CLIMASIM — Climate Simulation with Scientific Machine Learning

Anonymous submission

Abstract

Climate change manifests as a complex, nonlinear dynami-
cal system characterized by intricate interactions among at-
mospheric CO» concentrations, surface and ocean tempera-
tures, and anthropogenic forcing. While General Circulation
Models (GCMs) and their successors, Earth System Models
(ESMs), provide comprehensive simulations by incorporat-
ing detailed biogeochemical cycles, their computational de-
mands remain prohibitive for rapid climate scenario explo-
ration. Conversely, classical Energy Balance Models (EBMs)
offer computational tractability at the expense of predic-
tive accuracy. We present a novel framework that augments
EBMs through scientific machine learning, enhancing accu-
racy while preserving physical interpretability. Specifically,
we couple classical energy balance formulations with carbon
cycle dynamics and evaluate performance under linearly in-
creasing emission scenarios. Our methodology proceeds sys-
tematically: we first investigate Neural Ordinary Differen-
tial Equations (Neural ODEs) for climate forecasting, finding
limited efficacy. Subsequently, we replace a critical carbon-
climate feedback term with a neural network, constructing
a Universal Differential Equation (UDE) that achieves er-
ror rates below 0.2% across all climate variables for three
distinct initializations. To ensure mechanistic transparency,
we employ sparse symbolic regression via LASSO, success-
fully recovering learned dynamics across three initializations
and six noise perturbation levels. Comparative benchmarking
against statistical baselines (VAR and ARIMA) demonstrates
superior forecasting performance in data-scarce regimes with
known physical constraints. Our results establish that UDEs
enable accurate climate state prediction while symbolic re-
gression maintains interpretability, yielding a computation-
ally efficient framework for rapid climate scenario explo-
ration and mechanistically transparent climate modeling.

Introduction

Climate change represents one of the most pressing chal-
lenges of our time, involving complex interactions between
atmospheric greenhouse gases, temperature dynamics, and
biogeochemical cycles. Understanding and predicting these
interactions requires sophisticated modeling approaches that
can capture both the physical processes governing Earth’s
climate system and the nonlinear feedbacks between hu-
man activities and environmental responses. General Cir-
culation Models (GCMs), which employ mathematical rep-
resentations of planetary atmospheric and oceanic circu-

lation based on fundamental physical laws such as the
Navier-Stokes equations, have historically served as the
foundation for climate modeling (Phillips 1956; Manabe,
Smagorinsky, and Strickler 1965; Manabe and Wetherald
1967; Manabe and Bryan 1969). These models incorpo-
rate thermodynamic processes including radiation, latent
heat exchange, large-scale winds, cloud formation, and
ocean-atmosphere interactions. However, the evolution to-
ward Earth System Models (ESMs) has marked a signifi-
cant advancement by integrating broader Earth system pro-
cesses beyond purely physical components. ESMs explic-
itly include chemical and biological processes, comprehen-
sive carbon cycle representations, dynamic vegetation, at-
mospheric chemistry, and ocean biogeochemistry, creating
more complete feedback loops within the climate system
(Cox et al. 2000a). While GCMs traditionally rely on pre-
determined atmospheric compositions as external forcings,
ESMs simulate how greenhouse gases and aerosols change
endogenously over time in response to both anthropogenic
activities and evolving climate conditions (Moon et al. 2025;
Song, Scholz, and Lohmann 2025; Schédel et al. 2024; Dit-
tus et al. 2024). Despite their comprehensive nature, both
GCMs and ESMs remain computationally intensive, lim-
iting their applicability for rapid scenario exploration and
uncertainty quantification(O’Loughlin et al. 2025; Irrgang
et al. 2021). In contrast, Energy Balance Models (EBMs),
first introduced by Sellers (Sellers 1969), offer simplified
representations that sacrifice detail for computational effi-
ciency. EBMs typically focus on energy balance equations
relating incoming solar radiation to outgoing terrestrial ra-
diation, often coupled with carbon cycle models to repre-
sent biogeochemical feedbacks (Cox et al. 2000b; Stephens
et al. 2012; Friedlingstein et al. 2006). While these reduced-
complexity models enable efficient exploration of climate
scenarios, they may miss important nonlinear dynamics and
feedback mechanisms that are crucial for accurate long-term
projections.

Related Work

The proposed coupled climate-carbon cycle system builds
upon foundational approaches in simplified climate model-
ing. The DICE model by Nordhaus et al.(Nordhaus 2017)
pioneered the integration of two-box energy balance mod-
els with coupled carbon cycles, establishing the core feed-



back mechanisms between temperature and carbon dy-
namics. Goodwin et al.(Goodwin, Williams, and Ridgwell
2007) demonstrated similar coupled frameworks to investi-
gate cumulative carbon emissions and global warming rela-
tionships, incorporating temperature-dependent carbon sink
feedback analogous to the S7°C' term in our formulation.
Hasselmann et al.(Hasselmann 1997) provided the theo-
retical foundation for physically-based ordinary differential
equations in climate modeling, establishing energy balance
models as robust tools for climate change detection and at-
tribution. Joos et al.(Joos et al. 1996) contributed essential
insights into carbon cycle representation, validating simpli-
fied global carbon cycle formulations that enable efficient
coupling with energy balance components.

Scientific Machine Learning (SciML) has emerged
as a transformative framework for modeling complex
physical systems(Lee and Parish 2021; Vazquez Mar-
tinez et al. 2024), integrating physical constraints with
neural network expressivity through methodologies in-
cluding Neural Ordinary Differential Equations (Neural
ODEs)(Chen et al. 2018), Universal Differential Equations
(UDEs)(Rackauckas et al. 2020), and Sparse Identification
of Nonlinear Dynamics (SINDy)(Bournez and Pouly 2020a)
for extracting interpretable symbolic expressions.

Recent SciML applications in climate science demon-
strate substantial advancement. Choi et al.(Hwang et al.
2021) developed neural diffusion equations combining
NODEs with diffusion processes to capture Brownian mo-
tion dynamics in climate systems. Bolibar et al.(Bolibar
et al. 2023) applied UDEs to glacier ice flow model-
ing, embedding neural networks within physical equa-
tions to discover empirical laws for large-scale glacial pro-
cesses under changing climate conditions. Neural advection-
diffusion equations (NADE)(Choi et al. 2023) further ad-
vance physics-informed approaches by incorporating un-
certainty modeling within climate frameworks. In addition,
neural differential equations have been successfully applied
to parameterization of the ocean boundary layer, effectively
capturing missing physics in processes driven by surface
buoyancy.(Ramadhan 2021)

Motivation

Climate scenario exploration demands computationally effi-
cient frameworks capable of rapid policy evaluation under
deep uncertainty. Traditional General Circulation Models
and Earth System Models, while comprehensive in captur-
ing atmospheric circulation and biogeochemical feedbacks
(Cox et al. 2000a; Moon et al. 2025; Song, Scholz, and
Lohmann 2025; Schidel et al. 2024; Dittus et al. 2024), re-
main computationally prohibitive for iterative scenario anal-
ysis. Conversely, Energy Balance Models (Sellers 1969; Cox
et al. 2000b; Stephens et al. 2012; Friedlingstein et al. 2006)
sacrifice predictive fidelity for computational tractability.
Machine learning approaches exhibit excessive data depen-
dence and lack mechanistic transparency—critical deficien-
cies for regulatory compliance and evidence-based poli-
cymaking. Scientific machine learning (Chen et al. 2018;
Rackauckas et al. 2020; Bournez and Pouly 2020a; Lee and
Parish 2021; Vazquez Martinez et al. 2024) addresses this

methodological gap by encoding physical constraints di-
rectly into learning architectures, thereby reducing data re-
quirements while preserving interpretability. This study es-
tablishes a framework for rapid, interpretable climate sce-
nario exploration by augmenting coupled climate-carbon
models with Universal Differential Equations, enabling pol-
icymakers to evaluate interventions—carbon taxation, emis-
sion caps, adaptation strategies—through mechanistically
transparent, computationally efficient simulations that sat-
isfy quantitative risk assessment requirements.

Contributions

This work addresses four fundamental questions in physics-
informed climate modeling. First, we establish whether
Universal Differential Equations (Rackauckas et al. 2020;
Bournez and Pouly 2020a,b) demonstrate superior forecast-
ing accuracy compared to black-box Neural Ordinary Dif-
ferential Equations (Chen et al. 2018; Dupont, Doucet, and
Teh 2019; Massaroli et al. 2020; Yan et al. 2019) through
systematic comparison across three random initializations
at 1% noise perturbation. Second, we evaluate symbolic re-
covery performance via Sparse Identification of Nonlinear
Dynamics (Bournez and Pouly 2020a) under identical ex-
perimental conditions, quantifying the framework’s capacity
to extract interpretable governing equations. Third, we con-
duct comprehensive robustness analysis across six noise lev-
els (1-25%), establishing how measurement uncertainty de-
grades both forecasting accuracy and physics interpretabil-
ity. Fourth, we benchmark computational efficiency against
statistical baselines (VAR and ARIMA), demonstrating re-
source advantages in data-scarce regimes with known phys-
ical constraints. Our framework uniquely achieves dual ob-
jectives: accurate climate trajectory prediction and mecha-
nistic discovery of missing physics, enabling researchers to
extend incomplete models systematically for rapid scenario
exploration.

Methodology

This investigation systematically evaluates three scientific
machine learning approaches for climate system identifi-
cation across a coupled dynamical system governing sur-
face temperature anomaly T'(t), deep ocean temperature
anomaly O(t), and atmospheric CO2 concentration C'().
Synthetic datasets are generated via numerical integration
with varying observational noise levels to simulate realistic
measurement uncertainties. The methodology proceeds hier-
archically: Neural Ordinary Differential Equations (Dupont,
Doucet, and Teh 2019; Massaroli et al. 2020; Yan et al.
2019) learn complete black-box dynamics from data; Uni-
versal Differential Equations (Bournez and Pouly 2020a,b)
integrate known partial physics with data-driven compo-
nents to capture unknown mechanisms; forecasting perfor-
mance of the UDE framework is benchmarked across var-
ious noise regimes against statistical baselines (VAR and
ARIMA). Finally, interpretability analysis employs Sparse
Identification of Nonlinear Dynamics (Bournez and Pouly
2020a) to recover transparent symbolic expressions of the
learned physics. All experiments are implemented in Julia,



with Claude Sonnet (free tier) providing debugging assis-
tance exclusively for syntax verification and package com-
pliance.

Coupled Climate-Carbon System Formulation

We formulate a coupled dynamical system comprising three
ordinary differential equations that govern the temporal evo-
lution of the surface temperature anomaly 7'(¢), deep ocean
temperature anomaly O(t), and atmospheric CO5 concentra-
tion C(t). This coupled climate-carbon system formulation
synthesizes established frameworks from (Nordhaus 2017;
Meinshausen, Raper, and Wigley 2011), integrating energy
balance dynamics with biogeochemical feedback mecha-
nisms:
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where the radiative forcing function

C
F(C) = alog, (O) @

captures the logarithmic COs-forcing relationship, and the
remaining parameters govern climate sensitivity (), ocean-
atmosphere heat exchange (x), thermal capacities (Cr, Cp),
and carbon cycle dynamics (53, v, E(t)) as specified in Ta-
ble 1.

The surface temperature equation (1) represents energy
balance dynamics with radiative forcing as the primary
warming driver, counterbalanced by climate feedbacks and
oceanic heat transfer mechanisms. The oceanic tempera-
ture equation (2) captures deep ocean thermal inertia with
characteristically slow response timescales inherent to large
thermal reservoirs. The carbon cycle equation (3) combines
temperature-independent linear sinks with the temperature-
dependent feedback term BT'C, quantifying the reduced
oceanic COs solubility at elevated temperatures—a critical
positive feedback mechanism in the climate system.

The following physical parameters were selected as ini-
tial conditions for model integration: climate feedback pa-
rameter A = 1.0 W m—2 K~1, heat exchange coefficient
% = 0.69 W m~2 K1, surface heat capacity C; = 8.0 W
yr m~2 K~1, deep ocean heat capacity Co = 80.0 W yr
m~2 K~!, and temperature-dependent carbon uptake coef-
ficient 3 = 0.001 ppm~! K~! yr~!. These values reflect
physically plausible magnitudes consistent with simplified
climate modeling frameworks. Comprehensive physical in-
terpretation and coupling mechanisms are detailed in Ap-
pendix .

Table 1: Physical parameters and initial conditions for cli-
mate model simulation

Parameter Value
Radiative forcing parameter (o) 5.35
Pre-industrial CO4 concentration (Cp)  280.0 ppm
Linear carbon uptake rate () 0.01 yr—!
Initial surface temperature (7) 0.0K
Initial deep ocean temperature (Og) 0.0K
Initial CO4 concentration (C'(0)) 280.0 ppm

Data Generation and Preprocessing

Synthetic datasets were generated via Tsit5 Runge-Kutta
integration (Tsitouras 2011) applied to Equations (1)—(3),
with 15-year training and 50-year validation periods cap-
turing decadal dynamics. Additive Gaussian noise propor-
tional to each variable’s intrinsic variability simulated ob-
servational uncertainty, where the noise standard deviation
for each variable X; was computed as o; = 7 - std(X;)
with noise level 7, and anthropogenic emissions prescribed
as E(t) = 8.0 + 0.1t Gt C yr~!. Following systematic
comparison, Z-score standardization was adopted for opti-
mal convergence. Normalization parameters were computed
from clean synthetic data prior to noise injection, preserving
statistical fidelity while introducing realistic measurement
uncertainty. A safety threshold of 10~8 prevented numerical
instabilities in near-zero variance cases. To ensure robust-
ness and reproducibility, experiments were conducted across
three random initializations with seeds S € {90,91, 92},
controlling synthetic data generation and neural network pa-
rameter initialization. Systematic noise perturbations at lev-
elsn € {1%,5%, 10%, 15%, 20%, 25%} of each variable’s
standard deviation were applied to simulate measurement
uncertainty and assess model performance degradation un-
der increasing observational error.

Neural Ordinary Differential Equations

The framework of Neural Ordinary Differential Equations
(Neural ODEs) provides a continuous-time representation of
dynamical systems through parameterization of the deriva-
tive function via neural networks (Dupont, Doucet, and Teh
2019; Massaroli et al. 2020; Yan et al. 2019). This method-
ology supersedes discrete-time architectural paradigms by
establishing a continuous temporal formulation:

dh
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where h(t) = [T(t),0(t),C(t)]" constitutes the three-
dimensional climate state vector and fy represents a fully
connected neural network with trainable parameters 6. The
adjoint sensitivity method (Ma et al. 2021) facilitates com-
putationally efficient gradient computation through the ODE
solver architecture, thereby enabling end-to-end optimiza-
tion of Neural ODE models for climate time series charac-
terized by extended temporal dependencies and stiff dynam-
ics.

In this work, the neural network fy learns the complete
dynamical system governing all three climate variables in



a purely data-driven manner, without imposing any mech-
anistic constraints. This black-box approach serves as a
performance benchmark for comparison against physics-
informed alternatives. Tables 11, 12, and 13 in the Ap-
pendix present the architectural specifications, hyperparam-
eter exploration strategies, and final selected configurations
for different random seeds investigated in this study, en-
suring reproducibility and robustness assessment across ini-
tialization variations. Complete architectural specifications
and training configurations across all seeds are provided in
Appendix . Experiments were conducted at = 1% noise
level across three random initializations (S € {90, 91,92})
to evaluate black-box dynamics learning performance under
controlled measurement uncertainty.

Universal Differential Equations

The Universal Differential Equation (UDE) methodology
establishes a hybrid modeling framework that synergisti-
cally integrates mechanistic differential equations with neu-
ral network components (Bournez and Pouly 2020a,b). This
approach preserves established physical constraints and con-
servation laws while enabling data-driven identification of
unknown or poorly parameterized processes, thereby com-
bining the interpretability of physics-based models with the
flexibility of machine learning.

Our UDE implementation strategically substitutes the
temperature-dependent carbon uptake term S7'C in Equa-
tion (3) with a neural network approximation:

% = E(t) — NNy (T,C) — ~C, ©6)
where NN (T, C') constitutes a feedforward neural network
with parameters ¢ that learns the complex nonlinear rela-
tionship between temperature and CO- concentration gov-
erning oceanic carbon uptake processes. This formulation
maintains the fundamental physical structure of the carbon
cycle equation—including known emission inputs and lin-
ear sink terms—while providing flexible representational
capacity for capturing intricate feedback mechanisms that
may be challenging to parameterize from first principles.
Tables 20, 21, and 22 in the Appendix present the architec-
tural specifications, hyperparameter exploration strategies,
and final selected configurations for different random seeds.
For subsequent investigation of symbolic recovery and in-
terpretability across varying noise levels, the configurations
detailed in Table 21 were employed. Exhaustive hyperpa-
rameter configurations and noise-level analyses are docu-
mented in Appendix . Initial validation employed three ran-
dom seeds (S € {90,91,92}) at n = 1% noise level for
forecasting accuracy and SINDy symbolic recovery assess-
ment, followed by comprehensive robustness analysis across
six noise levels (n € {1%, 5%, 10%, 15%, 20%, 25%}) us-
ing seed S = 91 to quantify performance degradation under
increasing observational error.

Statistical Baseline: Autoregressive Integrated
Moving Average

In this comparative forecasting analysis, we employ uni-
variate ARIMA models(Box and Jenkins 1976) as a clas-

sical statistical baseline for climate variable prediction.
ARIMA(p, d, q) models capture temporal dependencies
through autoregressive terms of order p, differencing oper-
ations of order d for achieving stationarity, and moving av-
erage components of order ¢ for modeling residual corre-
lations. We implement three independent ARIMA models,
one for each climate variable: surface temperature anomaly,
deep ocean temperature anomaly, and atmospheric CO2 con-
centration.

Hyperparameter optimization is performed via exhaustive
grid search over the parameter space detailed in Table 43,
evaluating all combinations using the corrected Akaike In-
formation Criterion (AICc) as the selection metric. The
AICc criterion penalizes model complexity while reward-
ing goodness-of-fit, making it particularly suitable for time
series with limited sample sizes. Each model is fitted inde-
pendently on the training period using maximum likelihood
estimation with mean centering enabled to account for non-
zero means in the climate anomaly data. The optimal config-
uration for each variable is determined by minimizing AICc
across 48 candidate model specifications, after which multi-
step-ahead forecasts are generated for the validation period
via recursive prediction, where forecasted values serve as in-
puts for subsequent time steps. Grid search results and fore-
casting metrics are comprehensively presented in Appendix .
All ARIMA experiments utilized random seed S = 91 with
observational noise level n = 1% to enable direct perfor-
mance comparison against alternative methodologies under
controlled stochastic conditions.

Statistical Baseline: Vector Autoregression

For multivariate time series forecasting, we employ a Vector
Autoregression (VAR) model(Sims 1980; Litterman 1986;
Basu and Michailidis 2015) that simultaneously captures
the dynamic interdependencies among surface temperature,
deep ocean temperature, and CO5 concentration. Unlike uni-
variate approaches that model each variable in isolation, the
VAR(p) framework expresses each variable as a linear func-
tion of its own lagged values and the lagged values of all
other variables in the system, thereby explicitly exploiting
cross-variable temporal correlations and Granger causality
structures inherent in coupled climate dynamics.

The optimal lag order p is determined through system-
atic evaluation of information criteria across candidate mod-
els, as specified in Table 46. We compute the Akaike In-
formation Criterion (AIC)(Akaike 1973), Bayesian Informa-
tion Criterion (BIC)(Schwarz 1978), Hannan-Quinn Crite-
rion (HQC)(Hannan and Quinn 1979), and Final Prediction
Error (FPE) for each lag configuration. The model that min-
imizes BIC is ultimately selected due to its stronger penalty
for model complexity, promoting parsimony—a desirable
property when working with relatively short time series. The
VAR system is estimated via ordinary least squares (OLS)
regression with a constant term included to accommodate
non-zero means, and model stability is rigorously verified
through eigenvalue analysis of the companion matrix to en-
sure all roots lie within the unit circle. Multi-horizon fore-
casts are generated recursively using the estimated coeffi-
cient matrices, propagating uncertainty through the predic-



tion horizon. Mathematical formulation and lag selection
procedures are rigorously detailed in Appendix . The VAR
framework was evaluated under random seed S = 91 with
17 = 1% Gaussian noise perturbations to establish baseline
statistical forecasting performance under identical experi-
mental conditions.

Symbolic Regression and Interpretability Analysis

The SINDy (Sparse Identification of Nonlinear Dynam-
ics) algorithm enables the extraction of human-interpretable
symbolic expressions from opaque neural network represen-
tations (Bournez and Pouly 2020a), thereby transforming
black-box predictions into transparent mathematical formu-
lations. Given normalized state variables (Tyorm, Crorm)
and neural network outputs yyn representing the learned
carbon uptake mechanism, the algorithm constructs a poly-
nomial basis library:

(I)(Tnorma Cnorm) = [TC, T2 C, TCQ, T2 02] (7)

This interpretability-focused regression problem is formu-
lated using non-negative least squares optimization, solved
via the NonNegLeastSquares.jl package:

mgin |®€ — ynn||2 subjectto & >0 (8)

A coefficient thresholding procedure (threshold = 0.001)
identifies dominant terms while eliminating spurious contri-
butions, yielding a parsimonious and interpretable symbolic
representation of the complex temperature-carbon feedback
dynamics originally embedded within the neural network ar-
chitecture. Non-negative least squares algorithm implemen-
tation is explicated in Appendix .

Results
Forecasting Performance

The sequential Adam-AdamW optimization framework
achieved exceptional loss reductions exceeding 99.57% for
UDE configurations (Tables 23-25) and surpassing 99.997%
for Neural ODE architectures (Tables 14-16) under 1%
noise conditions, as illustrated in Figures 11-17. System-
atic noise augmentation experiments (Tables 26—-30) demon-
strated progressive degradation from 99.56% to 91.05% loss
reduction as noise levels increased from 5% to 25%, con-
firming the optimizer combination’s robustness. Adam ex-
hibited more stable convergence behavior, whereas AdamW
showed increased volatility and instability in later training
stages. L2 error trajectories (Figures 13—18, Appendix) ex-
hibited monotonic growth throughout the 50-year forecast
horizon for Neural ODE architectures, with cumulative error
amplification indicating progressive deviation from ground-
truth dynamics across all seed initializations.

Table 2: Forecasting Performance: Neural ODE vs. UDE

Variable Model Mean % Error
Surface Temperatur Neural ODE 12.45
urface Temperature UDE 014
o T ¢ Neural ODE 64.08
cean Temperature UDE 011
. Neural ODE 5.17
CO4 Concentration UDE 011

Table 3: Training Efficiency: Neural ODE vs. UDE

Metric Neural ODE UDE
Mean Iterations 40,002 17,002
Mean Loss Reduction (%) 99.999 99.846

UDE demonstrates superior forecasting performance
compared to Neural ODE across all variables (Table 2),
achieving substantially lower mean percentage errors: sur-
face temperature (0.14% vs. 12.45%), ocean temperature
(0.11% vs. 64.08%), and COy concentration (0.11% vs.
5.17%). Furthermore, UDE exhibits enhanced computa-
tional efficiency, requiring 57.5% fewer iterations while
maintaining comparable loss reduction (Table 3).

Table 4: Forecasting Errors at ¢ = 50 Years: Neural ODE,
UDE, and VAR

Climate Variable Neural ODE UDE VAR

Surface Temp. (°C) 0.40 0.31 22.41
Ocean Temp. (°C) 25.83 0.20 19.60
CO; Conc. (ppm) 9.88 0.23 6.51

Table 5: Forecasting Errors at ¢ = 50 Years: Neural ODE,
UDE, and ARIMA

Climate Variable Neural ODE UDE ARIMA
Surface Temp. (°C) 0.40 0.31 99.25
Ocean Temp. (°C) 25.83 0.20 70.34
CO; Conc. (ppm) 9.88 0.23 1.62

Table 6: Computational Resources: Neural ODE, UDE, and
ARIMA

Resource Metric Neural ODE UDE ARIMA
Parameters 12931 8577 10
Training Iterations 40000 11000 144
Training Time (s) 1036.99 193.35 7.52
Time/Iter. (ms) 25.92 17.58 52.25




Table 7: Computational Resources: Neural ODE, UDE, and

VAR
Resource Metric Neural ODE UDE VAR
Parameters 12931 8577 21
Training Iterations 40000 11000 2
Training Time (s) 907.33 208.81 0.99
Time/Iter. (ms) 22.68 18.98 495.04
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Table 8: UDE Forecasting Errors Across Noise Levels

Noise (%) T Error (%) O Error (%) C' Error (%)
1 0.04 0.08 0.007
5 0.29 0.33 0.17
10 0.52 0.59 0.33
15 0.25 0.56 0.08
20 0.42 0.74 0.21
25 50.27 33.23 32.05
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Figure 3: Comparative Forecasting Performance: ARIMA,
Neural ODE, and UDE
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Figure 4: Comparative Forecasting Performance: VAR, Neu-
ral ODE, and UDE

The Universal Differential Equation (UDE) architecture
demonstrates superior predictive performance across all cli-
mate variables (Table 4, Table 5), achieving percentage er-
rors below 0.31% for surface temperature and 0.23% for
CO4 concentration at ¢ = 50 years. Comparative analy-
sis against statistical baselines reveals that Neural ODE,
ARIMA, and VAR models exhibit substantial gaps between
true and predicted values across all three climate vari-
ables (Figures 3—4), whereas UDE predictions maintain pre-
cise alignment with ground truth dynamics, demonstrating
no observable discrepancy between true and predicted tra-
jectories. While statistical baselines (VAR, ARIMA) ex-
hibit computational efficiency with minimal parameters (Ta-
ble 6, Table 7), they incur substantial prediction errors ex-
ceeding 19% for temperature variables. The UDE frame-
work achieves optimal accuracy-efficiency tradeoff, requir-
ing 33.6% fewer parameters and 72.5% less training time
than Neural ODE while maintaining significantly lower per-
centage errors across all prognostic variables.

As demonstrated in Table 8, UDE predictions maintain
remarkably low percentage errors across noise levels (0.25—
0.74% for 5-20% noise), with catastrophic degradation only
at 25% noise (32-50% error).
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Interpretability Analysis

The symbolic recovery analysis (Figures 7-9) reveals pro-
gressive deviation of SINDy predictions from both ground
truth and UDE forecasts as noise intensifies. SINDy success-
fully recovered the correct functional form 5 - T - C' across
all noise regimes up to 20%, demonstrating robust symbolic
identification capabilities.
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Figure 5: Symbolic Recovery of Temperature-Carbon Feed-
back Term at 5% Noise

Table 9: Symbolic Regression Performance at 1% Noise

Metric Value Unit
Average Relative Error 25.22 %
Average Coefficient (3) 0.00077 -

However, at 25% noise (Figure 10, Table 8), interpretabil-
ity undergoes complete breakdown, with SINDy exhibiting
precipitous R? collapse to 0.4028 and 100% relative error in
parameter estimation (Table 10), effectively rendering sym-
bolic identification infeasible beyond this critical threshold.
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Figure 7: Symbolic Recovery of Temperature-Carbon Feed-
back Term at 1% Noise

While ARIMA yielded closed-form equations with inad-
equate forecasting fidelity and Neural ODEs remained en-
tirely black-box architectures precluding mechanistic inter-
pretation, only the UDE framework achieved simultaneous
predictive accuracy and transparent symbolic recovery of
governing dynamics through SINDy-based interpretability
analysis.
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Figure 8: Symbolic Recovery of Temperature-Carbon Feed-
back Term at 10% Noise

Table 10 quantifies SINDy performance metrics relative
to the ground truth parameter value 8 = 0.001, demonstrat-
ing systematic degradation in both goodness-of-fit (R?) and
parametric accuracy as observational noise escalates from
1% to 25%. Across three random seeds, SINDy successfully
recovered the correct functional form (7" x C) in all cases
with a 100% recovery rate (Table 9), achieving an average
relative error of 25.22% at 1% noise level.

Conclusion

Neural Ordinary Differential Equations demonstrated in-
ferior forecasting performance relative to Universal Dif-
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Figure 10: Symbolic Recovery of Temperature-Carbon
Feedback Term at 25% Noise

Table 10: Symbolic Regression Performance Across Noise
Levels

Noise(%) SINDy R?  j3 Relative Error (%)
1 0.9985 3.45

5 0.9868 18.86

10 0.9558 37.64

15 0.8820 53.26

20 0.7812 68.58

25 0.4028 100.00

ferential Equations across all climate variables, exhibiting
substantially elevated mean percentage errors and progres-
sive error amplification throughout the extended forecast
horizon. Despite achieving comparable loss reduction dur-
ing training, NODEs required markedly greater computa-
tional resources, necessitating over twice the iterations and
training time compared to UDEs while maintaining signif-
icantly larger parametrization. This performance disparity
underscores NODEs’ fundamental limitation in capturing

complex climate dynamics without explicit incorporation of
physical constraints.

Conversely, UDEs successfully achieved high-fidelity ap-
proximations of climate system evolution, maintaining re-
markably low percentage errors across all prognostic vari-
ables under moderate noise conditions. The architecture
demonstrated exceptional robustness across escalating noise
regimes, preserving predictive accuracy until catastrophic
degradation at critical noise thresholds. This resilience re-
flects UDEs’ privileged access to complete differential equa-
tion structures and comprehensive input data, enabling su-
perior learning capacity compared to purely data-driven ap-
proaches.

Symbolic regression analysis revealed progressive inter-
pretability degradation as observational noise intensified,
with SINDy maintaining functional form recovery across
moderate noise levels despite deteriorating goodness-of-fit
and parametric accuracy. The interpretability breakdown at
extreme noise conditions suggests fundamental limitations
of symbolic identification when operating solely on neu-
ral network outputs rather than complete system dynamics.
Nevertheless, successful term recovery under realistic noise
scenarios demonstrates substantial promise for transforming
opaque learned components into explicit mathematical for-
mulations.

Comparative evaluation against statistical baseline
methodologies confirmed that while VAR and ARIMA
models exhibit superior computational parsimony with min-
imal parametrization and negligible training requirements,
they incur substantial prediction errors across all climate
variables, rendering them unsuitable for high-fidelity fore-
casting applications. This performance disparity validates
the fundamental advantage of incorporating physical law
constraints within machine learning frameworks. The UDE
architecture’s optimal accuracy-efficiency tradeoff positions
it as particularly advantageous for rapid climate scenario
exploration and data-constrained forecasting applications.

Limitations and Future Directions

This study’s primary limitation involves synthetic data us-
age, restricting immediate real-world applicability. For fu-
ture research, we plan to validate these approaches using
authentic observational data and expand the model frame-
work to incorporate additional variables such as strato-
spheric temperature, oceanic pH, methane concentration, ice
sheet volume, and vegetation biomass with appropriate cou-
pling terms and governing equations.
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Appendix
Model formulation

This subsection provides comprehensive physical interpre-
tation of the coupled energy balance and carbon cycle dy-
namics, including radiative forcing mechanisms, thermal
reservoir interactions, ocean-atmosphere heat exchange, and
temperature-dependent biogeochemical feedback pathways
governing the three-state climate system.

Our proposed model represents a simplified climate sys-
tem based on energy balance principles, employing a box
model approach that discretizes the climate into intercon-
nected reservoirs without the computational complexity of
full-scale General Circulation Models. The model tracks
three fundamental state variables as deviations from pre-
industrial equilibrium: surface temperature anomaly T'(t),
deep ocean temperature anomaly O(t), and atmospheric
CO;, concentration C(t) in parts per million.

The surface temperature evolution equation (1) governs
energy balance for the coupled surface-atmosphere system,
where temperature change rates depend on net energy im-
balance scaled by effective heat capacity Cr. The radiative
forcing term F(C) = alog,(C/Cp) captures the logarith-
mic relationship between atmospheric CO2 and absorbed
longwave radiation, reflecting fundamental radiative physics
where each CO, doubling produces equivalent warming ef-
fects. The climate feedback parameter A quantifies radiative
response to temperature perturbations via enhanced outgo-
ing longwave radiation, providing primary stabilizing nega-
tive feedback. The oceanic heat exchange term (T — O)
represents heat transfer between surface and deep ocean
IEeServoirs.

The deep ocean temperature equation (2) describes ther-
mal evolution through heat exchange with the surface sys-
tem. Oceanic heat capacity Cp significantly exceeds at-
mospheric equivalent, introducing multi-decadal response
timescales that moderate surface temperature changes while
storing substantial thermal energy.

The carbon cycle equation (3) represents atmospheric
CO, mass balance, with anthropogenic emissions E(t) as
primary carbon source and natural sinks providing removal
mechanisms. The linear uptake term ~yC captures COo
removal processes, while the temperature-dependent term
BT C represents biogeochemical feedback where warming
reduces carbon sink efficiency.

Our proposed model’s predictive capability emerges from
nonlinear coupling between energy and carbon components,
creating feedback pathways through radiative forcing, ther-
mal coupling, and temperature-carbon interactions that pro-
duce complex temporal behaviors including delayed re-
sponses and long-term climate commitment.

Neural ODE Training Configurations and Results

This subsection documents complete hyperparameter spec-
ifications, architectural search spaces, optimization strate-
gies, and forecasting performance metrics for Neural ODE
implementations across three random seed initializations
(seeds 90, 91, 92) with comprehensive training dynamics
and convergence analysis under 1% noise conditions.

All Neural ODE configurations employed in this study
share a common subset of hyperparameters determined
through the optimization procedure. The output dimen-
sion was uniformly fixed at do,, = 3 across all random
seed initializations to ensure compatibility with the three-
dimensional state space of the underlying dynamical sys-
tem. The softplus activation function was consistently se-
lected for all hidden layers throughout the network architec-
ture, providing continuously differentiable nonlinear trans-
formations with smooth gradients conducive to stable ODE
integration.

The second optimization phase utilized the AdamW opti-
mizer across all configurations with fixed hyperparameters:
momentum coefficients 5; = 0.9 and Sy = 0.999, weight
decay parameter A = 1 x 10~%, and numerical stability con-
stant e = 1x 1078 The learning rate was setton = 1x107°
for both optimization phases across all three random seed



realizations, exhibiting robust convergence characteristics at
this scale.

The neural network architecture search space encom-
passed Nayers € [2,8] hidden layers, with each layer
comprising nyns € [8,128] hidden units. The ac-
tivation function was selected from the candidate set
{ReLU, ELU, Swish, Softplus, Tanh, Sigmoid}. During the
first optimization phase employing the Adam optimizer, the
learning rate search space spanned 17; € [1 x 10771 x

10~!] with maximum iteration counts ranging from NiE:r) €

[4,000,40,000]. The second optimization phase explored
maximum iterations in the range N\ € [2,000, 40,000).

iter
The following tables present the specific hyperparameter
configurations and selected values for each random seed ini-
tialization, along with the corresponding training dynamics
and forecasting performance metrics.

Table 11: Hyperparameter configuration for Neural ODE
with seed 90 and 1% noise

Parameter Selected Value
Hidden layers 4
Hidden units per layer 64

First optimization iterations 20,000
Second optimization iterations 20,000

Table 12: Hyperparameter configuration for Neural ODE
with seed 91 and 1% noise

Parameter Selected Value
Hidden layers 4
Hidden units per layer 64

First optimization iterations 20,000
Second optimization iterations 20,000

Table 13: Hyperparameter configuration for Neural ODE
with seed 92 and 1% noise

Parameter Selected Value
Hidden layers 5
Hidden units per layer 64

First optimization iterations 20,000
Second optimization iterations 20,000

Loss (log scale)

Adam Optimizer
AdamW Optimizer

10° 10! 108 10° 10*
Iterations (log scale)
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Table 14: Neural ODE training metrics with random seed 90

Adam Optimizer
AdamW Optimizer

and 1% noise

Parameter Value
Training iterations 40,002
Initial training loss 4.37 x 106
Final training loss 0.893
Loss reduction 99.9999796%
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Table 15: Neural ODE training metrics with random seed 91

C0: Concentration {C)

Parameter Value
Training iterations 40,002
Initial training loss 34,927.08
Final training loss 0.916
Loss reduction 99.9973786%
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Parameter Value
Training iterations 40,002
9.85 x 106
Final training loss 0.444
Loss reduction 99.9999955%

Figure 15: Seed 91 NODE Climate Predictions with 1%

Noise
Table 17: Neural ODE climate variable predictions at t=50
years with random seed 90 and 1% noise
oo L , Variable True Predicted  Abs. Error  Error (%)
= Faimng ndTima T (°C) 2214 1.881 0.333 15.04
50 | O (°C) 0.405 0.092 0.313 77.33
| C (ppm)  568.96 596.08 27.11 4.77
o |
5 |
5 30t }
3 |
20 : Table 18: Neural ODE climate variable predictions at t=50
: years with random seed 91 and 1% noise
10 -
|
1 Variable True Predicted Abs. Error Error (%)
o L ‘ .
! 1 P eare v * T (°C) 2214 2.206 0.009 0.40
O (°C) 0.405 0.301 0.105 25.83
Figure 16: Seed 91 NODE L2 Error Over Time C (ppm)  568.96 625.15 56.19 9.88




Table 19: Neural ODE climate variable predictions at t=50
years with random seed 92 and 1% noise

the optimization framework. The output dimension was uni-
formly constrained to d,, = 1 across all random seed ini-
tializations, reflecting the architectural design wherein the

learned neural network component augments the known

physics-based model structure through a single scalar-
valued function. The softplus activation function was con-
sistently employed across all hidden layers in each con-
figuration, ensuring continuously differentiable transforma-

Variable True Predicted  Abs. Error  Error (%)
T (0O 2.214 1.729 0.486 21.92
0 (°0O) 0.405 0.044 0.361 89.09
C (ppm) 568.96 564.00 4.97 0.87
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Universal Differential Equation Training
Configurations and Results

This subsection presents exhaustive hyperparameter con-
figurations, neural network architectures, sequential Adam-
AdamW optimization specifications, and predictive perfor-
mance evaluations for UDE frameworks across three ran-
dom initializations (seeds 90, 91, 92) and six noise pertur-
bation levels (1%, 5%, 10%, 15%, 20%, 25%) with corre-
sponding loss convergence trajectories and climate variable
prediction accuracies.

All UDE configurations investigated in this study share
a common subset of hyperparameters established through

tions with stable gradient propagation throughout the train-
ing procedure. The base architecture consistently incorpo-

1)

rated n, = 64 hidden units in the initial layers, with se-

units
lect configurations expanding to ”S]:i)ts = 128 units in deeper

layers to augment the network’s representational capacity.

The neural network architecture search space encom-
passed Njayers € [2,8] hidden layers, with each layer
comprising nynis € [8,128] hidden units. The ac-
tivation function was selected from the candidate set
{ReLU, ELU, Swish, Softplus, Tanh, Sigmoid}. During the
first optimization phase utilizing the Adam optimizer, the
learning rate search space spanned 7; € [1 x 1077,1 x

10~!] with maximum iteration counts ranging from Nigr) €
(4,000, 40,000].

For the second optimization phase employing the
AdamW optimizer across all three random seed re-
alizations, the hyperparameter search space was sys-
tematically explored. Learning rates were sampled from
No € {1x1077,1x1076, 1x 1075, 1x 1074, 1x 1073, 1 x
1072,1 x 107'}. Momentum coefficients were selected
from (81, B2) € {(0.9,0.999), (0.9,0.9999), (0.99,0.999),
(0.99,0.9999), (0.999, 0.9999), (0.9999, 0.99999) }.
Weight decay parameters spanned A € {1 x 10781 x
10771 x 10751 x 107°,1 x 107*1 x 1073}
Numerical stability constants were drawn from e €
{1x107191x107%,1x 1078, 1 x 1077,1 x 10~%}. Max-

imum iteration counts ranged from N. (2) ¢ (2,000, 40,000].

iter

The following tables present the specific hyperparameter
configurations and optimal values identified for each random
seed initialization, accompanied by comprehensive training
dynamics and forecasting performance metrics.

Table 20: Hyperparameter configuration for UDE with ran-
dom seed 90 and 1% noise

Parameter Selected Value

Hidden layers 5

Hidden units per layer 64, 64, 64, 64, 128
First optimization learning rate 1x10°6
First optimization iterations 10,000

Second optimization learning rate 1x10°
Second optimization momentum (0.9999, 0.99999)
Second optimization weight decay 1x 1077
Second optimization iterations 10,000




Table 21: Hyperparameter configuration for UDE with ran- Table 25: UDE training metrics with random seed 92 and

dom seed 91 and 1% noise 1% noise
Parameter Selected Value Parameter Value
Hidden layers 3 Training iterations 20,002
Hidden units per layer 64 Initial training loss 93.97
First optimization learning rate 1x1073 Final training loss 0.402
First optimization iterations 5,500 Loss reduction 99.5726506%
Second optimization learning rate 1x1074
Second optimization momentum (0.9, 0.999)
Second optimization weight decay 1x1074
Second optimization iterations 5,500 o ) )
Table 26: Training summary for UDE with 5% noise (Ran-
dom Seed 91)
Metric Value

Table 22: Hyperparameter configuration for UDE with ran-

dom seed 92 and 1% noise Total Training Iterations 11002

Initial Training Loss 5082.45
Final Training Loss 22.13
Parameter Selected Value Loss Reduction (%) 99 .56
Hidden layers 4
Hidden units per layer 64, 64, 64, 128
First optimization learning rate 1x107
First optimization iterations 10,000 o ) ]
Second optimization learning rate 1% 10~6 Table 27: Training summary for UDE with 10% noise (Ran-
Second optimization momentum (0.9999, 0.99999) dom Seed 91)
Second optimization weight decay 1x10°7
Second optimization iterations 10,000 Metric Value
Total Training Iterations 11002
Initial Training Loss 5234.85
Final Training Loss 88.54
Loss Reduction (%) 98.31
Table 23: UDE training metrics with random seed 90 and
1% noise
Parameter Value Table 28: Training summary for UDE with 15% noise (Ran-
Training iterations 20,002 dom Seed 91)
Initial training loss 5,772.58
Final training loss 0.892 Metric Value
Loss reduction 99.9845499% — -
Total Training Iterations 11002
Initial Training Loss 5432.26
Final Training Loss 199.21
Loss Reduction (%) 96.33
Table 24: UDE training metrics with random seed 91 and Table 29: Training summary for UDE with 20% noise (Ran-
1% noise dom Seed 91)
Parameter Value Metric Value
Training iterations 11,002 Total Training Iterations 11002
Initial training loss 4,992.94 Initial Training Loss 5674.68
Final training loss 0.885 Final Training Loss 354.14

Loss reduction 99.9822724% Loss Reduction (%) 93.76




Table 30: Training summary for UDE with 25% noise (Ran- Table 36: Final variable comparison for UDE with 15%

dom Seed 91) noise (Random Seed 91)
Metric Value Variable True Predicted  Abs. Error  Error (%)
Total Training Iterations 11002 T (°C) 2.214 2.209 0.006 0.25
Initial Training Loss 5962.11 O (°O) 0.405 0.403 0.002 0.56
Final Training Loss 533.59 C (ppm)  568.96 568.51 0.46 0.08
Loss Reduction (%) 91.05

Table 31: UDE climate variable predictions at t=50 years
with random seed 90 and 1% noise

Variable True Predicted  Abs. Error  Error (%) Table 37: Final variable comparison for UDE with 20%

T (°C) 2214 2210 0.004 020  noise (Random Seed 91)
O (°0) 0.405 0.405 0.0004 0.11 - -
C (ppm) 568.96 568.01 0.95 0.17 Variable True Predicted Abs. Error Error (%)
T (°0) 2214 2.205 0.009 0.42
O (°O) 0.405 0.402 0.003 0.74
Table 32: UDE climate variable predictions at t=50 years C (ppm)  568.96 567.75 1.22 0.21

with random seed 91 and 1% noise

Variable True Predicted  Abs. Error  Error (%)

T (°C) 2.214 2214 0.0008 0.04
O (°C) 0.405 0.405 0.0003 0.08
C (ppm)  568.96 569.01 0.04 0.007

Table 38: Final variable comparison for UDE with 25%
noise (Random Seed 91)

Table 33: UDE climate variable predictions at t=50 years

with random seed 92 and 1% noise Variable True Predicted Abs. Error  Error (%)

T (°0O) 2.214 1.101 1.113 50.27
Variable True Predicted Abs. Error Error (%) 0 (°C) 0.405 0.271 0.135 33.23
C (ppm) 568.96 386.60 182.36 32.05
T (°C) 2.214 2.219 0.004 0.19
O (°0) 0.405 0.406 0.0006 0.16
C (ppm) 568.96 569.80 0.83 0.15

Table 34: Final variable comparison for UDE with 5% noise
(Random Seed 91)

Adam Optimizer
Variable True Predicted Abs. Error Error (%) pdami Opumizer
T (°C) 2.214 2.208 0.006 0.29 —
0O (°0O) 0.405 0.404 0.001 0.33 %
C (ppm)  568.96 568.00 0.96 0.17 o1
Table 35: Final variable comparison for UDE with 10%
noise (Random Seed 91)
10° |
Variable True Predicted Abs. Error Error (%) i o e e o
T (°C) 2214 2203 0.012 0.52 Iterations (log scale)
0 (°C) 0.405 0.403 0.002 0.59 Figure 19: UDE training loss convergence for seed 90 with

C(ppm) 56896  567.10 1.86 033 Bleamning.
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Figure 20: Full timeline comparison of S*T*C term recov-
ery (seed 90).
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Figure 21: UDE predictions for T, O, C variables (seed 90).
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Figure 23: Absolute error in S*T*C term learning (seed 90).
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Figure 24: L2 norm prediction error over time (seed 90).
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Figure 27: L2 norm prediction error over time (seed 91).
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Figure 29: Full timeline comparison of S*T*C term recov-
ery (seed 92).
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Figure 30: UDE predictions for T, O, C variables (seed 92).
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Figure 38: UDE training loss convergence for seed 91 with
10% noise and /3 learning.
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Figure 39: UDE predictions for T, O, C variables with 10%
noise (seed 91).
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Figure 40: Absolute error in S*T*C term learning with 10%
noise (seed 91).
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Figure 41: L2 norm prediction error over time with 10%
noise (seed 91).
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Figure 42: UDE training loss convergence for seed 91 with
15% noise and S learning.
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Figure 43: UDE predictions for T, O, C variables with 15%
noise (seed 91).
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Figure 44: Absolute error in S*T*C term learning with 15%
noise (seed 91).
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Figure 45: L2 norm prediction error over time with 15%
noise (seed 91).
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Figure 46: UDE training loss convergence for seed 91 with
20% noise and 3 learning.
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Figure 47: UDE predictions for T, O, C variables with 20%
noise (seed 91).
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Figure 48: Absolute error in S*T*C term learning with 20%
noise (seed 91).

L2 Error ||True - UDE Pred||

0.0 L= L L L
0 10 20 30 40 50

Years

Figure 49: L2 norm prediction error over time with 20%
noise (seed 91).
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Figure 50: UDE training loss convergence for seed 91 with
25% noise and [ learning.
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Figure 51: UDE predictions for T, O, C variables with 25%
noise (seed 91).
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Figure 52: Absolute error in S*T*C term learning with 25%
noise (seed 91).
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Figure 53: L2 norm prediction error over time with 25%
noise (seed 91).
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Figure 54: Learned vs true S*T*C term comparison (seed
91).
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Figure 55: Learned vs true S*T*C term comparison with 5%
noise (seed 91).
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Figure 56: Learned vs true S*T*C term comparison with
10% noise (seed 91).
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Figure 57: Learned vs true S*T*C term comparison with
15% noise (seed 91).
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Figure 58: Learned vs true S*T*C term comparison with
20% noise (seed 91).
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Figure 59: Learned vs true S*T*C term comparison with
25% noise (seed 91).

Non-Negative Least Squares Algorithm

This subsection explicates the mathematical formulation and
computational implementation of block principal pivoting
methodology for constrained sparse regression, detailing
how active-set partitioning and Karush-Kuhn-Tucker opti-
mality enforcement ensure physically interpretable coeffi-
cient recovery by systematically eliminating negative values
during symbolic expression extraction via SINDy.

The NonNegLeastSquares.jl package implements multi-
ple algorithmic variants for solving the constrained opti-
mization problem miny>o || Ax — b||3, which is fundamen-
tal to sparse symbolic regression tasks. The package pro-
vides four primary solvers: the classical Lawson-Hanson
active-set method, the Fast NNLS variant by Bro and De
Jong, the block principal pivoting method by Kim and Park,
and an alternating direction method of multipliers approach.
The default algorithm employs the block principal pivot-
ing strategy, which partitions variables into passive and ac-
tive sets corresponding to free and zero-constrained com-
ponents respectively. This method reformulates the problem
as a linear complementarity problem, iteratively identifying
which constraints are active by solving unconstrained least
squares subproblems on progressively refined variable par-
titions. The algorithm maintains feasibility through strate-
gic exchanges of multiple variables between working sets,
enabling rapid convergence to the Karush-Kuhn-Tucker op-
timality conditions. Unlike traditional single-variable piv-
oting schemes that exhibit slow convergence on high-
dimensional problems, the block pivoting approach acceler-
ates convergence by simultaneously updating multiple coef-
ficients when favorable, with a conservative fallback mech-
anism that exchanges individual variables when block up-
dates fail to reduce infeasibility. The computational core
involves repeated solutions of reduced normal equations
ALApxp = ALb, where P denotes the passive set, cou-
pled with gradient evaluations w = AT (Ax — b) to iden-
tify constraint violations. This methodology ensures sparse,
physically meaningful coefficient recovery in data-driven
discovery frameworks, as negative coefficients—which may
be mathematically optimal but physically implausible—are



systematically eliminated through the non-negativity con-
straint enforcement, thereby yielding interpretable govern-
ing equations consistent with domain-specific physical prin-
ciples.

Table 39: SINDy Recovery of § Coefficient Across Noise
Levels (Random Seed 91)

B*T*C term
L=l
s

Noise Level (%) True Predicted Abs. Error
1 0.001 0.00103449  0.00003449
5 0.001 0.00119 0.00019
10 0.001 0.00138 0.00038
15 0.001 0.00153 0.00053
20 0.001 0.00169 0.00069
25 0.001 0.00000 0.00100

Table 40: Symbolic regression results for SINDy extraction
(Random Seed 91, 1% noise)

Metric Value Status
Learned 3 0.001034 -
True g 0.001000 -
Relative Error (%) 3.45 Excellent
RMSE 0.002657 -

R2 0.9985 -

Table 41: Symbolic regression results for SINDy extraction

(Random Seed 92, 1% noise)

Metric Value Status
Learned 0.000283 -
True 8 0.001000 -
Relative Error (%) 71.70 Poor
RMSE 0.005600 -
R? 0.9933 -

Table 42: Symbolic regression results for SINDy extraction

(Random Seed 90, 1% noise)

Metric Value Status
Learned /3 0.001005 -
True 3 0.001000 -
Relative Error (%) 0.50 Excellent
RMSE 0.007073 -

R? 0.9876 -
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Figure 60: Training period comparison: NN vs SINDy for
B*T*C (seed 90).
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Figure 61: Extrapolation period: SINDy vs true S*T*C term
(seed 90).
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Figure 62: Training period comparison: NN vs SINDy for
B*T*C (seed 91).
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Figure 66: Training period comparison: NN vs SINDy for

Figure 63: Extrapolation period: SINDy vs true S*T*C term
B*T*C with 5% noise (seed 91).

(seed 91).
-
0.20 [ |=NN —— = SINDy Expression V
= = 5INDy Expression 14 F | —— True B*T*C Pz
True B*T*C —----- UDE
e
1.2 F
0.15
E E 1ot
] a
= E=
O o0 O
[ £ o8|
* *
o o
0.05 06
0.4
0.00
h . L . 0.2 . L L s
20 30 40 50

0 5 10 15

Time (years) Time (years)

Figure 67: Extrapolation period: SINDy vs true S*T*C term

Figure 64: Training period comparison: NN vs SINDy for
with 5% noise (seed 91).
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Figure 68: Training period comparison: NN vs SINDy for

Figure 65: Extrapolation period: SINDy vs true S*T*C term
B*T*C with 10% noise (seed 91).
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Figure 69: Extrapolation period: SINDy vs true S*T*C term
with 10% noise (seed 91).
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Figure 70: Training period comparison: NN vs SINDy for
B*T*C with 15% noise (seed 91).
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Figure 71: Extrapolation period: SINDy vs true S*T*C term
with 15% noise (seed 91).
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Figure 72: Training period comparison: NN vs SINDy for
B*T*C with 20% noise (seed 91).
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Figure 73: Extrapolation period: SINDy vs true S*T*C term
with 20% noise (seed 91).
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Figure 74: Training period comparison: NN vs SINDy for
B*T*C with 25% noise (seed 91).
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Figure 75: Extrapolation period: SINDy vs true S*T*C term
with 25% noise (seed 91).

ARIMA Model Implementation Details

This subsection contains comprehensive hyperparameter op-
timization results via exhaustive grid search across 48 can-
didate specifications, detailed AICc criterion evaluations,
maximum likelihood estimation procedures, and complete
forecasting performance metrics including RMSE, percent-
age errors, and computational resource comparisons for uni-
variate statistical baseline models.

The Autoregressive Integrated Moving Average
(ARIMA) model represents a fundamental statistical
framework for time series forecasting, systematically
decomposing temporal dynamics into three distinct com-
ponents. The autoregressive (AR) component captures the
dependent relationship between current observations and
lagged values, while the moving average (MA) component
models the linear combination of past forecast errors, and
the integrated (I) component addresses non-stationarity
through differencing operations. The model is formally
denoted as ARIMA(p,d,q), where p represents the au-
toregressive order, d specifies the degree of differencing
required to achieve stationarity, and ¢ indicates the moving
average order.

Our implementation employs the Box-Jenkins methodol-
ogy, a systematic iterative approach comprising model iden-
tification, parameter estimation, and diagnostic checking.
For each climate variable—surface temperature anomaly
(T), deep ocean temperature anomaly (O), and atmospheric
CO;, concentration (C')—we construct independent univari-
ate ARIMA models using the training period observations
(t € [0,15] years). Model selection is conducted through a
grid search across candidate parameter combinations, with
optimal orders determined by minimizing the Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion
(BIC), which balance goodness-of-fit against model com-
plexity. The StateSpaceModels.jl package in Julia facilitates
maximum likelihood estimation of model coefficients.

The fitted ARIMA models function as temporal filters,
extracting deterministic signal patterns from noisy observa-
tions and subsequently extrapolating these patterns into the
forecast horizon. For the extrapolation period (¢ € (15, 50]

years), each model generates point forecasts through recur-
sive application of the estimated autoregressive and moving
average operators to the differenced series, with predictions
subsequently transformed back to the original scale through
cumulative summation. This purely statistical approach pro-
vides a baseline comparison against physics-informed neu-
ral architectures, explicitly testing whether data-driven tem-
poral correlation structures can adequately capture the un-
derlying physical climate dynamics without incorporating
domain-specific mechanistic knowledge.
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Figure 76: Absolute prediction errors for Neural ODE, UDE,
and ARIMA models across all three climate variables during
extrapolation period.
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Figure 77: Percentage prediction errors for Neural ODE,
UDE, and ARIMA models across all three climate variables
during extrapolation period.
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Figure 78: Root Mean Square Error (RMSE) comparison
across Neural ODE, UDE, and ARIMA models for all cli-
mate variables.

Table 43: Optimal ARIMA Parameters Selected via Grid
Search with AICc Criterion

Variable ARIMA(p.d,q) AlICc
Surface Temperature (T) (3,0,0) -101.61
Ocean Temperature (O) (2,0,0) -198.05
CO4 Concentration (C) 0,2,2) 24.09

Table 44: Computational Resource Usage Across Models

Metric Neural ODE UDE ARIMA
Parameters 12,931 8,577 10
Training Iterations 40,000 11,000 144
Training Time (s) 1,036.99 193.35 7.52

Table 45: Extrapolation Performance: RMSE and R? Scores
(t=15to 50 years)

Variable Neural ODE UDE ARIMA
RMSE

Surface Temp. (°C) 0.1516 0.0037 1.1946
Ocean Temp. (°C) 0.0637 0.0004 0.1260
CO; Conc. (ppm) 17.8834 0.7291 4.6630
R? Score

Surface Temp. 0.8958 0.9999 -5.4675
Ocean Temp. 0.6760 0.9999 -0.2673
CO- Conc. 0.9108 0.9999 0.9939

Vector Autoregression Implementation Details

This subsection provides rigorous mathematical formulation
of multivariate VAR(p) framework, lag order selection via
BIC criterion, ordinary least squares estimation procedures

with contemporaneous error correlation structures, stabil-
ity verification through companion matrix eigenvalue analy-
sis, and recursive multi-step-ahead forecasting performance
across all climate variables.

The Vector Autoregressive (VAR) framework extends
univariate autoregressive modeling to multivariate time se-
ries analysis, enabling the capture of bidirectional interde-
pendencies among multiple climate system variables. In this
implementation, a VAR(p) model of order p was specified
to forecast the coupled dynamics of surface temperature
anomaly (7), deep ocean temperature anomaly (O), and at-
mospheric CO, concentration (C).

The VAR(p) model represents each variable as a linear
function of its own lagged values and the lagged values of all
other endogenous variables in the system. Mathematically,
the trivariate VAR(p) model for our climate system is ex-
pressed as:

P
Yi=c+) @Y te ©)
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where Y; = [T}, O;,C;]" denotes the state vector at time
t, c represents the constant intercept vector, ®; are (3 x 3)
coefficient matrices capturing lagged influences, and €; de-
notes the white noise error vector with covariance matrix 3.

The optimal lag order p was determined through sys-
tematic evaluation of the Bayesian Information Criterion
(BIC), which balances model fit against parametric com-
plexity by penalizing excessive parameterization. The BIC
for a VAR model with K variables and lag order p is com-
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puted as BIC(p) = log(det(X,)) + *=—>—*, where X,
denotes the estimated error covariance matrix and 7" repre-
sents the sample size. BIC was selected over alternative cri-
teria due to its theoretical property of consistently estimat-
ing the true lag order, whereas AIC tends toward overpa-
rameterization asymptotically. Candidate models spanning
p € {1,2,...,Pmax Were estimated, with the configuration
minimizing BIC designated as optimal.

Parameter estimation employed ordinary least squares
(OLS) regression applied equation-by-equation, which
yields consistent and asymptotically efficient estimates
when error terms exhibit contemporaneous correlation
but no cross-equation restrictions are imposed. The
trained VAR(poptima) model subsequently generated recur-
sive multi-step-ahead forecasts through iterative application
of the fitted coefficient matrices, propagating uncertainty
through the error covariance structure to project climate tra-
jectories beyond the training horizon.
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Figure 79: Absolute prediction errors for VAR, Neural ODE,
and UDE models with 1% noise (seed 91).
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Figure 80: Percentage prediction errors for VAR, Neural
ODE, and UDE models with 1% noise (seed 91).
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Figure 81: RMSE comparison across all climate variables
for VAR, Neural ODE, and UDE models with 1% noise
(seed 91).

Table 46: VAR Model Hyperparameter Selection (Random
Seed 91, 1% Noise)

Lag Order AlIC BIC
1 —25.2751  —24.8503
2 —25.6966  —24.8749

Selected: VAR(2) by BIC criterion

Table 47: Computational Resource Usage (Random Seed 91,
1% Noise)

Metric Neural ODE/UDE VAR
Parameters 12931/8577 21
Iterations 40000/11000 2

Training Time (s) 907.33/208.81 0.99

Table 48: RMSE for Extrapolation Period (f = 15 to 50
years, Seed 91, 1% Noise)

Variable Neural ODE UDE VAR

Surface Temp. (°C) 0.1516 0.0037 0.2150
Ocean Temp. (°C) 0.0637 0.0004 0.0375
CO,, Conc. (ppm) 17.8834 0.7291 15.2162




