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Abstract

Sequential data modeling often relies on capturing underlying dynamics through Varia-
tional State-Space Models (VRSSMs), yet the architecture of transition functions in these
models remains underexplored. Here we investigate highway layers as latent transitions in
VRSSMs, leveraging their trainable gating mechanisms that allow flexible combination of
raw and transformed representations. Through extensive empirical evaluation across mul-
tiple datasets, we demonstrate that highway transitions consistently outperform standard
multi-layer perceptron (MLP) baselines. Our results show that highway-based VRSSMs
achieve better validation performance while demonstrating enhanced robustness to hyper-
parameter choices. The findings highlight how established neural network techniques can
significantly impact probabilistic sequential modeling when applied in new contexts. We
recommend that practitioners incorporate highway connections in their modeling toolbox
for VRSSMs, as they provide a simple yet effective architectural enhancement for capturing
temporal dependencies in sequential data.

1 Introduction

The machine learning community has long recognized that successful model training often hinges on archi-
tectural innovations and practical heuristics that address challenges such as optimization instability and poor
convergence. While many of these techniques, like residual connections (He et al., 2015) and highway layers
(Srivastava et al., 2015), have been extensively studied and celebrated for their role in advancing the pursuit
of deeper neural network models by mitigating the vanishing gradient problem (Hochreiter, 1991; He et al.,
2016; Zilly et al., 2017), often, their application in specific contexts remains underexplored or their impact
undocumented. For example, the potential of these mechanisms to improve latent transitions in sequential
probabilistic models has yet to be fully understood.

We address this gap and investigate the impact of highway transitions in deep VRSSMs. Deep VRSSMs are
designed to identify dynamics that underpin sequential data (Karl et al., 2017). Despite this focus, investi-
gations into the impact of the transition architecture have been secondary. This paper contributes to closing
this gap by exploring the advantages of highway layers as latent transitions in VRSSMs. Highway layers,
with their trainable gating mechanisms, allow a flexible combination of raw and transformed representations,
offering a promising approach to enhance sequential data modeling with VRSSMs. We show that VRSSMs
with highway transitions improve over those with baseline, MLP transitions by balancing latent encoding
and data reconstruction more effectively.

By building on the foundational work of residual and highway connections, this paper positions highway
layers as a powerful tool for advancing dynamical systems modeling with VRSSMs. Our findings highlight
the importance of revisiting established techniques in new contexts, underscoring their potential to inspire
innovation at the intersection of deep learning and probabilistic modeling.
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2 Background

2.1 State-space modeling for sequential data

State-space models (SSMs) provide a principled framework for modeling sequential observations by intro-
ducing latent variables that capture underlying temporal dependencies (Särkkä, 2013). Instead of modeling
observations directly, SSMs assume that the observed data xt is generated from an evolving latent state zt,
which follows a structured, probabilistic transition process:

p (zt | zt−1) , (transition model) (1)

p (xt | zt) . (observation model) (2)
SSMs naturally arise in systems where observations are noisy or incomplete representations of an underlying
process. For example in robotic motion, the latent state may encode position and velocity, evolving according
to physical laws, while noisy camera images serve as observations.

Central to state-space modeling is the Markov assumption, i.e. the current latent state zt depends only on the
previous state zt−1, and each observation xt is conditionally independent of past observations given zt. This
assumption allows for efficient inference while maintaining a rich representation of sequential dependencies.
For a sequence of observations x0:T = {x0, ..., xT }, the joint distribution can be factorized as:

p (x0:T , z0:T ) = p (z0)
T∏

t=1
p (zt | zt−1)

T∏
t=1

p (xt | zt) , (3)

where p (z0) represents the initial state distribution, and marginalizing out the latent states yields the
observation likelihood.

In this paper, we use SSMs to structure observational data, leveraging their ability to capture temporal de-
pendencies and account for noise. Complex transition dynamics in real-world systems often require flexible
transition models to capture intricate relationships across time. When applied to long time series, this nat-
urally leads to deep models along the time dimension, where information must be processed and propagated
across many steps. Such depth necessitates neural architectures that incorporate mechanisms for controlling
information flow to prevent degradation of long-term dependencies, as well as stable and efficient training
(Pascanu et al., 2013). In particular, gating mechanisms have emerged as a powerful solution, dynamically
regulating memory updates and suppressing irrelevant information.

2.2 Gating mechanisms in deep learning models

Gating mechanisms selectively regulate information flow in neural networks, ensuring efficient memory re-
tention and transformation, and enhance gradient propagation and adaptive computation (He et al., 2015;
2016; Vaswani et al., 2023; Liu et al., 2021). A generic gating function g : Rd → [0, 1]d is given by:

g (x) = σ (fθ (x)) , (4)

where θ are learnable parameters, and σ (·) is typically a sigmoid activation function.

Gating mechanisms are crucial components in various successful neural architectures, including, transform-
ers (Vaswani et al., 2023), spatial gating units (Liu et al., 2021), gated recurrent networks (Hochreiter
& Schmidhuber, 1997; Cho et al., 2014), and mixture-of-experts (MoE)-layers (Shazeer et al., 2017) each
adapting gating principles differently. Highway layers modulate the information flow via:

xt+1 := highwayθ (xt) := gθ (xt)⊙ hθ (xt) + (1− gθ (xt))⊙ xt, (5)

where hθ (x) represents a transformation of x, and ⊙ is the element-wise Hadamard product. Used as recur-
rent units, highway layers dynamically balance memory retention and transformation across time, providing
a structured mechanism information flow particularly suited for sequence modeling (Zilly et al., 2017). In this
work, we extend this concept to deep state-space models, leveraging highway layers as transition functions
to enhance latent state dynamics and improve sequence modeling.
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2.3 Amortized variational inference

Amortized variational inference Kingma & Welling (2022) is a scalable approach to approximate Bayesian
inference for complex latent variable models. The goal is to fit the parameters of a latent variable model
pθ (x, z) = pθ (x|z) pθ (z) such that its marginal likelihood pθ (x) aligns with a target data distribution p (x).
This is achieved by maximizing the log marginal likelihood:

arg max
θ

Ex∼p(x) [log pθ (x)] . (6)

Here, x represents the observed data. However, computing log pθ (x) involves the marginalization over the
latent variables z:

pθ (x) = log
∫

pθ (x, z) dz, (7)

which is often intractable due to the high-dimensional integral. To address this challenge, variational inference
introduces a surrogate posterior qϕ (z|x), parameterized by ϕ, to approximate the true posterior pθ (z|x).
The evidence lower bound (ELBO) provides a tractable alternative to the log marginal likelihood:

log pθ (x) ≥ Eqϕ(z|x) [log pθ (x|z)]−KL [qϕ (z|x)|pθ (z)] . (8)

Maximizing the ELBO aligns the latent variable model pθ (x, z) with the data distribution p (x) by:

• Encouraging the latent representations z under qϕ to reconstruct the observed data x accurately via
Eqϕ(z|x) [log pθ (x|z)].

• Minimizing the Kullback–Leibler (KL)-divergence between the approximate posterior qϕ (z|x) and
the prior pθ (z), thereby regularizing the latent space.

This optimization reframes the Bayesian inference problem of posterior estimation as a parameter optimiza-
tion problem. Notably, the ELBO eliminates the need to compute log pθ (x) directly, avoiding the intractable
integral over z.

Amortized variational inference further extends classical variational methods by sharing the parameters ϕ of
qϕ (z|x) across data points through a neural network. Instead of separately optimizing a posterior distribution
for each sample, a global inference model learns to map x to qϕ (z|x), greatly improving scalability for large
datasets.

3 Method

For our study, we use residual SSMs (Karl et al., 2017; Sölch, 2021), which constitute a particular class
of SSMs. Residual SSMs construct the transition distribution from a deterministic component plus a
component-wise scaled residual. Both components are implemented as feed-forward neural networks (FFNs)
parametrized by learnable parameters θ:

zt = FFNθdet
(zt−1, ut−1) + FFNθres

(zt−1, ut−1)⊙ εt, εt ∼ Dε, (9)

where θdet, θres ⊂ θ, ut are additional conditions, e.g. control signals, and the residual distribution Dε is
assumed to be zero-centered.

3.1 Deep state-space models with highway transitions

On the residual nature of residual SSMs, we add a second residual layer, namely highway transitions. While
the former induces SSM structure in the variational posterior by enabling the reuse of the deterministic
component in the inference network, residual connections in neural network layers serve the purpose of
explicit identity propagation. We use highway layers as the deterministic component of the transition
function:

FFNθdet
(zt−1, ut−1) = highwayθdet

([zt−1, ut−1]) , (10)
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where [·, ·] denotes the concatenation of the bracket content.

For learning SSM, we use amortized variational inference, which is particularly well-suited for learning the
underlying dynamics in sequential latent variable models. By leveraging both, recognition and reconstruction
models, we can incentivize structuring the latent space to align with state-space modeling assumptions. This
is crucial for accurate long-term predictions (Karl et al., 2017).

3.2 Amortized variational inference in state-space models

Similar to the static case, the ELBO optimization makes inference in SSMs tractable by introducing an
approximate posterior qϕ (z0:T |x0:T ), enabling the ELBO formulation. We chose the approximate posterior
model qϕ that decomposes like an SSM, and observe that also the sequential ELBO decomposes over time
(Bayer et al., 2021; Sölch, 2021):

ELBO =
T∑

t=0
Eqϕ(zt|x0:T ) [log pθ (xt|zt)] (11)

−KL [qϕ (z0|x0:T )|pθ (z0)]−
T∑

t=1
Eqϕ(zt|x0:T ) [KL [qϕ (zt|zt−1, xt:T )|pθ (zt|zt−1)]] . (12)

We refer to the sequential ELBO’s terms as reconstruction error, initial prior divergence, and expected
transition prior divergence, respectively. The combination of SSMs and posterior approximation via the
ELBO creates the VRSSM approach. We benefit from the choice of approximate posterior factorization
as the inference model can reuse the deterministic component and needs to infer only the residual. This
incentivizes SSM-structure on the latent space via both, inference and reconstruction model. For modeling
details, we refer to Karl et al. (2017) and Sölch (2021).

4 Experiments

We investigate the effect of highway layers when used as the deterministic component FNNθdet
in the

transition of deep variational state-space models (compare Equation 9). Therefore, we limit our discussion
to features of the deterministic component in the remainder of the script.

Our implementation of the highway layer is based on an MLP with an output of size twice the number of
latent variables. The first half of the output is fed into the activation function σ to generate the weighting
coefficients, while the second half forms the output of the sub-network hθ of Equation 5. We empirically
compare the highway transition to an MLP transition. Our model implementation is the same as in Bayer
et al. (2021). Subsection B.1 lists the architecture details and parameters used in the experiments.

Our experimental framework conducts a systematic comparison between highway networks and standard
MLP transitions. To establish practically relevant insights, we evaluate 500 sampled configurations from
a search space that covers commonly tuned hyperparameters (detailed in Subsection B.4), training paired
MLP and highway-enabled VRSSMs models for each configuration. The evaluation includes diverse systems:
the pendulum, with two degrees-of-freedom (DoF) and deterministic dynamics, serves as a baseline; the
hopper system features higher DoF and more complex dynamics; and sequential MNIST presents a case
with stochastic dynamics. For data acquisition and preprocessing checkout Appendix C. All models undergo
identical training procedures, allowing us to isolate architectural effects from other confounding factors.

4.1 Results

We evaluate the models on the ELBO. Figure 1 depicts the advantage of VRSSMs with highway-transition
against their MLP-transition counterpart. It compares the performance of the pendulum transition variants
by ranked validation loss. For the pendulum in Figure 1(a), we observe that highway-transitions give only
a small edge among the top-ranking models. Towards larger ranks the performance gap widens in favor
of highway transitions. Since machine learning practitioners commonly conduct a hyperparameter search
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Figure 1: The plots overlay the ranked runs of highway and mlp transition. They perform ranking according
to the minimum validation loss value recorded throughout training.

to determine the best model configuration, these results do not indicate a practical advantage of highway-
transitions. However, they make it more likely to find a good model given an arbitrary hyperparameter
configuration.

On the other two datasets in Figure 1(b) and Figure 1(c) respectively, we observe a performance gap across all
ranks. Firstly, this strengthens the observation that highway-transitions can be tuned more easily. Secondly,
it gives evidence, that highway-transitions yield better VRSSMs.

For qualitative evaluation of predictive capabilities, we initialize model predictions from an approximate
filtering distribution. This methodological choice intentionally excludes future observations to isolate vi-
sualization of the generative model’s stochasticity. Although the inference model estimates a smoothing
posterior, we strategically employ it to construct a filtering approximation (detailed in Subsection D.2),
leveraging the learned representations while maintaining temporal causality. Predictions propagate from the
final filtered state, with faithful reconstructions in Figure 2 and Figure 3 confirming the filter’s effectiveness
across both architectures. Example predictions initially follow the ground truth observations closely, but
deteriorate over time. This gradual divergence is an expected consequence of the stochastic nature of the
dynamics model, as uncertainty accumulates with each time step. The depicted rollouts represent individual
realizations from a distribution of possible futures modeled by the system. Interestingly, Figure 3 demon-
strates that predictions maintain fidelity to ground truth observations even beyond the training horizon,
suggesting robust capture of long-term dynamics.

On the MNIST dataset, the inference-model-based filtering approach from Subsection D.2 does not yield
faithful posterior estimates, and, hence, does not allow for a qualitative evaluation of the predictive model.
We add examples in Figure 5. Note, that the construction of an alternative filter, e.g. a particle filter, from
the learned model is possible.

As an alternative evaluation, we present reconstructions from the model’s inferred initial state in Fig-
ure 4. We call them pseudo-reconstructions. Subsection D.1 contains details on their acquisition. Pseudo-
reconstructions cannot visualize the stochasticity of the rollout well, since the estimate of the initial state
already contains information on the entire time series. However, the examples demonstrate a well-behaving
deterministic component of the transition model.

5 Related Work

5.1 Foundations of deep sequential latent variable models

The evolution of deep sequential models has seen significant advancements in both deterministic and stochas-
tic frameworks. Long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) and gated
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Figure 2: The plots depict predictive posteriors with a prefix length of 33 time steps for three example
trajectories (top to bottom) from the validation dataset. The total trajectory length is 100 time steps.
Details on the acquisition of posterior predictive samples are in Subsection D.2.

Figure 3: The plots depict predictive posteriors with a prefix length of ten filtering time steps. The total
trajectory length is 500 time steps of which we visualize 15 sampled at regular intervals. Note that, we use
custom code in Algorithm 1 to render hopper observations trajectories.

recurrent units (GRUs) (Cho et al., 2014) established foundational gating mechanisms for gradient-stable
temporal modeling. Pascanu et al. (2014)’s work on "How to Construct Deep Recurrent Neural Networks"
provided crucial insights into deepening these architectures, exploring various strategies for enhancing ex-
pressivity and gradient flow.

Zilly et al. (2017)’s recurrent highway network (RHN) further extended these concepts by introducing residual
highway connections to deepen transitions, enhancing information flow in deterministic settings. These
developments in deterministic models paved the way for more complex stochastic approaches ().

5.2 Architectural innovations in deep neural networks

The challenge of training very deep networks was addressed by Highway Networks (Srivastava et al., 2015) and
residual networks (ResNets) (He et al., 2015). Highway Networks employ LSTM-inspired gating mechanisms
to regulate information flow across layers, while ResNets utilize identity skip connections to facilitate gradient
propagation(He et al., 2016). Both architectures mitigate the vanishing gradient problem (Hochreiter, 1991),
enabling the training of networks with hundreds of layers and revolutionizing deep learning across various
domains ().

5.3 Probabilistic state-space models

The integration of variational inference with SSMs led to the development of deep VRSSMs. Karl et al.
(2017)’s deep variational Bayes filters (DVBFs) stands out for its approach to system identification, employing
neural networks to parameterize nonlinear transitions while maintaining latent Markovian structure. DVBF
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Figure 4: The plots depict pseudo reconstructions for ten examples from the validation data set.

demonstrates the ability to handle highly nonlinear input data with temporal and spatial dependencies
without domain-specific knowledge.

In contrast, Hafner et al. (2019)’s recurrent state-space modelss (RSSMs) adopt a shallow highway-inspired
GRU core for deterministic propagation within a broader stochastic framework. While RSSMs focus on
capturing dynamics through a combination of categorical latent representations and deterministic transitions,
they do not enforce the same strict latent Markovian structure as DVBFs. Similarly, Lee et al. (2020)’s
stochastic latent actor critic (SLAC) combines hierarchical latent variables with reinforcement learning but
lacks the robust model identification features inherent in DVBF.

Recent innovations by Gu et al., including structured state space (S4) (Gu et al., 2022) and Mamba (Gu &
Dao, 2024) models, have achieved linear-time sequence modeling with long-range dependencies through par-
allel time-axis computations and high-order polynomial projection operators (HiPPO) initialization. Mamba
enhances S4 with input-dependent gating mechanisms ("selectivity"), though both remain limited to deter-
ministic, linear state transitions.

5.4 Model identification and highway transitions

A key challenge in state-space modeling is balancing transition expressivity with model identifiability. DVBF
addresses this through structured transitions and inference reuse, sharing parameters between recognition
and generative networks to enforce state-space structure. This approach facilitates learning interpretable
latent states and enables efficient unsupervised learning of state-space models.

While gating mechanisms and highway networks have proven successful in deterministic models, their impact
on stochastic state-space models remains underexplored. The specific benefits of these architectural choices
on model identification and expressiveness in probabilistic settings warrant further investigation.

Our work aims to bridge this gap by incorporating highway connections into the DVBF framework, providing
an empirical analysis of highway benefits in this context. This contribution advances the design of effective,
probabilistic, and interpretable latent variable models for sequential data.

6 Conclusion

We have presented evidence that VRSSMs benefit from highway transitions. The benefit holds across systems
with varying complexity of their dynamics, and both, deterministic, and stochastic dynamics. Further, it
holds robustly across a range of reasonable and useful hyperparameter sets. Our findings align with previous
ones on deep neural networks and recurrent highway networks. Hence, we add sequential, variational models
to the field of application of highway connections. We can strongly recommend practitioners consider having
highway connections in their active toolbox.
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A Appendix

B Model architecture and parametrization

B.1 VRSSM architecture

Our concrete implementation follows the fully conditioned variant in Bayer et al. (2021). Across datasets,
the Vrssm, the Vrssm-Machine, and the Vrssm-Learner architecture share the following structure and hyper-
parameters.

Table 1: VRSSM Architecture: Components and Parameters

Component Realization Description

number of latent vari-
ables

compare Subsec-
tion B.4

The dimensionality of the latent space per
time step.

prior initial normalizing flow Parametric prior distribution of the initial
state.

normalizing flow real NVP (Dinh et al.,
2017)

Base distribution of the real NVP. The param-
eters of the base distribution are part of the
optimized parameter set.

base multi-variate Gaussian Base distribution with diagonal covariance.
number of flows 12 Number of stacked flows.
coupling layer affine Invertible transformations used in normalizing

flows.
shift and scale functions MLP The parametric functions determine the shift

and scale values for the affine transformation.
infer initial conditional Gaussian

distribution
Conditional parametric posterior distribution
of the initial state.

conditions_to_pars MLP Neural network parameterizing the distribu-
tion parameters.

location — Location parameters are output by condi-
tions_to_pars.

scale_diag — Scale parameters are output by condi-
tions_to_pars.

prior disturbance zero-centered multi-
variate Gaussian

Prior distribution over the stochastic part of
the transition with a diagonal covariance ma-
trix.

infer disturbance conditional Gaussian
distribution

Conditional parametric posterior distribution
over the stochastic component of the transi-
tion distribution.

residual scalar MLP —
feature extract RNN —
number of features compare Subsec-

tion B.4
Number of output features summarizing suc-
ceeding observations-condition trajectories.

transition MLP, highway Deterministic component of the latent dynam-
ics.

10
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emission conditional Gaussian
distribution

Conditional parametric posterior distribution
of the initial state.

conditions_to_pars parallel [MLP, scales] Parameterizes the neural network whose out-
put is the distribution parameters.

location MLP Location parameters are the output of the
MLP.

scale_diag scales Scale parameters are the output of the scales
layer.

MLP — Multi-layer Perceptron.
n_hidden compare Subsec-

tion B.4
—

activation softsign —
n_layers 1 —
use_layer_norm true —
RNN — Recurrent Neural Network.
n_hidden compare Subsec-

tion B.4
—

activation softsign —
n_layers 1 —
cell GRU —
backwards true Flag to flip the input sequence.

B.2 Machine

Table 2 lists the machine parameters used across experiments.

Table 2: Machine’s parameters.

Component Realization Description

optimizer adam (Kingma & Ba,
2017)

step size compare Subsec-
tion B.4

Learning rate of the optimizer.

use initial kl false Since we do not include KL divergence of the
initial state in the sequential ELBO loss, the
parameters of the prior of the initial state dis-
tribution are not optimized.

B.3 Learner

Table 3 lists the learner parameters used across experiments.

11
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Table 3: Learner’s parameters.

Component Realization Description

batch size compare Subsec-
tion B.4

max iter 30000 Number of training iterations.
report interval 500 Report interval in the number of training it-

erations.

B.4 Hyperparameter search domain

For our empirical comparison, we design a search space over commonly tuned hyperparameters in VRSSM
training, namely, the optimizer step size, the MLP’s number of hidden units, recurrent neural network
(RNN)’s number of hidden units, its number of output features, the number of latent variables of the SSM,
and the batch size. For a detailed specification of the search domain check out Table 4. We use the
same search domain for all data sets. From this space, we draw 500 samples. For each set, we train one
highway-transition and one MLP-transition VRSSM. This allows the evaluation of the aligned models in e.g.
Figure 6.

Table 4: Pendulum parameters.

Parameter Space Description

number of latent states {2, 3, . . . , 256} from discrete set
number of features {2, 3, . . . , 256} from discrete set
batch size {64, 128, 256, 512} from discrete set
MLP - Number of hidden
units

{2, 3, . . . , 256} from discrete set

RNN - number of hidden
units

{2, 3, . . . , 256} from discrete set

optimizer’s step size [0.001, 0.01] from continuous, logarithmic range

C Datasets

C.1 Pendulum

We base our dataset on the random v1 version of the pendulum dataset from the gymnasium suite (Fu et al.,
2021; Towers et al., 2024). For the specification and interpretation of the observation and action spaces
check the original publication. We extract action-observation trajectories by cutting all possible windows of
length 100 time steps. We keep all dimensions of both, observation and action space. Splitting into training-
validation-test partition yields sets of size 4500, 1350, and 3150 trajectories, respectively. We standardize all
sets by the per-dimension mean and standard deviation of the training data set.

C.2 Hopper

We base our dataset on the expert v2 version of the hopper dataset from the gymnasium suite (Fu et al.,
2021; Towers et al., 2024). For the specification and interpretation of the observation and action spaces
check the original publication We extract action-observation trajectories by cutting all possible windows of
length 28 time steps. We keep all dimensions of both, observation and action space. Splitting into training-

12
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validation-test partition yields sets of size 49821, 14946, and 34876 trajectories, respectively. We standardize
all sets by the per-dimension mean and standard deviation of the training data set.

C.3 Row-wise MNIST

We take the original MNIST dataset (LeCun, 1998) and create a binary and sequential version. First,
we binarize by sampling from a Bernoulli distribution with a rate proportional to the corresponding pixel
intensity. Secondly, we treat the sequence of rows in the image plane as a temporal sequence of observations.
Our sequential Modified National Institute of Standards and Technology (MNIST) dataset does not contain
actions. As multiple numbers share similar initial rows, e.g. 3, 8, 9, or 0, this yields trajectories with
stochastic dynamics. This derivation was previously used in Bayer et al. (2021). We use a Bernoulli emission
distribution to model the binary nature of the data.

D Results

D.1 Pseudo reconstructions

We present qualitative results in the form of pseudo reconstructions in Figure 4. We obtain pseudo-
reconstructions via ancestral sampling from the initial state’s posterior. In detail, we draw a sample from
the initial state’s posterior. We roll out trajectories from this sample using the learned VRSSM.

p (⇝o t|o0:T , u1:T ) =
∫

qθ (z0|o0:T u1:T )
[

t∏
τ=1

pθ (zτ |zτ−1, uτ−1)
]

pθ (⇝o t|zt) dz0:t (13)

D.2 Posterior predictions

In Figure 2 and Figure 3 we visualize predictions from a filtering posterior. We use the learned inference
model to estimate the states of a fixed-length trajectory chunk. Where necessary, we pad the beginning of
the observation-action trajectory chunks with zero. Since our inference model yields a smoothing posterior
we keep only the very last estimate - a filtering estimate. From this filtering estimate we obtain predictions
via ancestral sampling.

Figure 5: The plots depict predictive posteriors with a prefix length of 14 time steps for ten example
trajectories from the validation dataset. The total trajectory length is 28 time steps.

D.3 Additional visualizations for performance comparison

Figure 6 displays the same results as in Figure 1, however, we choose a different visualization. We observe
that a majority of training experiments falls below the line of equivalent performance, hence, for a given
hyperparameter set the highway transition model tends to be better. In Figure 6(b) and Figure 6(c), we
observe that the models with the smallest validation loss, i.e. dots in the bottom-right, fall below the lines of
equivalent performance. We can conclude that the best models are those with highway transitions. Naturally,
the conclusions are limited to these datasets and generally only indicative.
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Figure 6: The plots scatter parameter-aligned training runs of highway and mlp transitions against one
another. Again, min refers to the minimum value throughout training. The dashed diagonal line demarks
the line of equivalent performance of both transition variants. The contour lines are estimates of the 0.5,
0.85, 0.9, and 0.95 percentiles.

D.4 Rendering of hopper observation trajectories

Input: Observation sequence array
Output: Rendered images
env = make_env("Hopper-v2") ; // Initialize Hopper environment
Initialize rendered_images as empty list;
foreach observation in sequence do

if observation length == 12 then
qpos ← observation[0:5] ; // First 6 positions including rootx
qvel ← observation[6:11] ; // Last 6 velocity values

end
else

qpos ← [0] ; // Initialize with rootx position as zero
qpos[1:5] ← observation[0:4] ; // Fill remaining positions
qvel ← observation[5:10] ; // Extract velocity components

end
env.set_state(qpos, qvel) ; // Update environment state
img = env.render() ; // Capture rendered frame
Append img to rendered_images

end
Cleanup environment resources;
return rendered images;
Algorithm 1: For rendering hopper observation trajectories, we manually convert environment obser-
vations back to the physical system state. Note that, we make unintended use of the D4RL code and,
hence cannot test properly.

14


	Introduction
	Background
	State-space modeling for sequential data
	Gating mechanisms in deep learning models
	Amortized variational inference

	Method
	Deep state-space models with highway transitions
	Amortized variational inference in state-space models

	Experiments
	Results

	Related Work
	Foundations of deep sequential latent variable models
	Architectural innovations in deep neural networks
	Probabilistic state-space models
	Model identification and highway transitions

	Conclusion
	Appendix
	Model architecture and parametrization
	VRSSM architecture
	Machine
	Learner
	Hyperparameter search domain

	Datasets
	Pendulum
	Hopper
	Row-wise MNIST

	Results
	Pseudo reconstructions
	Posterior predictions
	Additional visualizations for performance comparison
	Rendering of hopper observation trajectories


