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Abstract

Deep Reinforcement Learning proved efficient at learning universal control policies
when the goal state is close enough to the starting state, or when the value function
features few discontinuities. But reaching goals that require long action sequences
in complex environments remains difficult. Drawing inspiration from the cognitive
process which reuses learned atomic skills in a global planning procedure, we
propose an algorithm which encodes reachability between abstract goals as a
graph, and produces plans in this goal space. Transitions between goals rely on
the exploitation of a learned policy which enjoys a property we call translation
invariant local optimality, which encodes the intuition that goal-reaching skills can
be reused throughout the state space. Overall, our contribution permits solving large
and difficult navigation tasks, outperforming related methods from the literature.

1 Introduction

Model-free Reinforcement Learning (RL) has demonstrated an outstanding ability to learn complex
optimal policies from raw interaction data, for well-defined atomic tasks with relatively short time
and state space outreach, such as balancing a pendulum [Barto et al., 1983], learning to walk for
a quadruped [Kimura et al., 2002], or learning to balance a bicycle [Randløv and Alstrøm, 1998].
But when solving more structured, long-term tasks, such as navigating through a building or a maze,
humans seem to rely more on learned models, which they use for planning, instead of performing
trial-and-error learning. Such a decomposition was inherent to seminal RL agents like the Dyna
architecture [Sutton, 1991], and was later one of the core intuitions behind hierarchical RL [Sutton
et al., 1999]. It is notable that often atomic tasks enjoy a property which we call translational
invariance. Balancing a bicycle, for instance, implies in practice an optimal policy that recommends
the same sequences of actions regardless of the geographical position, mostly because gravity does
not change too much across the globe and that we ride bicycles on surfaces that have close friction
properties. Similarly, when navigating in an homogeneous environment, reaching position B from
position A, can be achieved by the same policy than reaching B +∆ from A+∆, provided there are
no obstacles in the way. The optimal policies might somehow differ, but are close enough in many
practical cases. In this paper, we consider such environments which enjoy this translational invariance
property for local, atomic goal-reaching tasks. We exploit this property to efficiently learn an abstract
model that is used by the agent to plan its course of action. Our contribution is threefold. First, we
propose a generic framework linking goal and state spaces for goal-based policy search. Second, we
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formalize the notion of re-usability of a goal-reaching policy throughout the state space as one of
translation invariance. Finally, we propose a complete graph-based model learning method, which
relies on planning in the goal space, and chains local application of translation invariant goal-reaching
policies. By combining planning and RL, this method permits solving tasks over long horizons, a
common pitfall for classical RL methods. As such, the proposed algorithm belongs to the family
of goal-based RL methods. Since it couples planning and RL, it also connects with hierarchical
RL. Finally, it presents many similarities with the Search on the Replay Buffer (SoRB) algorithm
[Eysenbach et al., 2019] and subsequent works, with several key differences which can be seen as a
generalization of SoRB and permit better applicability. Section 2 sets the necessary background and
puts our contribution in perspective of the current literature. Section 3 introduces key ingredients,
namely a formal definition of goals as state abstractions, a characterization of policy translation
invariance, and finally the reachability graph learning (RGL) procedure. Section 4 evaluates RGL
empirically and discusses its properties. Section 5 summarizes and concludes this work.

2 Background and related work

Goals in Reinforcement Learning (RL). RL [Sutton and Barto, 2018] considers the problem of
learning an optimal decision making policy for an agent interacting over multiple time steps with
a dynamic environment, modeled as a Markov Decision Process [Puterman, 2014] of unknown
transition and reward models. At each time step, the agent and the environment are described
through a state s ∈ S. When an action a ∈ A is performed, the system then transitions to a new
state s′, while receiving a reward r(s, a). Stochastic Shortest Path problems are a particular class
of MDPs which aim at reaching a terminal goal state as quickly as possible. Such problems can
be encoded as MDPs featuring −1 rewards for all transitions but those to a terminal goal state.
One can quantify the efficiency of a policy π : S → A in every state s ∈ S via its value function
V π(s) =

∑∞
t=0 γ

tr (st, π(st)), with γ ∈ [0, 1) a discount factor on future rewards (which can also be
interpreted as a stepwise probability of non-termination)1. Training an RL agent consists of finding a
policy with the highest possible value function. A long-standing goal in RL is to design multi-purpose
agents, able to achieve various goals through a single goal-conditioned policy π(s, g) [Kaelbling,
1993], where the goal g is either a single state in S or an abstraction for a set of states. The ability
of deep neural networks to approximate complex functions has triggered a renewal of interest in
learning universal value function and policy approximators [Schaul et al., 2015], V (s, g) and π(s, g)
respectively. Among the many approaches developed to learn goal-based policies and value functions,
Hindsight Experience Replay [Andrychowicz et al., 2017, HER] proposes a seminal method which
defines goal-based reward functions by re-labelling states collected in past trajectories as goals.

Hierarchical RL (HRL). Combining local goal-reaching sequences of actions in order to achieve a
more general goal is the core idea of HRL [Sutton et al., 1999, Precup, 2000, Konidaris and Barto,
2009]. Notably, among recent works, Kulkarni et al. [2016] define a bi-level hierarchical policy, using
a DQN [Mnih et al., 2015] agent to select high-level goals, that define options which make use of a
low-level goal-based DQN agent. Nachum et al. [2018] specializes this idea to the case when the
lower-level policy learns to achieve goals that encode relative changes to the current state. Levy et al.
[2019] couples HER with a three-level hierarchy into an architecture called Hierarchical Actor-Critic
(HAC). McClinton et al. [2021] enhance HAC with a separate higher-level goal generator which
drives the exploration process during learning. Overall, these approaches all aim at designing a global
neural-network-based controller, able to solve the tasks at hand.

Planning and learning. An alternative to crafting a hierarchy of learned policies is to rely on RL
for producing “lower level” option policies, and on some model of how these options affect the
environment. The aim is then to optimize a sequence of options, or skills, in a global plan. The key
to such approaches hence relies on how the model is built. Silver et al. [2017] train a “predictron”
which, for a given task, predicts n-step returns and long term values from any state, using a network
that builds a consistent internal representation of the environment’s dynamics and rewards. Similarly,
several approaches [Ha and Schmidhuber, 2018, Hafner et al., 2020, 2021] build models that emulate
the dynamics and rewards related to a task, and permit planning by simulating this surrogate model,
but without a hierarchy of options and for a single task. In contrast, Nasiriany et al. [2019] optimize
a sequence of reachable intermediate goal states (represented in the latent space of a variational

1SSPs are well-defined for γ = 1 but this is not the case for all MDPs so we keep this discount factor for the
sake of genericity in further developments.
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auto-encoder on states) in order to reach a final goal (single task), using a pre-computed reachability
metric for a given goal-based lower-level policy. Parascandolo et al. [2020] optimize online a similar
curriculum of sub-goals between a starting state and a given goal. They implement a divide-and-
conquer approach by building an AND/OR search tree. Each node corresponds to a new subgoal in
the sequence. They explore this tree with a Monte Carlo tree search strategy, which exploits the value
function of a pre-trained goal-based policy. Some methods store explicitly these links between sub-
goals by constructing a reachability graph. In turn, this graph can be used for higher-level goal-based
planning. Savinov et al. [2018] build this graph by randomly exploring the environment, and add a
node for every encountered state, which yields a very dense graph. For a given goal, a shortest path in
this graph is computed. Then a sequence of landmark subgoals is extracted so that each landmark is far
enough from the previous one according to a pre-trained neural network. Eysenbach et al. [2019] intro-
duce Search on the Replay Buffer (SoRB), which supposes the availability of a replay buffer of states
and defines a graph where each state in a random subset of the replay buffer is a node. Then it uses the
goal-reaching policy’s value function to estimate edge weights between these nodes and finds a short-
est path of state waypoints to the goal. SGM [Emmons et al., 2020] improve SoRB’s results by pruning
useless nodes in the graph, and edges that cannot been traversed by the control policy. Pruning useless
nodes enables a reduction in the number of graph edges and permits a faster convergence to a close-
to-optimal graph (ie. representative of actual reachability with a minimal number of nodes and edges).
Chaplot et al. [2020] learn a reachability graph in a robotics navigation environment. For each new
location in his graph, the agent uses its camera to estimate promising exploration directions. Aubret
et al. [2021] and Ruan et al. [2022] incrementally grow a graph representing reachability, where nodes
are abstractions of sets of states, using a neural network as a surrogate of the similarity between states.

Originality of the present work. With respect to this general body of work, our contribution
has several key features. We formalize a context which alleviates the need to train the lower-level
goal-conditioned policy on all states and goals. Similarly to SoRB, we exploit the policy’s value
function as a local reachability measure, while introducing a level of abstraction since we clearly
distinguish between goals and states. As developed in the next sections, this provides a sparser,
abstract planning graph, closer to a hierarchy of options. Also in contrast to SoRB and SGM, we do
not rely on a pre-existing replay buffer and avoid defining nodes over an arbitrary subset of sampled
states; instead we incrementally grow a reachability graph to cover the attainable goal space.

3 Learning a reachability graph to chain translation invariant local policies

The proposed method relies on the fact that neural networks are intrinsically unsuited to approxi-
mate discontinuous functions such as value functions in challenging RL environments (e.g., mazes,
non-holonomic robots) due to their nature as continuous universal approximators. They are also
unsuitable for retaining local information because their optimization assumes independently and
identically distributed samples from a stationary distribution: either because the distribution (and
hence the training set) is unbalanced or because of distributional shift which causes catastrophic
forgetting. However, in RL decision-making, it’s crucial to make good decisions in infrequently
visited states, retain local information despite distributional shift, and approximate functions that can
easily be discontinuous. Neural networks are great at learning complex continuous functions, such
as navigation, movement primitives, or local goal-reaching policies. Elaborating on this statement,
we turn to a hierarchy of approximators, coupling planning in a graph of goal space waypoints, with
local goal-reaching skills learned with deep neural networks. When requiring to achieve a goal
g∗ ∈ G from a state s0 ∈ S, we link g∗ and s0 to their closest graph nodes. Specifically, we find
vertices v∗ and v0 whose waypoints gv∗ and gv0 minimize some measure of proximity d(g∗, gv∗) and
d(P (s0), gv0) respectively, with P (s0) an abstraction of s0 in the goal space. Then we find a shortest
path between them in the graph, which defines an execution curriculum of waypoints, and the local
policy is used to reach each waypoint’s vicinity in sequence.

The core of our contribution lies hence in the graph expansion and pruning method, its ability
to represent accurately an abstraction of the environment dynamics despite unbalanced samples
and discontinuous properties, and finally its use to design goal-conditioned policies over large and
complex state spaces. To present the method in a well-defined framework, we restrict the set of MDPs
we consider to those enjoying a property we call translation invariance of local optimal policies
which we discuss in Section3.2. We also discuss therein to what extent this assumption is a strong
constraint. Then, given such a goal-reaching policy π, we grow and prune a graph G which encodes
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an abstract notion of reachability and distance over the state space (Section3.3). The pair (π,G) can
then be used jointly to encode a policy that benefits from the best of both worlds and allows one to
exploit planning algorithms over G in order to define an execution curriculum of waypoints for π;
resulting in a global agent that can reliably learn to reach distant goals in complex environments.

3.1 Goals as state abstractions

In the general sense, a goal g is an abstraction for a set of states. For instance, a goal for a robotic ant
might be “reach this room, regardless of orientation, legs configuration, or precise final position”. In
this paper, for the sake of generality, we assume that goals live in a goal space G, that both S and
G are normed vector spaces, and that there exists a projection P (s) = g which projects states into
the (lower dimensional) goal space. Consequently, we can define K0 = kerP as the set of states
corresponding to the null goal 0G ∈ G. Let P̄ be a mapping from goals to states such that P ◦ P̄ is
the identity function on G. There are many possible such mappings if the dimension of G is smaller
than that of S. Conversely, when dimG = dimS, one can take P̄ = P−1, although in this case it is
practical to straightforwardly identify goals and states, which means P and P̄ are the identity function.
When S and G differ, we assume such a P̄ mapping is provided. Then, Kg = {P̄ (g) + δ, δ ∈ K0}
is the set of states whose projection by P is g. In what follows, we retain the P and P̄ notations for
genericity, but the reader is encouraged to discard them as the identity function in order to catch the
key intuitions. Finally, when the goal and state spaces differ, we introduce the strong assumption
that for a given goal g ∈ G, any s2 ∈ Kg is reachable for a negligible cost from any other s1 ∈ Kg.
In plain words, moving between any two states which correspond to the same goal (same state
abstraction) is supposed feasible and costless. Note that this is immediately verified when S = G.

3.2 Translation invariance of local optimal policies

Intuition indicates that a four-legged robot should not have to learn to walk again when it is moved
from a room of the lab to another. We formalize this notion of re-usability of learned policies as
one of translational invariance. We say an MDP admits translation invariant local optimal policies
(TILO policies) if there exists a goal-conditioned optimal policy π∗ such that ∀s ∈ S, δ ∈ S,∃ρ ∈
R, such that ∀g ∈ B(P (s), ρ), π∗(s, g) = π∗(s+ δ, g+P (δ)), where B(P (s), ρ) is a ball, centered
in P (s) and of radius ρ. In plain words, such a policy guarantees that whatever close enough starting
states s and s′ we consider, we can always find local goals for which the first recommended action
will be the same. A corollary is that in deterministic MDPs, all actions taken to reach g from s are
the same as those necessary to reach g + P (s′ − s) from s′, for goals that are close enough to P (s).

To set ideas and illustrate the notion of TILO policies, one can consider a continuous state space
maze, or a problem of navigation in an environment with isotropic movement properties, but cluttered
with obstacles. In this example, we assume G = S and P is the identity function. Then, given two
states s and s′, there exists a vicinity of s and s′ where picking goals g and g+P (s′ − s) will induce
the same sequence of optimal distributions over actions. This vicinity is constrained by the presence
of obstacles close to s and s′ and might shrink to very small balls, but it exists nonetheless and this
property captures the notion of reusability of goal-reaching policies across the state space. As a
consequence, a TILO policy which has learned to reach goals around s needs not be trained again in
other regions of S, which marks a notable difference with the relative goal policies introduced by
Nachum et al. [2018]. In turn, TILO policies need only be trained to reach goals from a fixed starting
state, and the TILO property enables their re-usability throughout the state space to reach local goals.

Arguably, MDPs that admit TILO policies do not represent the full span of MDPs. However, with
an appropriate choice of the metric on G, this property actually applies to many common control
problems, including, in particular, navigation problems. Moreover, one can extend the reasoning to
ϵ-optimal policies, hence defining ϵ-TILO policies.

The method we develop herein applies to MDPs which admit ϵ-TILO policies that are pre-trained.
Given a starting state s, we directly train a translation invariant goal-conditioned policy π(s, g).
Training of this policy is done before directed exploration and graph learning takes place. We also
define a goal-proximity quasi-metric dπ(g, g′) = (Vmax−V π(P̄ (g), g′))/(Vmax−Vmin), indicating
how close two goals are under policy π, with Vmax and Vmin chosen so that, on the training domain,
dπ(g, g′) ∈ [0, 1] and dπ(g, g) = 0. The goal-conditioned policy training method is any algorithm
that trains a universal value function approximator; it trains π(s, g) and V π(s, g) within a playground

4



state space with no obstacles. We emphasize that this policy is not required to be able to reach any
possible goal from s, even in the playground environment (Levy et al. [2019] and Nachum et al.
[2018] have illustrated how RL algorithms struggle when the goals become too distant). Instead, its
performance and goal outreach is as good as the training procedure can make it, and we rely on the
graph learning procedure to encode the reachability between states, based on this policy.

3.3 Learning a reachability topology

Algorithm 1: Reachability graph learning (RGL)
1 Input: π, dπ , ηreach, ηnode, ηedge, Tr, Te

2 Initialize: V = ∅, E = ∅
3 repeat
4 s0 = env.init()
5 g0 = goal associated to closest node to P (s0)
6 if dπ(P (s0), g0) > ηedge ∨ V = ∅ then
7 V ← V ∪ {node(P (s0))}
8 g0 = P (s0)

9 v∗ = selectExplorationNode(V )
10 (vi)i∈[0,H]=shortestPath(V,E, g0, v

∗)
11 s = s0, t = 0
12 for i ∈ [1, H] do
13 while ¬reached(s, vi) ∧ t ≤ Tr do
14 s← env.step(s, π(s, gvi))
15 t← t+ 1

16 if ¬reached(s, vi) then
17 setWeight(E, vi−1, vi,+∞)
18 break

19 if reached(s, v∗) ∨H = 0 then
20 {st}t∈[1,Te] ← explore(s, Te)

21 (V,E) = grow
(
V,E, {st}t∈[1,Te]

)

22 Function grow(V,E, {st}t∈[1,Te]):
23 for t ∈ [1, Te] do
24 addNode = True, Ein = Eout = ∅,

w = node(P (st))
25 for v ∈ V do
26 lin = dπ(gv, gw)
27 lout = dπ(gw, gv)
28 if lin ≤ ηnode ∧ lout ≤ ηnode then
29 addNode = False; break
30 if lin ≤ ηedge then
31 Ein ← Ein ∪ {edge(v, w)}
32 setWeight(Ein, v, w, lin)

33 if lout ≤ ηedge then
34 Eout ← Eout ∪ {edge(w, v)}
35 setWeight(Eout, w, v, lout)

36 if addNode = True ∧ Ein ̸= ∅ then
37 V ← V ∪ {w}, E ← E ∪ Ein ∪ Eout

38 return V,E

We present the proposed Reachability Graph Learning algorithm (RGL, Algorithm 1) in the context
of deterministic MDPs, and defer the discussion of the stochastic case to the end of this section.
Given a pre-trained ϵ-TILO policy π, we wish to construct an oriented graph G = (V,E) which
will represent the reachability between sub-goals, using π. Each vertex v ∈ V of such a graph is
associated with a given goal gv, and directed edges e ∈ E indicate reachability of the successor
node’s goal from the states corresponding to the source node’s goal. In other words, if an edge exists
between v and w, then π successfully reaches gw from states in Kv = Kgv . The edge linking v and
w is weighted with a traversal cost of dπ(gv, gw). Knowledge of this weighted graph permits running
a planning algorithm to find an execution curriculum of waypoint vertices (intermediate goals gv)
which eventually link any start state and final goal. This is very similar in spirit to SoRB (although
our graph is defined on goals, not states). The (other) key difference lies in the fact that graph nodes
are not built on an arbitrary set of sampled states, which might be rather sensitive to the distribution
of these sampled states, and graph edges do not rely solely on evaluating the policy’s value function,
which might poorly account for discontinuities (walls) or rarely visited states. Instead we grow and
prune the graph dynamically so that it actually encodes reachability between goals.

During an iteration of the RGL procedure, a starting state s0 is first sampled from an initial state
distribution. Note that RGL does not suppose a fixed starting state. If s0 is the first sampled starting
state ever, or if the closest goal to P (s0) lies far from P (s0) in the goal space, this means s0 does
not correspond to any previously explored goal and we add a node in the graph at P (s0). Then,
a node v∗ in the graph is selected for exploration. This selection relies on a count-based criterion
which influences the progressive coverage of the goal space (although heuristics could be used). A
finite horizon plan (vi)i∈[0,H] is computed by finding a shortest path in the graph from the starting
state’s node v0 to the selected node v∗ = vH . Note that there may not exist a path between v0
and v∗ in the graph, in which case H = 0 and the shortestPath procedure returns the single
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node {v0}. Let (gi)i∈[0,H] denote the corresponding sequence of waypoint subgoals. Then π is
used to sequentially reach each goal. Specifically, when trying to reach gv, π(·|gv) is run until a
reached(s, v) := dπ(P (s), gv) ≤ ηreach condition becomes true, or a maximum number of steps
Tr is exceeded. If applying π allowed the agent to reach the ηreach-neighborhood of gv , then the next
waypoint w in the plan is selected and the procedure is repeated until the node v∗ is reached.

We interpret not reaching the neighborhood of gw when applying π as a mismatch between the notion
of reachability encoded in the graph and the actual reachability in the environment using π. As a
consequence, we set the cost of edge e between v and w to +∞ to account for this non-reachability.
Consequently, if the graph is learned without errors, the existence of an edge e between two nodes
v and w indicates that π permits reaching the ηreach-neighborhood of gw from states s whose P (s)
are in the ηreach-neighborhood of gv in less than Tr time steps (or that this edge is never selected by
the shortest path planning procedure). This pruning procedure keeps the graph free of mis-identified
edges. In mazes, it deletes edges that cross walls, and hence accounts for the discontinuities we
wished to represent within the policy.

Conversely, if applying π throughout the sequence of waypoints actually fulfills the goal g∗ of node
v∗ selected for exploration, then a generic exploration procedure is performed from the reached state
s∗ in the ηreach-neighborhood of Kv∗ , during Te time steps. The intention of such an exploration
procedure is to discover states s whose P (s) permit expansion of the graph. We randomly sample
a goal within a certain radius of g∗ and try to reach it using π. If we succeed, we sample another
random goal and repeat this exploration until obtaining a complete exploration trajectory of length Te.
This exploration strategy could be replaced by any other, which is why we refer to it generically as the
explore procedure in Algorithm 1. The states visited along the trajectory are collected in a buffer.
We wish to expand the graph so that its nodes induce a good coverage of the buffer states’ goals and its
edges indicate proximity (but not necessarily reachability at this stage). To that end, we cycle through
the buffer and incrementally add vertices to V whenever a goal is dπ-further away from all nodes
than a threshold ηnode. Edges are created from this new vertex to all nodes within ηedge > ηnode.
We differentiate between incoming and outgoing edges from the new candidate node: if there is no
incoming edge, then the node is not added to the graph. This greedy procedure expands the graph to
create new nodes that complete the goal space coverage wherever required, with limited connectivity
between nodes. At this stage, some newly created edges might not account for reachability, e.g. in
a maze, this might happen if the closest existing graph node to the newly created node is behind a
wall. We rely on future explorations to prune the graph as presented in the previous paragraph.

Overall, this growth and pruning RGL procedure results in a graph G = (V,E) which encodes goal
space reachability when using π in the state space. The pair (G, π) implicitly defines a general goal-
reaching policy which requires computing a shortest path in G to chain local executions of π between
subgoals. At execution time, determining the action to undertake in s in order to reach g requires
solving a shortest path problem in G. This can be implemented using Dijkstra’s algorithm [Dijkstra,
1959], which has complexity O(E + V log V )2. It is important to note however that in deterministic
MDPs (or MDPs with limited noise) this shortest path needs only be computed once per goal-reaching
task and can be carried over to the next time step of the task, thus strongly dampening the overall
computational cost. During learning, the pruning phase of an iteration of RGL has complexityO(E+
V (log V + Tr)). The exploratory collection of new samples runs in O(Te), while the grow function
has complexity O(TeV )3. This results in an overall time complexity of O(E + V (log V + Tr + Te))
for each iteration of RGL, which involves O(V Tr + Te) iteration steps with the environment.

In the general case of MDPs with stochastic transitions, the pruning procedure of RGL needs to
be adapted to account for the stochastic outcomes when trying to reach g′ from Kg. Note that, in
this case, dπ(g, g′) captures a broader notion than the number of required time steps for π to reach
g′ from g: it captures the overall probability to reach g′ from Kg, given the transition model and
a probability of termination of 1 − γ at each time step. Thus, reachability can be redefined as the
probability of reaching g′ from Kg being actually equal (or close to) dπ(g, g′). Verifying this with
high confidence requires running several trials between Kg and g′, which can be implemented by
enhancing the algorithm with a memory of trial outcomes for each edge in the graph. Introducing
such a delay in updates is similar in spirit to the practice of RMAX [Brafman and Tennenholtz,
2002] or Delayed Q-learning [Strehl et al., 2006], which introduce an Nknown number of samples

2For the sake of simplicity we adopt the notation O(V ) in place of O(|V |).
3This can be amortized to O(Te log V ).
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Figure 1: Mazes and starting points. Left to right: “four-rooms”, “medium” (41×41), “hard”, “mixed” (57×57).

Table 1: Summary of environments
dim(S) dim(G) actions dynamics starting state

grid-maze 2 2 discrete (number = 4) deterministic fixed single state
point-maze 2 2 continuous (dim(A) = 2) stochastic uniform distribution on S
ant-maze 29 2 continuous (dim(A) = 8) deterministic fixed single state

which are necessary to correctly identify a transition. Note that in most practical implementations
of such algorithms, Nknown is arbitrarily set to a small value to preserve computational efficiency.
An alternative, which we do not explore here and reserve for future work, is to let the weight of
an edge adapt to the observed trial durations between g and g′.

4 Empirical evaluation

To highlight the behavior of RGL, and provide a fair and interpretable benchmark against comparable
methods, we consider a set of navigation tasks in mazes.

Environments. In each maze, an agent should be able to reach any position from its starting point.
We consider mazes of different complexities, with various map sizes and heterogeneous corridor
widths, as illustrated in figure 1, namely, “four-rooms”, “medium”, “hard” and “mixed”. Note that
compared to mazes used in the literature (e.g. those of Eysenbach et al. [2019]), here the walls are
thin, inducing sharper discontinuities in the value function across a wall. For each map, we consider
three different dynamics and state spaces for the navigating agent, which we refer to as “grid-maze”,
“point-maze” and “ant-maze” (Table 1 summarize their characteristics, more details in Appendix B).
In all environments, agents receive a −1 reward at each time step, unless they reach the goal which
terminates the episode. In all evaluations, every agent is independently trained 10 times. To enable
reproducibility, hyperparameters for all algorithms are summarized in Appendix A, and our code and
results are available at [anonymous URL].

Baselines. To illustrate the behavior of RGL, we compare against a plain DQN agent [Mnih et al.,
2015] with HER in grid-maze environments, and SAC [Haarnoja et al., 2018] with HER in point-maze
and ant-maze environments. As illustrated by previous works [Nachum et al., 2018, Levy et al.,
2019], such a combination can efficiently learn a goal-reaching policy for goals lying a few actions
away from the starting state, but struggles to reach goals that require turning around walls. This
provides a baseline for performance. Another baseline consists in passing the policy learned by this
base agent along with its final replay buffer to SoRB, to extend its outreach throughout the goal space
via planning in a random subset of size Ninit of the replay buffer. Since SGM is more efficient than
SoRB (due to their pruning method), we directly compare with SGM4. We also implement a variant
of RGL which we call TC-RGL, inspired by the STC method [Ruan et al., 2022], where we replace
the dπ pseudo-metric by a so-called temporal correlation network, which is an additional network
trained to measure reachability between states, based on their temporal proximity during training
trajectories. This variant permits evaluating the core feature of STC as an alternative to using the
value function as a reachability metric between goals.

Pretraining. To ensure SGM builds on a sufficiently good pre-trained policy, we let the base agent
learn a goal-reaching policy over 300 episodes in grid-maze (500 in point-maze). RGL’s lower level
goal-reaching TILO policy is trained for 100 episodes in grid-maze (150 in point-maze) environments.
Because training the temporal consistency network of TC-RGL required more samples, it was

4SoRB and SGM were introduced with tailor-made, goal-based, distributional DQN and DDPG agents. This
was unnecessary for finite-length trajectories so we retain the names although we slightly change the base agents.
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trained for 200 episodes in grid-maze (600 in point-maze). To account for pre-training durations, all
figures below (e.g. Figure 2) report them using vertical lines. RGL’s pre-training is performed in a
playground environment of size 40 × 40 with no walls. Because ant-maze environments required
specific pre-training, we defer their discussion to the end of this section.

Visualizing graph growth and pruning. We start by assessing separately the influence of the growth
and pruning procedures on the properties of the final reachability graph. To isolate the effect of
pruning, we artificially generate waypoints by using a generative model to draw states from the full
state space, which yields a graph with the same number of nodes Ninit as the SGM agents (edges
weights are also initialized with dπ), but with better state space coverage since drawn states are not
constrained by the exploration of the pre-trained DQN+HER agent. This permits defining Prune-only
RGL (PO-RGL) as the algorithm which prunes this graph as it successively tries to reach random
goals, but without performing exploration and graph expansion. Appendix C illustrates the evolution
of the graphs produced by PO-RGL and RGL in the “four-rooms” and “hard” grid-maze environment.

RGL agents can reach any goal. Figure 2 reports the ability of each agent to reach any goal in
the maze, along training. Every 1,000 interactions with the environment, we randomly draw 30 goals
across the full goal space, and report the fraction of these goals the agent managed to reach. We call
this metric the agent’s accuracy. As expected, since exploration in mazes is difficult, the pre-training
replay buffers do not cover the full state space and the baselines fail to reach all goals. Interestingly,
despite the low performance of the pre-trained DQN+HER and SAC+HER agents, RGL is still
able to leverage their ability to reach local goals and manages to quickly grow a goal graph which
eventually covers the full maze. PO-RGL displays a clear jumpstart effect in the “four-rooms” maze
since its initial graph requires little pruning and most goals are readily reachable. Conversely, early
planning graphs of RGL and TC-RGL contain few nodes and require expansion before their accuracy
reaches 1. After 1,000 interactions, even though the planning graph of RGL contains only a few
nodes (Figure 3, Appendix C), it already reaches more goals than the baseline agents. As the mazes
become more difficult, many more edges need to be pruned from PO-RGL’s initial graph before it
effectively represents graph reachability and the plans reliably lead to goals. This need for extended
pruning is completely compensated by the sparse growth of the graph of RGL and TC-RGL, and
PO-RGL presents no advantage in terms of learning curve. In the most difficult “hard” and “mixed”
mazes, the set of Ninit initial nodes of PO-RGL is just insufficient to properly cover the full goal
space with feasible edges and PO-RGL’s accuracy is capped around 0.5 and 0.8, while the dynamic
growth of RGL permit reaching close to 1 accuracies. Also, the extra temporal consistency network
of TC-RGL seems detrimental to the training process compared to RGL. Since this network only
approximates the notion of reachability instead of directly using the value function, it induces a graph
expansion and pruning phase with more errors or missed nodes (which were actually reachable).
In turn, as TC-RGL’s graph does not accurately represent reachability, some goals are eventually
missed. In all environments, RGL dominates over all variants.

Graph size. Overall, RGL produces sparse graphs with little variance in number of nodes within an
environment. Due to lack of space, we refer the reader to Appendix C for a more detailed discussion.

Limit case: “reset anywhere”. Point-maze environments feature a stochastic transition model and
random resets anywhere in the state space at the begining of each episode, as in the benchmarks of
SoRB and SGM. This induces diversity in the replay buffers by triggering easier exploration, and
somehow departs from the more constrained RL framework with a fixed (or a limited set of) starting
state. Consequently, these environments are more favourable to SGM since their replay buffer covers
a larger portion of the state space, and SGM performs better in these environments than in grid-maze
ones (Figure 2). Even in this case the graph growth of RGL eventually outperforms competing
methods, as it progressively discovers new goal waypoints to better map the state space.

Limit case: stochastic transitions. As mentioned earlier, RGL in its presented version is designed
for deterministic dynamics and requires some adaptations to handle transition uncertainty. Point-maze
environments feature a high level of action noise (σ = 1 for action values in [−1, 1]). This makes the
pruning procedure stochastic, as it prunes out edges depending on a single trial’s success. Despite this
naive behavior, RGL still manages to find paths (possibly sub-optimal) to goals and reaches a high
level of accuracy (Figure 2) demonstrating a reasonable level of robustness to transition stochasticity.

Limit case: high-dimensional state spaces and G ̸= S in ant-maze tasks. Training a goal-reaching
policy in ant-maze environments, even in an obstacle-free playground, is already a challenging task.
Appendix F expands on the pre-training procedure set in place. HAC is the reference method for

8



Figure 2: Accuracy for all agents in grid-maze (top) and point-maze (middle), and RGL accuracy in ant-maze
(bottom), versus interaction steps.

ant-maze environments but its efficiency appears brittle and despite our best efforts and the use of the
original HAC implementation, it could not solve any of the ant-maze tasks (Appendix G). Ant-maze
tasks, on top of being highly challenging for the baseline agent, also violate the assumption that any
two states within Kg are reachable from each other for a negligible cost. For instance, some ant
orientations, velocities and leg configurations are rather complex to reach from others. Thus, an edge
between g and g′ only represents reachability of g′ from a subset of states in Kg, which can lead
to plan failure (discussion in Appendix C). Despite this, RGL manages to achieve almost as high
accuracies as those obtained on point-maze tasks on the “four-rooms”, “medium” and “mixed” mazes.
The most challenging setting remains the “hard” maze, which requires fine motor skills to efficiently
navigate through narrow corridors and requires turning around many corners to navigate to far goals.

5 Conclusion

In this work we defend the idea that efficient mechanisms coupling planning and learning rely on
two implicit hypotheses: planning agents should plan in the goal space and learned policies are
often re-usable throughout the state space. We propose a formal framework accounting for these two
notions, defining goals as state abstractions and re-usability as translation invariance. This permits
deriving an algorithm which performs planning over a graph of goal waypoints, reachable by a lower
level goal-reaching policy. This agent is named RGL (reachability graph learning). This approach
can be seen either as a more grounded version of STC [Ruan et al., 2022], or a generalization
of SoRB [Eysenbach et al., 2019] or SGM [Emmons et al., 2020] to a hierarchical setting with
translation invariance. Empirical evaluation confirms the relevance of RGL agents and their key
features. This contribution also forms a basis for future research directions. As is, RGL agents
build a somewhat uniformly dense graph. This might not be necessary and further sparsity can be
achieved in some obstacles-free portions of the goal space. Similarly, weight learning in the graph
is currently rather naive and could better exploit interaction data during exploration, in particular
in stochastic environments. Finally, RGL requires an ϵ-TILO policy for agent’s control. Appendix
D proposes a discussion on whether such policies are easy to obtain in the general case, beyond
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navigation tasks. We conjecture such policies also exist in more complex contexts, like vision-based
navigation (PO)MDPs, since humans seem to exploit such invariances in daily life. Formalizing how
these policies can be discovered and how their definition affects the properties derived in the present
work is an exciting avenue for research.
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A Hyperparameters and computational setup

Tables 2 to 9 summarize the hyperparameters used when training the different algorithms. The actor
network used for the lower level goal-reaching policy takes a state and a goal as input (the dimension
varies depending on the task) and processes them through a 2 hidden layer MLP. The output layer
depends on the algorithm. Training follows the procedure of DQN and HER with discount factor γ
and exponential smoothing on the target network (factor τ ), and an Adam [Kingma and Ba, 2015]
optimizer with default parameters. These parameters are the same for pretraining lower level policies
for all algorithms. All RGL agents share the same Te, ηnode, ηedge, and ηreach when applicable
(for instance, PO-RGL uses ηedge but not ηnode since it does not create new nodes). TC-RGL uses
specific values ηnode and ηedge for thresholds on node and edge creation, since it uses STC’s temporal
consistency network to measure node distance instead of our dπ pseudo-metric; the scale of this
network’s output is unrelated to that of dπ (hence the different values of ηnode and ηedge).

The results on “grid-maze” and “point-maze” were run on a desktop machine (Intel i9, 10th generation
processor, 64GB RAM) with no GPU usage. The results on “ant-maze” were obtained with single
node computations. Each of these nodes was composed of 2 12-core Skylake Intel(R) Xeon(R) Gold
6126 2.6 GHz CPUs with 96 Go of RAM (no GPU hardware).

Our code is available at [Anonymous URL].

B Environments

We used the same maps in each environments.

• “four-rooms” is a 41× 41-size maze resembling the classical “four-rooms” benchmark,
• “medium” is a more challenging maze of the same size,
• “hard” is an even more challenging 57× 57-size maze,
• “mixed” has the same size as “hard” and mixes corridors and rooms of different sizes.

Note that compared to mazes used in the literature (e.g. those of Eysenbach et al. [2019]), here the
walls are thin, inducing sharper discontinuities in the value function across a wall. Each environments
we used have a specific dynamic. Here we extend the information given in 1 with more details.
Grid-maze features a discrete {N,S,E,W} action space and deterministic transitions which perform
unit-length moves, hence emulating navigation on a grid. Point-maze emulates a point mass moving
freely in the maze. It has a continuous, two-dimensional action space of position increments in
[−1, 1] on the x and y axes. The transitions are stochastic due to an added Gaussian noise N (0, 1).
Contrarily to grid-maze which has a fixed starting state, point-maze randomly draws the starting point
at every episode. In grid-maze and point-maze environments, the state space is simply described
by the geographical position of the agent, as in the benchmarks of SoRB [Eysenbach et al., 2019]
or SGM [Emmons et al., 2020], and S = G. Ant-maze environments build upon the MuJoCo Ant
simulator [Todorov et al., 2012] and sets the ant in one of the navigation maps. Actions belong to the
standard 8-dimensional action space of the Ant simulator, and the state space is the 29-dimensional
space whose first two coordinates are the position of the ant’s torso, as in the benchmarks of HAC
[Levy et al., 2019] or Distop [Aubret et al., 2021]. The transitions follow the dynamics of the Ant
simulator.

C Visualization of graph growth

Figures 3, 4 and 5 present the reachability graphs evolution for all mazes in, respectively, grid-maze,
point-maze and ant-maze environments. Blue dots in some figures correspond to the current selected
goal at the time the graph was printed and should be discarded.

In all these figures, red edges are those whose weights have been set to +∞ by the pruning procedure.
We observe that (as anticipated in the previous section) only erroneous edges which were selected in
a shortest path are pruned, and some remain in the graph, especially in grid-maze, which features a
fixed unique starting state. This bears little consequences in terms of goal reachability since these
are never selected in shortest paths from the initial state, but still result in a rather dense reachability
graph. To avoid misinterpretations, it is important to note that since the graph is oriented, each green
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Table 2: DQN hyperparameters. DQN+HER is used in grid-maze tasks to compute goal reaching policies.
DQN

model hidden layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-3, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5
batch size 100

discount factor γ 0.95
exponential smoothing factor τ 1e-3

Table 3: SAC hyper-parameters. SAC+HER serves as a control policy for RGL, PO-RGL, and TC-RGL, as well
as a baseline, in the “point-maze” and “ant-maze” environments.

SAC
Point-Maze Ant-Maze

critic hidden layers 250, Relu, 150, Reluactor layers

optimiser Adam(lr=5e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5 1e6
batch size 100 500

γ 0.99 0.99
τ 5e-3 5e-3

critic alpha 0.6 0.6
actor alpha 0.05 0.1

Table 4: C51 hyper-parameters, which serves as a control policy for SGM in the “grid-maze” environment.
C51

output distribution
size 20

models layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-3, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5
batch size 100

γ 0.95
τ 1e-3

Table 5: Distributional DDPG hyper-parameters, which serves as a control policy for SGM in the “point-maze”
environment.

Distributional DDPG
output distribution

size 20

models layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e6
batch size 64

γ 0.99
τ 0.05
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edge in these figures actually stands for two edges in the graph. If only one has been pruned and
rendering of the other happens afterwards, the segment appears green while only one edge in the
graph has non-infinite weight. Overall, the incremental growth of RGL’s graph yields an efficient
coverage of the state space, avoiding the clusters of unnecessary nodes we can observe using PO-RGL,
and reducing the need for pruning.

PO-RGL was created purely for didactic reasons in order to illustrate the pruning process indepen-
dently of the incremental graph growth. Besides this illustration itself, these figures underline two
features. First, the fact that RGL creates the graph incrementally makes it much sparser and avoids
clusters of really close, redundant nodes. In turn, this sparse graph is much easier to prune than that
of PO-RGL. Secondly, in environments with a fixed initial state (grid-maze, ant-maze), some edges
never participate in the shortest path to any goal and hence are never pruned. Even if the sparse
growth of the RGL graph limits this phenomenon, some impassable edges remain; e.g. some edges
at the far right of Figure 3p. Randomly resetting the starting state at each episode permits a more
complete and easier exploration of all shortest paths, and hence results in a slightly more accurate
pruning; e.g. the unpruned edges in grid-maze are better pruned on Figure 4p.

Figure 5, Appendix C, (ant-maze environments) deserves a few additional comments. On this graph,
to ease the readability and account for directed edges, whenever a directed edge exists between v
and w, we plot the edge’s segment closest to v in green. Orange then means the reverse edge has not
been created. Red means the edge has been pruned. Some pruned edges appear in areas which seem
passable. To explain this phenomenon, one needs to recall that the state space is 29-dimensional and
a waypoint in the goal space (a geographical position of the ant’s center of mass) can stand for a
wide variety of configurations, as discussed in the empirical evaluation section. For any two nodes g
and g′, it is possible that g′ was reachable from P̄ (g) but is not reachable from some other states in
Kg , since ant-maze environments violate the hypothesis that all states in Kg are reachable from each
other for a negligible cost given the pre-trained policy. This leads to some edges being legitimately
pruned while a “naive eye” laid on the reachability graph might conclude there was a mistake.

Finally, the graphs grown by RGL in ant-maze environments feature very few edges crossing walls.
This is a side effect of the default values of ηnode and ηedge (kept the same throughout all environments
and mazes), and the fact that the ant’s geometry prevents its center of mass to get close to the wall.
This sometimes happens nonetheless when the ant randomly "tries" to climb over the wall (and
systematically fails), which also places a few nodes that appear to be inside the walls.

Graph size. Figures 6 to 11 report the number of nodes and edges for RGL agents as their graph
grows in the grid-maze, point-maze, and ant-maze environments. Note that graphs on point-maze
environments required a log-scale on the y-axis for readability since TC-RGL spanned an order of
magnitude more nodes than RGL (and two to three orders of magnitude more edges). Recall that
instead of deleting edges that need to be pruned, their traversal weights are set to +∞ (to avoid
creating them again later). This is why the number of edges of PO-RGL does not decrease. Dotted
curves in Figures 9 to 11 indicate the number of edges with a non-infinite weight. Overall, RGL
and TC-RGL create just enough nodes to accurately represent the reachability graph given their
underlying dπ and temporal consistency network. The relative number of node and edges between
RGL and TC-RGL cannot be directly compared as the former uses dπ as a distance metric while
the latter uses a reachability representation, on a different (uncontrolled) scale. Still, the number of
nodes is similar across mazes. Interestingly, RGL produces graphs with less connectivity, which
can be interpreted as a better ability to create meaningful connections between goal waypoints for
navigation. Additionally, TC-RGL features a large variance in the number of nodes and edges
developed in the graph. This seems to stem from the training of the temporal consistency network
which is very sensitive to the distribution of trajectories during pre-training. In turn, this strongly
affects the estimation of reachability when learning the graph and induces this variance in graph
density. Appendix E provides further discussion on the impact of the graph density’s hyperparameters
(ηnode and ηedge) on RGL’s behavior.

D Are ϵ-TILO policies common?

In the present work, an important assumption is the existence of an ϵ-TILO policy. Thus it seems
important to discuss how restrictive this assumption is, and how commonly such policies might occur.
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(a) PO-RGL, 400
nodes

(b) RGL graph, t =
1,000

(c) RGL graph, t =
4,000

(d) RGL graph, t =
100,000

(e) PO-RGL 600
nodes

(f) RGL graph, t =
1,000

(g) RGL graph, t =
4,000

(h) RGL graph, t =
150,000

(i) PO-RGL 600 nodes
(j) RGL graph, t =
1,000

(k) RGL graph, t =
4,000

(l) RGL graph, t =
250,000

(m) PO-RGL 900
nodes

(n) RGL graph, t =
1,000

(o) RGL graph, t =
4,000

(p) RGL graph, t =
210,000

Figure 3: Reachability graphs, grid-mazes.

In position-based navigation tasks where S = G, generalization by translation invariance seems
intuitive and easily justified by the translation invariance of the MDP’s transition model properties
throughout the state space. In navigation tasks where the state space is the agent’s full configuration,
but with abstract goal spaces (e.g. agent overall position), such as the ant-maze benchmarks, finding
TILO policies is closely linked to defining the goal space, and hence the P : S → G projection. In
this specific example, P is defined by simply keeping some variables of S and discarding the others.
Here again, the TILO property is intuitive and translation invariance permits generalizing learned
policies to unexplored parts of the state and goal spaces. However, when it comes to state spaces
with confounding variables, such as visual navigation tasks, then defining P for abstract goal spaces
might become more difficult as it links the input image pixels to positions on the navigation map. In
a way, P encodes expert knowledge about what abstractions of the state define a useful goal space, as
discussed for instance by Forestier et al. [2022]. Such abstractions might be learned [Péré et al., 2018]
but since they are a pre-requisite for training a goal-based policy, they are generally considered to be
provided by some expert. Such a description of goals is sometimes accessible for a minimal cost (as
in navigation tasks), but a perspective for future work implies learning relevant goal descriptors from
data. One one can draw a parallel with recent work in expressing goals with natural language and
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(a) PO-RGL, 400
nodes

(b) RGL graph, t =
1,000

(c) RGL graph, t =
4,000

(d) RGL graph, t =
100,000

(e) PO-RGL 500
nodes

(f) RGL graph, t =
1,000

(g) RGL graph, t =
4,000

(h) RGL graph, t =
150,000

(i) PO-RGL 700 nodes
(j) RGL graph, t =
1,000

(k) RGL graph, t =
4,000

(l) RGL graph, t =
250,000

(m) PO-RGL 900
nodes

(n) RGL graph, t =
1,000

(o) RGL graph, t =
4,000

(p) RGL graph, t =
210,000

Figure 4: Reachability graphs, point-mazes.

exploiting (large) language models to embed the goal description. Note, however, that in the general
case, even if the corresponding P encoding is given, there is no guarantee that a TILO policy exists.

Besides the considerations above, we argue that the existence of TILO policies is intrinsically
linked more to the nature of the task at hand than the definition of the goal space. Navigation is
implicitly about finding a (potentially convoluted) path through a terrain with somewhat homogeneous
properties. Hence, at least for this family of tasks, the existence of ϵ-TILO policies is a plausible
assumption.

E Influence of graph density hyperparameters.

The thresholds ηnode and ηedge on node and edge creation condition how coarse the graph is in
the goal space. Consequently, they impact the density of the graph, hence the ability to accurately
represent transition dynamics. As such, they encode a notion of minimal required granularity to
efficiently generate efficient goal-reaching plans in the goal space. Despite RGL’s ability to build
sparse representative graphs, a poor choice of ηnode and ηedge parameters can be detrimental to
RGL’s goal reaching accuracy. Figure 12 reports how sensitive PO-RGL and RGL agents are to these
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(a) RGL graph, t =
6,000

(b) RGL graph, t =
24,000

(c) RGL graph, t =
500,000

(d) RGL graph, t =
6,000

(e) RGL graph, t =
24,000

(f) RGL graph, t =
0,000

(g) RGL graph, t =
6,000

(h) RGL graph, t =
24,000

(i) RGL graph, t =
1200,000

(j) RGL graph, t =
6,000

(k) RGL graph, t =
24,000

(l) RGL graph, t =
1200,000

Figure 5: Reachability graphs, ant-mazes.

Figure 6: Number of graph nodes in “grid-maze” versus interaction steps. Shaded area is the 1σ confidence
interval.

parameters, in the “medium” grid-maze. Figure 12a illustrates how increasing the values of ηnode to
0.2 (then 0.3) and ηedge to 0.4 (then 0.5) results in a graph which does not enable reaching distant
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Figure 7: Number of graph nodes in “point-maze” versus interaction steps. Shaded area is the 1σ confidence
interval.

Figure 8: Number of graph nodes in “ant-maze” versus interaction steps. Shaded area is the 1σ confidence
interval.

Figure 9: Number of graph edges in “grid-maze” versus interaction steps. Shaded area is the σ confidence
interval.

Figure 10: Number of graph edges in “point-maze” versus interaction steps. Shaded area is the σ confidence
interval.
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Figure 11: Number of graph edges in “ant-maze” versus interaction steps. Shaded area is the σ confidence
interval.

goals anymore. A similar effect happens for PO-RGL, as choices for Ninit will have a direct impact
on the accuracy of the algorithm. Figure 12b reports how varying Ninit from 100 to 600 affects
the goal reaching accuracy of PO-RGL. With only 100 nodes, the reachability graph of PO-RGL
features subgoals which are very distant from each other and rarely reachable between each-other,
resulting in a graph with almost no edges (Figure 12c). Hence, no goals besides those reachable
by the lower-level policy can be reached. With 200 nodes (Figure 12d), the final goal reaching
accuracy of PO-RGL improves to about 50% and keeps improving until Ninit = 400 nodes. For
Ninit = 500 and 600, the number of edges to prune in the graph becomes so large that it slows the
learning down, resulting in less reachable nodes after 100,000 interaction steps because the graph
contains too many misleading edges which have not been pruned yet. Overall, this illustrates how
the directed, exploration-driven node and edge creation of RGL yields graphs which are both much
sparser and much more representative of reachability, than building a graph over randomly sampled
goals (either randomly sampled from a replay buffer as in SoRB, or randomly sampled from an oracle
as PO-RGL).

F Pre-train a goal-conditioned TILO policy in Ant-Maze.

Learning goal-based policies for ant-maze environments is challenging, even in the obstacle-free
playground. To let SAC+HER converge efficiently, we build a process inspired from curriculum
learning [Bengio et al., 2009]. We sample goals uniformly in a disc around the agent, starting with a
radius of 0. Every time the agent reaches a goal, we increment the radius of 0.1, and decrease it when
it fails. If the radius reaches a value of 6, we stop incrementing and let the agent reach an accuracy
close to 100% in this pre-training playground. Note that this value of 6 is much larger than that of
ηnode and ηedge (see Appendix A).

While navigating in the graph, following a sequence of sub-goals, the agent will change its direction
many times in an episode. This may lead to more diversity in the states encountered while navigating
the maze than those seen during the pre-training. To mitigate this aspect and improve state diversity
during pre-training, every 5 episodes, instead of a full agent reset, we reset only the agent’s position
but retain the orientation, legs configuration and velocities from the last state of the previous episode.

G Hierarchical actor critic on various tasks

Ant-maze tasks have been tackled in previous work, notably in the important HAC [Levy
et al., 2019] contribution, on similar tasks to those reported here, in particular the “four-rooms”
maze. In order to provide a fair comparison with RGL, we used the reference implemen-
tation of HAC provided by the authors at https://github.com/andrew-j-levy/
Hierarchical-Actor-Critc-HAC-/tree/master/ant_environments/ant_
four_rooms_3_levels. This section discusses why this implementation (without modifica-
tions) fails on the tasks reported here.

Goal and initial state sampling in HAC to promotes diversity. In the original HAC contribution,
during training, goals are sampled uniformly in the center of each room (red areas in figure 13), then
initial states are sampled uniformly in the center of another room. This induces a variety of starting
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(a) Influence of ηnode and ηedge (b) Influence of Ninit on PO-RGL

(c) PO-RGL initial graph for Ninit = 100 (d) PO-RGL initial graph for Ninit = 200

Figure 12: Hyperparameter influence on goal-reaching accuracy in the “medium” grid-maze after 100,000
interaction steps.

states and insures that starting states and goals are always at least one room away from each other. In
turn, this promotes diversity in the replay buffers, which facilitate policy training. In the experiments
reported in Section 4, we argued that this “reset anywhere” feature was a particularly favourable case
for exploration.

Figure 13: Illustration of goals and initial states sampling areas.
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Variations in mazes. We also investigated whether the loss of efficiency of HAC could be attributed
to the difference between the mazes presented here and those of the HAC paper. For this purpose, we
tested HAC on three tasks and report results in figure 14 (averaged over 10 trials).

1. The exact 17 × 17 “four-rooms” map used in the HAC paper, with the goal / initial state
sampling strategy defined above (labelled HAC sampling / small “four-rooms” in figure 14).

2. The same 17× 17 maze map, but with uniformly sampled goals while keeping the starting
state fixed (labelled Uniform goals / small “four-rooms” in figure 14).

3. A larger 41 × 41 “four-rooms” map which is the one used in the RGL experiments of
Section 4, with the HAC goal / initial state sampling strategy (labelled HAC sampling / large

“four-rooms” in figure 14). This map features slightly narrower passages between each room
(proportionally to the size of the room). Actions remain the same: the ant is not scaled up.
Goals are sampled uniformly. HAC’s states and goals are scaled to the size of the map.

4. The same 41× 41 “four-rooms” map with a fixed starting state and uniform goal sampling
(labelled Uniform goals / large “four-rooms” in figure 14).

Figure 14: HAC average accuracy on variations of the “four-rooms” ant-maze task, versus number of episodes
(episode length is capped at 700 time steps but can be smaller if the goal is reached before).

Figure 15: HAC average accuracy on the “medium”, “hard”, and “mixed” mazes for the ant-maze task, versus
number of episodes (episode length is capped at 700 time steps but can be smaller if the goal is reached before).
Green curve: uniform initial state sampling. Blue curve: fixed initial state.

The evaluation accuracy of each agent reported in figure 14 follows the agent’s goal / initial state
sampling procedure than during training. Specifically, agents that were trained with the HAC sampling
strategy are evaluated by the proportion of reached goals when goals and initial states are drawn
according to HAC’s sampling strategy. Similarly, agents that were trained with a fixed starting state
are evaluated on the same setting. Consequently, the only fair comparison with the RGL results
of Section 4 is when the starting state is fixed and the goals are sampled uniformly. Recall that
RGL reaches an accuracy of 89% on the large “four-rooms” environment with fixed initial state and
uniform goal sampling (Figure 2).
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It appears that the goal / initial state sampling strategy is a crucial feature of HAC in ant-maze.
Removing this feature, and sampling goals uniformly, reduces the accuracy of HAC’s optimized
policy from 76% to 28% in the small “four-rooms” environment, and from 29% to 5% in the large
one.

It also appears HAC is rather sensitive to the scale of the map (despite appropriate state scaling in the
inputs of the neural networks): even with the HAC initial state / goal sampling strategy, the accuracy
of the optimized policy does not exceed 28% (versus the 89% of RGL). More steps are required to
cross a room between passages and we hypothesize HAC suffers from this difficulty to span long
trajectories between goals and hence struggles to reach good accuracy in larger mazes.

Note that the HAC sampling strategy is tailor-made for the “four-rooms” maze and is undefined for
other mazes, so the comparison above cannot be reproduced for the “medium”, “hard”, and “mixed”
mazes. Instead (and this goes beyond what was proposed by the HAC authors), in an attempt to
have a comparison baseline, we replaced this HAC sampling strategy by uniform sampling of both
the initial state and the goal in these three mazes. We also evaluated the fixed initial state / uniform
goal sampling setting. Results (Figure 15) on other maps are similar to those of Figure 14: HAC
reaches very small accuracy levels compared to RGL, even with the diversity of initial states and
goals induced by uniform sampling. For this reason, we chose not to include these results in Section
4.
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Table 6: RGL hyper-parameters.
RGL

Grid-maze Point-maze Ant-Maze
ηedges 0.2 0.045 0.3
ηnodes 0.1 0.017 0.1

reachability threshold
of the nodes 1 0.8 0.7

max time-steps to
reach next node 50 50 150

Exploration goal range 2 4 6
interactions per

exploration 90 90 150

Table 7: PO-RGL hyper-parameters.
PO-RGL

Grid-maze Point-maze
ηedges 0.2 0.03

reachability threshold
of the nodes 1 0.8

max time-steps to
reach next node 50

nb nodes

four rooms: 400
medium: 600

hard: 600
mixed: 900

four rooms: 400
medium: 500

hard: 700
mixed: 900

Table 8: TC-RGL hyper-parameters. Hyper-parameters that are not reported here are the same that the ones in
Table 6 for RGL. “targeted edge length” is the minimum number of interactions that must separate two states of
the same trajectory, so that they can form a positive pair (distant states) in the TC-network training data.

TC-RGL
Grid-maze Point-maze

ηedges 0.4 0.1
ηnodes 0.2 0.03

TC-Network

layers 125, ReLU, 100, ReLU, 1, Sigmoid
batch size 250
buffer max

size 1e9

optimizer Adam(lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
targeted edge length 20
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Table 9: SGM hyper-parameters.
SGM

Grid-maze Point-maze

node pruning
threshold

four rooms: 2
medium: 3

hard: 3
mixed: 2

four rooms: 3
medium: 3

hard: 3
mixed: 3

max edges
length

four rooms: 5
medium: 6

hard: 6
mixed: 5

four rooms: 7
medium: 7

hard: 7
mixed: 7

nb initial
nodes

four rooms: 1400
medium: 1400

hard: 1800
mixed: 1600

reachability
threshold 1

max interactions
per sub task 20
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