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ABSTRACT

The Plenoptic function (Adelson et al., 1991) describes the light rays observed
from any given position in every viewing direction. It is often parameterized as a
5-D function L(x, y, z, θ, φ) for a static scene. Capturing all the plenoptic func-
tions in the space of interest is paramount for Image-Based Rendering (IBR) and
Novel View Synthesis (NVS). It encodes a complete light-field (i.e., lumigraph)
therefore allows one to freely roam in the space and view the scene from any loca-
tion in any direction. However, achieving this goal by conventional light-field cap-
ture technique is expensive, requiring densely sampling the ray space using arrays
of cameras or lenses. This paper proposes a much simpler solution to address this
challenge by using only a small number of sparsely configured camera views as
input. Specifically, we adopt a simple Multi-Layer Perceptron (MLP) network as
a universal function approximator to learn the plenoptic function at every position
in the space of interest. By placing virtual viewpoints (dubbed ‘imaginary eyes’)
at thousands of randomly sampled locations and leveraging multi-view geometric
relationship, we train the MLP to regress the plenoptic function for the space. Our
network is trained on a per-scene basis, and the training time is relatively short
(in the order of tens of minutes). When the model is converged, we can freely
render novel images. Extensive experiments demonstrate that our method well
approximates the complete plenoptic function and generates high-quality results.

1 INTRODUCTION

Image-Based Rendering (IBR) for view synthesis is a long-standing problem in the field of computer
vision and graphics. It has a wide range of important applications, e.g., robot navigation, film
industry, AR/VR applications.

The plenoptic function, introduced by Adelson et al. (1991), offers an ultimate solution to this novel
view synthesis problem. The plenoptic function captures the visual appearances of a scene viewed
from any viewing direction (θ, φ) and at any location (x, y, z). Once a complete plenoptic function
(i.e. the light-field) for the entire space is available, one can roam around the space and synthesize
free-viewpoint images simply by sub-sampling the plenoptic light-field.

To model the plenoptic function, the best-known methods in the literature are the light field rendering
and the lumigraph (Levoy & Hanrahan, 1996; Gortler et al., 1996). These approaches interpolate
rays instead of scene points to synthesize novel views. However, they require the given camera
positions to be densely or regularly sampled or restrict the target image to be a linear combination of
source images. Unstructured light-field/lumigraph methods (Buehler et al., 2001; Davis et al., 2012)
were proposed to address this limitation; they do so by incorporating geometric reconstruction with
light ray interpolation.

This paper introduces a novel solution for plenoptic field sampling from a few and often sparse
and unstructured multi-view input images. Since a plenoptic function is often parameterized by a
5D function map, we use a simple Multi-Layer Perceptron (MLP) network to learn such functional
map: the MLP takes a 5D vector as input and outputs an RGB color measurement, i.e., R5 → R3.

However, capturing the complete plenoptic function for a scene remains a major challenge in prac-
tice. It requires densely placing many physical cameras or moving a camera (or even a commercial
light-camera) to scan every point and in every direction.
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To address this challenge, this paper uses an MLP to approximate the plenoptic function (i.e., the
entire light field), by placing thousands of virtual cameras (i.e., imaginary eyes) during the network
training. We use the available physical camera views, however a few and sparsely organized, to
provide multi-view geometry constraints as the self-supervision signal to supervise the training of
the MLP networks.

We introduce proxy-depth as a bridge to ensure that the multi-view geometry relationship is well
respected during the training process. Those “imaginary eyes” is sampled randomly throughout the
space following a uniform distribution. We use proxy-depth to describe the estimated depth by the
visual similarity among input images. Once the proxy-depth of a virtual ray is determined, we can
retrieve candidate colors from input images and pass them to a color blending network to determine
the real color.

2 RELATED WORK

Conventional view synthesis. Novel view synthesis is a long-standing problem in the field of com-
puter vision and graphics (Chen & Williams, 1993; Debevec et al., 1996; Seitz & Dyer, 1996). Con-
ventional methods use image colors or handcrafted features to construct correspondences between
the views (Fitzgibbon et al., 2005; Penner & Zhang, 2017). With the advance of deep networks, re-
cent approaches employ neural networks to learn the transformation between input and target views
implicitly (Eslami et al., 2018; Nguyen-Ha et al., 2020; Park et al., 2017; Sun et al., 2018; Zhou
et al., 2016). In order to explicitly encode the geometry guidance, several specific scene represen-
tations are proposed, such as Multi-Plane Images (MPI) (Zhou et al., 2018; Mildenhall et al., 2019;
Flynn et al., 2019; Srinivasan et al., 2019; Tucker & Snavely, 2020), and Layered Depth Images
(LDI) (Shade et al., 1998; Shih et al., 2020; Tulsiani et al., 2018). Some Image-Based Rendering
(IBR) techniques (Choi et al., 2019; Hedman et al., 2018; Penner & Zhang, 2017; Riegler & Koltun,
2020a; Thies et al., 2019b; Riegler & Koltun, 2020b; Shi et al., 2021) warp input view images to
a target viewpoint according to the estimated proxy geometry, and then blend the warped pixels to
synthesize a novel view.

Panorama synthesis. Zheng et al. (2007) propose a layered depth panorama (LDP) to create a lay-
ered representation with a full field of view from a sparse set of images taken by a hand-held camera.
Bertel et al. (2019) investigate two blending methods for interpolating novel views from two nearby
views, one is a linear blending, and the other is a view-dependent flow-based blending. Serrano et al.
(2019) propose to synthesize new views from a fixed viewpoint 360◦ video. Huang et al. (2017) em-
ploy a typical depth-warp-refine procedure in synthesizing new views. They estimate the depth map
for each input image and reconstruct the 3D point cloud by finding correspondences between input
images using handcrafted features. They then synthesize new views from the reconstructed point
cloud.

Plenoptic modeling. Early light-field/lumigraph methods (Levoy & Hanrahan, 1996; Gortler et al.,
1996) reduce the 5D representation (position (x, y, z) and direction (θ, φ)) of the plenoptic function
to 4D ((u, v, s, t), intersection between two image planes). They do not require scene geometry in-
formation, but either require the camera grid is densely and regularly sampled, or the target viewing
ray is a linear combination of the source views (Chai et al., 2000; Lin & Shum, 2000). For unstruc-
tured settings, a proxy 3D scene geometry is required to be combined with light-field/lumigraph
methods for view synthesis (Buehler et al., 2001; Davis et al., 2012). Recent methods (Yoon et al.,
2015; Kalantari et al., 2016; Srinivasan et al., 2017; Wu et al., 2017) applied learning methods to
improve light field rendering.

Neural rendering. Deep networks have also demonstrated their capability of modeling specific
scenes as implicit functions (Mildenhall et al., 2020; Niemeyer et al., 2020; Sitzmann et al., 2019a;b;
Thies et al., 2019a; Zhang et al., 2020; Martin-Brualla et al., 2020; Liu et al., 2020; Yu et al., 2020;
Srinivasan et al., 2020; Park et al., 2020). They encapsulate both the geometry and appearance of
a scene as network parameters. They take input as sampled points along viewing rays and output
the corresponding color and density values during the inference stage. The target image is then
rendered from the sampled points by volume rendering techniques (Max, 1995). The denser the
sampled points, the higher quality of rendered images. However, densely sampling points along
viewing rays would significantly increase the rendering time, prohibiting interactive applications to
real-world scenarios.
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Figure 1: The overall pipeline of the proposed framework. Our framework includes a proxy depth recon-
struction (PDR) model to determine the depth of a virtual viewing ray, a differentiable ray tracer to retrieve
corresponding colors from real input images, and a color blending network (CBNet) to recover the RGB color
information.

Our idea of using MLP to learn light-field is similar to that of NeRF (Mildenhall et al., 2020); how-
ever, there are key differences. NeRF focused on estimating the lights emitted at every location, in
any direction, within a bounded volumetric region, often enclosing the 3D scene or 3D object of
interest. In contrast, our method focuses on estimating all the light rays observed at any point in
space, coming in any direction. In essence, our formulation is not only close to, but precisely is,
the plenoptic function that Adelson and Bergen had contrived. In fact, in principle, our formulation
can be extended to the original 7D plenoptic function by adding time and wavelength as new dimen-
sions (Li et al., 2020; Bemana et al., 2020; Li et al., 2021). Our method also offers a computational
advantage over NeRF. Namely, when the model has been well-approximated, we can directly dis-
play the network output as rendered images without sampling points along viewing rays and then
rendering them in a back-to-front order. Our model will significantly accelerate the rendering speed
and facilitate interactive applications.

3 NEURAL PLENOPTIC SAMPLING

A complete plenoptic function corresponds to the holographic representation of the visual world.
It is originally defined as a 7D function L(x, y, z, θ, φ, λ, t) which allows reconstruction of every
possible view (θ, φ) from any position (x, y, z), at any time t and every wavelength λ. McMillan
& Bishop (1995) reduce the dimensionality from 7D to 5D by ignoring the time and wavelength
for the purpose of static scene view synthesis. By restricting the viewpoints or the object inside a
box, light field (Levoy & Hanrahan, 1996) and lumigraph (Gortler et al., 1996) approaches reduce
the dimensionality to four. Without loss of generality, this paper uses original 5D representations
L(x, y, z, θ, φ) for plenoptic function and focuses on the scene representation at a fixed time.

We model the plenoptic function as a Multi-Perceptron Layer (MLP). However, a brute-force train-
ing of a network mapping from viewing position and direction to RGB colors is infeasible. The ob-
served images only have a partial coverage of the input space. By using the above training method,
the model may fit well on the observed viewpoints, but also generates highly-blurred images on the
non-observed regions. Our experiments in Fig. 5 demonstrate this situation.

To address this problem, we introduce an Imaginary Eye Sampling (IES) method to fully sample
the target domain. We evaluate a proxy depth to provide self-supervision by leveraging photo-
consistency among input images. Our method firstly outputs a proxy depth for a virtual viewing
ray from the imaginary eye we randomly placed in the scene. Then, we retrieve colors from input
views by a differentiable ray-tracer using this depth. Lastly, the colors pass through a color blending
network to generate the real color. Figure. 1 depicts the overall pipeline of our framework.

3.1 PROXY DEPTH RECONSTRUCTION

We model the Proxy Depth Reconstruction (PDR) network by an MLP network FΘ. It takes input
as the camera position x = [x, y, z]T ∈ R3 and 2D camera viewing rays v = [θ, φ]T ∈ R2. The
network estimates the distance value d ∈ R+ between the location x of the virtual camera and its
observing scene in viewing direction,

d = FΘ(x,v), (1)

where Θ represents the trainable network parameters.
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Figure 2: For a virtual camera position x and viewing direction v, we estimate a depth d between the scene
point w and the camera location x. By reprojecting the scene point to real cameras, we retrieve the color ci
and high-level feature fi from the observed images. The cosine distance (angle) si between the virtual viewing
direction and real viewing direction determine the influence of corresponding real cameras when calculating
the photometric consistency.

We use a similar MLP structure from NeRF (Mildenhall et al., 2020) to parameterize the neural
plenoptic modeling. The difference is that NeRF approximates the emitting colors and transparency
on the objects location, while our PDR model estimates the distance between the scene objects and
observing cameras along the viewing direction.

3.2 IMAGINARY EYE SAMPLING

Since our purpose is to move around the scene and synthesize new views continuously, we need to
sample the input space for the network training densely. However, in general, the camera locations
of input images are sparsely sampled. The observed images only cover partial regions of such an
input space.

To address this problem, we propose an Imaginary Eye Sampling (IES) strategy. We place thousands
of imaginary eyes (virtual cameras) in the space of interest. Those imaginary eyes are randomly
generated in the space to allow dense sampling of the plenoptic input space. By doing so, we are
able to approximate a whole complete plenoptic function.

Here, note that we do not have ground-truth depths for supervision, even for real-observed images
(viewing rays). In order to provide training signals, we propose a self-supervision method by lever-
aging photo-consistency among real input images.

3.3 SELF-SUPERVISION VIA PHOTO-CONSISTENCY

Given a virtual camera at a random location x and a viewing direction v, our network predicts a
depth d between the observed scene point and the input camera location. The world coordinate w
of the scene point is then computed as

w = x + dv. (2)

When the estimated depth d is at the correct value, the colors of its projected pixels on real observed
images should be consistent with each other. Hence, we then use a differentiable ray-tracer T (·)
to find the projected pixel of the scene point at real camera image planes. Denote Pi as the pro-
jection matrix of real camera i. The projected image coordinate of a 3D point w is computed as
[ui, vi, 1]T = Piw. Our ray-tracer then uses bilinear interpolation to fetch information (e.g., color)
from the corresponding real images.

By computing the photo-consistency (similarity) among the retrieved colors, we can measure the
correctness of the estimated depth. In practice, we argue that only using the colors of the retrieved
pixels is not accurate enough for this measurement because it cannot handle textureless and reflective
regions. To increase the representative and discriminative ability, we propose to retrieve colors as
well as high-level features from real input images for the photo-consistency measure.

Denote fi and ci as the retrieved features and colors from input camera i, respectively. The photo-
consistency among all input cameras is defined as

Ld =

N∑
i=1

si
(
‖ctopk − ci‖1 + λ‖f topk − fi‖1

)
, (3)
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where ‖ · ‖1 denotes the L1 distance, N is the number of real input cameras, λ is the balance of the
influence between color difference and the feature difference, si is the normalized weight assigned
to each real camera i, and it is determined by the angle difference (cosine distance) between the
virtual camera viewing ray (w − x) and the real camera viewing ray (w − xi). Figure. 2 illustrates
the situation. Mathematically, it is expressed as

si =
cos (w − x,w − xi)∑N
j=1 cos (w − x,w − xj)

, (4)

where cos(·, ·) is the cosine of the angle spanned by the two vectors. The smaller of the angle
between the virtual camera viewing ray and the real camera viewing ray, the larger si is. Given the
weight for each input camera, the reference color ctopk and feature f topk in Eq. 3 is computed as the
average of top k retrieved colors and features

ctopk =
∑

i∈topk

ci/k, f topk =
∑

i∈topk

fi/k. (5)

We use Eq. 3 as the supervision for our PDR model and the network is trained to minimize this
objective function.

3.4 COLOR BLENDING FOR VIEW SYNTHESIS

Given an estimated depth d for a virtual viewing ray, we can retrieve colors from real input images
for the virtual camera view synthesis. However, a naive aggregation of the retrieved colors would
cause severe tearing or ghosting artifacts in the synthesized images. Hence, we propose a Color
Blending Network (CBNet) to blend the retrieved colors and tolerate the errors caused by inaccurate
depths to synthesize realistic images.

In order to provide sufficient clues, we feed the direction differences between the reprojected real
viewing rays (solid line in Fig. 2) and the virtual (target) viewing ray (dash line in Fig. 2) along with
the retrieved colors to the color blending network. Formally, our CBNet is expressed as

c = FΦ

(
{ci,di}Ni=1

)
, (6)

where Φ is the trainable parameter of the CBNet, ci is the RGB color retrieved from the real camera
i and di is the projection of the real viewing ray on the target virtual viewing ray, c is the estimated
color of the virtual viewing ray. We employ a Pointnet network architecture for our CBNet. The
supervision of our CBNet is the colors observed from real cameras, denoted as

Lc = ‖c∗ − c‖1, (7)

where c∗ is the ground truth colors.

Unlike our PDR model, the CBNet is trained only on the observed images (viewing rays) since it
needs the ground-truth color as supervision. Instead of remembering the color of each training ray,
the CBNet is trained to learn a sensible rule for blending retrieved colors from real input views.
Thus it is able to be generalized to unseen viewing rays. The PDR and the CBNet in our framework
are trained separately. During the training of CBNet, we fix the model parameters of PDR to not
destroy the learned patterns for the whole plenoptic space. For inference, a query viewing ray first
passes through our PDR model to compute a depth value; its corresponding colors on real input
views are then retrieved and fed into the CBNet to estimate the color information. Since it is a single
feed-forward pass through the network, the rendering speed is rapid (less than one second when
rendering a 1024× 512 image).

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of the pro-
posed algorithm. We use 360◦ panoramas captured by an omnidirectional camera for the plenoptic
modeling, since its representation well aligns with the plenoptic function. We show an omnidirec-
tional camera, its imaging geometry, and an example image in Fig. 3. The pixel coordinates of a
360◦ panorama correspond to the azimuth angle θ and the elevation angle φ of the viewing rays.
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Figure 3: (a) An illustration of an omni-directional camera and its captured light-field and a sample image. (b)
An illustration of our camera arrangement for dataset generation. For each scene, we capture 125 omnidirec-
tional images at different locations for evaluation. The cameras are positioned in a 50 × 50 × 50 centimeter
volume (roughly) at the center of each scene.

Table 1: Quantitative comparison of our method and others given eight input views. Here, bold indicates the
best results and underline denotes the second best results.

Diningroom Bar Livingroom Lounge Average
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM ↑ PSNR↑ SSIM ↑

FVS* (Riegler & Koltun, 2020a) 26.09 0.770 24.54 0.800 25.61 0.780 21.23 0.690 24.37 0.760
NeRF (Mildenhall et al., 2020) 37.54 0.938 33.95 0.941 33.62 0.936 31.96 0.939 34.27 0.939
NeRF++ (Zhang et al., 2020) 36.29 0.931 32.87 0.936 33.72 0.929 34.05 0.947 34.23 0.936

Ours w/o Imaginary Eye 32.32 0.929 32.93 0.950 32.57 0.948 30.50 0.932 32.08 0.940
Ours w/o Feature 36.03 0.957 33.47 0.954 33.97 0.957 32.17 0.960 33.91 0.957

Ours w/o weighting 32.69 0.931 29.57 0.903 30.81 0.919 29.18 0.925 30.56 0.920
Ours 36.62 0.959 33.86 0.961 34.33 0.965 34.31 0.968 34.78 0.963

4.1 DATASETS AND EVALUATIONS

Synthetic dataset. When the plenoptic function has been correctly (approximately) modeled, we
want to freely move across the space to synthesize new views. For the purpose of performance
evaluation, we need to sample evaluation viewpoints densely in the space and their corresponding
ground truth data. Hence, we propose to synthesize a dataset for our evaluation. Following recent
novel view synthesis methods, we use SSIM and PSNR for the performance evaluation.

We use Blender (Community, 2020) to synthesize images with freely moving camera viewpoints.
Figure. 3 shows the camera setting. Specifically, we randomly sample 125 points in a 50× 50× 50
cm3 volume within the space and synthesize corresponding omni-directional images. The images
are generated from four scenes, i.e., “Bar”, “Livingroom”, “Lounge” and “Diningroom”. We refer
the readers to our qualitative comparisons for the visualization of sampled images from the four
scenes. This evaluation set is adopted for all the experiments in this paper, although the input views
and training methods might be changed.

Real dataset. To fully demonstrate the effectiveness of the proposed method, we also conduct
experiments on real-world data. The real-world data we use are from Wang et al. (2020), which
sparsely captured two images per scene. We only provide qualitative results for visual evaluation,
and interested readers are suggested to watch our supplementary video for more results.

4.2 TRAINING DETAILS

We train a separate plenoptic function for each scene. To approximate the sharp edge of real world
objects and textures, our plenoptic function model usually has high frequency output in both the
viewing rays and camera position. We encode the 5D input into Fourier features as the positional
encoding (Tancik et al., 2020) before feeding it into the proxy-depth reconstruction network. The
PDR network FΘ is designed following the structure of NeRF. It consists of 8 fully-connected (fc)
layers with 256 hidden channels, and a ReLU activation layer follows each fc layer.

When training the MLP, we randomly sample a virtual camera at location x and draw an arbitrary
viewing direction v. Given this 5D input, the MLP estimates a proxy-depth d in the output, which
is then self-supervised by the photometric consistency loss Ld. The above network is end-to-end
differentiable. Once we have sampled and trained the virtual camera domain thoroughly, the MLP
for proxy-depth reconstruction is then frozen for the training of the color blending network later.
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Figure 4: Qualitative comparison with NeRF and NeRF++ on our generated scenes “Lounge”. Our method
generates sharper results than the comparison algorithms.

The CBNet takes a series color and direction (ci,di) to inference the output color of the plenoptic
function. Its design follows the structure of the PointNet (Qi et al., 2017). The observations from
real cameras are firstly processed separately by three fc layers. Next, a max-pooling layer is applied
to select the most salient features from them. We then employ a prediction layer to generate the
color values c.

In our experiments, we use 200k rays per iteration for the PDR network training, and 100k rays for
the CBNet training. Our model is trained from scratch with an Adam optimizer. The learning rate is
set to 5 × 10−4. The PDR network takes around 30k iterations to converge, while the CBNet only
takes 10k iterations. The complete model takes around one hour to converge in a NVIDIA RTX
3090 GPU.

4.3 COMPARISON WITH OTHER METHODS

Comparison with NeRF and NeRF++. We conduct experiments to compare with NeRF and its
variant NeRF++ (Zhang et al., 2020). In this comparison, all of the methods take eight views as
input. The quantitative evaluation results are presented in Table 1. Visual comparison is presented
in Fig. 4. It can be seen that our method achieves better performance than NeRF and NeRF++ in
most of the scenarios. NeRF and NeRF++ aim to estimate the radiance emitted by scene points
at any position and direction, while our method is designed to recover the irradiance perceived by
an observer from any point and direction. Since NeRF and Nerf++ need to sample points along
viewing rays and render them in a back-to-front order, they require hundreds of network calls when
synthesizing an image. Thus their rendering time is very long. In contrast, our method directly
outputs the color information given a viewing ray. Thus, our training and testing time are relatively
shorter, as shown in appendix Table 4.
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Table 2: Quantitative comparison with volume-based method on two input views.
Diningroom Bar Livingroom Lounge

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

360SD-Net (Wang et al., 2020) 24.76 0.746 23.38 0.781 23.30 0.747 21.10 0.700
Ours (Vertical) 27.54 0.910 27.29 0.918 28.20 0.907 26.13 0.888

MatryODShka (Attal et al., 2020) 20.43 0.673 27.26 0.864 23.85 0.766 22.19 0.765
Ours (Horizontal) 30.50 0.921 28.20 0.918 29.07 0.907 27.68 0.898
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(a) Close to a real camera (b) Far from any real camera
Figure 5: Qualitative comparisons of our method w or w/o Imaginary Eye Sampling (IES). Without using IES,
the image synthesized at a position far from any real camera (top right) suffers much lower quality compared
to the one closer to a real camera (top left) (2.74dB drop). When the IES is applied, the quality of both images
(bottom left and bottom right) improves, and the PSNR gap decreases (1.32dB).

Comparison with FVS. To demostrate the effectiveness of our CBNet. We compare our CBNet with
another image-based warping method FVS (Riegler & Koltun, 2020a).1 The results are presented in
the first row of Table 1. It is evident that our method achieves significantly better performance.

Comparison with conventional novel view synthesis approaches. We employ a deep-based
method 360SD-Net (Wang et al., 2020) to estimate depth maps for input images. We then build
a point cloud from the depth map and input images. The point cloud are warped and refined for
novel view synthesis. Since 360SD-Net only takes two vertically aligned panoramas as input, we
take the same vertical inputs in this comparison, denoted as “Our (Vertical)” in Tab. 2. We further
compare with a multi-sphere-images-based method MatryODShka (Attal et al., 2020) on view syn-
thesis. Note that MatryODShka only takes two horizontally aligned panoramas as input. For fair
comparison, we take the same input and denoted as “Our (Horizontal)” in Tab. 2. The numerical
evaluations in Tab. 2 demonstrate that our method significantly outperforms the conventional depth-
warp-refine and multi-sphere-images procedure in synthesizing new views. Besides, the competing
methods both requires a structured input (horizontally or vertically aligned). This limitation does
not apply to our method.

4.4 EFFECTIVENESS OF IMAGINARY EYE SAMPLING

We demonstrate the necessity and effectiveness of the imaginary eye sampling strategy. In doing
so, we train our network only using real camera locations and directions, without any imaginary eye
sampling, denoted as “Ours w/o Imaginary Eye”. The quantitative results and qualitative evaluations
are presented in Tab. 1 and Fig. 5 respectively. For better comparison, we select two images for
visualization. One is close to a real camera, and the other is far from input cameras.

As illustrated by the results, the performance of “Ours w/o Imaginary Eye” is inferior to our whole
pipeline. More importantly, the performance gap between images that are near and far from the real
camera is significant. There is 2.75dB difference in terms of PSNR metric. This demonstrates that
the model learns better for training data while does not have the ability to interpolate similar-quality
test data.

A network is usually good at learning a continuous representation from discrete but uniformly dis-
tributed samples in a general case. In our plenoptic modeling, the values of the input parameters

1FVS is originally proposed on perspective images. We change its code so that it takes 360◦ panoramas and
our depth estimation as input in comparison.
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Table 3: Quantitative comparison of different imaginary eye sampling (IES) regions (large or small). Larger
imaginary eye sampling space contributes to higher image quality.

Scene Lounge Livingroom

N 2 4 2 4

IES Range PSNR↑ SSIM↑ PSNR SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Small 24.82 0.8484 27.98 0.8995 26.77 0.8690 29.93 0.9144
Large 26.13 0.8883 29.13 0.9193 28.20 0.9068 31.27 0.9383

(x, y, z, θ, φ) are continuous and always span in a large range, while the input images only cover
small and sparsely sampled regions in the whole space. Hence, it is not surprising that the model
can fit well in training data while interpolating low-quality images at camera locations far from real
cameras. Using our imaginary eye sampling strategy, the performance gap between the two cases
is reduced (1.32dB in terms of PSNR). Furthermore, the quality of synthesized images on the loca-
tion that is near to a real camera is further improved. This is owed to our photometric consistency
self-supervision loss for the virtual eye training. It helps the learned model to encode the geometry
constraints across different viewpoint images.

We also conduct comparison experiments on the imaginary eye sampling area (large or small). The
results are shown in Tab. 3. We found that sampling on a larger region will allow more freedom on
the moving space of rendering cameras, while the downside is that it requires longer training time.

4.5 PROXY-DEPTH FROM COLORS AND FEATURES

In what follows, we conduct experiments to demonstrate why the features are required in our photo-
metric consistency loss. In doing so, we remove the feature item in Eq. 3 and train our model again,
denoted as “Ours w/o Feature”. The quantitative results are presented in the third last row of Tab. 1.

Compared to pixel-wise RGB colors, features have a larger reception field that makes textureless
regions discriminative, and the encoded higher level information is more robust to illumination
changes and other noises. Thus, the reconstructed proxy depths from both RGB colors and features
are more accurate than those purely from RGB colors. Consequently, the quality of synthesized
images is facilitated. We present the qualitative illustrations in the supplementary material.

4.6 WITH OR WITHOUT VIEW-DIRECTION BASED WEIGHTING

We also ablate the necessity of the view-direction based weighting in Eq. 3. In this experiment,
we set the weighting term si to zero, denoted as “Ours w/o weighting”. The results are presented
in the second last row of Tab. 1. Not surprisingly, the performance drops. This demonstrates the
effectiveness of our view-direction based weighting strategy.

5 CONCLUSION

Capturing a complete and dense plenoptic function from every point and angle within a space has
been the “holy grail” for IBR-based view synthesis applications. There is always a tension between
how densely one samples the space using many real cameras and the total efforts and cost that one
has to bear in doing this task. This paper proposes a simple yet effective solution to this challenge.
By placing thousands of imaginary eyes (virtual cameras) at randomly sampled positions in the space
of interest, this paper proposes a new neural-network-based method to learn (or to approximate) the
underlying 5D plenoptic function. Real images captured by physical cameras are used as a teacher
to train our neural network. Although those randomly placed imaginary eyes themselves do not
provide new information, they are critical to the success of our method, as they provide a bridge to
leverage the existing multi-view geometry relationship among all the views (of both real and virtual).
Our experiments also validate this claim positively and convincingly. Our method produces accurate
and high-quality novel views (on the validation set) and compelling visual results (on unseen testing
images).
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6 ETHICS STATEMENT

Our approach to capture and reconstruct the light-field from only a few input images has the imme-
diate utility of many applications, such as augmented, virtual and mixed reality. Our 360◦ inputs
also open up the ability to fully reconstruct and re-render the whole scene at a low cost. Such
ability also enables the possibility to reconstruct humans in a scene. The acquisition of such per-
sonal information, if without their consent, may lead to privacy and security breaching. Appropriate
privacy-preserving steps must be taken to mitigate the potential risk of abusing this technique.

7 REPRODUCIBILITY STATEMENT

The dataset we use in the paper is stated in Section 4.1. The detail design of our network architecture
and training processes can be found in Section 4.2. We will release the code once the paper is public
available.

REFERENCES

Edward H Adelson, James R Bergen, et al. The plenoptic function and the elements of early vision,
volume 2. Vision and Modeling Group, Media Laboratory, Massachusetts Institute of . . . , 1991.

Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin. Matryod-
shka: Real-time 6dof video view synthesis using multi-sphere images. In European Conference
on Computer Vision, pp. 441–459. Springer, 2020.

Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel. X-fields: implicit
neural view-, light-and time-image interpolation. ACM Transactions on Graphics (TOG), 39(6):
1–15, 2020.

Tobias Bertel, Neill DF Campbell, and Christian Richardt. Megaparallax: Casual 360° panoramas
with motion parallax. IEEE transactions on visualization and computer graphics, 25(5):1828–
1835, 2019.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. Unstruc-
tured lumigraph rendering. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pp. 425–432, 2001.

Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenoptic sampling. In
Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp.
307–318, 2000.

Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In Proceedings
of the 20th annual conference on Computer graphics and interactive techniques, pp. 279–288,
1993.

Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H Kim, and Jan Kautz. Extreme view synthe-
sis. In Proceedings of the IEEE International Conference on Computer Vision, pp. 7781–7790,
2019.

Blender Online Community. Blender - a 3d modelling and rendering package, 2020. URL http:
//www.blender.org.

Abe Davis, Marc Levoy, and Fredo Durand. Unstructured light fields. In Computer Graphics Forum,
volume 31, pp. 305–314. Wiley Online Library, 2012.

Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Modeling and rendering architecture from
photographs: A hybrid geometry-and image-based approach. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pp. 11–20, 1996.

SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos, Marta Gar-
nelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al. Neural scene
representation and rendering. Science, 360(6394):1204–1210, 2018.

10

http://www.blender.org
http://www.blender.org


Under review as a conference paper at ICLR 2022

Andrew Fitzgibbon, Yonatan Wexler, and Andrew Zisserman. Image-based rendering using image-
based priors. International Journal of Computer Vision, 63(2):141–151, 2005.

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck,
Noah Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2367–
2376, 2019.

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. Fastnerf:
High-fidelity neural rendering at 200fps. arXiv preprint arXiv:2103.10380, 2021.

Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. The lumigraph. In
Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp.
43–54, 1996.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(TOG), 37(6):1–15, 2018.

Jingwei Huang, Zhili Chen, Duygu Ceylan, and Hailin Jin. 6-dof vr videos with a single 360-camera.
In 2017 IEEE Virtual Reality (VR), pp. 37–44. IEEE, 2017.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view synthesis
for light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.

Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pp. 31–42, 1996.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, and Zhaoyang Lv. Neural 3d video synthe-
sis. arXiv preprint arXiv:2103.02597, 2021.

Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely. Crowdsampling the plenoptic function. In
European Conference on Computer Vision, pp. 178–196. Springer, 2020.

Zhouchen Lin and Heung-Yeung Shum. On the number of samples needed in light field render-
ing with constant-depth assumption. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 1, pp. 588–595. IEEE, 2000.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. arXiv preprint arXiv:2007.11571, 2020.

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovit-
skiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo
collections. arXiv preprint arXiv:2008.02268, 2020.

Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 1(2):99–108, 1995.

Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system. In
Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp.
39–46, 1995.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision, pp. 405–421. Springer, 2020.

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Chakravarty R Alla Chaitanya, An-
ton Kaplanyan, and Markus Steinberger. Donerf: Towards real-time rendering of neural radiance
fields using depth oracle networks. arXiv preprint arXiv:2103.03231, 2021.

11



Under review as a conference paper at ICLR 2022

Phong Nguyen-Ha, Lam Huynh, Esa Rahtu, and Janne Heikkila. Sequential neural rendering with
transformer. arXiv preprint arXiv:2004.04548, 2020.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumet-
ric rendering: Learning implicit 3d representations without 3d supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515, 2020.

Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan, and Alexander C Berg. Transformation-
grounded image generation network for novel 3d view synthesis. In Proceedings of the ieee
conference on computer vision and pattern recognition, pp. 3500–3509, 2017.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo-Martin Brualla. Deformable neural radiance fields. arXiv preprint
arXiv:2011.12948, 2020.

Eric Penner and Li Zhang. Soft 3d reconstruction for view synthesis. ACM Transactions on Graphics
(TOG), 36(6):1–11, 2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Gernot Riegler and Vladlen Koltun. Free view synthesis. In European Conference on Computer
Vision, pp. 623–640. Springer, 2020a.

Gernot Riegler and Vladlen Koltun. Stable view synthesis. arXiv preprint arXiv:2011.07233, 2020b.

Steven M Seitz and Charles R Dyer. View morphing. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pp. 21–30, 1996.

Ana Serrano, Incheol Kim, Zhili Chen, Stephen DiVerdi, Diego Gutierrez, Aaron Hertzmann, and
Belen Masia. Motion parallax for 360 rgbd video. IEEE Transactions on Visualization and
Computer Graphics, 25(5):1817–1827, 2019.

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. Layered depth images. In Pro-
ceedings of the 25th annual conference on Computer graphics and interactive techniques, pp.
231–242, 1998.

Yujiao Shi, Hongdong Li, and Xin Yu. Self-supervised visibility learning for novel view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9675–9684, 2021.

Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography using context-
aware layered depth inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8028–8038, 2020.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael
Zollhofer. Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2437–2446, 2019a.
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APPENDIX

A ADDITIONAL COMPARISONS WITH NERF AND ITS VARIANTS

We also present addition results on comparison with NeRF (Mildenhall et al., 2020) and its variant
NeRF++ (Zhang et al., 2020). In this comparison, all of the methods take eight unstructured views
as input. The quantitative evaluation results are presented in the main paper. The additional qual-
itative comparison results are presented in Fig. 6. It can be seen that our method achieves better
performance in most of the scenarios.
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Figure 6: Qualitative comparison with NeRF and NeRF++ on the scene “Livingroom”. Our method generates
sharper results than the comparison algorithms.

NeRF and NeRF++ aim to estimate the radiance emitted by scene points at any position and di-
rection, while our method is designed to recover the irradiance perceived by an observer from any
point and direction. In essence, our formulation is more close to the plenoptic sampling invented
by Adelson and Bergen (Adelson et al., 1991) Since NeRF and Nerf++ need to sample points along
viewing rays and render them in a back-to-front order, they require hundreds of network calls when
synthesizing an image. Thus their rendering time is very long, as shown in Tab. 4. In contrast, our
method directly outputs the color information given a viewing ray. Thus, our training and testing
time are relatively shorter.

A recent work, DoNeRF (Neff et al., 2021), shares some similarity with ours. Both DoNeRF and
our method first regress the depth for a target viewing ray. The difference is that DoNeRF has
the ground-truth depth map for each viewing ray during training, while our approach offers a self-
supervision for the target view depth regression. FastNeRF (Garbin et al., 2021) is another recent
work that is proposed to accelerate the rendering speed during inference. Their approach changes the
network architecture and explores a way to cache a number of pre-sampled scene points (with colors
and densities) for testing when the model has been trained. By doing so, they successfully reduce
the testing time for view synthesis. However, the training time remains the same as the original
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Table 4: Training and testing time comparison given eight input views. The testing time is for rendering images
with resolution of 512× 1024.

Training (hours) Testing (seconds)

NeRF 10 30
NeRF++ 20 110

Ours 1 0.14

Proxy Depth Map Reconstructed Image Proxy Depth Map Reconstructed Image

O
ur

s

PSNR:33.10 PSNR:31.78

(a) Close to a real camera (b) Far from any real camera

O
ur

s w
/o

Fe
at

ur
e

PSNR:32.58 PSNR:31.20

Figure 7: Qualitative comparison of our method with or without features in proxy depth estimation.

NeRF. Compared to FastNeRF, our method manages to achieve a shorter time for both training and
testing.

B EXPERIMENTS ON REAL DATASET AND SUPPLEMENTARY VIDEO

As mentioned in the paper, the performance on the real dataset, 360SD-Net (Wang et al., 2020),
is hard to be quantitatively evaluated due to the lack of ground truth data. Hence, we qualitatively
visualize the synthesized images by our method in the supplementary video. Furthermore, we syn-
thesize continuously generated images by our method on the four synthetic scenes when roaming
around the space. Please refer to our supplementary video for the results.

C QUALITATIVE COMPARISON FOR “W VS. W/O FEATURES”

We provide the qualitative comparisons for our method with vs. without features in Fig. 7. It can
be seen that the generated depths by our whole method are better than those generated by our w/o
feature similarity, and the image quality synthesize by our whole method is better.

D DIFFERENT NUMBER OF INPUT VIEWS

Below, we conduct experiments on a different number of input views. For this experiment setting,
we aim to investigate the performance difference when the input views are located on a line, a flat
plane, and a cube, corresponding to 2, 4, 8, and 25 input views, respectively. Tab. 5 and Fig. 8
provide the quantitative and qualitative results, respectively. As shown by the results, when the
input view number is reduced to 2, our method still generates acceptable quality novel view images.
As the number of input views increases, the quality of the view synthesis improves rapidly. For 8
and 25 input views in this experiment, the input cameras are randomly sampled within the region
(cube) of interest. This demonstrates that our method is not limited to structured settings and can
synthesize free-viewpoint images from unstructured input images.
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Table 5: Quantitative evaluations on different input view numbers.
N 2 4 8 25

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Lounge 26.13 0.8883 0.1947 29.13 0.9193 0.1546 34.31 0.9684 0.1086 37.27 0.9775 0.0916
Livingroom 28.20 0.9068 0.2572 31.27 0.9383 0.2298 34.33 0.9648 0.1590 36.72 0.9746 0.1331

Figure 8: Qualitative visualization on different input view number. The three images are from our generated
scenes “Bar”, “Livingroom” and “Diningroom” respectively. Here we compare the reconstruction results by
only 2 input views and 8 input views.

E QUALITATIVE COMPARISON WITH CONVENTIONAL NVS APPROACHES
ON 360◦ PANORAMA SYNTHESIS

Here we present the qualitative comparison results with conventional NVS approaches in Fig. 9 and
Fig. 10. (Quantitative results can be found in the main paper Table 2.) From the figure, it can be
seen that there are severe distortions in the synthesized images by typical depth-warp-refine (i.e.,
360SD-Net (Wang et al., 2020)) strategy, while the synthesized images by our method are much
similar to the ground truth. The numerical evaluations in Table 2 also demonstrate that our method
significantly outperforms the conventional depth-warp-refine and multi-sphere-images procedure in
synthesizing new views.
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Figure 9: Qualitative comparison of our algorithm with 360SD-Net (Wang et al., 2020) and MatryODShka (At-
tal et al., 2020).
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Figure 10: Qualitative comparison of our algorithm with 360SD-Net (Wang et al., 2020) and MatryOD-
Shka (Attal et al., 2020).
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