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Abstract

Statistical parity is one of the most foundational constraints in algorithmic fairness
and privacy. In this paper, we show that statistical parity can be enforced efficiently
in the contextual bandit setting while retaining strong performance guarantees.
Specifically, we present a meta-algorithm that transforms any efficient implemen-
tation of Hedge (or, equivalently, any discrete Bayesian inference algorithm) into
an efficient contextual bandit algorithm that guarantees exact statistical parity on
every trial. Compared to any comparator that satisfies the same statistical parity
constraint, the algorithm achieves the same asymptotic regret bound as running the
equivalent instance of Exp4 for each group. We also address the scenario where the
target parity distribution is unknown and must be estimated online. Finally, using
online-to-batch conversion, we extend our approach to the batch classification
setting - achieving exact statistical parity whilst attaining excellent generalisation
bounds.

1 Introduction

Statistical parity [12] is a foundational concept in algorithmic fairness and privacy. It imposes
a constraint on how decisions should be distributed across individuals with different values of a
protected characteristic. Formally, let C and V denote the sets of protected characteristics and
non-protected features (known as contexts) respectively, and let ρ be a probability distribution over
C ×V . A policy mapping C ×V to distributions over a set of actions is said to satisfy statistical parity
with respect to ρ if and only if, when a pair (c, v) is drawn from ρ and then an action a is sampled
from the policy, the selected action a is independent of the protected characteristic c. That is, for all
actions b and all protected characteristics d, d′ ∈ C we have:

P[a = b | c = d] = P[a = b | c = d′]

We now provide two illustrative examples motivating the enforcement of statistical parity. The first
concerns stop-and-search procedures, in which law enforcement officers select individuals from the
public to search for prohibited items. This practice has been the subject of substantial controversy
due to evidence of racial bias - with individuals from certain ethnic backgrounds being many times
more likely to be stopped than others. In this setting, there are two possible actions: stop and do not
stop, and the protected characteristic corresponds to an individual’s ethnicity. Enforcing statistical
parity in this context ensures that the probability of being stopped is equal across all ethnic groups,
thereby eliminating disparities attributable to racial bias.

The second example arises in the context of cyber defence. Consider a computer system that must
be protected using a defensive strategy, often referred to as a blue agent. The choice of blue agent
depends on certain private attributes of the system, one of which is particularly sensitive. Through
interaction with the system, external users may be able to infer which blue agent was selected,
thereby gaining information about the underlying attributes. In this case, the actions correspond to the
chosen blue agents, and the protected characteristics are the possible values of the sensitive attribute.
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Enforcing statistical parity ensures that the selected blue agent is independent of the sensitive attribute,
thereby preventing users from inferring anything about it.

In this paper, we primarily study the contextual bandit problem, where learning unfolds over a
sequence of trials in an online setting. On each trial, the learner selects a policy, then observes an
instance from the set C × V , and samples an action according to the chosen policy. After the action
is taken, the learner receives the loss (or, equivalently, a reward) corresponding to that action on
that trial. The goal is to minimise the total cumulative loss incurred over all trials. The algorithm’s
performance is measured via regret, defined as the difference between the expected cumulative loss
of the algorithm and that of a fixed comparator policy (or, in some cases, a sequence of comparator
policies) in hindsight. We focus mainly on the adversarial setting, in which the only assumption
is that the losses lie in [0, 1], and there are no restrictions on how instances or losses are generated.
Additionally, we consider cases where the context space exhibits structure, introducing inductive
biases to exploit this structure.

To the best of our knowledge, no prior work has successfully developed an efficient algorithm for the
contextual bandit problem that ensures statistical parity in the selected policies, even in the simplified
setting of a finite, unstructured context space with i.i.d. instances and losses. This paper addresses
that gap. We introduce SPEW (Statistical Parity with Exponential Weights), an efficient algorithm
that achieves statistical parity while matching the asymptotic regret guarantees of the classic EXP4
algorithm [2]. Like EXP4, SPEW is a meta-algorithm that leverages any efficient instantiation of
HEDGE [13] adapted to the structure of the context space.

As an example, we analyse the regret bound of SPEW for when the contexts are the set of vertices of a
tree (noting that graphs and finite metric spaces reduce to trees). In addition to guaranteeing statistical
parity with respect to a given parity distribution, SPEW also extends to settings where the parity
distribution is unknown and must be estimated from the data seen so far. Specifically, we show how
to enforce statistical parity with respect to the empirical distribution of observed instances, as well as
how to maintain statistical parity approximately when the context space is hierarchically clustered
(such as graphs or Euclidean spaces) and the instances are drawn i.i.d. from the parity distribution.

Beyond the contextual bandit setting, SPEW can also be applied to the batch classification problem
under statistical parity constraints via standard online-to-batch conversion techniques [9] . We believe
this yields novel and significant results for the batch fairness and privacy literature. Moreover, the
underlying methodology of SPEW is not necessarily limited to HEDGE-based implementations; it
should extend naturally to other exponentiated gradient algorithms, and potentially even to broader
classes of gradient-based methods. For instance, our approach should be able to adapt to the CBA
algorithm [26], enabling the incorporation of confidence-rated expert advice, which further broadens
the applicability of our framework.

We now explain why a direct modification of EXP4 to incorporate statistical parity constraints is
problematic. EXP4 modifies the inputs to HEDGE: an algorithm that performs mirror descent over
the probability simplex of experts (i.e. deterministic policies). In principle, one could attempt to
incorporate statistical parity by adding the constraint directly into the mirror descent framework.
This would require performing a relative entropy projection onto the constrained set. To compute
such a projection, we construct the Lagrangian and differentiate it to obtain necessary conditions for
optimality. While expressing the primal variables in terms of the Lagrange multipliers is straightfor-
ward, solving for the multipliers themselves appears analytically intractable. Although the projection
problem is convex and thus admits numerical solutions, known approximation methods are, as far
as we are aware, computationally infeasible in this context due to the exponential size of the expert
space. Even in the special case where there is no structure to the context set - effectively removing the
inductive bias and reducing the problem to polynomial dimension - existing approximation methods
remain considerably less efficient than our approach. In contrast, SPEW avoids these issues entirely
by not modifying HEDGE itself but rather its inputs and outputs.

Much research has focused on designing efficient algorithms for online convex optimization that,
unlike SPEW, allow constraint violations but ensure bounded cumulative constraint violation. No-
tably, the work [8] extends to the bandit setting and achieves a cumulative constraint violation of
O(T 3/4) (suppressing factors independent of T ), albeit at the cost of an additional multiplicative
term of O(M1/2T 1/4) to the regret. The work [33] attains a tighter constraint violation bound of
O(T 1/2) (when the constraint set lacks an interior point, as for statistical parity) but their approach is
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incompatible with the bandit setting and incurs polynomial dependence on the problem dimension
(which is exponential in our work) in both the regret and constraint violation bounds.

We provide a literature review in Appendix A.

2 Notation

In this section we introduce the notation used in this paper. We define R+ to be the set of non-negative
real numbers. We define N to be the set of natural numbers excluding 0. Given z ∈ N we define:

[z] := {z′ ∈ N | z′ ≤ z}

Given some finite set B we define ∆B to be the set of probability distributions over B. That is, ∆B is
the set of all ρ : B → [0, 1] with: ∑

z∈B
ρ(z) = 1

We call the set ∆B a simplex. Given sets B and B′ and a function f with domain B × B′ we define,
for all z ∈ B, the function f(z, ◦) to be the function that maps each z′ ∈ B′ to f(z, z′). Given a
predicate P we define JP K := 1 if P is true and JP K := 0 otherwise.

3 Problem Description

In this paper we consider the following problem, known as the contextual bandit problem. We have
a set of contexts V which typically has some structure associated with it. For instance, V could be
the set of vertices of a graph or points in Euclidean space. When V is finite we define N := |V|. We
also have finite sets C and A of protected characteristics and actions respectively. Let M := |C| and
K := |A|. Define the set of policies as:

Q :=
{
π ∈ [0, 1]C×V×A | ∀(c, v) ∈ C × V , π(c, v, ◦) ∈ ∆A

}
A-priori, our adversary chooses a sequence:

⟨(ct, vt, ℓt) | t ∈ [T ]⟩

where for all t ∈ [T ] we have ct ∈ C, vt ∈ V and ℓt ∈ [0, 1]A. This sequence is not revealed to us.
The problem proceeds in T trials where on trial t the following happens.

1. We implicitly select a policy π∗
t ∈ Q.

2. The pair (ct, vt) is revealed to us.
3. We draw an action at from π∗

t (ct, vt, ◦).
4. The loss ℓt(at) is revealed to us.

Our aim is to minimise the cumulative loss: ∑
t∈[T ]

ℓt(at)

In this paper we consider the enforcement of statistical parity in our policy selections. Formally, a
policy π ∈ Q has statistical parity with respect to a probability distribution ρ ∈ ∆C×V if and only if
when a pair (c, v) is drawn from ρ and then an action a is drawn from π(c, v, ◦) we have that:

P[a = b | c = d] = P[a = b | c = d′]

for all b ∈ A and d, d′ ∈ C. In other words, the selected action a is independent of the protected
characteristic c. Note that when P[c = d] = 0 then we allow P[a = b | c = d] to be arbitrary in the
above equation.

Given we have knowledge of a distribution ρ ∈ ∆C×V , our meta-algorithm SPEW will play in such a
way that each policy π∗

t has statistical parity with respect to ρ. We note that the contexts vt selected
by our adversary need not be drawn from ρ. Specifically, given any efficient implementation of an
instance of the classic HEDGE algorithm, SPEW will convert it into an efficient algorithm that will
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guarantee statistical parity whilst also guaranteeing that the bound on the difference (a.k.a. the regret)
between its cumulative loss and that which would have been incurred by any constant policy with
statistical parity is that of the equivalent instance of EXP4.

As we shall see, SPEW can also work when we have no knowledge of ρ, and instead must estimate it
from the data seen so far. SPEW can also be applied to cases in which we want to compare against a
dynamic policy sequence rather than a constant policy.

4 The Algorithm

4.1 Hedge

Here we describe how an instance of HEDGE works. We have a finite set X of virtual contexts which
is defined by the specific instance of HEDGE. On each trial t we have a non-empty set G′t ⊆ X of the
virtual contexts that are relevant for that trial, as well as a function χ′

t : V → G′t that will map, on
trial t, the given context vt to a virtual context. These mathematical objects, which are defined by the
specific instance of HEDGE, may be dependent on characteristic/context pairs seen before trial t. In
many cases we will have X = V , G′t = X and χ′

t(v) = v for all t ∈ [T ] and v ∈ V . We also have a
learning rate η̂ > 0.

We define the set of experts as:
H := AX

so that each expert associates an action with each virtual context. The inductive bias of the specific
instance of HEDGE is given by a probability distribution ϑ ∈ ∆H over the experts. HEDGE implicitly
maintains a distribution ϑ′ ∈ ∆H initialised equal to ϑ. HEDGE has the following two subroutines:

• When run on trial t the subroutine QUERY returns a function φ : G′t ×A → [0, 1] defined
by:

φ(x, a) :=
∑
e∈H

Je(x) = aKϑ′(e) ∀(x, a) ∈ G′t ×A

• When run on trial t the subroutine UPDATE takes, as input, a pair (x, ℓ) ∈ G′t × RA and
then, for all e ∈ H, implicitly sets:

ϑ′(e)← ϑ′(e) exp(−η̂ℓ(e(x)))
and finally implicitly normalises ϑ′.

Note that if HEDGE was run explicitly then these subroutines would take exponential time. However,
given a compatible inductive bias ϑ, algorithms for Bayesian inference (such as BELIEFPROPAGA-
TION [28]) can compute these subroutines efficiently. Such algorithms typically require only O(K)
time for the UPDATE subroutine as the main computation is performed during QUERY.

SPEW maintains an instance of HEDGE (a.k.a. the base algorithm) for each protected characteristic.
For simplicity, we assume each of these instances of HEDGE shares the same set X and inductive bias
ϑ although this is not actually necessary. For each c ∈ C and t ∈ [T ] define Gt(c) and χt(c, ◦) to be
the mathematical objects G′t and χ′

t for the instance of HEDGE associated with protected characteristic
c. In addition, let QUERY[c] and UPDATE[c] be the subroutines QUERY and UPDATE for the instance
of HEDGE associated with protected characteristic c.

4.2 Input and output

We now describe the input to SPEW, on each trial t ∈ [T ], and the properties of the action at that it
selects. To do this we first define the virtual policy space:

P :=
{
π ∈ [0, 1]C×X×A | ∀(c, x) ∈ C × X , π(c, x, ◦) ∈ ∆A

}
and the target space:

D :=
{
µ ∈ [0, 1]C×X | ∀c ∈ C, µ(c, ◦) ∈ ∆X

}
Finally, for any target µ ∈ D, we define F(µ) to be the set of all virtual policies π ∈ P in which for
all c, c′ ∈ C and a ∈ A we have:∑

x∈X
µ(c, x)π(c, x, a) =

∑
x∈X

µ(c′, x)π(c′, x, a)
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On each trial t ∈ [T ] the following happens:

1. A target µt ∈ D is created based on the characteristic/context pairs seen so far and the
problem at hand. This target has the property that for all (c, x) ∈ C × X with x /∈ Gt(c) we
have µt(c, x) = 0.

2. SPEW implicitly determines a virtual policy πt ∈ F(µt). This virtual policy equates to the
policy π∗

t ∈ Q by π∗
t (c, v, ◦) := πt(c, χt(c, v), ◦) for all (c, v) ∈ C × V .

3. (ct, vt) is revealed.
4. We define xt := χt(ct, vt).
5. SPEW samples the action at from the distribution πt(ct, xt, ◦). Note that this means that

SPEW samples at from π∗
t (ct, vt, ◦) as required.

6. ℓt(at) is revealed.

We now describe how this process enforces statistical parity. Specifically, suppose we have a
distribution ρ ∈ ∆C×V . We assume, for simplicity, that for each c ∈ C there exists some x ∈ X
with ρ(c, x) ̸= 0 although it is trivial to modify the algorithm so that it does not require such an
assumption. On any trial t, we can define µt by:

µt(c, x) :=

∑
v∈VJχt(c, v) = xKρ(c, v)∑

v∈V ρ(c, v)
∀(c, x) ∈ C × X

Note that for all (c, x) ∈ C × X with x /∈ Gt(c) we have µt(c, x) = 0 as required. Since πt ∈ F(µt)
we then have that the policy π∗

t has statistical parity with respect to ρ.

4.3 Pseudocode

We now give the pseudocode of SPEW. On any trial t ∈ [T ] SPEW does the following.

Receive µt, xt and ct
for c ∈ C do

ξt(c, ◦, ◦)← QUERY[c]
for a ∈ A do

ωt(c, a)←
∑

x∈Gt(c)
µt(c, x)ξt(c, x, a)

end for
end for
for (c, a) ∈ C × A do

δt(c, a)← maxc′∈C ωt(c
′, a)− ωt(c, a)

end for
βt ←

∑
a∈A maxc∈C δt(c, a)

for a ∈ A do
ψ′
t(a)← (ξt(ct, xt, a) + δt(ct, a))/(1 + βt)

end for
ht ← 1−

∑
a∈A ψ

′
t(a)

for a ∈ A do
π′
t(a)← ψ′

t(a) + ht/K
end for
Draw at from probability distribution π′

t
Receive ℓt(at)
for a ∈ A do

κt(a)← argmaxc∈C ωt(c, a)
κ′t(a)← argminc∈C ωt(c, a)

end for
for c ∈ C do

for x ∈ Gt(c) do
for a ∈ A do

λt(c, x, a)← Jβt ≤ 1KJ(c, x, a) = (ct, xt, at)Kℓt(at)/π′
t(at)

+ Jc = κt(a)Kµt(c, x)− Jc = κ′t(a)Kµt(c, x)
end for
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UPDATE[c](x, λt(c, x, ◦))
end for

end for

4.4 Description

We now briefly describe the internal workings of SPEW on trial t. For a full description and analysis
please see Appendix B. On a high level, SPEW maintains a virtual policy (which does not necessarily
satisfy statistical parity) inside the instances of HEDGE. This virtual policy is computed by calling
the QUERY subroutine of each instance of HEDGE. On trial t, this virtual policy ξt is mapped, in a
certain way, to the virtual policy πt, which does satisfy statistical parity. ξt is then updated to ξt+1 by
performing exponentiated gradient descent (on the expert probabilities) using an unbiased estimate of
the gradient of a convex surrogate of the loss of πt in terms of ξt. This exponentiated gradient descent
update is performed by updating the instances of HEDGE (via the UPDATE subroutine) multiple times.

We now go into details. Given some c ∈ C, recall (from Section 4.1) that the instance of the HEDGE
for protected characteristic c implicitly maintains a distribution in ∆H. Let ϑt(c, ◦) be the value of
this distribution at the start of trial t, so that ϑ1(c, ◦) = ϑ.

Define the virtual policy ξt ∈ P by:

ξt(c, x, a) :=
∑
e∈H

Je(x) = aKϑt(c, e)

for all (c, x, a) ∈ C × X × A. We call ξt the raw policy. For each c ∈ C SPEW needs only know
ξt(c, x, ◦) for x ∈ Gt(c), which it can compute by a call to QUERY[c].

Note that the raw policy does not necessarily belong to F(µt). The raw policy is converted into the
virtual policy πt by the following procedure. Given (c, a) ∈ C × A define:

ωt(c, a) :=
∑

x∈Gt(c)

µt(c, x)ξt(c, x, a)

and:
δt(c, a) := max

c′∈C
ωt(c

′, a)− ωt(c, a)

Furthermore define:
βt :=

∑
a∈A

max
c∈C

δt(c, a)

For all (c, x, a) ∈ C × X ×A define:

ψt(c, x, a) :=
ξt(c, x, a) + δt(c, a)

1 + βt

Finally, define the virtual policy πt ∈ P by:

πt(c, x, a) := ψt(c, x, a) +
1

K

(
1−

∑
a′∈A

ψt(c, x, a
′)

)
for all (c, x, a) ∈ C × X ×A. In Appendix B we show that πt ∈ F(µt) as required.

SPEW then samples the action at from the distribution πt(ct, xt, ◦).
Now that we have shown how to choose the action at, we will show how to update the HEDGE
instances upon receipt of ℓt(at). We first define:

S := RC×X×A

and given (ϕ, c, a) ∈ S × C ×A define:

ω̃t(ϕ, c, a) :=
∑

x∈Gt(c)

µt(c, x)ϕ(c, x, a)

We define the function yt : S → R by:

yt(ϕ) := Jβt ≤ 1K
∑
a∈A

ℓt(a)ϕ(ct, xt, a) +
∑
a∈A

(
max
c∈C

ω̃t(ϕ, c, a)−min
c∈C

ω̃t(ϕ, c, a)

)
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noting that SPEW never actually has knowledge of this function, as it is dependent on the entirety of
ℓt. In Appendix B we show that yt is convex and that:

yt(ξt) ≥
∑
a∈A

πt(ct, xt, a)ℓt(a) ; yt(π̃) ≤
∑
a∈A

π̃(ct, xt, a)ℓt(a) ∀π̃ ∈ F(µt)

These properties mean that we can use yt as a convex surrogate for the expected loss in terms of the
raw policy.

Since SPEW does not know the entirety of ℓt it does not know a subgradient of yt at ξt - which is
required for exponentiated gradient descent. Hence, we borrow the idea from EXP4, of constructing
an unbiased estimate of such a subgradient. Specifically, we define the function λt ∈ S by:

λt(c, x, a) :=Jβt ≤ 1KJ(c, x, a) = (ct, xt, at)K
ℓt(at)

πt(ct, xt, at)

+ Jc = argmaxc′∈C ωt(c
′, a)Kµt(c, x)− Jc = argminc′∈C ωt(c

′, a)Kµt(c, x)

where ties in the argmax and argmin are broken arbitrarily. In Appendix B we prove that the
expected value of λt over the draw of at is equal to a subgradient of yt at ξt. Noting that, for each
(c, e) ∈ C×H , ξt is dependent on ϑt(c, e) , we then have that an unbiased estimate of the subgradient
of yt(ξt) with respect to ϑt(c, e) is equal to:

νt(c, e) :=
∑
x∈X

λt(c, x, e(x))

We can now update the function ϑt to ϑt+1 via exponentiated gradient descent. Specifically, for all
(c, e) ∈ C ×H we have:

ϑt+1(c, e) :=
ϑt(c, e) exp(−η̂νt(c, e))∑

e′∈H ϑt(c, e′) exp(−η̂νt(c, e′))

This updated is implemented by simply running the function

UPDATE[c](x, λt(c, x, ◦))

for each c ∈ C and x ∈ Gt(c) .

4.5 Performance

In the following theorem we give the general performance guarantee of SPEW.

Theorem 4.1. Let: η := η̂
√
KT . For all t ∈ [T ] , SPEW produces πt ∈ F(µt). In addition, for any

virtual policy:
π̃ ∈

⋂
t∈[T ]

F(µt)

and for any ϑ∗ : C ×H → [0, 1] with:

π̃(c, x, a) =
∑
e∈H

Je(x) = aKϑ∗(c, e) ∀(c, x, a) ∈ C × X ×A

we have:

E

∑
t∈[T ]

ℓt(at)

 ≤ ∑
t∈[T ]

∑
a∈A

π̃(ct, xt, a)ℓt(a) +O
((

η +
Φ

η

)√
KT

)
where:

Φ :=
∑
c∈C

∑
e∈H

ϑ∗(c, e) ln

(
ϑ∗(c, e)

ϑ(e)

)
On each trial t ∈ [T ] the time complexity of SPEW is that of M calls to QUERY and

∑
c∈C |Gt(c)|

calls to UPDATE. The space complexity is that of maintaining M instances of HEDGE.
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See Appendix B for the proof of this theorem. We note that for all applications the targets µt will be
chosen such that

⋂
t∈[T ] F(µt) is non-empty. We also note that for all virtual policies π̃ ∈ P there

exists ϑ∗ : C ×H → [0, 1] with:

π(c, x, a) =
∑
e∈H

Je(x) = aKϑ∗(c, e) ∀(c, x, a) ∈ C × X ×A

as is required by the theorem. Relative to any virtual policy π̃ ∈
⋂

t∈[T ] F(µt), the regret bound
given by the theorem is asymptotically identical to that of running EXP4 independently for each
protected characteristic.

5 Examples

Before we discuss the algorithm and the main result, we will give some example applications. The
specific instances of SPEW that are used to obtain the results of this section, as well as their proofs,
are given in Appendix D. In the first example we assume that the distribution with which we must
have statistical parity with respect to is given a-priori, whilst in the final two examples it is instead
estimated from the data seen so far. Note that, in the theorems, the quantity:∑

a∈A
π̃(ct, vt, a)ℓt(a)

is the expected loss incurred by playing policy π̃ ∈ Q on trial t ∈ [T ]. Note also that η := η̂
√
KT

5.1 Trees with a known distribution

In this problem we assume we must maintain statistical parity with respect to a distribution ρ ∈ ∆C×V
that is known to us a-priori. We also assume that we have knowledge of a tree with vertex set V .
Let E be the edge set of this tree. Several types of problem reduce to this setting, including learning
on graphs [14], learning on finite metric spaces [25] and learning on finite sets endowed with a
hierarchical clustering. For graphs, the tree is created by sampling a spanning tree uniformly at
random. For metric spaces the tree is created by growing the tree context by context, linking each
new context to it’s nearest neighbour in the tree so far. For heirarchical clusterings the context set is
altered to be the set of all clusters, which naturally has a tree structure.

Given a policy π̃ ∈ Q we define its complexity as:

Ψ(π̃) :=
∑

(u,v)∈E

∑
(c,a)∈C×A

|π̃(c, u, a)− π̃(c, v, a)|

Note that Ψ(π̃) is bounded above by twice the summation, over all c ∈ C, of the number of edges
(u, v) ∈ E in which π̃(c, u, ◦) ̸= π̃(c, v, ◦) (i.e. the cutsize).

We have the following performance guarantee.

Theorem 5.1. Suppose we are given a distribution ρ ∈ ∆C×V a-priori and run the appropriate
instance of SPEW. Then all our generated policies π∗

t have statistical parity with respect to ρ and for
any policy π̃ ∈ Q with statistical parity with respect to ρ we have:

E

∑
t∈[T ]

ℓt(at)

 ≤ ∑
t∈[T ]

∑
a∈A

π̃(ct, vt, a)ℓt(a) + Õ
((

η +
M +Ψ(π̃) ln(N)

η

)√
KT

)

The per-trial time and space complexity is O(MNK).

This theorem leads directly to theorems about learning on graphs and finite metric spaces via results
from [10] (it is a commonly used fact that the expected cutsize of uniformly sampled spanning tree
of a labelled graph is equal to the effective resistance weighted cutsize of the graph) and [25] (see
Theorem 3.6 therein) respectively.
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5.2 Empirical statistical parity

We now turn to examples in which we are not given a distribution ρ a-priori. In this first example we
utilise the methodology of [16] to enforce statistical parity with respect to the empirical distribution
of the data seen so far. Note that for this to be meaningful the set V should not be too large (we will
deal with very large and essentially infinite context sets in the next example). The set V could, for
example, be created via a clustering of a larger context set. We do not exploit any structure to the
contexts in this example.

For any trial t > 1 let ρt be the empirical distribution of the data seen so far. Formally, for all
(c, v) ∈ C × V , we have:

ρt(c, v) :=
1

t− 1

∑
s∈[t−1]

Jcs = c, vs = vK

Given any sequence of policies π̃ ∈ QT , we define its complexity:

Ψ(π̃) :=
∑

t∈[T−1]

∑
(c,v,a)∈C×V×A

|π̃t+1(c, v, a)− π̃t(c, v, a)|

With these definitions in hand we have the following result:
Theorem 5.2. There exists an instance of SPEW such that for all t > 1 we have that π∗

t has statistical
parity with respect to ρt and, for any sequence of policies π̃ ∈ QT in which, for all t > 1, π̃t has
statistical parity with respect to ρt , we have that:

E

∑
t∈[T ]

ℓt(at)

 ≤ ∑
t∈[T ]

∑
a∈A

π̃t(ct, vt, a)ℓt(a) + Õ
((

η +
MN +Ψ(π̃)

η

)√
KT

)
The per-trial time and space complexity is O(MNK).

5.3 Approximate statistical parity for hierarchical clusterings with an unknown distribution

We now turn to maintaining approximate statistical parity when the context space is potentially
massive and has a known hierarchical clustering associated with it. Natural hierarchical clusterings
can be derived for several types of structure, including graphs [14], Euclidean space [29], and finite
metric spaces [24].

This example, which utilises the methodology of [25], does not assume a-priori knowledge of a
distribution ρ, but unlike the previous examples we assume here that there exists a distribution
ρ∗ ∈ ∆C×V in which the pairs (ct, vt) are each drawn i.i.d. from ρ∗. This distribution is not known
to us a-priori. We are given some ϵ, δ > 0. We say that a policy π ∈ Q has ϵ-approximate statistical
parity with respect to ρ∗ if and only if, when a pair (c, v) is drawn from ρ∗ and then an action a is
drawn from π(c, v, ◦), we have that:

P[a = b | c = d′]− ϵ ≤ P[a = b | c = d] ≤ P[a = b | c = d′] + ϵ

for all b ∈ A and d, d′ ∈ C. We are required to play in such a way that, with probability at least 1− δ,
all our chosen policies π∗

t have ϵ-approximate statistical parity with respect to ρ∗.

We assume that V is finite but potentially enormous. For instance, V could be the quantisation of
a hypercube of Euclidean space defined by all the points that the computer can handle (given its
precision). We assume there is a known hierarchical clustering over V . That is, we have a full binary
tree in which each vertex is a subset of V . The root is the whole set V , the leaves are the singleton
sets, and the two children of each internal vertex/set partition that set. We note that there is no need
to explicitly maintain the tree (which could be enormous). We define H to be the height of the
hierarchical clustering, which is typically a relatively small quantity (e.g. logarithmic in T ).

Given a policy π̃ ∈ Q we define its complexity Ψ(π̃) as follows. We first define a permitted
clustering to be any partition of V comprising of sets in the hierarchical clustering. For any protected
characteristic c ∈ C we define ψ(c, π̃) to be the minimum cardinality of any permitted clustering in
which for each set U in that permitted clustering and for all u, v ∈ U we have π̃(c, u, ◦) = π̃(c, v, ◦).
We then define:

Ψ(π̃) :=
∑
c∈C

ψ(c, π̃)
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Finally, we say that a probability distribution ρ ∈ ∆C×V is ϵ-close to ρ∗ if and only if every policy
with statistical parity with respect to ρ has ϵ-approximate statistical parity with respect to ρ∗.

With these definitions in hand we have the following result:

Theorem 5.3. There exists an instance of SPEW in which, with probability at least 1− δ, there exists
some ρ ∈ ∆C×V , which is ϵ-close to ρ∗, such that all the generated policies π∗

t have statistical parity
with respect to ρ and, for any policy π̃ with statistical parity with respect to ρ , we have:

E

∑
t∈[T ]

ℓt(at)

 ≤ ∑
t∈[T ]

∑
a∈A

π̃(ct, vt, a)ℓt(a)+Õ
(
Ψ(π̃) ln(1/δ)(H/ϵ)2 +

(
η +

HΨ(π̃)

η

)√
KT

)
If the determination of whether a context belongs to a given set of the hierarchical clustering takes
O(1) time, and the hierarchical clustering needs not be explicitly maintained to determine this, then
the per-trial time and space complexity of SPEW is O(KT ).

Note that unlike the previous examples, the time complexity is not dependent on the cardinality of the
context set. The algorithm can be easily modified to obtain exact statistical parity (without the pairs
(ct, vt) necessarily being i.i.d.) when a distribution ρ is known, as long as we can efficiently compute
the probability masses of any set in the hierarchical clustering (for any given protected characteristic).

6 Batch Classification

Finally, we describe how SPEW can enforce statistical parity in the batch classification problem. Here
there exists an unknown probability distribution ρ̂ ∈ ∆C×V×A and we are given a sequence:

⟨(ct, vt, bt) | t ∈ [T ]⟩

of T i.i.d. samples from ρ̂. We are given a distribution ρ ∈ ∆C×V (which could be the empirical
distribution of some unlabeled data). The aim is to construct a policy π ∈ Q which has statistical
parity with respect to ρ and has high accuracy:∑

(c,v,a)∈C×V×A

ρ̂(c, v, a)π(c, v, a)

To solve this problem we first define, for all t ∈ [T ], the loss function ℓt by ℓt(a) := Ja ̸= btK
for all a ∈ A and then, with the appropriate instance of HEDGE, run SPEW on the sequence
⟨(ct, vt, ℓt) | t ∈ [T ]⟩ to produce a sequence of policies ⟨π∗

t | t ∈ [T ]⟩ such that π∗
t has statistical

parity with respect to ρ for all t ∈ [T ]. Finally, we define the output policy:

π :=
1

T

∑
t∈[T ]

π∗
t

We note that via a HEDGE based doubling trick we can automatically tune the learning rate. Standard
results on online-to-batch conversion [9] convert the regret bound given in Theorem 4.1 to a bound
on the expected accuracy. Specifically, the difference between the expected accuracy of the algorithm
and that of any given policy π̃ with statistical parity is equal to the bound on the regret divided by T .
For trees this difference in expected accuracy is:

Õ
(√

(M +Ψ(π̃)) ln(N)K/T
)

where Ψ is defined as in Section D.1.
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A Literature Review

Algorithmic fairness has been a topic of much study. Notable pioneering works include [6], which
introduced statistical parity, and [12] which introduced the notion of individual fairness. Like our
batch result, [1] considered the problem of constructing a randomised classifier, with statistical
parity, which is a convex combination of deterministic classifiers from some given hypothesis space.
They solve the problem via a sequence of calls to a cost-sensitive classification oracle (for the
particular hypothesis space) and give a generalisation error in terms of the Rademacher complexity
of the hypthesis space. The work [11] considered satisfying statistical parity approximately (with an
arbitrary number of classes).

We now give a review of some of the research in the wide topic of achieving various forms of fairness
in i.i.d. stochastic bandits. [31] considered the problem of eliminating societal bias when actions
are partitioned into groups which are each subjected to societal bias. [18] considered, in the linear
bandit setting, the problem of equalizing cumulative mean rewards across two protected groups of
contexts. [30] considered the problem of, when actions are partitioned into groups, simulatenously
achieving a certain exposure for each group and ensuring that, within each group, each action is
chosen with probability proportional to its merit. [20] considered the problem of ensuring that
a better action (one with lower mean loss) never has a lower probability of being chosen than a
worse action (one with higher mean loss), [32] considered the problem of choosing each action

12



with a probability proportional to its merit, [21] considered the problem of treating similar actions
similarly, and [27] considered the constraint of selecting each action at least a pre-specified number
of times. A form of fairness with respect to instances was studied in [17] which considered the
constraint of equalising the cumulative mean loss of all protected groups (all instances that have
some given protected characteristic) in stochastic linear bandits. We note that, whilst this constraint
will be desired in some situations, it is very different from statistical parity. Possibly the closest
such work to ours is [4], which considered the i.i.d. stochastic online binary classification problem
(classifying contexts as positive or negative) under the constraint that false negatives are equalised
over two protected groups, under the assumption of the existence of an efficient oracle for empirical
risk minimisation over a finite set of hypotheses. They specifically considered a partial feedback
setting where the true class is only revealed when the positive class is chosen. However, the fairness
constraints are only approximated and the algorithm is relatively inefficient: taking a per-trial time
that is polynomial in the number of trials (the exponent is not given in the paper).

Other works on fairness in online learning include the work [5] which deals with combining expert
advice with experts that are each fair with respect to some metric, so that the resulting policy is fair
with respect to that metric. This is a very different problem to that studied in this paper: which utilises
experts that do not satisfy statistical parity. Another notable work is [3] which considers the problem
of enforcing individual fairness in online settings where no metric is given but instead there exists an
auditor which identifies pairs of users treated unfairly.

Finally, as described in the introduction (where we discussed the works [8] and [33]), there has been
much work on online learning subject to convex constraints (which are approximately satisfied in the
long run). This line of research was pioneered by [22] and was extended to time-varying constraints
in [23]. The work [7] considered both time-varying constraints and bandit feedback. The work
[19] achieved bounds that can tradeoff between regret and constraint violation. The algorithm in
[22] works by gradient descent/ascent on the Lagrangian, whilst our algorithm SPEW works in a
fundamentally different way - by mapping a maintained policy (without statistical parity) to a policy
with statistical parity and performing exponentiated gradient descent (on the maintained policy) with
a surrogate for the resulting loss in terms of the original policy.

B Algorithm and Analysis

Here we describe and analyse the mechanics of SPEW. All lemmas stated in this section are proved
in Section C. Since this section works entirely in the virtual context space we will refer to, in this
section, virtual contexts and policies as contexts and policies respectively. We define I := C × X .

Let η, π̃, ϑ and ϑ∗ be as in Theorem 4.1. Without loss of generality we can assume that:

η ≤
√
T/K

otherwise our regret bound would be vacuous. Recall that SPEW takes as input an algorithm (a.k.a.
the base algorithm) for implementing Hedge with inductive bias ϑ. For the base algorithm we will
choose the learning rate:

η̂ :=
η√
KT

We will maintain M instances of this algorithm, one for each protected characteristic c ∈ C. For
each c ∈ C let QUERY[c] and UPDATE[c] be the QUERY and UPDATE subroutines for the instance
of the base algorithm associated with the protected characteristic c. Given some c ∈ C, recall (from
Section 4.1) that the instance of the base algorithm for protected characteristic c implicitly maintains
a distribution in ∆H. Let ϑt(c, ◦) be the value of this distribution at the start of trial t, so that
ϑ1(c, ◦) = ϑ.

We now describe and analyse how SPEW behaves on trial t and, in doing so, will bound the instanta-
neous regret:

rt :=
∑
a∈A

(πt(ct, xt, a)− π̃(ct, xt, a))ℓt(a)

B.1 Fundamental Definitions

We now make some fundamental definitions. We first define:
S := RC×X×A

13



Given (ϕ, c, a) ∈ S × C ×A define:

ω̃t(ϕ, c, a) :=
∑

x∈Gt(c)

µt(c, x)ϕ(c, x, a) =
∑
x∈X

µt(c, x)ϕ(c, x, a)

and define:
δ̃t(ϕ, c, a) := max

c′∈C
ω̃t(ϕ, c

′, a)− ω̃t(ϕ, c, a)

Given ϕ ∈ S define:
β̃t(ϕ) :=

∑
a∈A

max
c∈C

δ̃t(ϕ, c, a)

Finally, we define Zt to be the set of all ϕ ∈ S in which for all c, c′ ∈ C and a ∈ A we have:

ω̃t(ϕ, c, a) = ω̃t(ϕ, c
′, a)

We note that F(µt) = P ∩ Zt.

B.2 Computing the Policy

Define the policy ξt ∈ P by:

ξt(c, x, a) :=
∑
e∈H

Je(x) = aKϑt(c, e)

for all (c, x, a) ∈ C × X × A. We call ξt the raw policy. For each c ∈ C SPEW needs only know
ξt(c, x, ◦) for x ∈ Gt(c), which it can compute by a call to QUERY[c]. We state the above equation
as the following lemma:
Lemma B.1. For all (c, x, a) ∈ C × X ×A we have:

ξt(c, x, a) =
∑
e∈H

Je(x) = aKϑt(c, e)

We now describe the conversion of our raw policy ξt into our fair policy πt. We call this conversion
process policy processing. First define, for all a ∈ A and c ∈ C , the quantities:

δt(c, a) := δ̃t(ξt, c, a) ; βt := β̃t(ξt)

We define a function ψt ∈ S such that for any (c, x, a) ∈ C × X ×A we have:

ψt(c, x, a) :=
ξt(c, x, a) + δt(c, a)

1 + βt

The function ψt has the following properties:
Lemma B.2. We have that ψt ∈ Zt. In addition we have, for all (c, x) ∈ I, that:∑

a∈A
ψt(c, x, a) ≤ 1

and that ψt(c, x, a) ≥ 0 for all a ∈ A.

The above lemma shows that the function ψt satisfies most of our constraints. However, it is not
necessarily in P as the functions ψt(c, x, ◦) may not lie on the simplex ∆A. In order to convert it into
πt we simply add, to each of the functions ψt(c, x, ◦), some the uniform distribution. Specifically,
for all (c, x, a) ∈ C × X ×A we define:

πt(c, x, a) := ψt(c, x, a) +
1

K

(
1−

∑
a′∈A

ψt(c, x, a
′)

)
The following lemma, which follows from Lemma B.2, confirms that πt does indeed lie in F(µt).
Lemma B.3. We have:

πt ∈ F(µt)
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We now give two additional lemmas that are crucial to our analysis. The first lemma follows from
Lemma B.2.
Lemma B.4. For all (c, x, a) ∈ C × X ×A we have:

πt(c, x, a) ≥
ξt(c, x, a)

1 + βt

The next lemma follows from lemmas B.3 and B.4
Lemma B.5. For all (c, x) ∈ I we have:∑

a∈A
max{0, πt(c, x, a)− ξt(c, x, a)} ≤ βt

We have now derived all the properties of πt needed to proceed with the algorithm and analysis.

B.3 The Objective Function and its Pseudo-Gradient

Now that we have shown how to compute πt we turn to the update of the base algorithm instances
at the end of the trial. In order to do this we need a convex objective function yt : S → R which
we note will never actually be known by Learner. Our objective function is defined such that for all
ϕ ∈ S we have:

yt(ϕ) := Jβt ≤ 1K
∑
a∈A

ℓt(a)ϕ(ct, xt, a) + β̃t(ϕ)

The reason we have chosen such an objective function is due to the following two lemmas, where
Lemma B.6 follows from Lemma B.5. We note that the appearance of Jβt ≤ 1K in the definition of
yt is to ensure another crucial lemma, which we shall present later.
Lemma B.6. We have:

yt(ξt) ≥
∑
a∈A

πt(ct, xt, a)ℓt(a)

Lemma B.7. We have:
yt(π̃) ≤

∑
a∈A

π̃(ct, xt, a)ℓt(a)

We will show that yt is indeed convex by showing that it has a sub-gradient at every point in S. In
order to give such a sub-gradient we first define, for all (ϕ, a) ∈ S ×A, the quantities:

κ̃t(ϕ, a) := argmaxc∈C ω̃t(ϕ, c, a) ; κ̃′t(ϕ, a) := argminc∈C ω̃t(ϕ, c, a)

where ties are broken arbitrarily. We then define gt : S × C × X × A → R such that for all
(ϕ, c, x, a) ∈ S × C × X ×A we have:

gt(ϕ, c, x, a) := Jβt ≤ 1KJ(c, x) = (ct, xt)Kℓt(a)+ Jc = κ̃t(ϕ, a)Kµt(c, x)− Jc = κ̃′t(ϕ, a)Kµt(c, x)

The next lemma shows that for all ϕ ∈ S we have that gt(ϕ, ◦, ◦, ◦) is a sub-gradient of yt at ϕ.
Lemma B.8. For any ϕ, ϕ′ ∈ S we have:

yt(ϕ)− yt(ϕ′) ≤
∑
c∈C

∑
x∈X

∑
a∈A

gt(ϕ, c, x, a)(ϕ(c, x, a)− ϕ′(c, x, a))

Due to the fact that we don’t know the entire function ℓt , we can’t compute the sub-gradient
gt(ξt, ◦, ◦, ◦) so instead, will borrow the technique, from EXP4, of using Ja = atKℓt(at)/πt(ct, xt, at)
as an unbiased estimator of ℓt(a). This gives us the following function λt that we call the pseudo-
gradient. λt ∈ S is defined such that for all (c, x, a) ∈ C × X ×A we have:

λt(c, x, a) :=Jβt ≤ 1KJ(c, x, a) = (ct, xt, at)K
ℓt(at)

πt(ct, xt, at)

+ Jc = κ̃t(ξt, a)Kµt(c, x)− Jc = κ̃′t(ξt, a)Kµt(c, x)

The following lemma states that λt is an unbiased estimator of the sub-gradient gt(ξt, ◦, ◦, ◦).
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Lemma B.9. For all (c, x, a) ∈ C × X ×A we have:

E[λt(c, x, a) | ξt] = gt(ξt, c, x, a)

Note that for the full-information online and batch classification versions of SPEW we can use the
true sub-gradient instead of λt in order to give a deterministic algorithm.

Lemmas B.6, B.7, B.8 and B.9 combine to give us the following lemma.

Lemma B.10. We have:

E

[∑
c∈C

∑
x∈X

∑
a∈A

(ξt(c, x, a)− π̃(c, x, a))λt(c, x, a)

∣∣∣∣∣ ξt
]
≥ rt

Now define νt : C ×H → R such that for all (c, e) ∈ C ×H we have:

νt(c, e) :=
∑
x∈X

λt(c, x, e(x))

Lemmas B.1 and B.10 combine to give us the following lemma.

Lemma B.11. We have:

E

[∑
c∈C

∑
e∈H

(ϑt(c, e)− ϑ∗(c, e))νt(c, e)

∣∣∣∣∣ϑt
]
≥ rt

The reason that the term Jβt ≤ 1K appears in the definition of our objective function yt is to ensure
the following crucial property of the pseudo-gradient, which follows from Lemma B.4.

Lemma B.12. We have:

E

[∑
c∈C

∑
e∈H

ϑt(c, e)νt(c, e)
2

∣∣∣∣∣ϑt
]
≤ 8K

Finally we have the following lemma:

Lemma B.13. For all (c, e) ∈ C ×H we have:

νt(c, e) ≥ −K

We have now derived all the properties of νt needed to progress to the next stage of the algorithm and
analysis.

B.4 Hedge Update

To update we run, for each c ∈ C and x ∈ Gt(c) , the function:

UPDATE[c](x, λt(c, x, ◦))

We have the following lemma.

Lemma B.14. For all (c, e) ∈ C ×H we have:

ϑt+1(c, e) =
ϑt(c, e) exp(−η̂νt(c, e))∑

e′∈H ϑt(c, e′) exp(−η̂νt(c, e′))

We define the relative entropy B : ∆H ×∆H → R such that for all β, β′ ∈ ∆H we have:

B(β, β′) :=
∑
e∈H

β(e) ln

(
β(e)

β′(e)

)
Lemma B.13 and Lemma B.14 give us the following lemma.
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Lemma B.15. For all c ∈ C we have:

B(ϑ∗, ϑt(c, ◦))−B(ϑ∗, ϑt+1(c, ◦)) ≥ η̂
∑
e∈H

(ϑt(c, e)−ϑ∗(c, e))νt(c, e)− η̂2
∑
e∈H

ϑt(c, e)νt(c, e)
2

This lemma combines with lemmas B.11 and B.12 to give the following lemma.

Lemma B.16. We have:

E

[∑
c∈C

(B(ϑ∗, ϑt(c, ◦))−B(ϑ∗, ϑt+1(c, ◦)))

∣∣∣∣∣ϑt
]
≥ η̂rt − 8η̂2K

This completes the description and analysis of trial t.

B.5 Regret Bound

To get the overall regret bound we take expectations on Lemma B.16 and sum over all t ∈ [T ] , which
gives us the following lemma.

Lemma B.17. We have: ∑
t∈[T ]

E[rt] ≤ (8η − Φ/η)
√
K/T

where:

Φ :=
∑
c∈C

∑
e∈H

ϑ∗(c, e) ln

(
ϑ∗(c, e)

ϑ(e)

)

C Proofs of Lemmas

We now prove, in order, all of the lemmas given in this Appendix B.

C.1 Lemma B.1

This is immediately clear from the construction of ξt and the description of HEDGE given in Section
4.1.

C.2 Lemma B.2

We first show that ψt ∈ Zt. To show this consider some c ∈ C and a ∈ A. We have:

(1 + βt)ω̃t(ψt, c, a) = (1 + βt)
∑
x∈X

µt(c, x)ψt(c, x, a)

=
∑
x∈X

µt(c, x)(ξt(c, x, a) + δt(c, a))

=
∑
x∈X

µt(c, x)ξt(c, x, a) + δt(c, a)
∑
x∈X

µt(c, x)

= ω̃t(ξt, c, a) + δt(c, a)

= ω̃t(ξt, c, a) + δ̃t(ξt, c, a)

= ω̃t(ξt, c, a) + max
c′∈C

ω̃t(ξt, c
′, a)− ω̃t(ξt, c, a)

= max
c′∈C

ω̃t(ξt, c
′, a)

Since this is independent of c we have that ψt ∈ Zt as required.
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We now show that, given (c, x) ∈ I, we have
∑

a∈A ψt(c, x, a) ≤ 1. This is true since ξt ∈ P and
hence:

(1 + βt)
∑
a∈A

ψt(c, x, a) =
∑
a∈A

ξt(c, x, a) +
∑
a∈A

δt(c, a)

= 1 +
∑
a∈A

δ̃t(ξt, c, a)

≤ 1 +
∑
a∈A

max
c′∈C

δ̃t(ξt, c
′, a)

= 1 + β̃t(ξt)

≤ (1 + βt)

as required.

The fact that ψt(c, x, a) ≥ 0 for all (c, x, a) ∈ C × X ×A follows directly from the fact that, since
ξt ∈ P , we have that δt(c, a) and βt and ξt(c, x, a) are all non-negative.

C.3 Lemma B.3

We first show that πt ∈ P . To show this consider any (c, x) ∈ I. By Lemma B.2 we have that∑
a∈A ψt(c, x, a) ≤ 1 and hence:

1−
∑
a′∈A

ψt(c, x, a
′) ≥ 0

For all a ∈ A we have, by Lemma B.2, that ψt(c, x, a) ≥ 0 and hence the above equation implies
that:

πt(c, x, a) = ψt(c, x, a) +
1

K

(
1−

∑
a′∈A

ψt(c, x, a
′)

)
≥ 0 + 0 = 0

Finally note that:∑
a∈A

πt(c, x, a) =
∑
a∈A

ψt(c, x, a) +
1

K

∑
a∈A

(
1−

∑
a′∈A

ψt(c, x, a
′)

)

=
∑
a∈A

ψt(c, x, a) +

(
1−

∑
a′∈A

ψt(c, x, a
′)

)
= 1

Since these equations hold for all (c, x) ∈ I , we have shown that πt ∈ P . Hence, all we now need to
show is that πt ∈ Zt. To show this, note that by Lemma B.2 we have that ψt ∈ Zt. Hence, there
exists a function z : A → R such that for all (c, a) ∈ C × A we have:∑

x∈X
µt(c, x)ψt(c, x, a) = ω̃t(ψt, c, a) = z(a)

So for all (c, a) ∈ C ×A we have:

ω̃t(πt, c, a) =
∑
x∈X

µt(c, x)πt(c, x, a)

=
∑
x∈X

µt(c, x)ψt(c, x, a) +
∑
x∈X

µt(c, x)

K

(
1−

∑
a′∈A

ψt(c, x, a
′)

)

= z(a) +
1

K

∑
x∈X

µt(c, x)−
1

K

∑
a′∈A

∑
x∈X

µt(c, x)ψt(c, x, a
′)

= z(a) +
1

K
− 1

K

∑
a′∈A

z(a′)

Since this is independent of c we have πt ∈ Zt as required. This completes the proof.
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C.4 Lemma B.4

Choose any (c, x, a) ∈ C × X ×A. By Lemma B.2 we have
∑

a∈A ψt(c, x, a) ≤ 1 so since δt(c, a)
and βt and ξt(c, x, a) are all non-negative, we have that:

πt(c, x, a) = ψt(c, x, a) +
1

K

(
1−

∑
a′∈A

ψt(c, x, a
′)

)

≥ ψt(c, x, a) +
1

K
(1− 1)

= ψt(c, x, a)

=
ξt(c, x, a) + δt(c, a)

1 + βt

≥ ξt(c, x, a)

1 + βt

as required.

C.5 Lemma B.5

Take any (c, x, a) ∈ C × X ×A. By Lemma B.4 we have:

0 ≤ πt(c, x, a)−
ξt(c, x, a)

1 + βt

Since βt and ξt(c, x, a) are non-negative we also have:

πt(c, x, a)− ξt(c, x, a) ≤ πt(c, x, a)−
ξt(c, x, a)

1 + βt

and hence we have shown that:

max{0, πt(c, x, a)− ξt(c, x, a)} ≤ πt(c, x, a)−
ξt(c, x, a)

1 + βt

Now take any (c, x) ∈ I. By lemmas B.1 and B.3 we have that both πt and ξt are in P . Hence, by
the above equation we have, since βt ≥ 0, that:

∑
a∈A

max{0, πt(c, x, a)− ξt(c, x, a)} ≤
∑
a∈A

(
πt(c, x, a)−

ξt(c, x, a)

1 + βt

)
(1)

=
∑
a∈A

πt(c, x, a)−
1

1 + βt

∑
a∈A

ξt(c, x, a) (2)

= 1− 1

1 + βt
(3)

=
βt

1 + βt
(4)

≤ βt (5)

as required.
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C.6 Lemma B.6

We consider two cases. First consider the case that βt > 1. In this case we have, since ξt ∈ P and
ℓt(a) ≤ 1 for all a ∈ A, that:

yt(ξt) = Jβt ≤ 1K
∑
a∈A

ℓt(a)ξt(ct, xt, a) + β̃t(ξt)

= β̃t(ξt)

= βt
> 1

=
∑
a∈A

πt(ct, xt, a)

≥
∑
a∈A

πt(ct, xt, a)ℓt(a)

Now consider the case that βt ≤ 1. Since ℓt(a) ∈ [0, 1] for all a ∈ A, we have, by Lemma B.5, that:∑
a∈A

ℓt(a)πt(ct, xt, a)−
∑
a∈A

ℓt(a)ξt(ct, xt, a) =
∑
a∈A

ℓt(a)(πt(ct, xt, a)− ξt(ct, xt, a))

≤
∑
a∈A

ℓt(a)max{0, πt(ct, xt, a)− ξt(ct, xt, a)}

≤
∑
a∈A

max{0, πt(ct, xt, a)− ξt(ct, xt, a)}

≤ βt
Hence, we have that:

yt(ξt) = Jβt ≤ 1K
∑
a∈A

ℓt(a)ξt(ct, xt, a) + β̃t(ξt)

=
∑
a∈A

ℓt(a)ξt(ct, xt, a) + βt

≥
∑
a∈A

ℓt(a)ξt(ct, xt, a) +

(∑
a∈A

ℓt(a)πt(ct, xt, a)−
∑
a∈A

ℓt(a)ξt(ct, xt, a)

)
=
∑
a∈A

ℓt(a)πt(ct, xt, a)

So in either case we have the result.

C.7 Lemma B.7

Since π̃ ∈ F(µt) we have π̃t ∈ Zt which implies that there exists a function z : A → R such that
for all (c, a) ∈ C × A we have ω̃t(π̃, c, a) = z(a). Hence, we have, for all (c, a) ∈ C × A , that:

δ̃t(π̃, c, a) = max
c′∈C

ω̃t(π̃, c
′, a)− ω̃t(π̃, c, a) = z(a)− z(a) = 0

Since ℓt(a) and π̃(ct, xt, a) are non-negative for all a ∈ A, this implies that:

yt(π̃) := Jβt ≤ 1K
∑
a∈A

ℓt(a)π̃(ct, xt, a) + β̃t(π̃)

≤
∑
a∈A

ℓt(a)π̃(ct, xt, a) +
∑
a∈A

max
c∈C

δ̃t(π̃, c, a)

=
∑
a∈A

ℓt(a)π̃(ct, xt, a)

as required.
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C.8 Lemma B.8

Take any a ∈ A. Given ϕ∗ ∈ S and c′ ∈ C we have:∑
(c,x)∈I

Jc = c′Kµt(c, x)ϕ
∗(c, x, a) =

∑
x∈X

µt(c
′, x)ϕ∗(c′, x, a) = ω̃t(ϕ

∗, c′, a)

which implies that: ∑
(c,x)∈I

Jc = κ̃t(ϕ, a)Kµt(c, x)ϕ(c, x, a) = max
c′∈C

ω̃t(ϕ, c
′, a) (6)

∑
(c,x)∈I

Jc = κ̃′t(ϕ, a)Kµt(c, x)ϕ(c, x, a) = min
c′∈C

ω̃t(ϕ, c
′, a) (7)

∑
(c,x)∈I

Jc = κ̃t(ϕ, a)Kµt(c, x)ϕ
′(c, x, a) ≤ max

c′∈C
ω̃t(ϕ

′, c′, a) (8)

∑
(c,x)∈I

Jc = κ̃′t(ϕ, a)Kµt(c, x)ϕ
′(c, x, a) ≥ min

c′∈C
ω̃t(ϕ

′, c′, a) (9)

For all a ∈ A , equations (6) and (7) imply that:∑
(c,x)∈I

gt(ϕ, c, x, a)ϕ(c, x, a)

=
∑

(c,x)∈I

Jβt ≤ 1KJ(c, x) = (ct, xt)Kℓt(a)ϕ(c, x, a) + max
c′∈C

ω̃t(ϕ, c
′, a)−min

c′∈C
ω̃t(ϕ, c

′, a)

=
∑

(c,x)∈I

Jβt ≤ 1KJ(c, x) = (ct, xt)Kℓt(a)ϕ(c, x, a) + max
c†∈C

(
max
c′∈C

ω̃t(ϕ, c
′, a)− ω̃t(ϕ, c

†, a)

)
= Jβt ≤ 1Kℓt(a)ϕ(ct, xt, a) + max

c†∈C
δ̃t(ϕ, c

†a)

This means that:∑
a∈A

∑
(c,x)∈I

gt(ϕ, c, x, a)ϕ(c, x, a) =
∑
a∈A

Jβt ≤ 1Kℓt(a)ϕ(ct, xt, a) +
∑
a∈A

max
c†∈C

δ̃t(ϕ, c
†, a)

= Jβt ≤ 1K
∑
a∈A

ℓt(a)ϕ(ct, xt, a) + β̃t(ϕ)

= yt(ϕ) (10)

Similarly, for all a ∈ A, equations (8) and (9) imply that:∑
(c,x)∈I

gt(ϕ, c, x, a)ϕ
′(c, x, a)

≤
∑

(c,x)∈I

Jβt ≤ 1KJ(c, x) = (ct, xt)Kℓt(a)ϕ′(c, x, a) + max
c′∈C

ω̃t(ϕ
′, c′, a)−min

c′∈C
ω̃t(ϕ

′, c′, a)

=
∑

(c,x)∈I

Jβt ≤ 1KJ(c, x) = (ct, xt)Kℓt(a)ϕ′(c, x, a) + max
c†∈C

(
max
c′∈C

ω̃t(ϕ
′, c′, a)− ω̃t(ϕ

′, c†, a)

)
= Jβt ≤ 1Kℓt(a)ϕ′(ct, xt, a) + max

c†∈C
δ̃t(ϕ, c

†, a)

This means that:∑
a∈A

∑
(c,x)∈I

gt(ϕ, c, x, a)ϕ
′(c, x, a) ≤

∑
a∈A

Jβt ≤ 1Kℓt(a)ϕ′(ct, xt, a) +
∑
a∈A

max
c†∈C

δ̃t(ϕ, c
†, a)

= Jβt ≤ 1K
∑
a∈A

ℓt(a)ϕ
′(ct, xt, a) + β̃t(ϕ

′)

= yt(ϕ
′) (11)
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Equations 10 and 11 give us:∑
(c,x)∈I

∑
a∈A

gt(ϕ, c, x, a)(ϕ(c, x, a)− ϕ′(c, x, a)) =
∑

(c,x)∈I

∑
a∈A

gt(ϕ, c, x, a)ϕ(c, x, a)−
∑

(c,x)∈I

∑
a∈A

gt(ϕ, c, x, a)ϕ
′(c, x, a)

≥ yt(ϕ)− yt(ϕ′)
as required.

C.9 Lemma B.9

In this proof we use, throughout, the property of linearity of expectation. Take any a ∈ A. Since xt ,
ct , πt and ℓt(a) are deterministic when conditioned on ξt we have:

E

[
Ja = atK

ℓt(at)

πt(ct, xt, at)

∣∣∣∣∣ ξt
]
= E

[
Ja = atK

ℓt(a)

πt(ct, xt, a)

∣∣∣∣∣ ξt
]

=
ℓt(a)

πt(ct, xt, a)
E[Ja = atK | ξt]

=
ℓt(a)

πt(ct, xt, a)
P[a = at | ξt]

=
ℓt(a)

πt(ct, xt, a)
πt(ct, xt, a)

= ℓt(a) (12)

Which immediately gives us the result.

C.10 Lemma B.10

By lemmas B.6 and B.7 we have:

rt =
∑
a∈A

πt(ct, xt, a)ℓt(a)−
∑
a∈A

π̃(ct, xt, a)ℓt(a) ≤ yt(ξt)− yt(π̃) (13)

and by lemmas B.8 and B.9 and the linearity of expectation we have, since π̃ is independent of ξt,
that:

yt(ξt)− yt(π̃) ≤
∑

(c,x)∈I

∑
a∈A

gt(ξt, c, x, a)(ξt(c, x, a)− π̃(c, x, a))

=
∑

(c,x)∈I

∑
a∈A

E[λt(c, x, a) | ξt](ξt(c, x, a)− π̃(c, x, a))

= E

 ∑
(c,x)∈I

∑
a∈A

(ξt(c, x, a)− π̃(c, x, a))λt(c, x, a)

∣∣∣∣∣ ξt
 (14)

Combining equations (13) and (14) gives us the result.

C.11 Lemma B.11

By Lemma B.1 we have:∑
c∈C

∑
e∈H

ϑt(c, e)νt(c, e) =
∑
c∈C

∑
e∈H

ϑt(c, e)
∑
x∈X

λt(c, x, e(x))

=
∑
c∈C

∑
e∈H

ϑt(c, e)
∑
x∈X

∑
a∈A

Je(x) = aKλt(c, x, a)

=
∑

(c,x)∈I

∑
a∈A

λt(c, x, a)
∑
e∈H

ϑt(c, e)Je(x) = aK

=
∑

(c,x)∈I

∑
a∈A

λt(c, x, a)ξt(c, x, a)
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and by definition of ϑ∗ we have:

∑
c∈C

∑
e∈H

ϑ∗(c, e)νt(c, e) =
∑
c∈C

∑
e∈H

ϑ∗(c, e)
∑
x∈X

λt(c, x, e(x))

=
∑
c∈C

∑
e∈H

ϑ∗(c, e)
∑
x∈X

∑
a∈A

Je(x) = aKλt(c, x, a)

=
∑

(c,x)∈I

∑
a∈A

λt(c, x, a)
∑
e∈H

ϑ∗(c, e)Je(x) = aK

=
∑

(c,x)∈I

∑
a∈A

λt(c, x, a)π̃(c, x, a)

so since ξt is derived solely from ϑt (and deterministic objects) we have:

E

[∑
c∈C

∑
e∈H

(ϑt(c, e)− ϑ∗(c, e))νt(c, e)

∣∣∣∣∣ϑt
]
= E

[∑
c∈C

∑
x∈X

∑
a∈A

(ξt(c, x, a)− π̃(c, x, a)λt(c, x, a)

∣∣∣∣∣ ξt
]

so Lemma B.10 gives us the result.

C.12 Lemma B.12

Since (z + ẑ)2 ≤ 2z2 + 2ẑ2 for all z, ẑ ∈ R and since (z − ẑ)2 ≤ z2 + ẑ2 for all z, ẑ > 0, we have:

∑
c∈C

∑
e∈H

ϑt(c, e)νt(c, e)
2 =

∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

λt(c, x, e(x))

)2

=
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKλt(c, x, a)

)2

≤ 2
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJβt ≤ 1KJ(c, x, a) = (ct, xt, at)K
ℓt(at)

πt(ct, xt, at)

)2

+ 2
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJc = κ̃t(ξt, a)Kµt(c, x)

)2

+ 2
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJc = κ̃′t(ξt, a)Kµt(c, x)

)2

(15)
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Note that:

∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJc = κ̃t(ξt, a)Kµt(c, x)

)2

=
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJc = κ̃t(ξt, a)Kµt(c, x)

)(∑
x∈X

∑
a∈A

Je(x) = aKJc = κ̃t(ξt, a)Kµt(c, x)

)

≤
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Jc = κ̃t(ξt, a)Kµt(c, x)

)(∑
x∈X

µt(c, x)
∑
a∈A

Je(x) = aK

)

=
∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
a∈A

Jc = κ̃t(ξt, a)K
∑
x∈X

µt(c, x)

)(∑
x∈X

µt(c, x)

)
=
∑
c∈C

∑
e∈H

ϑt(c, e)
∑
a∈A

Jc = κ̃t(ξt, a)K

=
∑
a∈A

∑
c∈C

Jc = κ̃t(ξt, a)K
∑
e∈H

ϑt(c, e)

=
∑
a∈A

∑
c∈C

Jc = κ̃t(ξt, a)K

=
∑
a∈A

1

= K (16)

Similarly we have:

∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJc = κ̃′t(ξt, a)Kµt(c, x)

)2

= K (17)

Now note that, by Lemma B.4, we have, for all a ∈ A that:

Jβt ≤ 1K
πt(ct, xt, a)

≤ 2

ξt(ct, xt, a)
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so by Lemma B.1 we have:

E

∑
c∈C

∑
e∈H

ϑt(c, e)

(∑
x∈X

∑
a∈A

Je(x) = aKJβt ≤ 1KJ(c, x, a) = (ct, xt, at)K
ℓt(at)

πt(ct, xt, at)

)2 ∣∣∣∣∣ϑt


= E

[∑
e∈H

ϑt(ct, e)

(
Je(xt) = atKJβt ≤ 1K

ℓt(at)

πt(ct, xt, at)

)2
∣∣∣∣∣ϑt
]

=
∑
a∈A

P[at = a |ϑt]
∑
e∈H

ϑt(ct, e)

(
Je(xt) = aKJβt ≤ 1K

ℓt(a)

πt(ct, xt, a)

)2

=
∑
a∈A

πt(ct, xt, a)
∑
e∈H

ϑt(ct, e)

(
Je(xt) = aKJβt ≤ 1K

ℓt(a)

πt(ct, xt, a)

)2

=
∑
a∈A

∑
e∈H

ϑt(ct, e)Je(xt) = aKJβt ≤ 1K
ℓt(a)

2

πt(ct, xt, a)

≤
∑
a∈A

∑
e∈H

ϑt(ct, e)Je(xt) = aK
Jβt ≤ 1K
πt(ct, xt, a)

≤
∑
a∈A

2

ξt(ct, xt, a)

∑
e∈H

ϑt(ct, e)Je(xt) = aK

≤
∑
a∈A

2

ξt(ct, xt, a)
ξt(ct, xt, a)

≤
∑
a∈A

2

= 2K (18)

Taking expectations on Equation (15) and then substituting in equations (16), (17) and (18) gives us
the result.

C.13 Lemma B.13

Take any (c, e) ∈ C ×H. Note first that for all (x, a) ∈ X ×A we have:

λt(c, x, a) ≥ −Jc = κ̃′t(ξt, a)Kµt(c, x) ≥ −µt(c, x)

so that:

νt(c, e) =
∑
x∈X

λt(c, x, e(x))

≥
∑
a∈A

∑
x∈X

λt(c, x, a)

≥ −
∑
a∈A

∑
x∈X

µt(c, x)

= −
∑
a∈A

1

≥ −K
as required.

C.14 Lemma B.14

By the description of the UPDATE subroutine in Section ?? we see that our update procedure is
equivalent to creating a function ϑ′t ∈ RC×H defined such that for all (c, e) ∈ C ×H we have:

ϑ′t(c, e) = ϑt(c, e)
∏

x∈Gt(c)

exp(−η̂λt(c, x, e(x)))
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and then, for all c ∈ C , normalising ϑ′t(c, ◦) to create ϑt(c, ◦). Note that for all (c, x) ∈ I with
x /∈ Gt(c) we have µt(c, x) = 0 and (c, x) ̸= (ct, xt) so that λt(c, x, a) = 0 for all a ∈ A. This
implies that for all (c, e) ∈ C ×H we have:

ϑ′t(c, e) = ϑt(c, e)
∏
x∈X

exp(−η̂λt(c, x, e(x))) = ϑt(c, e) exp

(
−η̂

∑
x∈X

λt(c, x, e(x))

)
= ϑt(c, e) exp(−η̂νt(c, e))

so that:

ϑt+1(c, e) =
ϑt(c, e) exp(−η̂νt(c, e))∑

e′∈H ϑt(c, e′) exp(−η̂νt(c, e′))
as required.

C.15 Lemma B.15

Take any c ∈ C. Define:
z :=

∑
e∈H

ϑt(c, e) exp(−η̂νt(c, e))

By Lemma B.14 we have:

B(ϑ∗, ϑt(c, ◦))−B(ϑ∗, ϑt+1(c, ◦)) =
∑
e∈H

ϑ∗(c, e)

(
ln

(
ϑ∗(c, e)

ϑt(c, e)

)
− ln

(
ϑ∗(c, e)

ϑt+1(c, e)

))
=
∑
e∈H

ϑ∗(c, e) ln

(
ϑt+1(c, e)

ϑt(c, e)

)
=
∑
e∈H

ϑ∗(c, e) ln

(
exp(−η̂νt(c, e))

z

)
= −η̂

∑
e∈H

ϑ∗(c, e)νt(c, e)− ln(z)
∑
e∈H

ϑ∗(c, e)

= −η̂
∑
e∈H

ϑ∗(c, e)νt(c, e)− ln(z) (19)

Since η ≤
√
T/K we have η̂ ≤ 1/K so that, by Lemma B.13, we have, for all e ∈ H that:

η̂νt(c, e) ≥ −1

so, since exp(−ẑ) ≤ 1− ẑ + ẑ2 for all x ≥ −1 and ln(1 + ẑ) ≤ ẑ for all ẑ ∈ R , we have:

ln(z) = ln

(∑
e∈H

ϑt(c, e) exp(−η̂νt(c, e))

)

≤ ln

(∑
e∈H

ϑt(c, e)(1− η̂νt(c, e) + η̂2νt(c, e)
2)

)

= ln

(∑
e∈H

ϑt(c, e) +
∑
e∈H

ϑt(c, e)(−η̂νt(c, e) + η̂2νt(c, e)
2)

)

= ln

(
1 +

∑
e∈H

ϑt(c, e)(−η̂νt(c, e) + η̂2νt(c, e)
2)

)
≤
∑
e∈H

ϑt(c, e)(−η̂νt(c, e) + η̂2νt(c, e)
2)

= −η̂
∑
e∈H

ϑt(c, e)νt(c, e) + η̂2
∑
e∈H

ϑt(c, e)νt(c, e)
2 (20)

Substituting Equation (20) into Equation (19) gives us the result.
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C.16 Lemma B.16

Immediate from summing the inequality in Lemma B.15 over all c ∈ C, taking expectations (condi-
tioned on ϑt) and substituting in the inequalities in lemmas B.11 and B.12.

C.17 Lemma B.17

From Lemma B.16 we have, for all t ∈ [T ], that:

η̂E[rt]− 8η̂2K = E

[∑
c∈C

(B(ϑ∗, ϑt(c, ◦))−B(ϑ∗, ϑt+1(c, ◦)))

]
and hence, by summing over all t ∈ [T ] and noting the linearity of expectation and the fact that the
relative entropy is non-negative, we have:

η̂
∑
t∈[T ]

E[rt]− 8η̂2KT = E

∑
c∈C

∑
t∈[T ]

(B(ϑ∗, ϑt(c, ◦))−B(ϑ∗, ϑt+1(c, ◦)))


= E

[∑
c∈C

(B(ϑ∗, ϑ1(c, ◦))−B(ϑ∗, ϑT+1(c, ◦)))

]

≤ E

[∑
c∈C

B(ϑ∗, ϑ1(c, ◦))

]
=
∑
c∈C

B(ϑ∗, ϑ)

so that: ∑
t∈[T ]

E[rt] ≤
1

η̂

∑
c∈C

B(ϑ∗, ϑ) + 8η̂KT

noting that η̂ = η/
√
KT , we have the result.

D Details of Examples

We now describe and analyse the instances of SPEW required to obtain the results in Section 5. We
start with the following lemma:
Lemma D.1. Given a tree T with edge set E and any π : T × A → [0, 1] with π(v, ◦) ∈ ∆A for all
v ∈ T , there exists a distribution θ ∈ ∆AT such that:

π(v, a) =
∑

e∈AT

Je(v) = aKθ(e) ∀(v, a) ∈ T ×A

and: ∑
e∈AT

θ(e)
∑

(u,v)∈E

Je(u) ̸= e(v)K =
1

2

∑
(u,v)∈E

∑
a∈A
|π(u, a)− π(v, a)|

Proof. We prove by induction on |T |. The inductive hypothesis clearly holds for |T | = 1. Now
consider a tree T with |T | > 1 and let λ be a leaf of T . Assume that the inductive hypothesis holds
for the tree T ′ created by removing λ from T . By now proving that the inductive hypothesis holds
for T we will have completed the proof of the lemma.

Let λ′ be the neighbour of λ. For all a ∈ A let ξ(a) := π(λ, a) and ξ′(a) := π(λ′, a). Let S be the
set of all a ∈ A with ξ(a) ≤ ξ′(a). For all a ∈ S let:

r(a) :=
ξ(a)

ξ′(a)
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for all a ∈ A \ S let

q(a) :=
ξ(a)− ξ′(a)∑

a′∈A\S(ξ(a
′)− ξ′(a′))

For all e ∈ AT ′
and a ∈ A let γ(e, a) be the function e′ ∈ AT with e′(λ) = a and e′(v) = e(v) for

all v ∈ T ′. Let E ′ be the edge set of T ′. By the inductive hypothesis, let θ′ ∈ ∆AT ′ be such that:

π(v, a) =
∑

e∈AT ′

Je(v) = aKθ′(e) ∀(v, a) ∈ T ′ ×A

and: ∑
e∈AT ′

θ′(e)
∑

(u,v)∈E′

Je(u) ̸= e(v)K =
1

2

∑
(u,v)∈E′

∑
a∈A
|π(u, a)− π(v, a)|

For all a ∈ A \ S and e ∈ AT ′
with e(λ′) = a define:

θ(γ(e, a)) := θ′(e)

For all a ∈ S and e ∈ AT ′
with e(λ′) = a define:

θ(γ(e, a)) := r(a)θ′(e)

For all a ∈ S, a′ ∈ A \ S and e ∈ AT ′
with e(λ′) = a define:

θ(γ(e, a′)) := q(a′)(1− r(a))θ′(e)
For all other e′ ∈ AT we define θ(e′) := 0.

Note that for all v ∈ T ′ and a ∈ A we have:

π(v, a) =
∑

e∈AT ′

Je(v) = aKθ′(e) =
∑

e∈AT ′

Je(v) = aK
∑
a′∈A

θ(γ(e, a′)) =
∑

e′∈AT

Je′(v) = aKθ(e′)

and for all a ∈ S we have:

π(λ, a) = ξ(a) = r(a)ξ′(a) = r(a)π(λ′, a) = r(a)
∑

e∈AT ′

Je(λ′) = aKθ′(e)

=
∑

e∈AT ′

Je(λ′) = aKθ(γ(e, a)) =
∑

e′∈AT

Je′(λ) = aKθ(e′)

and for all a ∈ A \ S we have:

π(λ, a) = ξ(a)

= ξ′(a) + (ξ(a)− ξ′(a))

= ξ′(a) + q(a)
∑

a′∈A\S

(ξ(a′)− ξ′(a′))

= ξ′(a) + q(a)
∑
a′∈S

(ξ′(a′)− ξ(a′))

= ξ′(a) + q(a)
∑
a′∈S

(1− r(a′))ξ′(a′)

= π(λ′, a) + q(a)
∑
a′∈S

(1− r(a′))π(λ′, a′)

=
∑

e∈AT ′

Je(λ′) = aKθ′(e) + q(a)
∑
a′∈S

(1− r(a′))
∑

e∈AT ′

Je(λ′) = a′Kθ′(e)

=
∑

e∈AT ′

Je(λ′) = aKθ′(e) +
∑
a′∈S

∑
e∈AT ′

Je(λ′) = a′Kq(a)(1− r(a′))θ′(e)

=
∑

e∈AT ′

Je(λ′) = aKθ(γ(e, a)) +
∑
a′∈S

∑
e∈AT ′

Je(λ′) = a′Kθ(γ(e, a))

=
∑

e′∈AT

Je′(λ) = aKθ(e′)
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We have now shown that for all v ∈ T and a ∈ A we have:

π(v, a) =
∑

e∈AT

Je(v) = aKθ(e)

as required.

For all e ∈ AT define:
Λ(e) :=

∑
(u,v)∈E

Je(u) ̸= e(v)K

and for all e ∈ AT ′
define:

Λ(e) :=
∑

(u,v)∈E′

Je(u) ̸= e(v)K

Note that for all a ∈ A \ S and e ∈ AT ′
with e(λ′) = a we have:∑

a′∈A
θ(γ(e, a′))Λ(γ(e, a′)) = θ(γ(e, a))Λ(γ(e, a)) = θ′(e)Λ(e)

and for all a ∈ S and e ∈ AT ′
with e(λ′) = a we have:∑

a′∈A
θ(γ(e, a′))Λ(γ(e, a′)) = θ(γ(e, a))Λ(γ(e, a)) +

∑
a′∈A\S

θ(γ(e, a′))Λ(γ(e, a′))

= θ(γ(e, a))Λ(e) + (Λ(e) + 1)
∑

a′∈A\S

θ(γ(e, a′))

= r(a)θ′(e)Λ(e) + (Λ(e) + 1)(1− r(a))θ′(e)
= θ′(e)Λ(e) + (1− r(a))θ′(e)

Hence, we have:∑
e′∈AT

θ(e′)Λ(e′) =
∑

e∈AT ′

θ′(e)Λ(e) +
∑
a∈S

(1− r(a))
∑

e∈AT ′

Je(λ′) = aKθ′(e)

=
∑

e∈AT ′

θ′(e)Λ(e) +
∑
a∈S

(1− r(a))π(λ′, a)

=
∑

e∈AT ′

θ′(e)Λ(e) +
∑
a∈S

(1− r(a))ξ′(a)

=
∑

e∈AT ′

θ′(e)Λ(e) +
∑
a∈S

(ξ′(a)− ξ(a))

=
∑

e∈AT ′

θ′(e)Λ(e) +
1

2

∑
a∈A
|π(λ, a)− π(λ′, a)|

=
1

2

∑
(u,v)∈E

∑
a∈A
|π(u, a)− π(v, a)|

as required.

D.1 Trees with a known distribution

Here we define X := V and χt(c, v) := v for all t ∈ [T ] and (c, v) ∈ C × V . We define ϑ by:

ϑ(e) :=
1

K

∏
(u,v)∈E

(
Je(u) = e(v)K

(
1− 1

N

)
+ Je(u) ̸= e(v)K

1

(K − 1)N

)
∀e ∈ H

This instance of HEDGE can be implemented by belief propagation [28], which gives us the time and
space complexity bounds.
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For all t ∈ [T ], we define the target µt by:

µt(c, x) :=
ρ(c, x)∑

v∈X ρ(c, v)
∀(c, x) ∈ C × X

To analyse the regret, suppose we have a policy π̃ ∈ Q which has statistical parity with respect to ρ,
noting that:

π̃ ∈
⋂

t∈[T ]

F(µt) .

By Lemma D.1 we have ϑ∗ : C ×H → [0, 1] with:

π̃(c, x, a) =
∑
e∈H

Je(x) = aKϑ∗(c, e) ∀(c, x, a) ∈ C × X ×A

and: ∑
e∈H

ϑ∗(c, e)
∑

(u,v)∈E

Je(u) ̸= e(v)K =
1

2

∑
(u,v)∈E

∑
a∈A
|π̃(c, u, a)− π̃(c, v, a)| ∀c ∈ C

We will now bound the term Φ that appears in Theorem 4.1 using our choice of π̃ and ϑ∗, which will
give us the result. To do this note that for all e ∈ H we have:

− ln(ϑ(e)) ∈ O

ln(K) + ln(KN)
∑

(u,v)∈E

Je(u) ̸= e(v)K


so that:

Φ =
∑
c∈C

∑
e∈H

ϑ∗(c, e) ln

(
ϑ∗(c, e)

ϑ(e)

)
≤ −

∑
c∈C

∑
e∈H

ϑ∗(c, e) ln(ϑ(e))

∈ O

ln(K)
∑
c∈C

∑
e∈H

ϑ∗(c, e) + ln(KN)
∑
c∈C

∑
e∈H

ϑ∗(c, e)
∑

(u,v)∈E

Je(u) ̸= e(v)K


= O

ln(K)M + ln(KN)
∑
c∈C

∑
(u,v)∈E

∑
a∈A
|π̃(c, u, a)− π̃(c, v, a)|


= O(ln(K)M + ln(KN)Ψ(π̃))

D.2 Empirical Statistical Parity

Here we take X := V × [T ] and define, for all t ∈ [T ] and (c, v) ∈ C × V , χt(c, v) := (v, t) and:

Gt(c) := {(v, t) | v ∈ V}

We then define ϑ by:

ϑ(e) :=
∏
v∈V

1

K

∏
t∈[T−1]

(
Je(v, t) = e(v, t+ 1)K

(
1− 1

T

)
+ Je(v, t) ̸= e(v, t+ 1)K

1

(K − 1)T

)
for all e ∈ H. This instance of HEDGE is implemented by running the FIXEDSHARE algorithm of
[15] for each context, which gives the time and space complexity.

For all t ∈ [T ], we define:

µt(c, (v, t)) :=
ρt(c, v)∑

v′∈V ρt(c, v
′)

∀(c, v) ∈ C × V
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and:

µt(c, (v, s)) := 0 ∀(c, v, s) ∈ C × V × ([T \ {t}]

Note that if we have yet to see instances with a particular protected characteristic c ∈ C then
µt(c, (v, t)) is undefined for all v ∈ V . It is straightforward to modify the algorithm to handle such
situations.

We now analyse the regret. Suppose we have a sequence of policies π̃ ∈ QT such that for all t ∈ [T ]
we have that π̃t has statistical parity with respect to ρt. Define the virtual policy π̃′ ∈ P such that:

π̃′(c, (v, t), ◦) := π̃t(c, v, ◦) ∀(c, v, t) ∈ C × V × [T ]

Note that we have π̃′ ∈
⋂
F(µt) as required.

Define the set H′ = A[T ]. By Lemma D.1 (with T being a chain), for all (c, v) ∈ C × V we can
construct a distribution ϑ′(c, v, ◦) ∈ ∆H′ in which:

π̃′(c, (v, t), a) =
∑
e′∈H′

Je′(t) = aKϑ′(c, v, e′)

and:

∑
e′∈H′

ϑ′(c, v, e′)
∑

t∈[T−1]

Je′(t) ̸= e′(t+ 1)K =
1

2

∑
t∈[T−1]

∑
a∈A
|π̃′(c, (v, t), a)− π̃′(c, (v, t+ 1), a)|

Now define, for all c ∈ C, the distribution ϑ∗(c, ◦) ∈ ∆H by:

ϑ∗(c, e) =
∏
v∈V

ϑ′(c, v, e(v, ◦)) ∀e ∈ H

Since for each expert e ∈ H we have:

− ln(ϑ(e)) ∈ O

ln(K)N + ln(KT )
∑
v∈V

∑
t∈[T−1]

Je(v, t) ̸= e(v, t+ 1)K


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we also have, for each c ∈ C, that:∑
e∈H

ϑ∗(c, e) ln

(
ϑ∗(c, e)

ϑ(e)

)
≤ −

∑
e∈H

ϑ∗(c, e) ln(ϑ(e))

∈ O

∑
e∈H

ϑ∗(c, e)

ln(K)N + ln(KT )
∑
v∈V

∑
t∈[T−1]

Je(v, t) ̸= e(v, t+ 1)K


= O

ln(K)N + ln(KT )
∑
e∈H

ϑ∗(c, e)
∑
v∈V

∑
t∈[T−1]

Je(v, t) ̸= e(v, t+ 1)K


= O

ln(K)N + ln(KT )
∑
e∈H

∏
u∈V

ϑ′(c, u, e(u, ◦))
∑
v∈V

∑
t∈[T−1]

Je(v, t) ̸= e(v, t+ 1)K


= O

ln(K)N + ln(KT )
∑
v∈V

∑
e∈H

∏
u∈V

ϑ′(c, u, e(u, ◦))
∑

t∈[T−1]

Je(v, t) ̸= e(v, t+ 1)K


= O

ln(K)N + ln(KT )
∑
v∈V

∑
e(v,◦)∈H′

ϑ′(c, v, e(v, ◦))
∑

t∈[T−1]

Je(v, t) ̸= e(v, t+ 1)K


= O

ln(K)N + ln(KT )
∑
v∈V

∑
e′∈H′

ϑ′(c, v, e′)
∑

t∈[T−1]

Je′(t) ̸= e′(t+ 1)K


= O

ln(K)N + ln(KT )
∑
v∈V

∑
t∈[T−1]

∑
a∈A
|π̃′(c, (v, t), a)− π̃′(c, (v, t+ 1), a)|


= O

ln(K)N + ln(KT )
∑
v∈V

∑
t∈[T−1]

∑
a∈A
|π̃t(c, v, a)− π̃t+1(c, v, a)|


so that: ∑

c∈C

∑
e∈H

ϑ∗(c, e) ln

(
ϑ∗(c, e)

ϑ(e)

)
∈ O(MN +Ψ(π̃)) ln(KT )

We also have:

π̃′(c, (v, t), a) =
∑

e(v,◦)∈H′

Je(v, t) = aKϑ′(c, v, e(v, ◦)) =
∑
e∈H

Je(v, t) = aKϑ∗(c, e)

for all (c, v, t, a) ∈ C × V × [T ]×A.

Substituting into Theorem 4.1 gives us the regret bound.

D.3 Approximate statistical parity for hierarchical clusterings with an unknown distribution

Here we take X to be the set of sets in the tree T that is the hierarchical clustering. Let E be the edge
set of T . The functions χt will be constructed online by the characteristic/context sets seen so far.
We define ϑ by:

ϑ(e) :=
1

K

∏
(x,x′)∈E

(
Je(x) = e(x′)K

(
1− 1

|T |

)
+ Je(x) ̸= e(x′)K

1

(K − 1)|T |

)
∀e ∈ H

Now define:
ϵ̂ := ϵ/4H ; n := ⌈ln(2T/δ)/2ϵ̂2⌉
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For each c ∈ C we maintain a dynamic (in that it grows over time) full binary subtree S(c) ⊆ T
which contains the root. S(c) is initialised to contain the root (which is the set V) as a single vertex.
Let L(c) be the set of leaves of S(c) so that L(c) is a partition of V . On each trial t ∈ [T ] we define,
for all (c, v) ∈ C × V , χt(c, v) to be the unique set in L(c) that contains v, and define Gt(c) to be the
set L(c) at trial t. The instance of HEDGE for characteristic c is implemented by belief propagation
over the tree S(c) as in [25]. This gives us the time and space complexity bounds.

We now describe how S(c) grows and how the functions µt are defined. To do this we will define,
for each c ∈ C, a function µ̃(c, ◦) : S(c)→ [0, 1] in which µ̃(c,V) := 1. For each c ∈ C, S(c) and
µ̃(c, ◦) grow as follows. Whenever we have a non-singleton set in Y ∈ L(c) in which there have been
n trials t so far in which ct = c and xt ∈ Y then we add the two children of Y to S(c). Denoting the
two children by Z and Z ′ we let m be the number of trials t in which ct = c and xt ∈ Z and then
define:

µ̃(c,Z) := mµ̃(c,Y)/n ; µ̃(c,Z ′) := (n−m)µ̃(c,Y)/n
On each trial t we define µt(c, ◦) as follows. For x ∈ Gt(c) we have µt(c, x) := µ̃(c, x) and for
x ∈ X \ Gt(c) we have µt(c, x) := 0. This completes the description of the instance of SPEW.

We now analyse this instance of SPEW. First, for all (c,Y) ∈ C × X define:

µ∗(c,Y) :=
∑

v∈Y ρ
∗(c, v)∑

v∈V ρ
∗(c, v)

For all c ∈ C let S†(c) be the tree S(c) on trial T and let L†(c) be the set of leaves of S†(c). We
define the distribution ρ such that, for all c ∈ C, Y ∈ L†(c) and v ∈ Y , we have:

ρ(c, v) :=
µ̃(c,Y)ρ∗(c, v)

µ∗(c,Y)
Note that by induction over time we always have:∑

Y∈L(c)

µ̃(c,Y) = 1

so that: ∑
(c,v)∈C×V

ρ(c, v) =
∑
c∈C

∑
Y∈L†(c)

∑
v∈Y

µ̃(c,Y)ρ∗(c, v)
µ∗(c,Y)

=
∑
c∈C

∑
Y∈L†(c)

µ̃(c,Y)
∑
v∈V

ρ∗(c, v)

=
∑
c∈C

∑
v∈V

ρ∗(c, v)
∑

Y∈L†(c)

µ̃(c,Y)

=
∑
c∈C

∑
v∈V

ρ∗(c, v)

= 1

and hence ρ is a probability distribution as required.

We now show that with probability at least 1− δ we have that ρ is ϵ-close to ρ∗. Let r be the root of
T , which is equal to the set V . For any vertex x ∈ T let ↑(x) be its parent and let ◁(x) and ▷(x) be
its left and right children respectively, if they exist. For all c ∈ C and x ∈ S†(c) \ {r} define:

p(c, x) :=
µ̃(c, x)

µ̃(c, ↑(x))
; p∗(c, x) :=

µ∗(c, x)

µ∗(c, ↑(x))
; δ′(c, x) := p∗(c, x)− p(c, x)

Note that by the generation of µ̃(c, x) we have, direct from Hoeffding’s inequality, that:

P[|δ′(c, x)| > ϵ̂] ≤ 2 exp(−2ϵ̂2n)

So since: ∑
c∈C
|S†(c) \ {r}| ≤ T
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we have, by the union bound, that with probability at least 1− 2T exp(−2ϵ̂2n), which is no less than
1− δ, we have:

|δ′(c, x)| ≤ ϵ̂
for all c ∈ C and x ∈ S†(c). So assume that this is the case. Now take any policy π ∈ Q which has
statistical parity with respect to ρ∗. For all c ∈ C define:

ζ(c) :=
∑
v∈V

ρ∗(c, v)

For all (c, a) ∈ C ×A and Y ∈ S†(c) define:

q∗(c,Y, a) := 1

µ∗(c,Y)ζ(c)
∑
v∈Y

ρ∗(c, v)π(c, v, a)

q(c,Y, a) := 1

µ̃(c,Y)ζ(c)
∑
v∈Y

ρ(c, v)π(c, v, a)

β(c,Y, a) := q∗(c,Y, a)− q(c,Y, a)
and let h(c,Y) be the height of Y in the tree S†(c). Note that by definition of µ∗(c,Y) we have:

q∗(c,Y, a) ≤ 1

µ∗(c,Y)ζ(c)
∑
v∈Y

ρ∗(c, v) = 1

We take the inductive hypothesis that for all x ∈ S†(c) we have:

|β(c, x, a)| ≤ 2h(c, x)ϵ̂

and prove by induction on h(c, x). The inductive immediately holds for h(c, x) = 0 by definition of
ρ. Now suppose it holds when h(c, x) = h′ (for some h′ ∈ [H]) and consider x with h(c, x) = h′+1.
Note that:

q∗(c, x, a) =
1

µ∗(c, x)
(µ∗(c, ◁(x))q∗(c, ◁(x), a) + µ∗(c, ▷(x))q∗(c, ▷(x), a))

= p∗(c, ◁(x))q∗(c, ◁(x), a) + p∗(c, ▷(x))q∗(c, ▷(x), a)

and that:

q(c, x, a) =
1

µ̃(c, x)
(µ̃(c, ◁(x))q(c, ◁(x), a) + µ̃(c, ▷(x))q(c, ▷(x), a))

= p(c, ◁(x))q(c, ◁(x), a) + p(c, ▷(x))q(c, ▷(x), a)

= p(c, ◁(x))(q∗(c, ◁(x), a)− β(c, ◁(x), a)) + p(c, ▷(x))(q∗(c, ▷(x), a)− β(c, ▷(x), a)))
so, by defining:

β̂(c, x, a) := p(c, ◁(x))β(c, ◁(x), a) + p(c, ▷(x))β(c, ▷(x), a)

we have:

β(c, x, a) := q∗(c, x, a)− q(c, x, a)
= (p∗(c, ◁(x))− p(c, ◁(x)))q∗(c, ◁(x), a) + (p∗(c, ▷(x))− p(c, ▷(x)))q∗(c, ▷(x), a) + β̂(c, x, a)

= δ′(c, ◁(x))q∗(c, ◁(x), a) + δ′(c, ▷(x))q∗(c, ▷(x), a) + β̂(c, x, a)

so that, by the inductive hypothesis and since h(c, ◁(x)) = h(c, ▷(x)) = h′, we have:

|β(c, x, a)| ≤ |δ′(c, ◁(x))|q∗(c, ◁(x), a) + |δ′(c, ▷(x))|q∗(c, ▷(x), a) + |β̂(c, x, a)|
≤ ϵ̂q∗(c, ◁(x), a) + ϵ̂q∗(c, ▷(x), a) + |β̂(c, x, a)|
≤ 2ϵ̂+ |β̂(c, x, a)|
≤ 2ϵ̂+ p(c, ◁(x))|β(c, ◁(x), a)|+ p(c, ▷(x))|β(c, ▷(x), a)|
≤ 2ϵ̂+ 2p(c, ◁(x))h′ϵ̂+ 2p(c, ▷(x))h′ϵ̂

= 2(1 + h′)ϵ̂

= 2h(c, x)ϵ̂
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We have hence proved that the inductive hypothesis holds always. In particular it holds for x = r so
that:

|β(c, r, a)| ≤ 2Hϵ̂ = ϵ/2 (21)

Since µ∗(c, r) = µ̃(c, r) = 1 and r = V this translates to:∣∣∣ 1

ζ(c)

∑
v∈Y

ρ∗(c, v)π(c, v, a)− 1

ζ(c)

∑
v∈Y

ρ(c, v)π(c, v, a)
∣∣∣ ≤ ϵ/2

Since π has statistical parity with respect to ρ there exists some function κ : A → [0, 1] such that:

1

ζ(c)

∑
v∈Y

ρ(c, v)π(c, v, a) = κ(a) ∀(c, a) ∈ C × A

which means:

κ(a)− ϵ/2 ≤ 1

ζ(c)

∑
v∈Y

ρ∗(c, v)π(c, v, a) ≤ κ(a) + ϵ/2

for all c ∈ C. Hence, π has ϵ-approximate statistical parity with respect to ρ∗. This completes the
proof that ρ is ϵ-close to ρ∗.

We now show that each policy π∗
t has statistical parity with respect to ρ. Take any c ∈ C and let Lt(c)

be the set L(c) at trial t. Note that for all Y ∈ L†(c) we have:

µ̃(c,Y) = 1

ζ(c)

∑
v∈Y

ρ(v)

so since for all Y ∈ S†(c) \ L†(c) we have:

µ̃(c,Y) = µ̃(c, ◁(Y)) + µ̃(c, ▷(Y))

we have by induction that for all Y ∈ S†(c):

µ̃(c,Y) = 1

ζ(c)

∑
v∈Y

ρ(v)

This means that for all a ∈ A we have:

1

ζ(c)

∑
v∈V

ρ(v)π∗
t (c, v, a) =

1

ζ(c)

∑
v∈V

ρ(v)πt(c, χt(c, v), a)

=
1

ζ(c)

∑
Y∈Lt(c)

∑
v∈Y

ρ(v)πt(c, χt(c, v), a)

=
1

ζ(c)

∑
Y∈Lt(c)

∑
v∈Y

ρ(v)πt(c,Y, a)

=
∑

Y∈Lt(c)

µ̃(c,Y)πt(c,Y, a)

=
∑

x∈Gt(c)

µt(c, x)πt(c, x, a)

so since we have πt ∈ F(µt) we have that π∗
t has statistical parity with respect to ρ.

We now prove the regret bound. Take any π̃ ∈ Q with statistical parity with respect ρ. For all c ∈ C
let L′(c) be the minimal cardinality permitted clustering such that for all sets Y ∈ L′(c) and all
u, v ∈ Y we have π̃(c, u, ◦) = π̃(c, v, ◦). Now we define π̃′ ∈ P as follows. First extend µ̃ such that
for all (c,Y) ∈ C × X we have:

µ̃(c,Y) = 1

ζ(c)

∑
v∈Y

ρ(v)
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For any descendant Z of some Y ∈ L′(c) we define π̃′(c,Z, ◦) = π̃(c, u, ◦) for any u ∈ Y . For any
x that is a proper ancestor of some element of L′(c) we define π̃′(c, x, ◦) so that:

π̃′(c, x, a) :=
µ̃(c, ◁(x))π̃′(c, ◁(x), a) + µ̃(c, ▷(x))π̃′(c, ▷(x), a)

µ̃(c, x)

Note that by induction on the height of x we have:∑
a∈A

π̃′(c, x, a) =
µ̃(c, ◁(x)) + µ̃(c, ▷(x))

µ̃(c, x)
= 1

so that π̃′ ∈ P as required. Given x ∈ T define ⇓(x) to be the leaf descendants of x. By induction
on the height of x in T we have:

π̃′(c, x, a) =
1

µ̃(c, x)

∑
x′∈⇓(x)

µ̃(c, x′)π̃′(c, x′, a)

so that, since the leaves are the singleton sets, we have, for all Y ∈ X , that:

π̃′(c,Y, a) = 1

µ̃(c,Y)ζ(c)
∑
v∈Y

ρ(c, v)π̃(c, v, a)

Hence, on trial t we have:∑
x∈Gt(c)

µt(c, x)π̃
′(c, x, a) =

1

ζ(c)

∑
Y∈Lt(c)

∑
v∈Y

ρ(c, v)π̃(c, v, a) =
1

ζ(c)

∑
v∈V

ρ(c, v)π̃(c, v, a)

so since π̃ has statistical parity with respect to ρ we have that π̃′ ∈ F(µt).

Now that we have shown that ρ ∈
⋂

t∈[T ] F(µt) we can apply the regret bound in Theorem 4.1.
Note that for all c ∈ C the number of edges (x, x′) in T in which π̃′(c, x, ◦) ̸= π̃′(c, x′, ◦) is at
most 2ψ(c, π̃) − 2. Hence, as in Section D.1 (noting that log(|T |) ≤ H), we have a distribution
ϑ∗ : C ×H → [0, 1] with:

π̃′(c, x, a) =
∑
e∈H

Je(x) = aKϑ∗(c, e) ∀(c, x, a) ∈ C × X ×A

and: ∑
c∈C

∑
e∈H

ϑ∗(c, e) ln

(
ϑ∗(c, e)

ϑ(e)

)
∈ O(H ln(K)Ψ(π̃))

Noting also that we have at most 2nΨ(π̃) trials where π̃′(ct, xt, ◦) ̸= π̃(ct, vt, ◦) we obtain, from
Theorem 4.1, the regret bound.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: No experiments
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

38



Answer: [NA]
Justification: No experiments
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper has applications to fairness which is inherently a positive societal
impact. We cannot foresee any negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

40

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We cannot foresee any risk of misuse.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM only used for writing assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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