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Abstract

The rise of Large Language Models (LLM) in
the field of natural language processing has cre-
ated opportunities to utilize the power of Few-
Shot Learning (FSL) methods. These meth-
ods are able to achieve acceptable performance
even when working with limited training data.
The goal of FSL is to effectively utilize a small
number of annotated samples in the learning
process. However, the performance of FSL
suffers when unsuitable support samples are
chosen. This problem arises due to the heavy
reliance on a limited number of support sam-
ples, which hampers consistent performance
improvement even with the addition of more
support samples. To address this challenge,
we propose an active learning-based instance
selection mechanism that identifies effective
support instances from the unlabeled pool and
is able to work with different LLMs like BART
and FLAN-TS5. We have conducted several
experiments on three different classification
tasks. The experimental results show that our
proposed method consistently improves perfor-
mance for different few-shot tasks.

1 Introduction

Deep learning systems have shown great perfor-
mance when given enough labeled data, yet they
struggle to learn from a small amount of labeled
data (Sun et al., 2019). However, a large corpus of
labeled data is costly and time-consuming to make
for many real-world applications, and this often
hinders the building of a supervised classifier for
a new domain or application (Zhu et al., 2009). In
Few-Shot Learning (FSL), the deep learning sys-
tem has a small supply of data with supervised
information for the target tasks (Wang et al., 2020).
FSL seeks to grasp new concepts from limited la-
beled examples and build effective systems for a
broader range of applications (Sun et al., 2019).
On the other hand, with recent advances in large
language models (LLM), the capabilities of FSL

can be utilized more than before and these meth-
ods are able to reach acceptable performance even
when using a small amount of training data. Sev-
eral techniques have been proposed that are based
on this concept (Gao et al., 2021; Chen et al., 2021;
Karimi Mahabadi et al., 2022; Lin et al., 2022).

In the majority of FSL methods, the samples
are typically selected randomly and variations in
the quality of the samples can have a significant
impact on the model’s performance. In some sce-
narios, adding un- or less-informative samples can
even decrease the accuracy of the fine-tuned model
or may result in a large variance in the model’s per-
formance (Zhang et al., 2020; Schick and Schiitze,
2021b).

Considering these challenges, we proposed a
new Active Learning (AL)-based Few-Shot (FS)
sample selection method that chooses the most in-
formative unlabeled samples in order to enhance
classification performance without increasing an-
notation costs. In accordance with successful AL
algorithms (Settles, 2009), our algorithm selects
instances based on different methods (i.e., entropy
and clustering) to consider uncertainty, diversity,
and representativeness in sample selection. It
should be noted that in our proposed FSL approach,
the chosen samples will be used for fine-tuning
the LLMs and this method can be easily integrated
with existing LLMs.

To assess the effectiveness of our methodology,
we conducted an extensive series of experiments
across three distinct classification tasks: specifi-
cally, we tackled type, polarity, and intensity clas-
sification problems using the Multi-Perspective
Question Answering (MPQA) dataset. It is worth
noting that even though these tasks were chosen
from the same dataset, they belong to different
categories. Our investigation also involved multi-
ple language models, such as BART (Lewis et al.,
2019) and FLAN-T5 (Chung et al., 2022). How-
ever, the proposed approaches in this paper can be



used on any LLM that provide access to the final
hidden states of its encoder and the probability of
each label’s occurrence in the model’s output.

Our contributions can be summarized as follows:
1) We introduce an AL-based sample selection
scenario by combining uncertainty and representa-
tiveness measures for FS classification problems,
which achieves state-of-the-art performance when
paired with various recent FSL classification algo-
rithms. 2) To the best of our knowledge, this is the
first active FSL for text classification tasks.

2 Related Work

In previous studies, the FS scenario has been sim-
ulated by randomly sampling a subset from the
complete training data (Chen et al., 2020; Schick
and Schiitze, 2021a; Gao et al., 2021; Chen et al.,
2021; Lin et al., 2022). Among different FSL meth-
ods in Natural Language Processing (NLP), there
are few methods that have paid attention to the
sample selection strategies.

Some recent studies in the field of image pro-
cessing have demonstrated the effectiveness of in-
corporating AL strategies in the context of FSL
(Pezeshkpour et al., 2020; Boney et al., 2019; Li
et al., 2021; Shin et al., 2022).

The study conducted by Chang et al. (2021)
stands as the sole work that specifically addresses
sample selection in NLP. Their research focuses
on training instance selection in the context of FS
neural text generation and using it in three different
tasks with BART. Their approach is motivated by
the idea that FS training instances should exhibit
diversity and representativeness. To achieve this,
they utilized K-Means clustering for choosing data
points closer to the center of clusters as important.

3 Dataset

We use the MPQA Opinion Corpus 2.0 dataset that
is annotated at the word or phrase level to extract
the following features of attitudes expressed in the
text: type, polarity, and intensity. To elaborate, a
sentence may contain expressions that reflect differ-
ent private states with various attitudes. These atti-
tudes can belong to different types, and each type
can express negative or positive opinions (polar-
ity) toward targets with varying degrees of strength
(intensity) (Wiebe et al., 2005; Wilson, 2008).
The original MPQA annotation scheme com-
prises 6 types of attitudes. We remove the other and
speculation types in our experiments as these types

Input
Sentence

The new US policy deserves to be
closely analyzed and monitored.
Canada is among the countries that
have pledged to ratify the accord.
There is a deep faith here, however,
in the power of democracy.

Task Output

Attitude Type

arguing sentiment

P intention positive

1 sentiment high

Table 1: The examples for Type (T), Polarity (P), and
Intensity (I) tasks. The expressions within the sentences
are in bold.

of attitudes do not hold a polarity. That leaves us
with a 4-class classification task for the type. Fur-
thermore, an expression in a sentence may have
zero to four labels as attitude types based on the
expression itself and the sentence that contains the
expression. This leads the type identifier task to
be a multi-label classification task. Subsequently,
we identify polarity and intensity using the attitude
type, the expression that holds the attitude, and the
expression’s container sentence as the input. This
input can only have one specific polarity and one in-
tensity, which makes these tasks binary and 5-class
multi-class classification tasks, respectively.

An example for each task is available in Ta-
ble 1, and all labels and their distribution are as
follows: type: agreement (x284), arguing (x2,466),
intention (x420), and sentiment (x3,862) polarity:
negative (x3,200) and positive (x3,832); and intensity:
low (x658), low-medium (x1,262), medium (x2,615),
medium-high (x1,258), and high (x1,239).

4 Embedding and Sampling Methods

Whether we are using a simple FS instance selec-
tion or an active one, we are going to have one or
more iterations of selecting some samples and fine-
tuning the model. We name the experiments with
one iteration ‘non-iterative’ and name the rest ‘it-
erative’. In each iteration, we retrieve embeddings
from a certain source using an embedding method.
Then, we perform some processing on the obtained
embeddings, and choose some samples to be added
to our support set using a sampling method. These
methods are explained in this section.

4.1 Embedding Methods

We retrieve the embeddings in two different ways.
The first way is to use the last hidden states of
BART’s or T5’s encoder which we will call En for
short. The other way is what we call scores or Se. It
uses the logits of the model and calculates the prob-
ability of the occurrence of each label so that each
sample will end up with a 2 to 5-dimensional vector



(depending on the number of classes of the specific
task) as its embedding. In both cases, we use a pre-
trained model without any fine-tuning during the
first iteration and use the fine-tuned model of the
previous iteration during the subsequent iterations.

To calculate the scores, we need to compute the
probability P>t [n] (Equation 1) which represents
how likely the token at position ¢ in sample m’s log-
its belongs to the n'* class out of all the NV classes.
Logits<t>i] indicates the model’s logit of the 7*"
word of the vocabulary at the position ¢ for the sam-
ple m. During this procedure, we need our classes
to be represented by a single token, and we will dis-
regard all the other tokens in the vocabulary that are
not included in the task’s classes. For this matter,
we use the dictionary ClassId(i) to find the index
of the i*" class in the vocabulary. Afterward, we
get the score Score,,[n] (Equation 2) by taking the
maximum probability of the n'" class over all the
output tokens (of size 1) for the sample m. This is
especially important for multi-label tasks like the
type task that may have more than one token in the
output to delineate more number of labels.

eLogitsfnt> [ClassId(n)]

<t>ro1
B [TL] o Z]\il eLogitsf,Lt>[ClassId(i)] M
_ <i>
Scorem|n| = 1?%}% (P57 [n]) ()

4.2 Sampling Methods

Within each iteration, M instances need to be sam-
pled from the training set and added to the support
set of size K. More precisely, these instances are
sampled from the (simulated) unlabeled training
set by considering the inputs and their correspond-
ing embeddings. Only after choosing the samples,
can we look at the labels of the M instances and
use them in the fine-tuning process. M is a small
number and is considered to designate the whole se-
lection size, unlike typical FSL classification tasks
that select M samples for each class (Ren et al.,
2018; Chen et al., 2019; Wang et al., 2023), since
we do not have access to those classes in our defi-
nition of the problem.

The sampling methods that we use in this paper
are as follows: 1) Random: with this method, we
simply sample M instances randomly without re-
placement. 2) Representative (Rep): This method
gets help from the embeddings we retrieved in our
desired embedding method to cluster the unlabeled
data into M groups using the K-Means algorithm.

Then, inside each cluster, we sample the data point
that is the closest (euclidean distance) to the cluster
centroid. 3) Uncertainty (Un): It can only bene-
fit from the Sc embeddings to select the M sam-
ples about which the model has the most doubts.
We will be using entropy (Shannon, 1948; Settles,
2009) as our uncertainty measure throughout this
paper. 4) Uncertainty Representative (UnRep):
Using this technique, we first choose the o x M
most uncertain samples based on the Sc embed-
dings. Thereafter, we will do a representative sam-
pling based on the En embeddings only on these
selected data points in order to sample the final M
unlabeled data. 5) Cluster Uncertainty (ClUn):
This strategy, at first, splits the data into M clus-
ters considering the given embeddings using the
K-Means algorithm. It will then pick the data point
that the model has the least confidence about inside
each cluster by looking at their Sc¢ embeddings.

All of these methods can be used during the
second iteration onwards, but only the ones that do
not involve uncertainty (Random and Rep) can be
used within the first iteration and/or non-iterative
approaches since there’s no previous step for the
model to learn enough about the task and decide
whether it has doubts about the data.

5 Experiments

To get better intuition about the tasks, we first cal-
culate the majority baselines, which are the base-
lines we expect to beat. Additionally, we fine-
tune the models using the whole training set as
our support set (K = full training set size). These
results represent a sort of top-line, which we do
not expect to beat in our FS experiments. In ad-
dition, we fine-tune all pre-trained models with
K € {10,20,50,100} using random sampling,
representative sampling, and our proposed itera-
tive approaches. In iterative approaches, within
each iteration, we sample M = 10 new data points
to be added to our support set and show the results
when we have fine-tuned the model using support
sets of size K € {10,20,50,100}. We assign a,
in Section 4.2, the value of 10.

Table 2 shows the outcomes of these experi-
ments. The name of each model starts with the
employed pre-trained model’s name. It then con-
tinues with the sampling method we have used to
choose new samples. If we have used an iterative
approach, this part shows the sampling method dur-
ing the first iteration, and in that case, we will have



e Polarit; Intensit;
Model Name 10 20 soquoo Full 4,248)| 10 20 50 103 Full 4,505)| 10 20 50 100y Full (4,505)
Majority Baseline - 56.6 - - - 54.8 - 372
"Random Sampling | [T
BART-Random 572 569 593 63.5 803  |728 777 819 872 925  [360 362 366 358  47.0
FLAN-T5-Random 556 593 645 67.1 807  |744 80.1 843 883 942 310 327 360 361  50.0
"Representative Sampling | | oo
BART-Rep(En) 562 57.0 592 63.9 714 775 82.5 863 37.0 352 37.0 369
FLAN-T5-Rep(En) 520 633 645 679 783 79.5 85.8 88.8 343 358 365 359
“Tterative Approaches | | oo
FLAN-T5-Rep(En)-Un 546 599 644 669 783 80.3 88.2 91.0 345 363 37.1 382
FLAN-T5-Rep(En)-Rep(Sc) | 54.6 61.0 655 68.6 783 81.7 87.5 90.8 345 351 37.0 3738
FLAN-T5-Rep(En)-Rep(En) |54.6 60.9 64.8 68.8 783 804 854 87.7 345 354 37.1 380
FLAN-TS-Rep(En)-UnRep | 54.6 59.8 632 67.8 783 817 86.8 90.5 345 362 373 382
FLAN-T5-Rep(En)-ClUn(Sc) | 54.6 60.4 65.7 68.6 783 821 87.7 90.6 345 36.6 364 377
FLAN-T5-Rep(En)-ClUn(En) | 54.6 58.9 65.1 68.5 783 79.5 86.8 90.9 345 355 375 38.8

Table 2: The results for type, polarity, and intensity tasks. The sub-columns denote K (i.e., support set size).

another sampling method that denotes the method
we have utilized during the second iteration on-
wards at the end of the name. Whenever the re-
ferred sampling method can make use of any of the
embedding methods, we specify the used method
inside parentheses. All results in this paper are re-
ported in micro-F1 (%). Each FSL experiment was
run with 10 different seeds in the sampling phase,
and the average of the F1-scores is reported. All the
utilized pre-trained models are the base variants.

6 Discussion

Table 2 elucidates a huge difference in the results
(especially when fine-tuning on the full dataset)
that emerges from the differing definitions of the
tasks, even though they are on the same dataset.
These tasks cover binary (polarity), multi-class (in-
tensity), and multi-label (type) classification prob-
lems. The type task has an imbalanced set of in-
dependent labels, yet the polarity task does not.
The intensity task has more labels than the others
that are mostly semantically close which makes the
problem much harder. So, we believe that our cho-
sen tasks are diverse and representative of a wide
range of classification tasks.

This table further shows that the FLAN-T5-
based models work better than the BART-based
models in most cases. This is why we focus on fine-
tuning our iterative experiments on FLAN-TS pre-
trained model. These results indicate that simple
representative sampling is more effective than ran-
dom sampling, even if we use it in a non-iterative
setup. Nevertheless, the iterative approaches when
K > 20 tend to work even better than most of
the non-iterative approaches. They successfully
manage to achieve the highest scores for all tasks
when K € {50,100} by a notable margin, espe-
cially for the polarity task. The intensity task also
succeeds in outperforming the majority baseline
in FSL experiments only when using the iterative

approaches. Although the three tasks yield distinct
results, the iterative approach ‘FLAN-TS5-Rep(En)-
ClUn(En)’ usually outperforms the random and
non-iterative approaches, and it does so consis-
tently for K € {50,100}. Figure 1 captures the
contrast between the non-iterative FLAN-TS5-based
models and the best performer model at K = 100
in greater detail.

Type Polarity Intensity

V%%

—+— FLAN-TS-Random
—+— FLAN-TS-Rep(En)
—+— FLAN-T5-Rep(En)-CIUn(En)

—&— FLAN-TS-Random
—e— FLAN-TS-Rep(En)
—+— FLAN-T5-Rep(En)-Rep(En)

—+— FLAN-TS-Random
—+— FLAN-TS-Rep(En)
—+— FLAN-TS-Rep(En)-Un

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
K K K

Figure 1: The F1 of all the tasks with steps of 10.

In addition, we have calculated the standard de-
viation, which varies between 0 and 7.4; while
the standard deviation tends to decrease as the K
increases, there are exceptions, and no strong pat-
tern emerges. We provide the complete results
with standard deviations alongside additional ex-
perimental results in Tables 3 and 4 of the appendix
section.

7 Conclusion and Future Work

We propose a novel method for sampling data to be
used in an FS setting with AL, while many others
tend to sample data randomly. We show how using
different embedding and sampling methods helps
us achieve better results in classification tasks by
choosing and labeling the most informative unla-
beled samples that may represent the variety of
data or that the model has the most doubts about.
These methods unleash their full potential when
used iteratively, using the fine-tuned model from
the previous iterations. Future work will expand on
new embedding and sampling methods in classifi-
cation tasks as well as other types of NLP tasks.



Limitations

In the current study, we have centered our atten-
tion on English, using the MPQA Opinion Corpus
2.0 which is monolingual. In the future, we can
focus on other natural languages and alternative
datasets, but given the absence of corpora which
are as detailed as MPQA for other languages, this
may turn out to be difficult. Furthermore, our pro-
posed methods are unable to be directly used in
non-classification or non-NLP tasks and they need
some modifications to be applied to these types of
tasks. These experiments also require a lot of com-
putational resources like the other AL approaches,
since we have to iteratively run the same experi-
ment 10 times with an incrementally augmented
support set.

Ethics Statement

Our current study is a fundamental research work
in the field of natural language processing and
computational linguistics. There are many applica-
tions considered for these fields of research. For
instance, understanding users’ tweets on Twitter,
e-commerce applications, and question answering.
Although many research projects have been done
in these fields, and a large number of them accom-
plished remarkable results, we do not explicitly
recommend using these systems standalone. The
reason is that there are open issues about the ro-
bustness and fairness of these systems. Hence, we
see a need for human experts in interpreting the
results. From our point of view, there are no ethical
concerns about the platforms, technologies, tools,
and algorithms used or proposed in this study. We
should also note that the dataset, language mod-
els, tools, and libraries that we have utilized in this
work are all publicly available.
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A Additional Tables

Table 3 contains all the original FSL results in the
paper with their standard deviations. This table
further shows that using random sampling during
the first iteration mostly fails to achieve as good
results as representative sampling when K grows.

Table 4 encompasses the results of additional
experiments for K € {5,10,25,50}. This time,
we use M = 5 in the iterative approaches. Even
though, in our problem context, K represents the
overall size of the support set, distinct from the
conventional few-shot learning classification tasks
where K refers to the number of samples per class
which makes equitable representation of all labels
simultaneously within the support set much harder
for a task like intensity, we can still see that the
iterative approaches surpass the non-iterative ap-
proaches in most cases. Moreover, the iterative ap-
proach ‘FLAN-T5-Rep(En)-ClUn(En)’ still holds
up to beat all the non-iterative approaches when
K =50.

B Implementation Details

Our models were implemented on PyTorch! neu-
ral network framework. Furthermore, we utilized
the scikit-learn library?, NumPy?>, and Matplotlib*
packages. We used the BART and FLAN-TS5 (all in
base versions) models and their tokenizers from
the Hugging Face Transformers library® (Wolf
et al., 2020). Our models were executed on a
single NVIDIA A100-SXM4-40GB GPU, DDR4
RAM, and dual AMD Rome 7742 CPUs (each with
2.25Ghz 64-Cores). The amount of GPU memory
required for the experiments is at most 18GB. They
also required a maximum of 16GB of RAM.

All results in this paper are reproducible by set-
ting the random seeds to fixed numbers. In the

"https://pytorch.org/
Zhttps://scikit-learn.org/stable/
3https:/mumpy.org/

*https://matplotlib.org/
Shttps://github.com/huggingface/transformers
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Type Polarity Intensity
Model Name 10 20 50 100 10 20 50 100 10 20 50 100
Random Sampling
BART-Random 572424 569413 593413 63.5+2.4 |72.8442 777434 819434 87.2+16|36.0+19 362422 36.6+1.2 358+17
FLAN-T5-Random 55.6+4.1 59.3+3.0 645423 67.1+2.0 | 744449 80.1£1.9 843422 88.3+0.7 |31.044.6 32.743.7 36.0+12 36.1+2.1
‘Representative Sampling | | oo
BART-Rep(En) 56.2+0.7 S57.0£12 592423 63.9+2.8 | 71.4+0.0 77.5£2.8 82.5+2.7 86.3+2.0|37.04£0.0 352423 37.040.6 36.9+0.7
FLAN-T5-Rep(En) 520456 63.3+£24 645420 67.9+1.6|78.3+4.1 79.5£1.4 85.842.6 88.8+13|34.3+23 358+0.8 36.540.9 35.9:+09
“Iterative Approaches | T e
FLAN-T5-Random-Un 57.3+34 618433 64714 66.6+1.6|744+49 784+41 869+1.4 90.2+19|30.4+4.1 309446 360427 38.0+2.5
FLAN-T5-Random-Rep(En) |57.343.4 60.2+2.8 64.0+2.7 67.942.4|744+4.9 79.9+2.1 86.0+2.8 89.9+2.1 |30.4+4.1 341422 368423 38.5+1.3
FLAN-T5-Rep(En)-Un 54.6+4.6 59.942.0 64.4+2.0 66.9+1.9|78.3+4.1 80.3+£5.4 88.2+1.5 91.0+0.8 |34.5+£1.8 363+0.9 37.140.7 38.2+2.2
FLAN-T5-Rep(En)-Rep(Sc) | 54.6+4.6 61.0+1.3 65.5+1.6 68.6+0.7|78.3+4.1 81.7+2.5 87.5£1.0 90.8+1.2|345+1.8 351419 37.0£2.3 37.8+1.4
FLAN-T5-Rep(En)-Rep(En) | 54.6+4.6 60.9+2.2 64.8£1.9 68.8+1.4|78.3+4.1 80.4+23 854+1.6 87.7+1.6|345+1.8 354+19 37.1£1.6 38.0+16
FLAN-TS5-Rep(En)-UnRep | 54.6+4.6 59.8+3.7 63.2+2.6 67.8+2.1|78.3+4.1 81.7+3.0 868+1.6 90.5+0.6 |34.5+1.8 362415 37.3+1.2 382420
FLAN-T5-Rep(En)-CIUn(Sc) | 54.6+4.6 604424 65.7+2.4 68.6+1.6|783+4.1 82.144.3 87.7+1.5 90.6+1.1|345+1.8 36.6+0.6 36.4+14 37.7+1.6
FLAN-T5-Rep(En)-CIUn(En) | 54.6+4.6 58.9+3.0 65.1+£1.9 68.5+1.4|78.3+4.1 79.5+4.6 86.8+2.4 90.9+0.9 |34.5+18 355+24 37.5+1.7 38.8+2.1
Table 3: All FSL results of type, polarity, and intensity tasks with their standard deviation when M = 10 (i.e.,
selection size) in iterative approaches. The sub-columns denote K (i.e., support set size).

Type Polarity Intensity
Model Name 5 10 25 50 5 10 25 50 5 10 25 50
Random Sampling
BART-Random 55.0+3.8 57.2424 580421 59.3+13| 68.0+9.0 72.8+4.2 76.8+33 81.9+3.4 327462 36.0+19 36.1+15 36.6+1.2
FLAN-T5-Random 46.8+8.5 55.6+4.1 59.743.6 64.5+23| 67.2489 T44+4.9 80.5+1.7 84.3+2.2|28.0+50 31.044.6 34.6+49 36.0+12
“Representative Sampling | oo e e
BART-Rep(En) 527400 56.2+0.7 569+1.6 59.2423|62.9+153 71.4+0.0 78.9+34 82.5+2.7(35.9+1.7 37.0400 364+12 37.0+0.6
FLAN-T5-Rep(En) 45.8+4.2 520456 622427 64.5+2.0| 721413 78341 80.6+14 85.8+2.6|28.5+0.6 343423 354414 365409
‘Iterative Approaches | T e e
FLAN-T5-Rep(En)-Un 59.3+24 594452 63.5+1.9 657+1.8| 721413 73.6+3.1 84.7+2.1 88.6+1.6|29.2406 33.3+28 357427 38.0+2.2
FLAN-T5-Rep(En)-Rep(Sc) |59.3+2.4 612432 61.0+3.5 65.1+2.1| 72.141.3 812417 83.5+2.2 87.74+2.1 |29.240.6 340422 35719 37.4+L5
FLAN-T5-Rep(En)-Rep(En) |59.3+24 62.2+2.0 63.243.0 654424 | 72.141.3 782432 81.9+2.2 84.141.7|29.240.6 31.942.8 33.8+3.1 347+1.8
FLAN-T5-Rep(En)-UnRep | 59.3+2.4 572447 62.7+43 65.0+13 | 72.0141.3 79.142.8 843+1.4 87.5+1.5|29.240.6 32.6+2.7 35.142.5 38.9+1.0
FLAN-T5-Rep(En)-ClUn(Sc) | 59.3+2.4 61.8+33 63.5+28 65.042.4 | 72.141.3 803+2.3 84.0+1.8 88.5+1.8|29.240.6 33.7+1.5 36.6+1.0 37.6+1.5
FLAN-T5-Rep(En)-ClUn(En) | 59.3+2.4 60.7+1.7 63.242.4 65.142.6 | 72.141.3 78.243.0 84.5+1.7 87.841.3|29.240.6 341419 352438 37424

Table 4: All FSL results of type, polarity, and intensity tasks with their standard deviation when M = 5 (i.e.,
selection size) in iterative approaches. The sub-columns denote K (i.e., support set size).

present study, we utilized the MPQA opinion cor-
pus. Hence, we did not use any human annotators.
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