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Abstract

The rise of Large Language Models (LLM) in001
the field of natural language processing has cre-002
ated opportunities to utilize the power of Few-003
Shot Learning (FSL) methods. These meth-004
ods are able to achieve acceptable performance005
even when working with limited training data.006
The goal of FSL is to effectively utilize a small007
number of annotated samples in the learning008
process. However, the performance of FSL009
suffers when unsuitable support samples are010
chosen. This problem arises due to the heavy011
reliance on a limited number of support sam-012
ples, which hampers consistent performance013
improvement even with the addition of more014
support samples. To address this challenge,015
we propose an active learning-based instance016
selection mechanism that identifies effective017
support instances from the unlabeled pool and018
is able to work with different LLMs like BART019
and FLAN-T5. We have conducted several020
experiments on three different classification021
tasks. The experimental results show that our022
proposed method consistently improves perfor-023
mance for different few-shot tasks.024

1 Introduction025

Deep learning systems have shown great perfor-026

mance when given enough labeled data, yet they027

struggle to learn from a small amount of labeled028

data (Sun et al., 2019). However, a large corpus of029

labeled data is costly and time-consuming to make030

for many real-world applications, and this often031

hinders the building of a supervised classifier for032

a new domain or application (Zhu et al., 2009). In033

Few-Shot Learning (FSL), the deep learning sys-034

tem has a small supply of data with supervised035

information for the target tasks (Wang et al., 2020).036

FSL seeks to grasp new concepts from limited la-037

beled examples and build effective systems for a038

broader range of applications (Sun et al., 2019).039

On the other hand, with recent advances in large040

language models (LLM), the capabilities of FSL041

can be utilized more than before and these meth- 042

ods are able to reach acceptable performance even 043

when using a small amount of training data. Sev- 044

eral techniques have been proposed that are based 045

on this concept (Gao et al., 2021; Chen et al., 2021; 046

Karimi Mahabadi et al., 2022; Lin et al., 2022). 047

In the majority of FSL methods, the samples 048

are typically selected randomly and variations in 049

the quality of the samples can have a significant 050

impact on the model’s performance. In some sce- 051

narios, adding un- or less-informative samples can 052

even decrease the accuracy of the fine-tuned model 053

or may result in a large variance in the model’s per- 054

formance (Zhang et al., 2020; Schick and Schütze, 055

2021b). 056

Considering these challenges, we proposed a 057

new Active Learning (AL)-based Few-Shot (FS) 058

sample selection method that chooses the most in- 059

formative unlabeled samples in order to enhance 060

classification performance without increasing an- 061

notation costs. In accordance with successful AL 062

algorithms (Settles, 2009), our algorithm selects 063

instances based on different methods (i.e., entropy 064

and clustering) to consider uncertainty, diversity, 065

and representativeness in sample selection. It 066

should be noted that in our proposed FSL approach, 067

the chosen samples will be used for fine-tuning 068

the LLMs and this method can be easily integrated 069

with existing LLMs. 070

To assess the effectiveness of our methodology, 071

we conducted an extensive series of experiments 072

across three distinct classification tasks: specifi- 073

cally, we tackled type, polarity, and intensity clas- 074

sification problems using the Multi-Perspective 075

Question Answering (MPQA) dataset. It is worth 076

noting that even though these tasks were chosen 077

from the same dataset, they belong to different 078

categories. Our investigation also involved multi- 079

ple language models, such as BART (Lewis et al., 080

2019) and FLAN-T5 (Chung et al., 2022). How- 081

ever, the proposed approaches in this paper can be 082

1



used on any LLM that provide access to the final083

hidden states of its encoder and the probability of084

each label’s occurrence in the model’s output.085

Our contributions can be summarized as follows:086

1) We introduce an AL-based sample selection087

scenario by combining uncertainty and representa-088

tiveness measures for FS classification problems,089

which achieves state-of-the-art performance when090

paired with various recent FSL classification algo-091

rithms. 2) To the best of our knowledge, this is the092

first active FSL for text classification tasks.093

2 Related Work094

In previous studies, the FS scenario has been sim-095

ulated by randomly sampling a subset from the096

complete training data (Chen et al., 2020; Schick097

and Schütze, 2021a; Gao et al., 2021; Chen et al.,098

2021; Lin et al., 2022). Among different FSL meth-099

ods in Natural Language Processing (NLP), there100

are few methods that have paid attention to the101

sample selection strategies.102

Some recent studies in the field of image pro-103

cessing have demonstrated the effectiveness of in-104

corporating AL strategies in the context of FSL105

(Pezeshkpour et al., 2020; Boney et al., 2019; Li106

et al., 2021; Shin et al., 2022).107

The study conducted by Chang et al. (2021)108

stands as the sole work that specifically addresses109

sample selection in NLP. Their research focuses110

on training instance selection in the context of FS111

neural text generation and using it in three different112

tasks with BART. Their approach is motivated by113

the idea that FS training instances should exhibit114

diversity and representativeness. To achieve this,115

they utilized K-Means clustering for choosing data116

points closer to the center of clusters as important.117

3 Dataset118

We use the MPQA Opinion Corpus 2.0 dataset that119

is annotated at the word or phrase level to extract120

the following features of attitudes expressed in the121

text: type, polarity, and intensity. To elaborate, a122

sentence may contain expressions that reflect differ-123

ent private states with various attitudes. These atti-124

tudes can belong to different types, and each type125

can express negative or positive opinions (polar-126

ity) toward targets with varying degrees of strength127

(intensity) (Wiebe et al., 2005; Wilson, 2008).128

The original MPQA annotation scheme com-129

prises 6 types of attitudes. We remove the other and130

speculation types in our experiments as these types131

Task Input OutputAttitude Type Sentence

T -
The new US policy deserves to be

arguing sentimentclosely analyzed and monitored.

P intention
Canada is among the countries that

positive
have pledged to ratify the accord.

I sentiment
There is a deep faith here, however,

high
in the power of democracy.

Table 1: The examples for Type (T), Polarity (P), and
Intensity (I) tasks. The expressions within the sentences
are in bold.

of attitudes do not hold a polarity. That leaves us 132

with a 4-class classification task for the type. Fur- 133

thermore, an expression in a sentence may have 134

zero to four labels as attitude types based on the 135

expression itself and the sentence that contains the 136

expression. This leads the type identifier task to 137

be a multi-label classification task. Subsequently, 138

we identify polarity and intensity using the attitude 139

type, the expression that holds the attitude, and the 140

expression’s container sentence as the input. This 141

input can only have one specific polarity and one in- 142

tensity, which makes these tasks binary and 5-class 143

multi-class classification tasks, respectively. 144

An example for each task is available in Ta- 145

ble 1, and all labels and their distribution are as 146

follows: type: agreement (×284), arguing (×2,466), 147

intention (×420), and sentiment (×3,862) polarity: 148

negative (×3,200) and positive (×3,832); and intensity: 149

low (×658), low-medium (×1,262), medium (×2,615), 150

medium-high (×1,258), and high (×1,239). 151

4 Embedding and Sampling Methods 152

Whether we are using a simple FS instance selec- 153

tion or an active one, we are going to have one or 154

more iterations of selecting some samples and fine- 155

tuning the model. We name the experiments with 156

one iteration ‘non-iterative’ and name the rest ‘it- 157

erative’. In each iteration, we retrieve embeddings 158

from a certain source using an embedding method. 159

Then, we perform some processing on the obtained 160

embeddings, and choose some samples to be added 161

to our support set using a sampling method. These 162

methods are explained in this section. 163

4.1 Embedding Methods 164

We retrieve the embeddings in two different ways. 165

The first way is to use the last hidden states of 166

BART’s or T5’s encoder which we will call En for 167

short. The other way is what we call scores or Sc. It 168

uses the logits of the model and calculates the prob- 169

ability of the occurrence of each label so that each 170

sample will end up with a 2 to 5-dimensional vector 171
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(depending on the number of classes of the specific172

task) as its embedding. In both cases, we use a pre-173

trained model without any fine-tuning during the174

first iteration and use the fine-tuned model of the175

previous iteration during the subsequent iterations.176

To calculate the scores, we need to compute the177

probability P<t>
m [n] (Equation 1) which represents178

how likely the token at position t in sample m’s log-179

its belongs to the nth class out of all the N classes.180

Logits<t>
m [i] indicates the model’s logit of the ith181

word of the vocabulary at the position t for the sam-182

ple m. During this procedure, we need our classes183

to be represented by a single token, and we will dis-184

regard all the other tokens in the vocabulary that are185

not included in the task’s classes. For this matter,186

we use the dictionary ClassId(i) to find the index187

of the ith class in the vocabulary. Afterward, we188

get the score Scorem[n] (Equation 2) by taking the189

maximum probability of the nth class over all the190

output tokens (of size T ) for the sample m. This is191

especially important for multi-label tasks like the192

type task that may have more than one token in the193

output to delineate more number of labels.194

P<t>
m [n] =

eLogits
<t>
m [ClassId(n)]∑N

i=1 e
Logits<t>

m [ClassId(i)]
(1)195

Scorem[n] = max
1≤i≤T

(P<i>
m [n]) (2)196

4.2 Sampling Methods197

Within each iteration, M instances need to be sam-198

pled from the training set and added to the support199

set of size K. More precisely, these instances are200

sampled from the (simulated) unlabeled training201

set by considering the inputs and their correspond-202

ing embeddings. Only after choosing the samples,203

can we look at the labels of the M instances and204

use them in the fine-tuning process. M is a small205

number and is considered to designate the whole se-206

lection size, unlike typical FSL classification tasks207

that select M samples for each class (Ren et al.,208

2018; Chen et al., 2019; Wang et al., 2023), since209

we do not have access to those classes in our defi-210

nition of the problem.211

The sampling methods that we use in this paper212

are as follows: 1) Random: with this method, we213

simply sample M instances randomly without re-214

placement. 2) Representative (Rep): This method215

gets help from the embeddings we retrieved in our216

desired embedding method to cluster the unlabeled217

data into M groups using the K-Means algorithm.218

Then, inside each cluster, we sample the data point 219

that is the closest (euclidean distance) to the cluster 220

centroid. 3) Uncertainty (Un): It can only bene- 221

fit from the Sc embeddings to select the M sam- 222

ples about which the model has the most doubts. 223

We will be using entropy (Shannon, 1948; Settles, 224

2009) as our uncertainty measure throughout this 225

paper. 4) Uncertainty Representative (UnRep): 226

Using this technique, we first choose the α ×M 227

most uncertain samples based on the Sc embed- 228

dings. Thereafter, we will do a representative sam- 229

pling based on the En embeddings only on these 230

selected data points in order to sample the final M 231

unlabeled data. 5) Cluster Uncertainty (ClUn): 232

This strategy, at first, splits the data into M clus- 233

ters considering the given embeddings using the 234

K-Means algorithm. It will then pick the data point 235

that the model has the least confidence about inside 236

each cluster by looking at their Sc embeddings. 237

All of these methods can be used during the 238

second iteration onwards, but only the ones that do 239

not involve uncertainty (Random and Rep) can be 240

used within the first iteration and/or non-iterative 241

approaches since there’s no previous step for the 242

model to learn enough about the task and decide 243

whether it has doubts about the data. 244

5 Experiments 245

To get better intuition about the tasks, we first cal- 246

culate the majority baselines, which are the base- 247

lines we expect to beat. Additionally, we fine- 248

tune the models using the whole training set as 249

our support set (K = full training set size). These 250

results represent a sort of top-line, which we do 251

not expect to beat in our FS experiments. In ad- 252

dition, we fine-tune all pre-trained models with 253

K ∈ {10, 20, 50, 100} using random sampling, 254

representative sampling, and our proposed itera- 255

tive approaches. In iterative approaches, within 256

each iteration, we sample M = 10 new data points 257

to be added to our support set and show the results 258

when we have fine-tuned the model using support 259

sets of size K ∈ {10, 20, 50, 100}. We assign α, 260

in Section 4.2, the value of 10. 261

Table 2 shows the outcomes of these experi- 262

ments. The name of each model starts with the 263

employed pre-trained model’s name. It then con- 264

tinues with the sampling method we have used to 265

choose new samples. If we have used an iterative 266

approach, this part shows the sampling method dur- 267

ing the first iteration, and in that case, we will have 268

3



Model Name Type Polarity Intensity
10 20 50 100 Full (4,248) 10 20 50 100 Full (4,505) 10 20 50 100 Full (4,505)

Majority Baseline - - - - 56.6 - - - - 54.8 - - - - 37.2
Random Sampling
BART-Random 57.2 56.9 59.3 63.5 80.3 72.8 77.7 81.9 87.2 92.5 36.0 36.2 36.6 35.8 47.0
FLAN-T5-Random 55.6 59.3 64.5 67.1 80.7 74.4 80.1 84.3 88.3 94.2 31.0 32.7 36.0 36.1 50.0
Representative Sampling
BART-Rep(En) 56.2 57.0 59.2 63.9 - 71.4 77.5 82.5 86.3 - 37.0 35.2 37.0 36.9 -
FLAN-T5-Rep(En) 52.0 63.3 64.5 67.9 - 78.3 79.5 85.8 88.8 - 34.3 35.8 36.5 35.9 -
Iterative Approaches
FLAN-T5-Rep(En)-Un 54.6 59.9 64.4 66.9 - 78.3 80.3 88.2 91.0 - 34.5 36.3 37.1 38.2 -
FLAN-T5-Rep(En)-Rep(Sc) 54.6 61.0 65.5 68.6 - 78.3 81.7 87.5 90.8 - 34.5 35.1 37.0 37.8 -
FLAN-T5-Rep(En)-Rep(En) 54.6 60.9 64.8 68.8 - 78.3 80.4 85.4 87.7 - 34.5 35.4 37.1 38.0 -
FLAN-T5-Rep(En)-UnRep 54.6 59.8 63.2 67.8 - 78.3 81.7 86.8 90.5 - 34.5 36.2 37.3 38.2 -
FLAN-T5-Rep(En)-ClUn(Sc) 54.6 60.4 65.7 68.6 - 78.3 82.1 87.7 90.6 - 34.5 36.6 36.4 37.7 -
FLAN-T5-Rep(En)-ClUn(En) 54.6 58.9 65.1 68.5 - 78.3 79.5 86.8 90.9 - 34.5 35.5 37.5 38.8 -

Table 2: The results for type, polarity, and intensity tasks. The sub-columns denote K (i.e., support set size).

another sampling method that denotes the method269

we have utilized during the second iteration on-270

wards at the end of the name. Whenever the re-271

ferred sampling method can make use of any of the272

embedding methods, we specify the used method273

inside parentheses. All results in this paper are re-274

ported in micro-F1 (%). Each FSL experiment was275

run with 10 different seeds in the sampling phase,276

and the average of the F1-scores is reported. All the277

utilized pre-trained models are the base variants.278

6 Discussion279

Table 2 elucidates a huge difference in the results280

(especially when fine-tuning on the full dataset)281

that emerges from the differing definitions of the282

tasks, even though they are on the same dataset.283

These tasks cover binary (polarity), multi-class (in-284

tensity), and multi-label (type) classification prob-285

lems. The type task has an imbalanced set of in-286

dependent labels, yet the polarity task does not.287

The intensity task has more labels than the others288

that are mostly semantically close which makes the289

problem much harder. So, we believe that our cho-290

sen tasks are diverse and representative of a wide291

range of classification tasks.292

This table further shows that the FLAN-T5-293

based models work better than the BART-based294

models in most cases. This is why we focus on fine-295

tuning our iterative experiments on FLAN-T5 pre-296

trained model. These results indicate that simple297

representative sampling is more effective than ran-298

dom sampling, even if we use it in a non-iterative299

setup. Nevertheless, the iterative approaches when300

K ≥ 20 tend to work even better than most of301

the non-iterative approaches. They successfully302

manage to achieve the highest scores for all tasks303

when K ∈ {50, 100} by a notable margin, espe-304

cially for the polarity task. The intensity task also305

succeeds in outperforming the majority baseline306

in FSL experiments only when using the iterative307

approaches. Although the three tasks yield distinct 308

results, the iterative approach ‘FLAN-T5-Rep(En)- 309

ClUn(En)’ usually outperforms the random and 310

non-iterative approaches, and it does so consis- 311

tently for K ∈ {50, 100}. Figure 1 captures the 312

contrast between the non-iterative FLAN-T5-based 313

models and the best performer model at K = 100 314

in greater detail. 315

10 20 30 40 50 60 70 80 90 100
K

45

50

55

60

65

70

F1
-S

co
re

Type

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-Rep(En)

10 20 30 40 50 60 70 80 90 100
K

65

70

75

80

85

90

Polarity

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-Un

10 20 30 40 50 60 70 80 90 100
K

25

30

35

40

Intensity

FLAN-T5-Random
FLAN-T5-Rep(En)
FLAN-T5-Rep(En)-ClUn(En)

Figure 1: The F1 of all the tasks with steps of 10.

In addition, we have calculated the standard de- 316

viation, which varies between 0 and 7.4; while 317

the standard deviation tends to decrease as the K 318

increases, there are exceptions, and no strong pat- 319

tern emerges. We provide the complete results 320

with standard deviations alongside additional ex- 321

perimental results in Tables 3 and 4 of the appendix 322

section. 323

7 Conclusion and Future Work 324

We propose a novel method for sampling data to be 325

used in an FS setting with AL, while many others 326

tend to sample data randomly. We show how using 327

different embedding and sampling methods helps 328

us achieve better results in classification tasks by 329

choosing and labeling the most informative unla- 330

beled samples that may represent the variety of 331

data or that the model has the most doubts about. 332

These methods unleash their full potential when 333

used iteratively, using the fine-tuned model from 334

the previous iterations. Future work will expand on 335

new embedding and sampling methods in classifi- 336

cation tasks as well as other types of NLP tasks. 337
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Limitations338

In the current study, we have centered our atten-339

tion on English, using the MPQA Opinion Corpus340

2.0 which is monolingual. In the future, we can341

focus on other natural languages and alternative342

datasets, but given the absence of corpora which343

are as detailed as MPQA for other languages, this344

may turn out to be difficult. Furthermore, our pro-345

posed methods are unable to be directly used in346

non-classification or non-NLP tasks and they need347

some modifications to be applied to these types of348

tasks. These experiments also require a lot of com-349

putational resources like the other AL approaches,350

since we have to iteratively run the same experi-351

ment 10 times with an incrementally augmented352

support set.353

Ethics Statement354

Our current study is a fundamental research work355

in the field of natural language processing and356

computational linguistics. There are many applica-357

tions considered for these fields of research. For358

instance, understanding users’ tweets on Twitter,359

e-commerce applications, and question answering.360

Although many research projects have been done361

in these fields, and a large number of them accom-362

plished remarkable results, we do not explicitly363

recommend using these systems standalone. The364

reason is that there are open issues about the ro-365

bustness and fairness of these systems. Hence, we366

see a need for human experts in interpreting the367

results. From our point of view, there are no ethical368

concerns about the platforms, technologies, tools,369

and algorithms used or proposed in this study. We370

should also note that the dataset, language mod-371

els, tools, and libraries that we have utilized in this372

work are all publicly available.373
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A Additional Tables 506

Table 3 contains all the original FSL results in the 507

paper with their standard deviations. This table 508

further shows that using random sampling during 509

the first iteration mostly fails to achieve as good 510

results as representative sampling when K grows. 511

Table 4 encompasses the results of additional 512

experiments for K ∈ {5, 10, 25, 50}. This time, 513

we use M = 5 in the iterative approaches. Even 514

though, in our problem context, K represents the 515

overall size of the support set, distinct from the 516

conventional few-shot learning classification tasks 517

where K refers to the number of samples per class 518

which makes equitable representation of all labels 519

simultaneously within the support set much harder 520

for a task like intensity, we can still see that the 521

iterative approaches surpass the non-iterative ap- 522

proaches in most cases. Moreover, the iterative ap- 523

proach ‘FLAN-T5-Rep(En)-ClUn(En)’ still holds 524

up to beat all the non-iterative approaches when 525

K = 50. 526

B Implementation Details 527

Our models were implemented on PyTorch1 neu- 528

ral network framework. Furthermore, we utilized 529

the scikit-learn library2, NumPy3, and Matplotlib4 530

packages. We used the BART and FLAN-T5 (all in 531

base versions) models and their tokenizers from 532

the Hugging Face Transformers library5 (Wolf 533

et al., 2020). Our models were executed on a 534

single NVIDIA A100-SXM4-40GB GPU, DDR4 535

RAM, and dual AMD Rome 7742 CPUs (each with 536

2.25Ghz 64-Cores). The amount of GPU memory 537

required for the experiments is at most 18GB. They 538

also required a maximum of 16GB of RAM. 539

All results in this paper are reproducible by set- 540

ting the random seeds to fixed numbers. In the 541

1https://pytorch.org/
2https://scikit-learn.org/stable/
3https://numpy.org/
4https://matplotlib.org/
5https://github.com/huggingface/transformers

6
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Model Name Type Polarity Intensity
10 20 50 100 10 20 50 100 10 20 50 100

Random Sampling
BART-Random 57.2±2.4 56.9±1.3 59.3±1.3 63.5±2.4 72.8±4.2 77.7±3.4 81.9±3.4 87.2±1.6 36.0±1.9 36.2±2.2 36.6±1.2 35.8±1.7
FLAN-T5-Random 55.6±4.1 59.3±3.0 64.5±2.3 67.1±2.0 74.4±4.9 80.1±1.9 84.3±2.2 88.3±0.7 31.0±4.6 32.7±3.7 36.0±1.2 36.1±2.1
Representative Sampling
BART-Rep(En) 56.2±0.7 57.0±1.2 59.2±2.3 63.9±2.8 71.4±0.0 77.5±2.8 82.5±2.7 86.3±2.0 37.0±0.0 35.2±2.3 37.0±0.6 36.9±0.7
FLAN-T5-Rep(En) 52.0±5.6 63.3±2.4 64.5±2.0 67.9±1.6 78.3±4.1 79.5±1.4 85.8±2.6 88.8±1.3 34.3±2.3 35.8±0.8 36.5±0.9 35.9±0.9
Iterative Approaches
FLAN-T5-Random-Un 57.3±3.4 61.8±3.3 64.7±1.4 66.6±1.6 74.4±4.9 78.4±4.1 86.9±1.4 90.2±1.9 30.4±4.1 30.9±4.6 36.0±2.7 38.0±2.5
FLAN-T5-Random-Rep(En) 57.3±3.4 60.2±2.8 64.0±2.7 67.9±2.4 74.4±4.9 79.9±2.1 86.0±2.8 89.9±2.1 30.4±4.1 34.1±2.2 36.8±2.3 38.5±1.3
FLAN-T5-Rep(En)-Un 54.6±4.6 59.9±2.0 64.4±2.0 66.9±1.9 78.3±4.1 80.3±5.4 88.2±1.5 91.0±0.8 34.5±1.8 36.3±0.9 37.1±0.7 38.2±2.2
FLAN-T5-Rep(En)-Rep(Sc) 54.6±4.6 61.0±1.3 65.5±1.6 68.6±0.7 78.3±4.1 81.7±2.5 87.5±1.0 90.8±1.2 34.5±1.8 35.1±1.9 37.0±2.3 37.8±1.4
FLAN-T5-Rep(En)-Rep(En) 54.6±4.6 60.9±2.2 64.8±1.9 68.8±1.4 78.3±4.1 80.4±2.3 85.4±1.6 87.7±1.6 34.5±1.8 35.4±1.9 37.1±1.6 38.0±1.6
FLAN-T5-Rep(En)-UnRep 54.6±4.6 59.8±3.7 63.2±2.6 67.8±2.1 78.3±4.1 81.7±3.0 86.8±1.6 90.5±0.6 34.5±1.8 36.2±1.5 37.3±1.2 38.2±2.0
FLAN-T5-Rep(En)-ClUn(Sc) 54.6±4.6 60.4±2.4 65.7±2.4 68.6±1.6 78.3±4.1 82.1±4.3 87.7±1.5 90.6±1.1 34.5±1.8 36.6±0.6 36.4±1.4 37.7±1.6
FLAN-T5-Rep(En)-ClUn(En) 54.6±4.6 58.9±3.0 65.1±1.9 68.5±1.4 78.3±4.1 79.5±4.6 86.8±2.4 90.9±0.9 34.5±1.8 35.5±2.4 37.5±1.7 38.8±2.1

Table 3: All FSL results of type, polarity, and intensity tasks with their standard deviation when M = 10 (i.e.,
selection size) in iterative approaches. The sub-columns denote K (i.e., support set size).

Model Name Type Polarity Intensity
5 10 25 50 5 10 25 50 5 10 25 50

Random Sampling
BART-Random 55.0±3.8 57.2±2.4 58.0±2.1 59.3±1.3 68.0±9.0 72.8±4.2 76.8±3.3 81.9±3.4 32.7±6.2 36.0±1.9 36.1±1.5 36.6±1.2
FLAN-T5-Random 46.8±8.5 55.6±4.1 59.7±3.6 64.5±2.3 67.2±8.9 74.4±4.9 80.5±1.7 84.3±2.2 28.0±5.0 31.0±4.6 34.6±4.9 36.0±1.2
Representative Sampling
BART-Rep(En) 52.7±0.0 56.2±0.7 56.9±1.6 59.2±2.3 62.9±15.3 71.4±0.0 78.9±3.4 82.5±2.7 35.9±1.7 37.0±0.0 36.4±1.2 37.0±0.6
FLAN-T5-Rep(En) 45.8±4.2 52.0±5.6 62.2±2.7 64.5±2.0 72.1±1.3 78.3±4.1 80.6±1.4 85.8±2.6 28.5±0.6 34.3±2.3 35.4±1.4 36.5±0.9
Iterative Approaches
FLAN-T5-Rep(En)-Un 59.3±2.4 59.4±5.2 63.5±1.9 65.7±1.8 72.1±1.3 73.6±3.1 84.7±2.1 88.6±1.6 29.2±0.6 33.3±2.8 35.7±2.7 38.0±2.2
FLAN-T5-Rep(En)-Rep(Sc) 59.3±2.4 61.2±3.2 61.0±3.5 65.1±2.1 72.1±1.3 81.2±1.7 83.5±2.2 87.7±2.1 29.2±0.6 34.0±2.2 35.7±1.9 37.4±1.5
FLAN-T5-Rep(En)-Rep(En) 59.3±2.4 62.2±2.0 63.2±3.0 65.4±2.4 72.1±1.3 78.2±3.2 81.9±2.2 84.1±1.7 29.2±0.6 31.9±2.8 33.8±3.1 34.7±1.8
FLAN-T5-Rep(En)-UnRep 59.3±2.4 57.2±4.7 62.7±4.3 65.0±1.3 72.1±1.3 79.1±2.8 84.3±1.4 87.5±1.5 29.2±0.6 32.6±2.7 35.1±2.5 38.9±1.0
FLAN-T5-Rep(En)-ClUn(Sc) 59.3±2.4 61.8±3.3 63.5±2.8 65.0±2.4 72.1±1.3 80.3±2.3 84.0±1.8 88.5±1.8 29.2±0.6 33.7±1.5 36.6±1.0 37.6±1.5
FLAN-T5-Rep(En)-ClUn(En) 59.3±2.4 60.7±1.7 63.2±2.4 65.1±2.6 72.1±1.3 78.2±3.0 84.5±1.7 87.8±1.3 29.2±0.6 34.1±1.9 35.2±3.8 37.4±2.4

Table 4: All FSL results of type, polarity, and intensity tasks with their standard deviation when M = 5 (i.e.,
selection size) in iterative approaches. The sub-columns denote K (i.e., support set size).

present study, we utilized the MPQA opinion cor-542

pus. Hence, we did not use any human annotators.543
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