

∑
i∈Nk

pk,i
∑

j∈Br−1,τ
k

∇Φi,j

(
wr−1,τ
i

)
.

Averaging over k ∈ [N ] leads to

wr,0 = wr−1,0 − η

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)
.

Using the above update in equation 35, we get

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
− η

〈
∇Φ

(
wr−1,0

)
,
1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)〉
︸ ︷︷ ︸

:=A1

−

η2L

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

. (36)

The term A1 in equation 36 can be bounded as

A1
(a)
=

1

2

∥∥∇Φ
(
wr−1,0

)∥∥2 + 1

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

− 1

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)
−∇Φ

(
wr−1,0

)∥∥∥∥∥∥
2

(b)
≤ 1

2

∥∥∇Φ
(
wr−1,0

)∥∥2 + 1

2

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

. (37)

where (a) follows from the inequality ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2 − 1

2 ∥a− b∥2, and (b) follows from

the fact that the term
∥∥∥ 1
bN

∑N
k=1

∑T−1
τ=0

∑
j∈Br−1,τ

k
∇Φk,j

(
wr−1,τ
k

)
−∇Φ

(
wr−1

)∥∥∥2 > 0 . Next,
using equation 37 in equation 36, we get

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
− η

2

∥∥∇Φ
(
wr−1,0

)∥∥2 − η

2
(1 + Lη)

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

.

Using the smoothness assumption in the above, we get

Φ
(
wr,0

)
≥ Φ

(
wr−1,0

)
− ηLΦ

(
wr−1,0

)
− η

2
(1 + Lη)

∥∥∥∥∥∥ 1

bN

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=A2

.

(38)
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A part of the third term in the above can be bounded as follows

A2

(a)
≤ T

N

N∑
K=1

T−1∑
τ=0

1

b

∑
j∈Br−1,τ

k

∥∥∥∇Φk,j

(
wr−1,τ
k

)∥∥∥2
(b)
≤ T

N

N∑
k=1

T−1∑
τ=0

1

b

∑
j∈Br−1,τ

k

2lk,jΦk,j

(
wr−1,τ
k

)
,

(c)
≤ T lmax

Nb

N∑
k=1

T−1∑
τ=0

∑
j∈Br−1,τ

k

2Φk,j

(
wr−1,τ
k

)
,

where (a) follows from the fact that for any vector z = (z1, z2, . . . , zN ),
(∑N

i=1 zi

)2
≤

N
∑N
i=1(zi)

2 , (b) follows from smoothness assumption, and (c) follows from the fact that
lmax := maxk,j lk,j . Next, taking the expectation

E [A2] ≤
2lmaxT

N

N∑
k=1

T−1∑
τ=0

E
[
Φk

(
wr−1,τ
k

)]
.

Using E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥2k +
4Lmax

µmin
E
[
Φk
(
wr,0

)]
from Corollary 3, the above

can be further bounded as

E [A2] ≤
2lmaxT

2

N

N∑
k=1

(
2L2

max

µmin
E
∥∥wr−1

k −wr−1
∥∥2
2
+

4Lmax
µmin

E
[
Φk
(
wr−1,0

)])
.

Using the above result in equation 38 and rearranging, we obtain

E
[
Φ
(
wr,0

)]
≥ E

[
Φ
(
wr−1,0

)
− η (1 + ηL) 2lmaxL

2
maxT

2

Nµmin

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

−η
(
(1 + ηL) 4lmaxT

2Lmax
µmin

+ L

)
Φ
(
wr−1,0

)]
.

Choosing η ≤ 1
L and rearranging the terms, we get

E
[
Φ
(
wr−1,0

)]
≤ 1(

1− η
(

8lmaxT 2Lmax

µmin
+ L

))E[Φ (wr,0
)
+
η4lmaxL

2
maxT

2

Nµmin

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
.

Further, choosing η ≤ 1

2
(

8lmaxT2Lmax
µmin

+L
) , the above can be bounded as

E
[
Φ
(
wr−1,0

)]
≤2E

[
Φ
(
wr,0

)
+
η4lmaxL

2
maxT

2

Nµmin

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
. (39)

The following bound can be obtained by using η ≤ Nµmin

4lmaxL2
maxT

2 in equation 39:

E
[
Φ
(
wr−1,0

)]
≤2E

[
Φ
(
wr,0

)
+

N∑
k=1

∥∥wr−1
k −wr−1

∥∥2
2

]
.

Now, it suffices to bound the drift term in terms of the loss to obtain the linear convergence.

Lemma 8. The consensus term, i.e., Dr,0 :=
∥∥∥W r,0

l −W r,0
∥∥∥2
F

satisfies the following bound

Dr,0 ≤ η2βLmT
2N

(
r−1∑
τ=0

λr+1−τDτ,0 +
r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ,0

)])
. (40)
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where β := 4lψ2N
(1+ψ)µmin

, λ :=
(
1 + 1

ψ

)
λ22, Lm := max

{
L2
max, 2LmaxN

}
, and ψ > 1

1

λ2
2
−1

.

Here, λ2 is the second largest eigenvalue of the mixing matrix P .

Proof: Let, Dr,0 = E
∥∥∥W r,0

l −W r,0
∥∥∥2
F
=
∑N
k=1 E

∥∥∥wr,0
k −wr,0

∥∥∥2 . Using equation 22 and equa-
tion 23, the consensus term can be written as

Dr,0 = E
∥∥QPW r,0 − PW r,0

∥∥2
F

= E
∥∥(Q− P )W r,0

∥∥2
F
. (41)

Recall that Q = 1
N 11T is the average matrix, P is the mixing matrix and QP = Q. Using W r,0

l =

PW r−1,T (see equation 22), substituting for the update in W r−1,T and taking the telescopic sum,
we get

W r,0 =W r,0
l = P

(
W r−1,0 − η

T−1∑
τ=0

∂Φ̂
(
W r−1,τ

))
.

Plugging the above in equation 41, and using the generalized Cauchy’s inequality, i.e., ∥a+ b∥2 ≤(
1 + 1

ψ

)
∥a∥2 + (1 + ψ) ∥b∥2 for any ψ ≥ 0, the consensus term can be upper bounded as

E
∥∥(Q− P )W r,0

∥∥2
F

≤
(
1 +

1

ψ

)
Ξ + (1 + ψ)η2E

∥∥∥∥∥(Q− P 2
) T−1∑
τ=0

∂Φ̂
(
W r−1,τ

)∥∥∥∥∥
2

F

(a)
≤

(
1 +

1

ψ

)
Ξ + (1 + ψ)η2N

∥∥(Q− P 2
)∥∥2
op

E

∥∥∥∥∥
T−1∑
τ=0

∂Φ̂
(
W r−1,τ

)∥∥∥∥∥
2

F

(b)
≤

(
1 +

1

ψ

)
Ξ + (1 + ψ)η2λ42NT

T−1∑
τ=0

E
∥∥∥∂Φ̂ (W r−1,τ

)∥∥∥2
F
, (42)

where Ξ := E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F

, and (a) follows from Lemma 1 and (b) follows from Lemma
2. Next, consider bounding the following

E
∥∥∥∂Φ̂ (W r−1,τ

)∥∥∥2
F

= E
N∑
k=1

∥∥∥∥∥∥1b
∑

j∈Br−1,τ
k

∇Φk,j

(
wr−1,τ
k

)∥∥∥∥∥∥
2

2

≤ E
N∑
k=1

1

b

∑
j∈Br−1,τ

k

∥∥∥∇Φk,j

(
wr−1,τ
k

)∥∥∥2
2

(a)
≤ 2lmax

N∑
k=1

E
[
Φk

(
wr−1,τ
k

)]
, (43)

where (a) follows from the smoothness assumption and lmax := maxk,j lk,j . Substituting

the bound in equation 28 of Lemma 7, i.e., E
[
Φk

(
wr−1,τ
k

)]
≤ 2L2

max

µmin
E
∥∥wr−1

k −wr−1
∥∥2
2
+

2
µmin

E
∥∥∇Φk

(
wr−1

)∥∥2 in the above, and writing it in the matrix form, we get

E
∥∥∥∂Φ̂ (W r−1,τ

)∥∥∥2
F

=
4lmaxL

2
max

µmin
E
∥∥∥W r−1,0

l −W r−1,0
∥∥∥2
F
+

4lmax
µmin

E
∥∥∂Φ (W r−1,0

)∥∥2
F
.

Using the above in equation 42

E
∥∥(Q− P )W r,0

∥∥2
F

≤
(
1 +

1

ψ

)
E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F
+ η2λ42αNT

2L2
maxDr−1,0

+η2λ42αNT
2E
∥∥∂Φ (W r−1,0

)∥∥2
F
, (44)
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where α := 4lmax(1+ψ)
µmin

. First, let us consider bounding E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F

. Using the update

stepW r−1,0 =W r−1,0
l = P

(
W r−2,0 − η

∑T−1
τ=0 ∂Φ̂

(
W r−2,τ

))
and following a similar approach

as used in steps equation 42 to equation 44, we get the following bound

E
∥∥(Q− P 2

)
W r−1,0

∥∥2
F

≤
(
1 +

1

ψ

)
E
∥∥(Q− P 3

)
W r−2,0

∥∥2
F
+ η2λ62αL

2
maxNT

2Dr−2,0

+η2λ62αNT
2E
∥∥∂Φ (W r−2,0

)∥∥ .
Using the above result in equation 44

Dr,0 ≤
(
1 +

1

ψ

)2

E
∥∥(Q− P 3

)
W r−2,0

∥∥2
F
+

(
1 +

1

ψ

)
η2λ62αL

2
maxNT

2Dr−2,0 +(
1 +

1

ψ

)
η2λ62αNT

2E
∥∥∂Φ (W r−2,0

)∥∥+ η2λ42αNT
2L2

maxDr−1,0 +

η2λ42αNT
2E
∥∥∂Φ (W r−1,0

)∥∥2
F
.

Proceeding further in a similar manner as above, we get

Dr,0 ≤
(
1 +

1

ψ

)r
E
∥∥(Q− P r+1

)
W 0,0

∥∥2
F
+ η2αL2

maxNT
2
r−1∑
τ=0

λ
2(r+1−τ)
2

(
1 +

1

ψ

)(r−1−τ)

Dτ,0

+ η2αNT 2
r−1∑
τ=0

λ
2(r+1−τ)
2

(
1 +

1

ψ

)(r−1−τ)

E
∥∥∂Φ (W τ,0

)∥∥2
F
.

We initialize W 0,0 = 0. Further, multiplying and dividing by
(
1 + 1

ψ

)
to the second and the third

term in the above, we get

Dr,0 ≤ η2ψ2αL2
maxNT

2

(1 + ψ)
2

r−1∑
τ=0

λ(r+1−τ)Dτ,0 +
η2ψ2αNT 2

(1 + ψ)
2

r−1∑
τ=0

λ(r+1−τ)δr,0. (45)

where δr,0 := E
∥∥∂Φ (W τ,0

)∥∥2
F

and λ :=
(
1 + 1

ψ

)
λ22. Using α = 4lmax(1+ψ)

µmin
in equation 45, we

have

Dr,0 ≤ η24lmaxψ
2L2

maxNT
2

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)Dτ,0 +
η24lmaxψ

2NT 2

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)δr,0.(46)

The term, E
∥∥∂Φ (W τ,0

)∥∥2
F

in the above, is bounded as follows

E
∥∥∂Φ (W τ,0

)∥∥2
F

= E
N∑
k=1

∥∥∇Φk
(
wτ,0

)∥∥2
2

(a)
≤ 2LmaxNE

[
Φ
(
wτ,0

)]
, (47)

where (a) follows from smoothness assumption and using the fact that Φ
(
wτ,0

)
=

1
N

∑N
k=1 Φk

(
wτ,0

)
, and Lmax = maxk Lk. Using equation 47 in equation 46, we get

Dr,0 ≤ η24lmaxψ
2NL2

maxT
2

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)Dτ,0 +
η24lmaxψ

2T 2N2LmaxN

(1 + ψ)µmin

r−1∑
τ=0

λ(r+1−τ)E [Φ (wτ )] .

Let Lm := max
{
L2
max, 2LmaxN

}
and β := 4lmaxψ

2N
(1+ψ)µmin

. Therefore, the drift term results in

Dr,0 ≤ η2βLmT
2N

(
r−1∑
τ=0

λr+1−τDτ,0 +
r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ,0

)])
.
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A.6 COMPLETING THE PROOF OF THEOREM 2

From L-smoothness assumption (see 1) of Φ (w), we have

Φ
(
wr,t+1

)
≤ Φ

(
wr,t

)
+ ⟨∇Φ(wr,t),wr,t+1 −wr,t⟩+ L

2

∥∥wr,t+1 −wr,t
∥∥2 . (48)

Using step 7 of Algorithm 2 we have, wr,t+1
i = wr,t

i − η
b

∑
j∈Br,t

i
∇Φi,j

(
wr,t
i

)
. Multiplying both

sides by pk,i and summing over i ∈ Nk, we get

wr,t+1
k = wr,t

k − η

b

∑
i∈Nk

pk,i
∑
j∈Br,t

i

∇Φi,j
(
wr,t
i

)
. (49)

Averaging on both sides over k ∈ [N ], we get

wr,t+1 = wr,t − η

bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
.

Using the above update, i.e., wr,t+1 −wr,t in equation 48, we get

Φ
(
wr,t+1

)
≤ Φ

(
wr,t

)
− η

〈
∇Φ

(
wr,t

)
,
1

bN

N∑
k=1

∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)〉
+

η2L

2b2N2

∥∥Gr,t∥∥2 .
where Gr,t :=

∑N
k=1

∑
j∈Br,t

k
∇Φk,j

(
wr,t
k

)
. Taking expectation conditioning on wr,t

k and past, we
get

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

〈
∇Φ(wr,t),

1

N

N∑
k=1

∇Φk
(
wr,t
k

)〉
︸ ︷︷ ︸

:=A1

+
η2LA2

2

+
1

b2N2

∑
k ̸=k′

〈 ∑
j∈Br,t

k

∇Φk,j
(
wr,t
k

)
,
∑
i∈Br,t

k

∇Φk′,i
(
wr,t
k′

)〉
︸ ︷︷ ︸

:=A3

)]
, (50)

where A2 := 1
b2N2

∑N
k=1

∥∥∥∑j∈Br,t
k

∇Φk,j
(
wr,t
k

)∥∥∥2. This term can be bounded as follows

A2 =
1

b2N2

N∑
k=1

∑
j∈Br,t

k

∥∥∇Φk,j
(
wr,t
k

)∥∥2 + 1

b2N2

N∑
k=1

∑
j ̸=j′

〈
∇Φk,j

(
wr,t
k

)
,∇Φk,j′

(
wr,t
k

) 〉
.

Taking expectation, we get

E[A2] =
1

bN2

N∑
k=1

E∥∇Φk,j
(
wr,t
k

)
∥2 + b(b− 1)

b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (51)

Similarly the term A3 in equation 50 can be bounded by taking expectation as follows

E[A3] =
1

b2N2

∑
k ̸=k′

〈
∇Φk

(
wr,t
k

)
,∇Φk′

(
wr,t
k′

)〉
(a)
≤ 1

2b2N2

∑
k ̸=k′

[
∥∇Φk

(
wr,t
k

)
∥2 + ∥∇Φk′

(
wr,t
k′

)
∥2
]

=
2(N − 1)

2b2N2

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2

≤ 1

b2N

N∑
k=1

∥∇Φk
(
wr,t
k

)
∥2, (52)
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where (a) follows from ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2. Next, we lower bound the term A1 in equation 50

as

A1 =
1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
−∇Φ

(
wr,t

)
∥2

≥ 1

2
∥∇Φ

(
wr,t

)
∥2 + 1

2
∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)
∥2 − L2

2N

N∑
k=1

∥wr,t
k −wr,t∥2. (53)

Substituting equation 51, equation 52 and equation 53 in equation 48, we get the following

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+
ηL2

2N

N∑
k=1

∥∥∆r,t
k

∥∥2
+

η2L

2bN2

N∑
k=1

∥∥∇Φk,j
(
wr,t
k

)∥∥2
︸ ︷︷ ︸

:=A4

+

(
η2Lb(b− 1)

2b2N2
+
η2L

2N

)
A5

]
, (54)

where ∆r,t
k := wr,t

k − wr,t and A5 :=
∑N
k=1

∥∥∇Φk
(
wr,t
k

)∥∥2. The term A4 in equation 54 is
bounded as follows

A4

(a)
≤

N∑
k=1

2
∥∥∇Φk,j

(
wr,t
k

)
−∇Φk,j

(
wr,t

)∥∥2 + N∑
k=1

2
∥∥∇Φk,j

(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

l2k,j
∥∥wr,t

k −wr,t
∥∥2 + 4

N∑
k=1

lk,jΦk,j
(
wr,t

)
(c)
≤ 2l2max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4lmax

N∑
k=1

Φk,j
(
wr,t

)
,

where (a) follows by adding and subtracting the term ∇Φk,j (w
r,t) and using the fact that,

∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, (b) follows from Assumption 3, and (c) follows from the fact that
lmax := maxk,j lk,j . Taking expectation, we get

E [A4] ≤ 2l2max

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 + 4lmax

N∑
k=1

E
[
Φk
(
wr,t

)]
. (55)

The term A5 in equation 54 is bounded as

A5

(a)
≤ 2

N∑
k=1

∥∥∇Φk
(
wr,t
k

)
−∇Φk

(
wr,t

)∥∥2 + 2

N∑
k=1

∥∥∇Φk
(
wr,t

)∥∥2
(b)
≤ 2

N∑
k=1

L2
k

∥∥wr,t
k −wr,t

∥∥2 + 4

N∑
k=1

LkΦk
(
wr,t

)
(c)
≤ 2L2

max

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 + 4Lmax

N∑
k=1

Φk
(
wr,t

)
, (56)

where (a) follows by adding and subtracting ∇Φk (w
r,t), and (b) follows from assumption 3 and

(c) follows from Lmax := maxk Lk. Substituting upper bounds from equation 55 and equation 56
in equation 67, we get

E
[
Φ
(
wr,t+1

)]
≤ E

[
Φ
(
wr,t

)
− η

2

∥∥∇Φ
(
wr,t

)∥∥2 − η

2

∥∥∥∥∥ 1

N

N∑
k=1

∇Φk
(
wr,t
k

)∥∥∥∥∥
2

+

(
ηL2

2N
+
η2Ll2max
bN2

+
η2LL2

max

N2
+
η2LL2

max

N

) N∑
k=1

∥∥wr,t
k −wr,t

∥∥2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

)
Φ
(
wr,t

) ]
. (57)
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Now, using PL inequality (see definition 2), i.e., ∥∇Φ (w)∥2 ≥ µΦ (w) , ∀w ∈ Rd and rearranging,
we get

E
[
Φ
(
wr,t+1

)]
≤ E

[(
1− ηµ

2
+

(
2η2Llmax

bN
+

2η2LLmax
N

+ 2η2LLmax

))
Φ
(
wr,t

)
+

(
ηL2

2N
+
η2Ll2max
bN2

+
η2LL2

max

N2
+
η2LL2

max

N

)
1

N

N∑
k=1

∥∥wr,t
k −wr,t

∥∥2 ].
Choosing η ≤ min

{
µ

4( 2Llmax
bN + 2LLmax

N +2LLmax)
, L2

2

(
Ll2max

bN +
LL2

max
N +LL2

max

)
}

, the above can be

further bounded as

E
[
Φ
(
wr,t+1

)]
≤

(
1− ηµ

4

)
E
[
Φ
(
wr,t

)]
+
ηL2

N

N∑
k=1

E
∥∥wr,t

k −wr,t
∥∥2 (58)

(a)
≤

(
1− ηµ

4

)
E
[
Φ
(
wr,t

)]
+

2ηL2

N

N∑
k=1

E
(∥∥∆r,t

k

∥∥2 + ∥∥∆̄r,t
k

∥∥2) , (59)

where ∆r,t
k := wr,t

k − wr,t
k and ∆̄r,t

k := wr,t
k − wr,t. In the above, (a) follows by adding and

subtracting the term wr,t
k and using the fact that, ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2. First, let us consider

the local drift term i.e.,
∑N
k=1

∥∥wr,t
k −wr,t

k

∥∥ in equation 59. Telescoping the update from step 7 of
Algorithm 2 we have,

wr,t
k = wr,0

k − η

b

t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k ) . (60)

Further, consider the local average at node k, i.e., wr,t
k

wr,t
k =

∑
i∈Nk

pk,iw
r,t
i = wr,0

k − η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (w
r,τ
i ) . (61)

Now noting the fact that wr,0
k = wr,0

k and using equation 60 and equation 61, we can bound the drift
term as

N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 =

N∑
k=1

E

∥∥∥∥∥∥ηb
t−1∑
τ=0

∑
j∈Br,τ

k

∇Φk,j (w
r,τ
k )− η

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∇Φi,j (w
r,τ
i )

∥∥∥∥∥∥
2

(a)
≤ 2

N∑
k=1

E

∥∥∥∥∥ηb
t−1∑
τ=0

Gkj(r, τ)

∥∥∥∥∥
2

+

∥∥∥∥∥ηb
t−1∑
τ=0

∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2


(b)
≤ 2

N∑
k=1

E

η2t
b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 +
η2t

b2

t−1∑
τ=0

∥∥∥∥∥∑
i∈Nk

pk,iGij(r, τ)

∥∥∥∥∥
2
 ,

where Gij(r, τ) :=
∑
j∈Br,τ

i
∇Φi,j (w

r,τ
i ). In the above, (a) follows from the fact that, ∥a+ b∥2 ≤

∥a∥2 + ∥b∥2, and (b) follows from the fact that for any vector zi,
(∑N

i=1 zi

)2
≤ N

∑N
i=1(zi)

2.
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The second term in (b) can be further bounded using Jensen’s inequality as follows
N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 2

N∑
k=1

E

[
η2t

b2

t−1∑
τ=0

∥Gkj(r, τ)∥2 +
η2t

b2

t−1∑
τ=0

∑
i∈Nk

pk,i ∥Gij(r, τ)∥2
]

≤ 2

N∑
k=1

E

η2t
b

t−1∑
τ=0

∑
j∈Br,τ

k

∥∥∥gr,τkj ∥∥∥2 + η2t

b

t−1∑
τ=0

∑
i∈Nk

pk,i
∑
j∈Br,τ

i

∥∥gr,τij ∥∥2


(a)
≤ 2

N∑
k=1

E

η2t
b

t−1∑
τ=0

∑
j∈Br,τ

k

2lk,jLr,τkj +
η2t

b

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2li,jLr,τij


(b)
= E

2η2t
b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

2lmaxLr,τkj +
2η2t

b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

∑
i∈Nk

pk,i2lmaxLr,τij

 ,
where gr,τkj := ∇Φk,j (w

r,τ
k ), Lr,τkj := Φk,j (w

r,τ
k ) and (a) follows from smoothness assumption

and (b) follows from the fact that mixing matrix P preserves the average and lmax := maxk,j lk,j .
Simplifying the above results in

N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ E

8η2tlmax
b

N∑
k=1

t−1∑
τ=0

∑
j∈Br,τ

k

Φk,j (w
r,τ
k )

 .
Taking expectation, we get

N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

E [Φk (w
r,τ
k )] . (62)

According to equation 34 of Corollary 3 we have, E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥22 +
4Lmax

µmin
E [Φk (w

r)]. Using this in equation 62, we get
N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 8η2tlmax

N∑
k=1

t−1∑
τ=0

(
2L2

max

µmin
E ∥wr

k −wr∥22 +
4LN
µmin

E [Φk (w
r)]

)
.

Simplifying the above results in
N∑
k=1

E
∥∥wr,t

k −wr,t
k

∥∥2 ≤ 16η2t2lmaxL
2
max

N∑
k=1

∆̄r

µmin
+ 32η2t2lmaxLmax

N∑
k=1

E [Φk (w
r)]

µmin
.

(63)

where ∆̄r := E ∥wr
k −wr∥22. Next, let us consider the global drift term i.e.,

∑N
k=1

∥∥wr,t
k −wr,t

∥∥2
2

in equation 59, which can be rewritten in matrix notation as Dr,t :=
∥∥W r,t

l −W r,t
∥∥2
F

. This term is
bounded as

Dr,t
(a)
= E

∥∥QPW r,t − PW r,t
∥∥2
F

(b)
= E

∥∥(Q− P )W r,t
∥∥2
F

(c)
= E

∥∥∥∥∥(Q− P )

(
W r,0 − η

t−1∑
τ=0

∂Φ̂ (W r,τ )

)∥∥∥∥∥
2

F

,

where (a) follows since QPW r,t = W r,t and PW r,t = W r,t
l , (b) follows from QP = Q, and

(c) follows from the update W r,t = W r,0 − η
∑t−1
τ=0 ∂Φ̂ (W r,τ ). Using the fact that ∥a+ b∥2 ≤

2 ∥a∥2 + 2 ∥b∥2 in the above, we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0

∥∥2
F
+ 2η2t

t−1∑
τ=0

E
∥∥∥(Q− P )∂Φ̂ (W r,τ )

∥∥∥2
F

≤ 2E
∥∥(Q− P )W r,0

∥∥+ 2η2t

t−1∑
τ=0

Nλ22E∥∂Φ̂ (W r,τ ) ∥2F , (64)
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The term E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F

in the above can be bounded as

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F

= E
N∑
k=1

∥∥∥∥∥∥1b
∑
j∈Br,t

k

∇Φk,j (w
r,τ
k )

∥∥∥∥∥∥
2

2

≤ E
N∑
k=1

1

b

∑
j∈Br,t

k

∥∇Φk,j (w
r,τ
k )∥2

2

(a)
≤ 2lmax

N∑
k=1

E [Φk (w
r,τ
k )] ,

where (a) follows from the smoothness assumption and the fact that lmax := maxk,j lk,j . Using

equation 28 of Lemma 6, i.e., E [Φk (w
r,τ
k )] ≤ 2L2

max

µmin
E ∥wr

k −wr∥2k+
2

µmin
E ∥∇Φk (w

r)∥2 in the
above, we get

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F

≤ 4L2
maxlmax
µmin

N∑
k=1

E ∥wr
k −wr∥22 +

4lmax
µmin

N∑
k=1

E ∥∇Φk (w
r)∥2 .

The result above can be written in matrix form as,

E
∥∥∥∂Φ̂ (W r,τ )

∥∥∥2
F
=

4L2
maxlmax
µmin

Dr,0 +
4lmax
µmin

E
∥∥∂Φ (W r,0

)∥∥2
F
,

Substituting the above result in equation 64, we get

Dr,t ≤ 2E
∥∥(Q− P )W r,0

∥∥2
F
+ 4η2L2

maxλ
2
2γt

2Dr,0 + 4η2λ22γt
2E
∥∥∂Φ (W r,0

)∥∥2
F
, (65)

where γ := 2lmaxN
µmin

.

E
[
Φ
(
wr+1

)]
≤

(
1− ηµ

4

)T
E [Φ (wr)] +

2ηL2

N

T−1∑
τ=0

(
1− ηµ

4

)τ N∑
k=1

E
(∥∥∥∆r,T−1−τ

k

∥∥∥2 + ∥∥∥∆̄r,T−1−τ
k

∥∥∥2)
(a)
≤

(
1− ηµ

4

)
E [Φ (wr)] +

2ηL2

N

T−2∑
τ=0

(
1− ηµ

4

)τ N∑
k=1

E
(∥∥∥∆r,T−1−τ

k

∥∥∥2 + ∥∥∥∆̄r,T−1−τ
k

∥∥∥2)(66)

where (a) follows from the fact that
(
1− ηµ

4

)T ≤
(
1− ηµ

4

)
,
∥∥∥∆r,T−1−τ

k

∥∥∥2 = 0 and∥∥∥∆̄r,T−1−τ
k

∥∥∥2 = 0 for τ = T − 1. Now choosing η < 4
µ and substituting equation 63 and

equation 65 in equation 66, we get

E
[
Φ
(
wr+1

)]
≤E

[(
1− ηµ

4
+

64η4T 3lLLmax
µmin

)
Φ (wr) +

2η2TL

N

[(
16lmaxη

2T 2L2
max

µmin
+ 4λ22η

2γL2
maxT

2

)
Dr,0

+ 2
∥∥(Q− P )W r,0

∥∥2
F
+ 4η2γT 2λ22

∥∥∂Φ (W r,0
)∥∥2
F

]]
. (67)

The term E
∥∥∂Φ (W r,0

)∥∥2
F

can be bounded as

E
∥∥∥∂Φ̂ (W r,0

)∥∥∥2
F
=

N∑
k=1

E ∥∇Φk (w
r)∥2

(a)
≤

N∑
k=1

2LmaxE [Φk (w
r)] = 2LmaxNE [Φ (wr)] ,
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where (a) follows from smoothness assumption and (b) follows from the fact that Φ (wr) =
1
N

∑N
k=1 Φk (w

r). Using the above result in equation 67, we get

E
[
Φ
(
wr+1

)]
≤ E

[(
1− ηµ

4
+

64η4T 3lmaxLLmax
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)
Φ (wr) +

2η2TL

N

[
2
∥∥(Q− P )W r,0

∥∥2
F
+

(
16lmaxη

2T 2L2
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+ 4λ22η

2γL2T 2

)
Dr,0 + 8η2λ22γT

2LmaxNΦ (wr)

]]

≤ E
[(

1− ηµ

4
+

64η4T 3lmaxLLmax
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+ 16η4γT 3λ22LLmax

)
Φ (wr)+

2η2TL

N

([
16lmaxη

2T 2L2
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+ 4λ22η

2γL2T 2

]
Dr,0 + 2

∥∥(Q− P )W r,0
∥∥2
F

)]
.

Choosing η ≤ 1
8

(
µ

64T3lmaxLLmax
µmin

+16γT 3Lλ2
2Lmax

)1/3

in the above result in

E
[
Φ
(
wr+1

)]
≤ E

[(
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8

)
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2η4TL

N

[
16T 2L2

maxlmax
µmin

+ 4λ22γL
2T 2

]
Dr,0

+
4η2L

N

∥∥(Q− P )W r,0
∥∥2
F

]
.

Again choosing η ≤

[(
1

16T2lmaxL2
max

µmin
+4λ2

2γT
2L2

)] 1
2

, the above results in

E
[
Φ
(
wr+1

)]
≤

(
1− ηµ

8

)
E [Φ (wr)] +

2η2TL

N
Dr,0 +

4η2TL

N
E
∥∥(Q− P )W r,0

∥∥2
F
.

It is easy to see that E
∥∥(Q− P )W r,0

∥∥2
F
= E

∥∥∥W r,0
l −W r,0

∥∥∥2
F
= Dr,0. Using this above, gives us

E
[
Φ
(
wr+1

)]
≤

(
1− ηµ

8

)
E [Φ (wr)] +

6η2TL

N
Dr,0. (68)

From Lemma 8, we have

Dr,0 ≤ η2βLmT
2N

(
r−1∑
τ=0

λr+1−τDτ,0 +
r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ,0

))]
. (69)

From Lemma 7, we know that

E
[
Φ
(
wτ,0

)]
≤2E

[
Φ
(
wτ+1,0

)
+

N∑
k=1

∥wτ
k −wτ∥22

]
.

Using the above result on Φ
(
wτ,0

)
in equation 69, we get

Dr,0 ≤ 3η2βLmT
2N

r−1∑
τ=0

λr+1−τDτ,0 + 2η2βLmT
2N

r−1∑
τ=0

λr+1−τE
[
Φ
(
wτ+1,0

)]
.

Let Lm = max {2Lm, 3Lm}. The above can be further bounded as

Dr,0 ≤ η2βT 2NLm

(
r−1∑
τ=0

λr−τDτ,0 +

r−1∑
τ=0

λr−τE
[
Φ
(
wτ+1,0

)])
. (70)

This completes the proof.
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A.6.1 PROOF OF PROPOSITION 4

Note that we need to prove the following set of inequalities hold good for all r

Dr,0 ≤ (2r + 3)η2βT 2LmNλ
2ΛrΦ

(
w0
)

(71)

Φ (wr) ≤ Λr−1
(
Λ + 4η4LLmβT

3λ2r2
)
Φ
(
w0
)
, r = {1, 2, . . . , R} (72)

where λ =
(
1 + 1

ψ

)
λ22, Φ

(
w0
)
= Φ

(
w0,0

)
and Λ = max

((
1− ηµ

8

)
, λ
)
. We use induction

method to prove that the above set of inequalities hold good for all r. Since D0,0 = 0, the in-
equalities hold good for r = 0. Next, assuming that the above inequalities hold good for every
communication rounds in {1, 2, . . . , r}, we need to prove that the respective inequalities hold for
Dr+1,0 and Φ

(
wr+1

)
. Towards this, consider the following

Φ
(
wr+1

)
≤

(
1− ηµ

8

)
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4η2LT

N
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(a)
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(
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[
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3λ2 (r + 1)
2
]
Φ
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where (a) follows by substituting equation 71, equation 72 and using Λ :=
(
1− ηµ

8

)
. Let us recall

from equation 40 of Lemma 8 that

Dr+1,0 ≤ η2βT 2NLm
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Substituting for Dτ,0 from equation 71 in the first term of equation 73, we get
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where (a) follows from the fact that λ ≤ Λ. Now picking η2 ≤ 1
βT 2LmNRλ

results in
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Next, substituting for Φ
(
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)
from equation 72 in the second term of equation 73, we get
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The last inequality follows from the fact that τ ≤ r, and λ ≤ Λ. By choosing η4 ≤ 1
4LLmβT 3(r+1)3λ ,

we get
r∑

τ=0

λr+2−τΦ
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Figure 5: Training loss for server FedAvg (see (a) FMNIST and (b) MNIST) and decentralized
FedAvg (see (c) MNIST) versus communication rounds.

Figure 6: Testing accuracy on different datasets versus the communication rounds for FedAvg in the
Server setting.

Using equation 74 and equation 75 in equation 73, and after some algebraic manipulations, we get
the following desired result

Dr+1,0 ≤ (2r + 3)η2βT 2LmNλ
2Λr+1Φ

(
w0
)
.

Using the above result in the upper bound for Φ
(
wr+1

)
, we get the desired bound on .

A.7 ADDITIONAL EXPERIMENTS

In this section, we provide the details of the experimental setup and some additional results for
experiments carried on different datasets for both Server and Decentralized setting. We have used
NVIDIA DGX A100 to implement all our experiments. The experimental setup consists of the
following model and data set:

Overparameterized regression: We consider a model with 3 linear layers and no activation func-
tion with 231490 trainable parameters. Note that this formulation models a simple regression prob-
lem. We condsider a image classification task on MNIST dataset and evaluate the performance of
FedAvg under different settings.

Deep neural network: In this case, we consider an image classification task on CIFAR–10 dataset.
Each edge device implements a three hidden layer convolutional neural network (CNN) followed by
two linear layers with 1046426 trainable model parameters. In the overparameterized setting, for the

Figure 7: Testing accuracy on different datasets versus the communication rounds for FedAvg in the
Decentralized setting.
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Figure 8: Training loss and Testing accuracy for centralized (λ2 = 0) and decentralized FedAvg
algorithm with ring topology (λ2 = 0.33) on CIFAR-10 dataset versus communication rounds.

CIFAR-10, MNIST and FMNIST, each edge device implements a three hidden layer convolutional
neural network (CNN) with 256, 128 and 64 filters followed by three linear layers having 1642849
trainable parameters for CIFAR-10 and two linear layers for MNIST and FMNIST with 1046426
trainable parameters. For Shakespeare dataset, LSTM models are used at each edge device. We
consider an embedding layer with embedding size of 10 followed by 2 LSTM layers with 256 hidden
neurons and one linear layer. On the other hand, in the underparameterized setting, we consider a
comparatively smaller neural network. For the CIFAR-10, MNIST, FMNIST datasets each device
implements two hidden layer CNN network with 25 and 52 filters followed by two linear layers for
CIFAR-10 and one linear layer for MNIST and FMNIST datasets. For the Shakespeare dataset each
device has embedding layer followed by one LSTM layer with 56 hidden neurons and a linear layer.
For the experiments, we chose T = 10 and tune for the learning rate in the range η ∈ [0.001 : 0.01]
for CIFAR-10, MNIST, FMNIST datasets whereas we choose η = 0.8 for the Shakespeare dataset.
Each device has access to 490 training samples and 90 test samples for CIFAR-10 whereas for
MNIST and FMNIST datasets, 540 samples are used for training and 80 samples are used for testing.

Figure 5 show the training loss on FMNIST and MNIST dataset for server and decentralized Fe-
dAvg settings. Figure 6 show the testing accuracy for FedAvg in the server setting for four different
datasets. As expected the convergence speed of underparameterized case is slower than the overpa-
rameterized case. Similarly, figure 7 show plots for testing accuracy for FedAvg in the decentralized
setting.

Finally, in Figure 8, we compare the training loss and testing accuracy for server and decentralized
FedAvg algorithm against the communication rounds for classification task on CIFAR-10 dataset. It
is clear from the figures that the centralized case achieves a very good performance at a faster rate
as opposed to the decentralized case, i.e., the ring topology.
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