
PLUG-AND-PLAY RETRIEVAL-AUGMENTED ACTIVE TEST-TIME ADAPTATION FOR VLMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

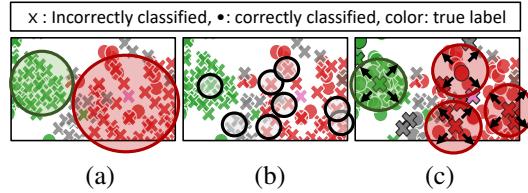
ABSTRACT

011 Pre-trained vision-language models (VLMs) have demonstrated remarkable per-
012 formance across various real-world benchmarks. In particular, CLIP, one of the
013 famous VLMs, has achieved satisfactory performance on vision-language tasks
014 without fine-tuning (*i.e.*, zero-shot setting). Nevertheless, it is well-known that
015 effectively leveraging a pre-trained model requires adaptation to the test distribu-
016 tion. Since the test distribution is typically unknown, test-time adaptation (TTA)
017 has emerged as one of the solutions. However, existing TTA algorithms rely not
018 on expert-provided ground-truth knowledge but on pseudo-labels derived from the
019 knowledge of the pre-trained model itself. This undesirable reliance can lead to a
020 cascade of incorrect knowledge propagation. To address this issue, we propose
021 a novel framework, active test-time adaptation, which selectively queries human
022 experts for ground-truth labels of uncertain samples and incorporates them for an-
023 swering future queries. Then, we develop a novel algorithm, **REtrieval-augmented**
024 **ACTive TTA (REACT)**, which is designed to be plug-and-play with any TTA algo-
025 rithms. Through extensive experiments on ten real-world benchmarks commonly
026 used in CLIP evaluation as well as a domain transfer benchmark based on Im-
027 ageNet, the proposed algorithm is shown to effectively identify and query infor-
028 mative samples, leveraging them to enhance test-time inference capabilities.
029

1 INTRODUCTION

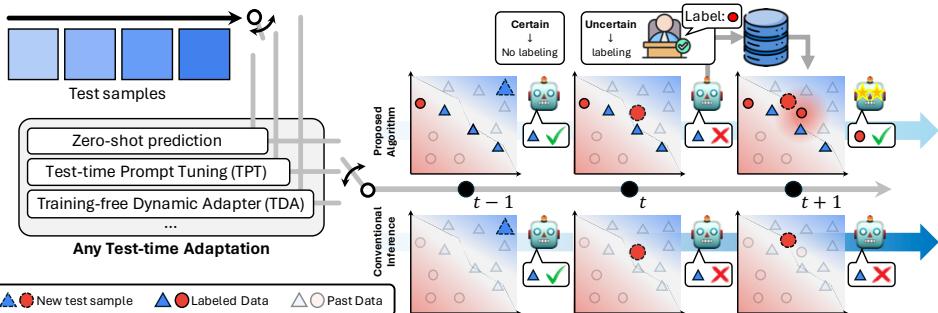
031 Vision-language models (VLMs) have received significant attention by integrating human language
032 into various computer vision tasks. For example, various VLMs (Radford et al., 2021; Bai et al.,
033 2023; Li et al., 2022; 2023; Liu et al., 2024; Bai et al., 2025) have been introduced and have demon-
034 strated remarkable performance on zero-shot classification, captioning, image-text retrieval, and so
035 on. In detail, CLIP (Radford et al., 2021) models, one of the pioneering VLMs, map text including
036 class candidates and image inputs into a shared embedding space, respectively, and classify a given
037 image by selecting the label with the highest matching score.

038 Recent studies (Feng et al., 2023b; Shu et al.,
039 2022a; Yoon et al., 2024; Karmanov et al.,
040 2024) began to propose the test-time adap-
041 tation strategies for VLMs, enabling them to
042 quickly adjust to domain shifts in real-world
043 scenarios. For example, TPT (Feng et al.,
044 2023b) and DiffTPT (Feng et al., 2023a) op-
045 timize prompts for each test image via vari-
046 ous visual augmentations to boost the confi-
047 dence of the CLIP model’s predictions. In con-
048 trast, the authors (Karmanov et al., 2024) pro-
049 posed a backpropagation-free test-time adap-
050 tation algorithm called TDA that leverages a Tip-
051 adapter (Zhang et al., 2022), which is a train-
052 free adapter with a few samples, to reduce in-
053 ference costs—a known drawback of previous
054 prompt optimization techniques. However, as illus-
055 trated in Figure 1, these methods struggle to clas-
056 sify unseen classes using only the inherent knowl-
057 edge of the pre-trained model. In particular, TDA



058 **Figure 1: Conventional TTA has difficulty clas-
059 sifying unseen classes.** (a) In this t-SNE plot of a
060 conventional TTA, samples are correctly clustered
061 by class (green, red) but are entirely misclassified.
062 In contrast, our approach **REACT** (b) first selects
063 informative samples as anchors for human label-
064 ing. (c) Subsequently, these labeled anchors prop-
065 agate correct labels to nearby misclassified sam-
066 ples, improving overall accuracy.

067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 0100



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 2: **Overall framework of REACT.** It identifies and labels uncertain samples from any test-time adaptation method. Future samples are then predicted by retrieving similar labeled examples. Even if **REACT** makes incorrect predictions (*i.e.*, at time t), it consults a labeler to refine the predictions and stores ground-truth labels in the database for later retrieval (*i.e.*, at time $t+1$), ultimately improving classification performance through retrieval-augmented correction.

can correctly classify only a small fraction of the samples that are initially misclassified by CLIP. Our findings indicate that when a few labels from selected samples among the uncertain ones are provided by a labeler, the majority of these ambiguous cases can be correctly recovered. Further, several works (Lin et al., 2022; Pearl, 2009) have demonstrated that *it is theoretically infeasible to learn unseen classes without extra information*.

Regarding the critical limitation of TTA, simATTA (Gui et al., 2024) was the first work that emphasized the necessity of extra information for TTA and proposed a sample selection strategy to acquire and use labels for updating the model through lightweight training. However, this training-based approach accompanies high computational overhead and likely incurs catastrophic forgetting that undermines the knowledge from pre-training data. Therefore, we seek to investigate the feasibility of *training-free* TTA for VLMs, posing the following research question: *How can we design a train-free method that incorporates extra information into TTA while improving performance?*

In response to the question, our framework introduces a novel *retrieval-augmented* correction, which significantly enhances TTA without requiring additional model training. Our approach maintains and strategically leverages a growing database of labeled examples. Maintaining this database and appropriately retrieving labeled examples effectively substitute the training requirement. As illustrated in Figure 2, the test sample is confidently classified (*i.e.*, *certain*) at time $t-1$, so we simply rely on a conventional TTA method to make a prediction. In contrast, at time t , the model identifies a more challenging sample as *uncertain*, prompting us to query a labeler for its ground-truth label. Then, at time $t+1$, we again encounter an uncertain sample. Differently from time t , by retrieving proper labeled examples, we can correct its label to the circle (\circ) based on the neighboring labeled example obtained at time t . This retrieval-augmented correction process allows us to make the correct classification, whereas existing TTA methods fail to do so.

Obviously, the key challenge for retrieval-augmented correction lies in minimizing the correction error. This challenge requires making strategic decisions about which samples need human labeling and which can be effectively corrected by retrieving labeled examples. Our approach—plug-and-play **RE**trieval-augmented **A**CTive test-time adaptation (**REACT**)—addresses the challenge by carefully analyzing the relationships between test samples and existing labeled examples. We observe that the effectiveness of retrieval-augmented correction heavily depends on the quality of neighboring labeled examples. For example, if labeled examples in close proximity to a test sample consistently share the same label, the likelihood of making a correct prediction significantly increases. Motivated by this insight, we introduce two novel criteria to make optimal decisions at test time: *consistency* and *reliability*. The former guarantees high consistency with retrieved examples in terms of labels, and the latter guarantees high similarity to retrieved examples. These criteria enable us to selectively apply retrieval-augmented correction only when it is likely to succeed, thereby minimizing the correction error.

Our contributions are summarized as follows:

- We introduce a novel framework for active test-time adaptation of VLMs, **REACT**, which exploits retrieval-augmented correction with a labeled dataset. Importantly, owing to its training-free aspect, **REACT** can be incorporated into any conventional TTA methods.

108 • We propose a retrieval-augmented correction strategy for minimizing the errors by design-
 109 ing consistency and reliability from neighboring labeled examples.
 110 • Extensive experiments on both out-of-distribution and cross-domain benchmarks demon-
 111 strate that **REACT** significantly enhances the performance of state-of-the-art TTA methods,
 112 paving the way for more robust and cost-efficient adaptation in real-world scenarios.
 113

114 2 PRELIMINARY
 115

116 2.1 TEST-TIME ADAPTATION WITH VLMs
 117

118 CLIP (Radford et al., 2021), one of the famous VLMs, consists of two encoders: an image encoder
 119 f_{img} and a text encoder f_{txt} . Its classification process with a class set \mathcal{C} relies on the similarity score
 120 for a pair of an image and a text prompt. Given an image x_t , the similarity score is formulated as

121
$$s_c = \cos(f_{\text{img}}(x_t), f_{\text{txt}}(t_c)), \quad (1)$$

122 where t_c is the text prompt for class $c \in \mathcal{C}$, and $\cos(\cdot, \cdot)$ is the cosine similarity. By using this
 123 similarity score, the prediction probability of each class is formulated as

124
$$z_t^c = \frac{\exp(s_c/\tau)}{\sum_{i=1}^C \exp(s_i/\tau)}, \quad (2)$$

125 where τ represents a temperature parameter. When applying a CLIP model to the TTA setup, we can
 126 unify the formulation of the prediction probability as

127
$$p(x_t) = \mathcal{T}_\xi(x_t; f_{\text{img}}, f_{\text{txt}}), \quad (3)$$

128 where $\mathcal{T}_\xi(\cdot)$ is the any TTA method with the pre-trained CLIP image encoder f_{img} and text encoder
 129 f_{txt} , along with the context variables ξ (e.g., learnable prompts) that TTA requires (see Appendix A).
 130 However, such methods inevitably rely on psuedo-labels from the pre-trained model itself, thereby
 131 limiting their ability to handle severe distribution shifts or unseen classes. While we use CLIP as
 132 the VLM for simplicity, the same approach and its limitation apply equally to more advanced VLMs
 133 such as BLIP-2 (Li et al., 2023) and SigLIP (Zhai et al., 2023) (See Section D.1 for ablation studies).
 134

135 2.2 PROBLEM FORMULATION
 136

137 To overcome the limitation of pseudo-label-based TTA, we allow the model to occasionally query
 138 ground-truth labels for incoming test samples under a constrained budget. This idea is closely related
 139 to active test-time adaptation (ATTA) (Gui et al., 2024); once the label of a sample is acquired, it
 140 is immediately used to update the model, and the updated model can influence predictions for both
 141 future and even concurrent samples. We instead consider a more *realistic* problem formulation.

142 **Definition** (Our problem formulation). *For each test-time data sample $x_t \in \mathfrak{D}_{\text{test}}$ arriving at time t ,
 143 the pre-trained VLM image encoder f_{img} and text encoder f_{txt} must decide whether to label it under
 144 the label budget \mathfrak{B} . Note that, due to real-time requirements in the TTA setup, the annotation for x_t
 145 cannot be used as its prediction; instead, it is added to the labeled set $\mathfrak{D}_l(t)$ for use with future data.*
 146

147 3 **REACT: RETRIEVAL-AUGMENTED ACTIVE TEST-TIME ADAPTATION**
 148

149 The key challenges of our problem from Section 2.2 are (1) determining which samples should
 150 be labeled to better adapt to the test distribution and (2) effectively leveraging the labeled data for
 151 adaptation. Here is the brief summary of its process (See Appendix B for the overall design).

152 1. Apply *uncertainty-based filtering* to identify the samples that the model is most likely to
 153 misclassify. \triangleright Section 3.1
 154 2. Among uncertain samples, we construct $\mathfrak{D}_l(t)$ that is sufficiently populated (i.e., larger than
 155 N) by adding labeled samples from an oracle. After constructing $\mathfrak{D}_l(t)$:
 156 (a) If the sample meets our criteria based on consistency and reliability, we perform
 157 *retrieval-augmented correction*. \triangleright Section 3.2
 158 (b) Even if there is no remaining label budget, we still conduct retrieval-augmented cor-
 159 rection upon *relaxed* criteria. \triangleright Section 3.3
 160 (c) Otherwise, we query an oracle for the correct label and add the labeled sample into
 161 $\mathfrak{D}_l(t)$ for future use.

162 3.1 UNCERTAINTY-BASED FILTERING
163

164 We first choose the samples that the model is most likely to misclassify. For the test sample x_t ,
165 we first compute the logit $p(x_t) = \mathcal{T}_\xi(x_t; f_{\text{img}}, f_{\text{txt}})$ that is applied for the TTA method. Then, we
166 calculate the entropy (Karmanov et al., 2024),

167
$$\mathcal{H}(p(x_t)) = - \sum_{c \in \mathcal{C}} p(y_t = c; x_t) \cdot \log p(y_t = c; x_t). \quad (4)$$

168
169

170 Since the entropy is a measure of *how uncertain a model is in its prediction for a given sample*, a
171 sample with a high-entropy value is more likely to be predicted incorrectly by the model (Holub
172 et al., 2008). Therefore, we conduct retrieval-augmented correction only for high-entropy samples.

173 3.2 RETRIEVAL-AUGMENTED CORRECTION
174

175 We employ our retrieval-augmented
176 correction strategy that leverages
177 $\mathfrak{D}_l(t)$ to correct the predictions
178 made by TTA methods. However,
179 blindly applying this correction to
180 every sample can significantly in-
181 crease correction errors. Thus, to se-
182 lectively apply the correction, we
183 propose two criteria: **consistency**
184 for indicating whether the labeled
185 samples nearest to a test sample
186 share the same ground truth and **re-
187 liability** for measuring how close those
188 labeled samples are to the test sample.
189 Intuitively, if the nearest labeled samples
190 have the same ground truth and are near the test sample, the test sample's
191 ground truth is likely to match those labeled samples, reducing the chance of retrieval-augmented
192 correction errors. For simplicity, we refer to the first and second nearest labeled samples as a *Referrer*
193 $R = (x_t^R, y_t^R)$ and a *Verifier* $V = (x_t^V, y_t^V)$, respectively.

194 Figure 3 depicts three common cases for the Referrer-Verifier interactions. In Figure 3a, the Referrer
195 and Verifier disagree on the label, so no retrieval-augmented correction is applied. In Figure 3b,
196 the labels match, but the Verifier is far from the test sample, making its endorsement of the Referrer's
197 label less trustworthy. In contrast, Figure 3c shows both high consistency (same label) and high
198 reliability (all close), thus allowing retrieval-augmented correction to proceed confidently. Based on
199 these common cases, we now provide the detailed mathematical formulation as follows.

200 **Consistency.** To ensure that the candidate label from the Referrer is reliable, we define the *consis-
201 tency* metric to check whether the Verifier's label agrees with the Referrer's. Formally, this metric is
202 given by

203
$$\text{Cons}(x_t|R, V) = \mathbb{1}\{y_t^R = y_t^V\}, \quad (5)$$

204 where $\mathbb{1}\{\cdot\}$ is the indicator function. A value of 1 indicates full agreement between the Referrer and
205 the Verifier, thus confirming the candidate label.

206 **Reliability.** To ensure that both the Referrer and the Verifier are close enough to a test sample x_t , we
207 define the *reliability* to compute the average cosine similarity between x_t and these two neighbors.
208 Formally, this metric is given by

209
$$\text{Rel}(x_t|R, V) = \frac{1}{2} \left(\cos(f_{\text{img}}(x_t), f_{\text{img}}(x_t^R)) + \cos(f_{\text{img}}(x_t), f_{\text{img}}(x_t^V)) \right). \quad (6)$$

210 A higher reliability score indicates that both neighbors are strongly aligned with x_t , thereby increas-
211 ing our confidence in the retrieval-augmented correction.

212 Overall, the condition for retrieval-augmented correction is thus formulated as

213
$$\mathcal{C}(x_t|R, V) = \text{Cons}(x_t|R, V) \cdot \text{Rel}(x_t|R, V). \quad (7)$$

214 This multiplicative formulation guarantees that if the Verifier disagrees with the Referrer (*i.e.*, ,
215 $\text{Cons}(x_t|R, V) = 0$), no retrieval-augmented correction is applied.

Method	IN	IN-A	IN-V2	IN-R	IN-S	Avg (All5)	Avg (OOD)
ResNet-50							
Zero-shot	56.47	26.96	50.83	55.87	31.50	44.33	41.29
+REACT	57.66\pm0.06	28.11\pm0.19	50.76\pm0.07	56.93\pm0.07	36.94\pm0.04	46.08	43.18
TPT	60.68 \pm 0.01	25.12 \pm 0.07	54.33 \pm 0.23	59.11 \pm 0.04	35.29 \pm 0.04	46.91	43.46
+REACT	61.20\pm0.10	26.28\pm0.05	54.34\pm0.02	59.65\pm0.18	39.67\pm0.18	48.23	44.98
C-TPT	60.42 \pm 0.06	23.25 \pm 0.06	54.13 \pm 0.13	57.72 \pm 0.01	34.76 \pm 0.01	46.05	42.46
+REACT	61.10\pm0.11	24.76\pm0.30	53.88\pm0.03	58.66\pm0.12	39.62\pm0.02	47.60	44.23
TDA [†]	57.78 \pm 0.01	27.84 \pm 0.01	51.10 \pm 0.03	57.01 \pm 0.01	33.85 \pm 0.11	45.52	42.45
+REACT	58.64\pm0.01	28.73\pm0.28	51.31\pm0.09	57.84\pm0.06	39.00\pm0.01	47.10	44.22
TDA	61.72 \pm 0.04	30.59 \pm 0.21	55.10\pm0.26	62.76 \pm 0.04	38.05 \pm 0.04	49.64	46.62
+REACT	62.06\pm0.04	31.00\pm0.15	54.99 \pm 0.29	63.25\pm0.12	42.73\pm0.10	50.80	47.99
ViT-B/16							
Zero-shot	63.52	54.65	59.80	75.36	44.05	59.48	58.47
+REACT	65.90\pm1.03	55.85\pm0.74	59.69\pm0.14	76.33\pm0.02	50.29\pm0.13	61.61	60.54
TPT	68.76 \pm 0.01	52.99 \pm 0.06	63.20 \pm 0.04	76.97 \pm 0.10	47.86 \pm 0.02	61.95	60.25
+REACT	69.27\pm0.12	54.89\pm0.05	61.94\pm1.49	77.18\pm0.08	51.30\pm0.94	62.91	61.32
C-TPT	68.31 \pm 0.01	50.71 \pm 0.04	62.50 \pm 0.04	75.68 \pm 0.08	47.46 \pm 0.06	60.93	59.08
+REACT	69.09\pm0.01	53.09\pm0.17	62.14\pm0.03	76.39\pm0.13	52.13\pm0.01	62.57	60.94
TDA [†]	65.81 \pm 0.81	55.42 \pm 0.06	60.06 \pm 0.13	75.99 \pm 0.13	46.01 \pm 0.08	60.66	59.37
+REACT	67.48\pm0.03	56.49\pm0.20	60.09\pm0.12	76.70\pm0.08	51.23\pm0.02	62.40	61.13
TDA	70.08 \pm 0.88	60.13 \pm 0.33	64.41 \pm 0.16	80.52 \pm 0.06	50.96 \pm 0.06	65.22	64.01
+REACT	70.88\pm0.11	60.73\pm0.60	64.54\pm0.10	80.83\pm0.11	55.01\pm0.07	66.40	65.28

Table 1: **Results on the out-of-distribution benchmark.** All the compared methods are built upon CLIP-ResNet-50 or CLIP-ViT-B/16 baselines. The two average metrics *All 5* and *OOD* are calculated by taking the mean accuracy across all five datasets and four OOD datasets excluding ImageNet (IN). Note that the **bold** type represents the best performance overall.

3.3 CORRECTION AFTER LABEL BUDGET

As described in Section 3.2, we request samples for labeling if Equation 7 is below a certain threshold. As we continue labeling, we might eventually reach our labeling budget \mathfrak{B} and no longer be able to request new labels from the oracle. Even in this scenario, we would like to benefit from retrieval-augmented correction. However, since proper labeled examples could not be inserted into the labeled dataset, there is a risk that the retrieval-augmented correction leveraging the Referrer and the Verifier may run incorrectly. To mitigate this issue, we choose the top-5 predictions from TTA as the Verifiers instead of the second nearest labeled sample and only proceed with corrections when matching the labels of the Verifiers and the Referrer. This technique is formulated as

$$p(x_t) = \begin{cases} \text{one_hot}(y_t^R), & \text{if } y_t^R \in \text{Top_5}(p(x_t)), \\ \mathcal{T}_\xi(x_t; f_{\text{img}}, f_{\text{txt}}), & \text{otherwise.} \end{cases} \quad (8)$$

Here, $\text{Top_5}(p(x_t))$ denotes the set of labels associated with the five highest confidence predictions generated by the TTA method. This technique enables our framework to apply corrections by setting the Referrer’s label whenever it appears within these top-5 predictions (which function as the Verifiers), even in situations where no additional labeling resources are available. If the Referrer’s label is not present in the top-5 predictions from TTA, we default to using the TTA’s prediction instead.

4 EXPERIMENT

We provide details of the experimental setup, including datasets, baselines, and implementation details, in Appendix C due to space constraints. This section focuses on the main results and ablation studies using CLIP for the VLM. See Appendix D for additional results, particularly those involving more advanced VLMs such as BLIP-2 (Li et al., 2023) and SigLIP (Zhai et al., 2023).

[†] Since TDA uses a different prompt template than other baselines, we report its results with a unified template for fair comparison.

Method	Aircraft	Caltech101	Cars	DTD	EuroSAT	Flowers102	Food101	Pets	SUN397	UCF101	Average
ResNet50											
Zero-shot	15.30	80.61	56.27	37.53	25.89	56.44	73.45	80.46	58.16	59.16	54.33
+ REACT	18.16 \pm 0.25	84.61 \pm 0.26	57.54 \pm 0.42	43.35 \pm 1.05	74.16 \pm 1.12	72.55 \pm 0.06	73.73 \pm 0.08	81.71 \pm 0.11	59.41 \pm 0.08	70.15 \pm 0.62	63.53
TPT	16.02 \pm 0.47	85.36 \pm 0.40	57.95 \pm 0.16	39.69 \pm 0.37	28.04 \pm 0.03	60.22 \pm 0.40	73.63 \pm 0.02	78.39 \pm 0.12	59.86 \pm 0.12	60.77 \pm 0.34	55.99
+ REACT	18.60 \pm 0.25	87.73 \pm 0.83	60.31 \pm 0.52	45.16 \pm 0.50	62.16 \pm 0.69	70.61 \pm 0.40	73.89 \pm 0.04	80.86 \pm 0.02	61.45 \pm 0.13	69.20 \pm 0.52	62.99
C-TPT	13.70 \pm 0.15	85.82 \pm 0.20	56.51 \pm 0.06	40.58 \pm 0.29	23.13 \pm 0.45	61.29 \pm 0.21	73.13 \pm 0.04	80.04 \pm 0.13	59.54 \pm 0.04	59.31 \pm 0.02	55.30
+ REACT	16.65 \pm 0.51	87.59 \pm 0.69	59.35 \pm 0.11	45.89 \pm 0.96	60.76 \pm 0.78	73.02 \pm 1.23	73.64 \pm 0.03	81.85 \pm 0.38	61.28 \pm 0.45	69.83 \pm 0.25	62.98
TDA [†]	15.93 \pm 0.81	85.13 \pm 0.03	57.17 \pm 0.08	39.34 \pm 0.29	36.71 \pm 1.01	59.24 \pm 0.11	74.62 \pm 0.04	80.69 \pm 0.10	59.68 \pm 0.11	60.75 \pm 0.26	56.92
+ REACT	17.75 \pm 0.74	85.52 \pm 0.23	58.48 \pm 0.09	44.18 \pm 0.79	70.81 \pm 1.08	71.64 \pm 0.66	74.63 \pm 0.19	81.84 \pm 0.06	60.40 \pm 0.04	68.86 \pm 0.98	63.41
TDA	16.79 \pm 0.23	89.36 \pm 0.43	57.36 \pm 0.17	43.91 \pm 0.08	41.66 \pm 0.61	68.17 \pm 0.28	77.78 \pm 0.11	86.29 \pm 0.27	62.48 \pm 0.01	64.03 \pm 0.15	60.78
+ REACT	19.01 \pm 0.02	89.57 \pm 0.01	58.67 \pm 0.33	48.17 \pm 0.08	71.08 \pm 1.29	77.19 \pm 0.63	77.28 \pm 0.20	86.62 \pm 0.50	62.81 \pm 0.11	71.27 \pm 1.12	66.16
ViT-B/16											
Zero-shot	22.59	85.76	65.61	40.60	44.25	64.07	82.68	83.81	63.68	66.30	61.94
+ REACT	27.33 \pm 0.71	90.31 \pm 0.12	67.77 \pm 0.25	47.94 \pm 0.42	80.63 \pm 0.54	80.53 \pm 0.20	83.57 \pm 0.06	87.10 \pm 0.13	65.30 \pm 0.03	76.28 \pm 0.54	70.67
TPT	23.43 \pm 0.08	93.21 \pm 1.07	66.52 \pm 0.20	46.33 \pm 1.10	42.69 \pm 0.16	68.25 \pm 0.93	83.94 \pm 1.18	84.42 \pm 0.98	65.19 \pm 0.47	67.62 \pm 0.41	64.16
+ REACT	25.56 \pm 0.47	93.37 \pm 0.08	67.97 \pm 0.04	49.53 \pm 0.01	73.03 \pm 0.33	74.63 \pm 0.80	83.54 \pm 0.04	85.96 \pm 0.16	66.49 \pm 0.06	72.67 \pm 0.23	69.27
C-TPT	24.09 \pm 0.25	92.98 \pm 0.69	65.24 \pm 0.78	45.01 \pm 1.21	42.28 \pm 0.10	70.36 \pm 0.75	83.22 \pm 0.11	87.82 \pm 0.72	64.07 \pm 0.59	65.58 \pm 0.79	64.06
+ REACT	27.78 \pm 0.47	93.27 \pm 0.18	66.88 \pm 0.37	50.59 \pm 0.17	74.72 \pm 0.79	77.49 \pm 0.43	83.73 \pm 0.05	87.70 \pm 0.02	66.22 \pm 0.05	74.65 \pm 0.64	70.30
TDA [†]	23.48 \pm 0.28	88.54 \pm 0.08	66.59 \pm 0.11	42.97 \pm 0.67	54.82 \pm 0.77	65.27 \pm 0.49	83.82 \pm 0.08	85.12 \pm 0.27	65.14 \pm 0.01	69.63 \pm 0.15	64.54
+ REACT	25.74 \pm 0.21	90.41 \pm 0.43	67.94 \pm 0.04	49.41 \pm 0.34	75.40 \pm 0.54	79.20 \pm 0.49	84.20 \pm 0.06	87.37 \pm 0.10	66.18 \pm 0.01	76.01 \pm 0.62	70.18
TDA	25.29 \pm 0.30	94.06 \pm 0.08	66.39 \pm 1.72	45.48 \pm 0.79	63.95 \pm 0.92	71.62 \pm 0.23	86.14 \pm 0.06	89.85 \pm 0.13	67.70 \pm 0.04	70.94 \pm 0.28	68.14
+ REACT	27.84 \pm 0.08	94.06 \pm 0.03	68.76 \pm 0.13	51.63 \pm 0.88	79.61 \pm 1.40	82.28 \pm 0.54	86.09 \pm 0.06	90.75 \pm 0.18	68.20 \pm 0.11	77.38 \pm 1.01	72.66

Table 2: **Results on the cross-domain benchmark.** The *Average* is calculated by taking the mean accuracy across all ten datasets. Note that the **bold** type represents the best performance overall.

4.1 MAIN RESULTS

Consistent performance gains with a plug-and-play design. Our approach can be integrated into any test-time adaptation (TTA) pipeline, yielding substantial performance improvements. As shown in Table 1, when our plug-and-play module is added to a baseline TTA method, the top-1 accuracy on the OOD benchmark improves noticeably, ImageNet-A (65.8% \rightarrow 71.3%) and ImageNet-R (70.1% \rightarrow 75.8%), with similar gains observed on ImageNet-V2 and ImageNet-S, averaging around a 5% boost. On the cross-domain benchmark in Table 2, our method enhances performance as well, with datasets like Aircraft (82.0% \rightarrow 86.5%) and Food101 (73.5% \rightarrow 78.0%). These results demonstrate that our plug-and-play design consistently elevates performance across diverse datasets without the need for per-dataset tuning.

Architecture-agnostic efficacy. The effectiveness of our method is evident across different backbone architectures, demonstrating its architecture-agnostic nature. As shown in both the OOD and cross-domain benchmarks, integrating our module consistently improves performance regardless of whether the base model is ResNet-based or Transformer-based. For instance, for the OOD benchmark in Table 1, applying our method to TDA with a ResNet-50 backbone leads to an increase in average accuracy (49.64% \rightarrow 50.82%), while the ViT-B/16 backbone experiences a similar improvement (65.12% \rightarrow 66.49%). Likewise, for the Cross-Domain benchmark in Table 2, the ResNet-50 model benefits from a substantial accuracy gain (57.09% \rightarrow 63.29%), and the ViT-B/16 model achieves a comparable boost (68.08% \rightarrow 72.77%). These results highlight the adaptability of **REACT**, ensuring consistent performance gains across various architectures and datasets, making it a robust enhancement for both CNN- and Transformer-based vision models.

Inference cost. For a fair comparison, we run all experiments on Intel Xeon Gold 6326 CPUs with a single NVIDIA RTX 4090. We first warmed up the system with 100 samples and then measure the time taken to process 100 samples, as reported in Table 3. Our observations indicate that train-based TTA methods (*e.g.*, TPT and C-TPT) have an additional cost of roughly 500 ms per sample compared to train-free methods (*e.g.*, TDA). Notably, **REACT** only introduces a negligible overhead *below 1 ms* while still improving performance compared to each TTA method.

REACT	Zero-shot	TPT	C-TPT	TDA
X	10.07	509.87	511.33	10.84
O	10.16	510.22	511.55	11.27
Rel.	+0.8%	+0.06%	+0.04%	+3.4%

Table 3: **Per-sample cost analysis.** Our method adds only at most 0.4ms while consistently achieving improved accuracy when integrating with any TTA methods.

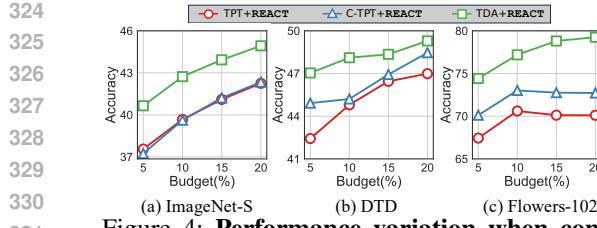


Figure 4: **Performance variation when controlling the budget across three datasets.** As the budget increases, the accuracy tends to rise owing to an enriched set of labeled examples.

4.2 FURTHER ANALYSIS RESULTS

Larger budget makes more precise retrieval-augmented correction. The retrieval-augmented approach relies on the labeled dataset $\mathcal{D}_l(t)$. Allocating a larger budget enables the model to search through a broader range of potential matches, leading to more accurate identification of relevant examples and, in turn, higher final prediction accuracy. To validate this hypothesis, we conducted experiments under varying budget settings across three different datasets, and summarized the outcomes in Figure 4. The results consistently show that as the budget increases, accuracy improves for each dataset, highlighting the importance of dedicating sufficient resources for retrieval. Moreover, this trend remains robust across diverse datasets, underscoring the importance of reserving a sufficient budget.

Comparison with diverse sample selection methods. To enhance adaptation under shifting test distributions, **REACT** naturally involves a sample selection mechanism. We evaluate **REACT** against standard active learning methods, Coreset (Sener & Savarese, 2018), Entropy (Holub et al., 2008), and Random, on the Flowers-102 dataset, as presented in Figure 5. Since these active learning approaches are not originally designed for streaming data, we adapt them to an online setting (see Appendix E). Across all active learning methods, **REACT** consistently outperforms these baselines, illustrating its ability to select more informative samples for constructing the labeled dataset $\mathcal{D}_l(t)$. This performance highlights the robustness of our approach in streaming environments and underscores the value of its sample selection mechanism.

Hyperparameter sensitivity. **REACT** introduces two hyperparameters, τ_u and τ_r , that decide whether a sample should undergo retrieval-augmented correction. First, τ_u dictates how many samples rely on TTA predictions. Specifically, lowering τ_u makes more samples appear *uncertain*, diverting them away from direct TTA-based decisions, whereas raising τ_u increases the likelihood of accepting TTA outputs. Second, τ_r governs which of these uncertain samples undergo retrieval-augmented correction. A lower τ_r includes more samples in retrieval-augmented correction, while a higher τ_r imposes stricter conditions, causing more samples to label.

To assess potential sensitivity of **REACT**, we tested different values of τ_u and τ_r , as reported in Figure 6. Results across three datasets show that each one behaves differently due to varying levels of difficulty in each dataset. Nonetheless, on every dataset and for every TTA method, incorporating **REACT** consistently surpasses the baseline (*i.e.*, *without REACT*), regardless of the specific hyperparameter settings. This observation confirms the robustness for a reasonable range of the thresholds.

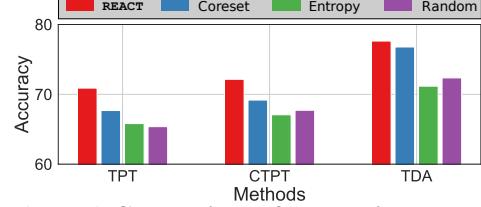


Figure 5: **Comparison of conventional sample selection methods on Flowers-102.** We customize the active learning methods to be suitable for streaming data (see Appendix E).

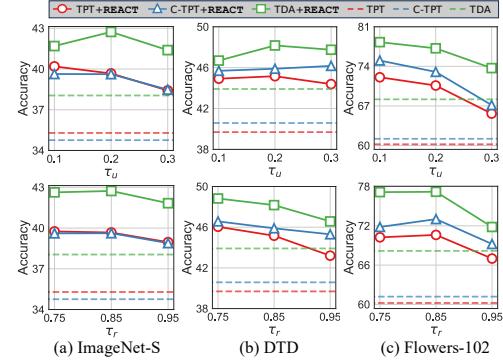
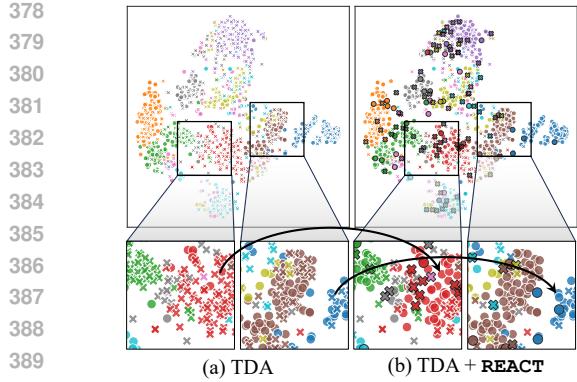


Figure 6: **Hyperparameter sensitivity.** We vary the uncertainty threshold τ_u with $\tau_r = 0.85$ (upper) and the retrieval-augmented correction threshold τ_r with $\tau_u = 0.2$ (lower).

REACT selects the labeled samples in the boundary. Figure 7 illustrates how **REACT** reshapes the decision boundary. Here, the examples with black outlines highlight the samples that **REACT** selected for labeling, which act as a Referrer or a Verifier. They have a noticeable influence on their



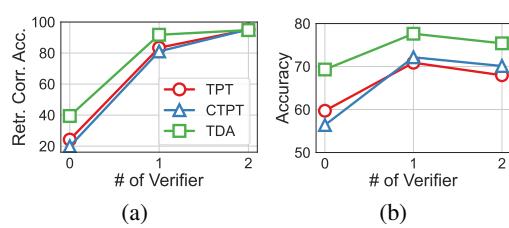
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
Figure 7: **Partial t-SNE (Van der Maaten & Hinton, 2008) visualization to check the decision boundary changes (left) and correct misalignment of image and text (right) by retrieval-augmented correction as the labeled dataset $\mathcal{D}_l(t)$ is built on EuroSAT.** Circles (\circ) represent samples where the prediction matches the ground truth, while crosses (\times) indicate samples that were misclassified. Black outlines indicate the samples selected and labeled through **REACT**.

401 neighborhood where many samples initially misclassified (depicted as crosses in Figure 7a) have
402 their predictions corrected and align with the ground truth (depicted as circles in Figure 7b). This
403 visualization clearly demonstrates the power of strategically chosen labeled samples in guiding the
404 overall prediction landscape.

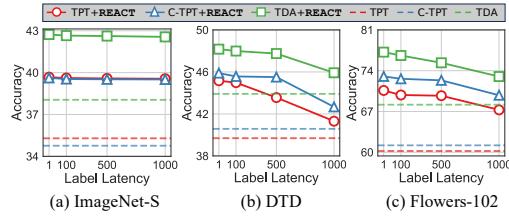
405 **REACT corrects the sample prediction that misaligns image and text embeddings.** Figure 7b
406 shows that **REACT** can use a set of carefully selected labeled examples to properly correct false
407 predictions stemming from misalignment issue in TTA methods. By leveraging retrieval-augmented
408 correction, **REACT** demonstrates its ability to correct sample prediction that misaligns image and
409 text embeddings in TTA methods. Accordingly, this finding verifies the fuel-efficiency of **REACT**
410 that works with a small amount of labeled data ($\sim 10\%$ of the test set).

411 **Impact of a Verifier (x_t^V, y_t^V).** The role of a Verifier is to minimize errors in retrieval-augmented
412 correction, as argued in Section 3.2. To validate this hypothesis, we conducted experiments by varying
413 the number of Verifiers and summarized the results in Figure 8. As shown in Figure 7a, introducing
414 the Verifier concept (*i.e.*, $0 \rightarrow 1$) leads to a significant boost in retrieval-augmented correction
415 accuracy. Additionally, the retrieval-augmented correction accuracy increases as the number of Verifiers
416 increases. On the other hand, Figure 7b demonstrates that the overall accuracy is dropped when
417 the number of Verifiers increases (*i.e.*, $1 \rightarrow 2$). This degradation is attributed to Equation 7 becoming
418 overly strict as the number of Verifiers increases, which in turn reduces the number of samples
419 where retrieval-augmented correction is applied.

420 **Sensitivity of labeling latency of **REACT**.** Although we used the ground truth as the answers from
421 an oracle, because a powerful VLM is likely to act as an oracle in real-world applications, some de-
422 lays in labeling are unavoidable. Figure 9 shows that even though longer delays can gradually reduce
423 the performance gap of **REACT** over traditional TTA methods, **REACT** still maintains robustness by
424 at least matching TTA’s performance. We evaluated this sensitivity on three datasets, ImageNet-S
425 (50,000 samples), DTD (about 2,000 samples), and Flowers-102 (about 2,000 samples), using la-
426 beling delays of 1, 100, 500, and 1,000 samples. On the large ImageNet-S dataset, the performance
427 remained stable at around 43% for TDA+**REACT** and 40% for C-TPT+**REACT**. However, on the
428 smaller DTD and Flowers-102 datasets, the same delays led to more noticeable drops in accuracy
429 (*e.g.*, DTD: 46% \rightarrow 42% and Flowers-102: 74% \rightarrow 67%). These results confirm that performance
430 degradation occurs when the labeling latency constitutes a significant portion of the entire test set
431 size. In other words, increasing the size of the streaming set is expected to minimize the negative
432 impact on performance.



380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
Figure 8: **Performance changes as the number of Verifiers increases.** (a) indicates the accuracy specifically for retrieval-augmented correction, whereas (b) refers to the accuracy calculated over all samples.



401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 9: **Robustness for label latency in **REACT**.** Note that *labeling latency* is defined as the number of samples between when **REACT** decides to label a sample and when it is labeled.

432 5 RELATED WORK
433
434

435 **Vision language models (VLMs).** To comprehend the visual and language representations, multiple
436 approaches have been explored (Lu et al., 2019; Das et al., 2017; De Vries et al., 2017; Qi et al.,
437 2020; Gan et al., 2020; Yu et al., 2021; Li et al., 2020). In the stream of trials to understand both
438 modalities at once, CLIP (Radford et al., 2021) emerged in 2021, drawing significant attention due to
439 its remarkable zero-shot performance across various tasks. In a similar vein, ALIGN (Jia et al., 2021)
440 was introduced, employing a comparable training methodology but featuring distinct architectural
441 and training dataset characteristics. Unlike CLIP, BLIP (Li et al., 2022) introduced a captioning
442 module aimed at improving model performance by rectifying noisy captions. LiT (Zhai et al., 2022)
443 and BLIP-2 (Li et al., 2023) enhanced training efficiency by freezing specific encoder parameters.
444 FILIP (Yao et al., 2021) endeavored to enable a model to discern finer image details through a
445 fine-grained, *i.e.*, patch-level, training approach.

446 **Test-time adaptation for VLMs.** When transferring the zero-shot capabilities of VLMs, the distri-
447 bution shift between pre-training data and test data is the main obstacle. Test-time adaptation (TTA)
448 methods for VLMs have been proposed to adapt VLMs to the distribution shift. These methods
449 adapt to an input test image on-the-fly, without any training requirements; they usually leverage the
450 output of a VLM because only a single unlabeled test image is available. TPT (Shu et al., 2022b)
451 uses data augmentation to enrich the test image, filters out unreliable augmented images based on
452 prediction entropy, and then updates learnable prompts by minimizing the entropy of the reliable
453 predictions. DiffTPT (Feng et al., 2023a) enhances TPT by augmenting an input image with infor-
454 mative and diverse images generated from a pre-trained diffusion model. C-TPT (Yoon et al., 2024)
455 also enhances TPT by calibrating the prediction uncertainty. Unlike previous methods, TDA (Kar-
456 manov et al., 2024) introduces training-free TTA by leveraging Tip-Adapter (Zhang et al., 2022),
457 thereby boosting performance while lowering inference cost. However, existing methods solely rely
458 on the *internal* knowledge encoded in the VLM parameters which are constrained to the pre-training
459 data (Agarwal et al., 2021), as opposed to our framework featuring retrieval-augmented correction.

460 **Active learning.** Active learning (Settles, 2009; Ren et al., 2021; Geifman & El-Yaniv, 2019; Mun-
461 jal et al., 2022) aims to minimize human labeling costs by identifying informative data that maxi-
462 mize model performance. Research in this area generally follows two main trajectories: uncertainty-
463 based sampling and diversity-based sampling. In the former, prediction probability-based strate-
464 gies such as soft-max confidence (Lewis & Catlett, 1994), margin (Roth & Small, 2006), and en-
465 tropy (Holub et al., 2008) are straightforward yet effective approaches. In the latter, diversity-based
466 strategies (Sener & Savarese, 2018; Parvaneh et al., 2022) employ clustering or coresset selection
467 protocols, such as the coresset method (Sener & Savarese, 2018) which aims to maximize coverage
468 distance across unlabeled data. Additionally, hybrid methods like BADGE (Ash et al., 2019) com-
469 bine uncertainty and diversity by performing k -means++ clustering in gradient embedding space.
470 More recently, PCB (Bang et al., 2024) firstly proposed the active learning framework for VLMs,
471 which focused on the balance of classes using pseudo labels when selecting samples. While most
472 active learning research focuses on static datasets, a few studies (Qin et al., 2021; DeSalvo et al.,
473 2021) investigate online active learning in data streams. However, they do not account for shifts in
474 the data stream, such as out-of-distribution or cross-domain variations. simATTA (Gui et al., 2024)
475 is the first algorithm developed for *active test-time adaptation*, but it necessitates training of the
476 model, which is susceptible to catastrophic forgetting and expensive.

477 6 CONCLUSION
478
479

480 We have proposed **REACT**, a framework that integrates active sample selection with retrieval-
481 augmented correction to boost pre-trained VLMs under distribution shifts. By querying uncertain
482 samples for labeling, **REACT** builds a compact yet informative labeled dataset. During inference, it
483 effectively corrects uncertain predictions by exploiting this extra information. Experiments on OOD
484 and cross-domain benchmarks show that **REACT** boosts accuracy by up to 7.68 percentage points
485 across two backbones (ResNet and ViT) with minimal overhead, offering an efficient plug-and-play
486 solution for TTA under limited label budgets.

486 **ETHICAL CONSIDERATIONS**
487

488 This work focuses on the development of a general-purpose algorithm, and no direct ethical issues
489 arise from the research process itself. Moreover, all experiments were conducted exclusively using
490 widely-used public academic benchmark datasets, such as ImageNet and Caltech101, thereby no
491 new data containing personally identifiable or sensitive information was collected, processed, or
492 distributed. We therefore conclude that our work does not raise any major ethical issues.
493

494 **REPRODUCIBILITY STATEMENT**
495

496 To ensure reproducibility, we provide comprehensive implementation details including the **REACT**
497 algorithm (See Algorithm 1), mathematical formulations for all components (See Section 3), and
498 fixed hyperparameters. Experimental setup details are described in Appendix C, covering all 15
499 benchmark datasets, baseline implementations, and evaluation metrics. Source code is available at
500 https://anonymous.4open.science/r/react_iclr26 with implementations for all
501 TTA baselines and evaluation scripts for reproducibility.
502

503 **REFERENCES**
504

505 Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec Radford, Jong Wook Kim, and Miles
506 Brundage. Evaluating clip: towards characterization of broader capabilities and downstream im-
507 plications. *ArXiv Preprint*, 2021.

508 Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
509 batch active learning by diverse, uncertain gradient lower bounds. *ArXiv Preprint*, 2019.

511 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
512 Yu Han, Fei Huang, et al. Qwen technical report. *ArXiv Preprint*, 2023.

514 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
515 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *ArXiv Preprint*, 2025.

516 Jihwan Bang, Sumyeong Ahn, and Jae-Gil Lee. Active prompt learning in vision language mod-
517 els. In *Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
518 27004–27014, 2024.

520 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative com-
521 ponents with random forests. In *Proceedings of European Conference on Computer Vision*, pp.
522 446–461, 2014.

523 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
524 scribing textures in the wild. In *Proceedings of IEEE/CVF Conference on Computer Vision and*
525 *Pattern Recognition*, pp. 3606–3613, 2014.

527 Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José MF Moura, Devi
528 Parikh, and Dhruv Batra. Visual dialog. In *Proceedings of IEEE/CVF Conference on Computer*
529 *Vision and Pattern Recognition*, pp. 326–335, 2017.

531 Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C
532 Courville. Modulating early visual processing by language. In *Proceedings of Advances in Neural*
533 *Information Processing Systems*, volume 30, 2017.

534 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
535 hierarchical image database. In *Proceedings of IEEE/CVF Conference on Computer Vision and*
536 *Pattern Recognition*, pp. 248–255, 2009.

538 Giulia DeSalvo, Claudio Gentile, and Tobias Sommer Thune. Online active learning with surrogate
539 loss functions. In *Proceedings of Advances in Neural Information Processing Systems*, volume 34,
540 pp. 22877–22889, 2021.

540 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
541 examples: An incremental bayesian approach tested on 101 object categories. In *Proceedings*
542 of *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop*, pp. 178–178,
543 2004.

544 Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse Data Augmentation
545 with Diffusions for Effective Test-time Prompt Tuning. In *Proceedings of IEEE/CVF Interna-*
546 *tional Conference on Computer Vision*, pp. 2704–2714, 2023a.

547 Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmentation
548 with diffusions for effective test-time prompt tuning. In *Proceedings of IEEE/CVF Interna-*
549 *tional Conference on Computer Vision*, pp. 2704–2714, 2023b.

550 Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adversarial
551 training for vision-and-language representation learning. In *Proceedings of Advances in Neural*
552 *Information Processing Systems*, volume 33, pp. 6616–6628, 2020.

553 Shanghua Gao, Zhong-Yu Li, Ming-Hsuan Yang, Ming-Ming Cheng, Junwei Han, and Philip Torr.
554 Large-scale unsupervised semantic segmentation. *IEEE Transactions on Pattern Analysis and*
555 *Machine Intelligence*, 2022.

556 Yonatan Geifman and Ran El-Yaniv. Deep active learning with a neural architecture search. In
557 *Proceedings of Advances in Neural Information Processing Systems*, volume 32, 2019.

558 Shurui Gui, Xiner Li, and Shuiwang Ji. Active test-time adaptation: Theoretical analyses and an
559 algorithm. In *Proceedings of International Conference on Learning Representations*, 2024.

560 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
561 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
562 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

563 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
564 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical anal-
565 ysis of out-of-distribution generalization. In *Proceedings of IEEE/CVF International Conference*
566 *on Computer Vision*, pp. 8340–8349, 2021a.

567 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
568 examples. In *Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
569 2021b.

570 Alex Holub, Pietro Perona, and Michael C Burl. Entropy-based active learning for object recog-
571 nition. In *Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition*
572 *Workshop*, pp. 1–8, 2008.

573 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
574 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
575 with noisy text supervision. In *Proceedings of International Conference on Machine Learning*,
576 pp. 4904–4916, 2021.

577 Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmataeb El Saddik, and Eric Xing. Efficient
578 test-time adaptation of vision-language models. In *Proceedings of IEEE/CVF Conference on*
579 *Computer Vision and Pattern Recognition*, pp. 14162–14171, 2024.

580 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
581 categorization. In *Proceedings of IEEE/CVF International Conference on Computer Vision Work-*
582 *shop*, pp. 554–561, 2013.

583 David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In
584 *Proceedings of International Conference on Machine Learning*, pp. 148–156. 1994.

585 Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and Dixin Jiang. Unicoder-vl: A universal encoder
586 for vision and language by cross-modal pre-training. In *Proceedings of Association for the Ad-*
587 *vancement of Artificial Intelligence*, volume 34, pp. 11336–11344, 2020.

594 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
595 training for unified vision-language understanding and generation. In *Proceedings of Interna-*
596 *tional Conference on Machine Learning*, pp. 12888–12900. PMLR, 2022.

597 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
598 training with frozen image encoders and large language models. In *Proceedings of Interna-*
599 *tional Conference on Machine Learning*, pp. 19730–19742. PMLR, 2023.

600 Yong Lin, Shengyu Zhu, Lu Tan, and Peng Cui. Zin: When and how to learn invariance without
601 environment partition? pp. 24529–24542, 2022.

602 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. 36, 2024.

603 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution de-
604 tection. *Proceedings of Advances in Neural Information Processing Systems*, 33:21464–21475,
605 2020.

606 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
607 gistic representations for vision-and-language tasks. In *Proceedings of Advances in Neural Infor-*
608 *mation Processing Systems*, volume 32, 2019.

609 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
610 visual classification of aircraft. *ArXiv Preprint*, 2013.

611 Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, and Shadab Khan. Towards robust
612 and reproducible active learning using neural networks. In *Proceedings of IEEE/CVF Conference*
613 *on Computer Vision and Pattern Recognition*, pp. 223–232, 2022.

614 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large num-
615 ber of classes. In *Proceedings of Indian Conference on Computer Vision, Graphics & Image*
616 *Processing*, pp. 722–729, 2008.

617 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *Pro-*
618 *ceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3498–3505,
619 2012.

620 Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Gholamreza Reza Haffari, Anton Van Den Hen-
621 gel, and Javen Qinfeng Shi. Active learning by feature mixing. In *Proceedings of IEEE/CVF*
622 *Conference on Computer Vision and Pattern Recognition*, pp. 12237–12246, 2022.

623 Judea Pearl. *Causality*. Cambridge university press, 2009.

624 Di Qi, Lin Su, Jia Song, Edward Cui, Taroon Bharti, and Arun Sacheti. Imagebert: Cross-modal
625 pre-training with large-scale weak-supervised image-text data. *ArXiv Preprint*, 2020.

626 Jiongming Qin, Cong Wang, Qinhong Zou, Yubin Sun, and Bin Chen. Active learning with extreme
627 learning machine for online imbalanced multiclass classification. *Knowledge-Based Systems*, 231:
628 107385, 2021.

629 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
630 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
631 models from natural language supervision. In *Proceedings of International Conference on Ma-*
632 *chine Learning*, pp. 8748–8763. PMLR, 2021.

633 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
634 generalize to imagenet? In *Proceedings of International Conference on Machine Learning*, pp.
635 5389–5400. PMLR, 2019.

636 Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
637 and Xin Wang. A survey of deep active learning. *ACM Computing Surveys (CSUR)*, 54(9):1–40,
638 2021.

639 Dan Roth and Kevin Small. Margin-based active learning for structured output spaces. In *Pro-*
640 *ceedings of European Conference on Machine Learning*, pp. 413–424, 2006.

648 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
649 approach. In *Proceedings of International Conference on Learning Representations*, 2018.
650

651 Burr Settles. Active learning literature survey. Technical report, Department of Computer Sciences,
652 University of Wisconsin-Madison, 2009.

653 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
654 Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models. In Alice H.
655 Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Proceedings of Advances in*
656 *Neural Information Processing Systems*, 2022a. URL <https://openreview.net/forum?id=e8PVEkSa4Fq>
657

658 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
659 Xiao. Test-time Prompt Tuning for Zero-shot Generalization in Vision-Language Models. In
660 *Proceedings of Advances in Neural Information Processing Systems*, pp. 14274–14289, 2022b.
661

662 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
663 classes from videos in the wild. *ArXiv Preprint*, 2012.

664 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine*
665 *Learning Research*, 9(11), 2008.

666

667 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
668 Large-scale scene recognition from abbey to zoo. In *Proceedings of IEEE/CVF Conference on*
669 *Computer Vision and Pattern Recognition*, pp. 3485–3492, 2010.

670 Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
671 Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training.
672 *ArXiv Preprint*, 2021.

673

674 Hee Suk Yoon, Eunseop Yoon, Joshua Tian Jin Tee, Mark Hasegawa-Johnson, Yingzhen Li, and
675 Chang D Yoo. C-TPT: Calibrated Test-Time Prompt Tuning for Vision-Language Models via Text
676 Feature Dispersion. In *Proceedings of International Conference on Learning Representations*,
677 2024.

678 Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-vil: Knowl-
679 edge enhanced vision-language representations through scene graphs. In *Proceedings of Associa-*
680 *tion for the Advancement of Artificial Intelligence*, volume 35, pp. 3208–3216, 2021.

681 Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
682 and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In *Proceedings of*
683 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18123–18133, 2022.

684

685 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
686 image pre-training. In *Proceedings of IEEE/CVF International Conference on Computer Vision*,
687 pp. 11975–11986, 2023.

688 Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
689 sheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *Proceedings*
690 *of European Conference on Computer Vision*, pp. 493–510. Springer, 2022.

691

692 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
693 for vision-language models. In *Proceedings of IEEE/CVF Conference on Computer Vision and*
694 *Pattern Recognition*, pp. 16816–16825, 2022.

695

696

697

698

699

700

701

705
706
Plug-and-Play Retrieval-Augmented Active Test-Time
707
Adaptation for VLMs

708
709 **A CONVENTIONAL TTA**
710

711 fTest-time adaptation (TTA) using vision-language models (VLMs) can be classified into two types:
712 prompt tuning-based approaches (*e.g.*, TPT (Shu et al., 2022b) and C-TPT (Yoon et al., 2024)) and
713 training-free approaches (*e.g.*, TDA (Karmanov et al., 2024)). Depending on the approach, we can
714 formulate the TTA operator $\mathcal{T}_\xi(\cdot)$ as follows. Note that C-TPT is omitted here due to its conceptual
715 similarity to TPT.

716
717 **A.1 TEST-TIME PROMPT TUNING (TPT)**

718 TPT is achieved by fine-tuning a learnable prompt p using a single test sample x_t . Given multiple
719 augmented views of x_t , denoted by $A_i(x_t)$ for $i = \{1, \dots, M\}$, the goal is to minimize the entropy
720 (as defined in Equation 4) of the model’s predictions across these augmentations.

721 **Objective Function.** The probability distribution over classes generated by the CLIP model with
722 prompt p on the i -th augmented view can be formulated as

723
724
$$p^{(i)}(x_t) = p(A_i(x_t)) = \frac{\exp(s_c^{(i)}/\tau)}{\sum_{k=1}^C \exp(s_k^{(i)}/\tau)},$$
725
726

727 where $\mathbf{s}^{(i)} = \{s_c^{(i)} | c \in \{1, \dots, C\}\}$, and the similarity $s_c^{(i)}$ is defined as

728
729
$$s_c^{(i)} = \cos(f_{\text{img}}(A_i(x_t)), f_{\text{txt}}([p; t_c])),$$
730

731 where t_c is the text prompt of class c . Note that it is similarly calculated by Equation 3, but the
732 difference is that the text prompt concatenates learnable prompt p and text prompt t_c for class c ,
733 and the input image is augmented when calculating the similarity score. After then, the averaged
734 prediction $\tilde{p}_p(x_t)$ (with confidence selection) is defined as

735
736
$$\tilde{p}_p(x_t) = \frac{1}{\rho N} \sum_{i=1}^M \mathbf{1}[\mathcal{H}(p^{(i)}(x_t)) \leq \tau] p^{(i)}(x_t),$$
737

738 where $\mathcal{H}(\cdot)$ denotes the entropy function, τ is the entropy threshold, and ρ is the proportion of
739 augmented views selected.

740 The optimization problem is then given by

741
742
$$p^* = \arg \min_p \mathcal{L}_{\text{TPT}}(p; x_t),$$
743

744 with the loss defined as the marginal entropy,

745
746
$$\mathcal{L}_{\text{TPT}}(p; x_t) = - \sum_{y \in \mathcal{Y}} \tilde{p}_p(x_t) \log \tilde{p}_p(x_t).$$
747

748 After optimization, the test-time adapted prediction function is defined as

749
750
$$\mathcal{T}_\xi(x_t) = \mathcal{T}_{p^*}(x_t) \triangleq p_{p^*}(x_t).$$
751

752 **A.2 TRAINING-FREE DYNAMIC ADAPTER (TDA)**

753 In contrast to prompt tuning-based approaches, TDA leverages a non-parametric dynamic cache
754 to adapt predictions without backpropagation. Here, ξ comprises the components of the dynamic
755 cache,

$$\xi = \{Q_p, \hat{L}_p, Q_n, \hat{L}_n\},$$

756 where (Q_p, \hat{L}_p) denotes the keys and corresponding pseudo labels in the *positive cache* (collected
757 from high-confidence predictions), and (Q_n, \hat{L}_n) denotes the keys and corresponding negative
758 pseudo labels in the *negative cache* (collected from low-confidence predictions).
759

760 Then, the final prediction is computed as

$$761 \quad \mathcal{T}_\xi(x_t) = f_{\text{img}}(x_t)W_T^c \\ 762 \quad + \mathcal{A}(f_{\text{img}}(x_t)Q_p^T) \hat{L}_p - \mathcal{A}(f_{\text{img}}(x_t)Q_n^T) \hat{L}_n,$$

764 where $W_T^c = [f_{\text{txt}}(t_c) \mid c \in \mathcal{C}]$ represents the text embedding matrix computed from the class
765 names, and $\mathcal{A}(\cdot)$ is an adapter function (e.g., an exponential weighting function as used in Tip-
766 Adapter (Zhang et al., 2022)).
767

769 B ALGORITHM DETAILS

771 Algorithm 1 outlines our proposed method, **REACT**. For each test sample x_t , our method first
772 assesses its prediction uncertainty. If the sample is certain, **REACT** directly returns the base TTA
773 prediction. For uncertain samples, it employs a hierarchical strategy to manage its labeling budget
774 efficiently. The process begins with a brief warm-up phase, building a foundational labeled set \mathfrak{D}_l
775 by querying the oracle for the first N uncertain samples encountered.

776 Once this foundational set is established, **REACT**'s core **retrieval-augmented correction** mech-
777 anism is activated for subsequent uncertain samples. It first attempts a budget-free correction by
778 retrieving high-confidence matches from the existing labeled set \mathfrak{D}_l . Only if this retrieval fails to
779 yield a confident correction and the labeling budget \mathfrak{B} is not exhausted, the algorithm does query
780 the oracle to annotate the sample. This strategy ensures that the valuable labeling budget is reserved
781 for the most genuinely ambiguous and informative samples, making the adaptation process both
782 effective and efficient.

784 Algorithm 1: **REACT**

785 **Input:** Labeled dataset $\mathfrak{D}_l(t)$, Uncertainty threshold τ_u , Retrieval-augmented correction
786 threshold τ_r , Labeling budget \mathfrak{B} , Minimum labeled samples N , TTA method $\mathcal{T}_\xi(\cdot)$,
787 Oracle labeler $\text{Oracle}(\cdot)$, Test sample x_t

788 Compute uncertainty $u \leftarrow \mathcal{H}(p(x_t))$ ▷ Eq. (4)
789 **# Certain sample: Use TTA prediction** ▷ Section 3.1

790 **if** $u < \tau_u$ **then**
791 | **return** $p(x_t) = \mathcal{T}_\xi(x_t; f_{\text{img}}, f_{\text{txt}})$

792 **# Uncertain sample: Calculate criteria**

793 **else**
794 | **# Warm-up: Construct $\mathfrak{D}_l(t)$**
795 | **if** $|\mathfrak{D}_l(t)| < N$ **then**
796 | | $\mathfrak{D}_l(t+1) \leftarrow \mathfrak{D}_l(t) \cup \{(x_t, \text{Oracle}(x_t))\}$
797 | | **return** $p(x_t) = \mathcal{T}_\xi(x_t; f_{\text{img}}, f_{\text{txt}})$

798 | | Retrieve $R, V \in \mathfrak{D}_l(t)$
799 | | Compute $\mathcal{C}(x_t|R, V)$ ▷ Eq. (7)
800 | | **# Retrieval-augmented correction** ▷ Section 3.2

801 | | **if** $\mathcal{C}(x_t|R, V) > \tau_r$ **then**
802 | | | **return** $p(x_t) = \text{one_hot}(y_t^R)$

803 | | **# Correction after label budget** ▷ Section 3.3

804 | | **else if** $|\mathfrak{D}_l(t)| \geq \mathfrak{B}$ **then**
805 | | | Calculate the logit $p(x_t)$
806 | | | **return** $p(x_t)$ ▷ Eq. (8)

807 | | **# Annotate x_t by oracle, and update $\mathfrak{D}_l(t+1)$**
808 | | **else**
809 | | | $\mathfrak{D}_l(t+1) \leftarrow \mathfrak{D}_l(t) \cup \{(x_t, \text{Oracle}(x_t))\}$
| | | **return** $p(x_t) = \mathcal{T}_\xi(x_t; f_{\text{img}}, f_{\text{txt}})$

810 **C EXPERIMENTAL SETUP**
811

812 **C.1 DATASETS**
813

814 Our experiments were conducted on two benchmarks: the out-of-distribution (OOD) benchmark
815 and the cross-domain benchmark, both used in previous research on adapting VLMs during test
816 time. The OOD benchmark evaluates the robustness of our approach by assessing its performance
817 on four datasets derived from ImageNet (Deng et al., 2009), ImageNet-A (Hendrycks et al., 2021b),
818 ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-S (Gao
819 et al., 2022), which are specifically designed to test a model’s ability to generalize to new and unseen
820 data. In contrast, the cross-domain benchmark examines the model’s adaptability across different
821 domains by evaluating it on ten diverse image classification datasets, each representing a distinct
822 class space. These datasets include Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al., 2004),
823 Stanford Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019),
824 Flower102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), Oxford Pets (Parkhi
825 et al., 2012), SUN397 (Xiao et al., 2010), and UCF101 (Soomro et al., 2012). Using these two
826 benchmarks, we provide a comprehensive evaluation of the model’s generalization capability and
827 adaptability during test time. We summarize the statistics of datasets in Table 4, and belows are the
828 details of each dataset.
829

830 **C.1.1 OOD BENCHMARKS**

831 **ImageNet** (Deng et al., 2009) contains 14,197,122 annotated images according to the WordNet
832 hierarchy. This dataset has been used in the ImageNet large scale visual recognition challenge
833 (ILSVRC), a benchmark in image classification and object detection, since 2010.

834 **ImageNet-A** (Hendrycks et al., 2021b) is a subset of 7,500 visually similar but naturally perturbed
835 ImageNet images of 200 classes.
836

837 **ImageNet-V2** (Recht et al., 2019) consists of 10,000 images and 1,000 ImageNet classes, and was
838 collected by applying an updated natural data collection pipeline to the original ImageNet dataset.

839 **ImageNet-R** (Hendrycks et al., 2021a) includes 30,000 images belonging to 200 categories of the
840 ImageNet dataset, but with diverse artistic styles.

841 **ImageNet-S** (Gao et al., 2022) consists of 50,000 sketches of 1,000 class objects from the ImageNet
842 dataset, and represents a domain shift from natural images to sketches.
843

844 **C.1.2 CROSS DOMAIN BENCHMARK**
845

846 **FGVC-Aircraft** (Maji et al., 2013) encompasses a total of 10,200 images depicting various air-
847 craft. This dataset is organized into 102 distinct classes, and each class corresponds to a specific
848 aircraft model variant. Notably, there are 100 images available for each of these 102 different air-
849 craft model variants. The class name in this dataset is composed of the make, model, and specific
850 variant, *e.g.*, Boeing 737-76J.
851

852 **Caltech101** (Fei-Fei et al., 2004) is composed of 101 unique object categories, each corresponding
853 to a different type of objects or scenes. These categories encompass a wide range of objects, such
854 as various animals, vehicles, and more. The dataset comprises a total of 9,000 images with varying
855 numbers of images allocated to each category. Notably, it is considered a severely imbalanced dataset
856 due to the uneven distribution of images across its categories.
857

858 **Stanford Cars** (Krause et al., 2013) consists of a collection of 16,185 images categorized into
859 196 different classes, with each class typically representing a specific car make, model, and year,
860 *e.g.*, 2012 Tesla Model S.
861

862 **DTD** (Cimpoi et al., 2014), abbreviated from Describable Texture Dataset, is designed for texture
863 classification task. This dataset consists of 47 distinct classes, including categories like fabrics and
864 natural materials. In total, DTD comprises 5,640 samples. Notably, when examining the perfor-
865 mance reported in the CLIP (Radford et al., 2021), it becomes evident that DTD poses a challenging
866 problem for pre-trained CLIP models, as textures are not typical, easily recognizable objects.
867

Dataset	# of Classes	# of Test Instances
ImageNet	1000	50,000
ImageNet-A	200	7,500
ImageNetV2	1000	10,000
ImageNet-R	200	30,000
ImageNet-S	1000	50,889
FGVC Aircraft	100	3,333
Caltech101	100	2,465
Stanford Cars	196	8,041
DTD	47	1,692
EuroSAT	10	8,100
Flowers102	102	2,463
Food101	101	30,300
Oxford Pets	37	3,669
SUN397	397	19,850
UCF101	101	3,783

Table 4: Profiles of the datasets used for the experiments.

EuroSAT (Helber et al., 2019) comprises 10 distinct classes that represent various land use and land cover categories. In total, this dataset includes 27,000 satellite images, with 2,700 images allocated to each of the 10 classes. Notably, each class contains an equal number of images, ensuring a balanced distribution within the dataset.

Flowers102 (Nilsback & Zisserman, 2008) consists of 102 different categories of flowers, each representing a distinct flower species such as roses, sunflowers, and daisies. There are 8,189 image and label pairs in total. Some categories have more images than the others, which means that it is imbalanced as typical real-world datasets; each category contains at least 40 and at most 258 samples.

Food-101 (Bossard et al., 2014) consists of 101 food categories with 750 training and 250 test images per category, summing up to 101K images. The labels for the test images have been manually cleaned, while the training set contains some noise.

Oxford Pets (Parkhi et al., 2012) consists of 37 different pet categories, including various dogs and cats. This dataset contains 7,400 samples. In particular, it has 4,978 dog images and 2,371 cat images. We use only class labels even though the dataset has segmentation, *i.e.*, both RoI and class.

SUN397 (Xiao et al., 2010) is the the Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. There are 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition.

UCF101 (Soomro et al., 2012) is an extension of UCF50 and consists of 13,320 video clips, which are classified into 101 categories. These 101 categories can be classified into 5 types (body motion, human-human interactions, human-object interactions, playing musical instruments, and sports). The total length of these video clips is over 27 hours. All the videos are collected from YouTube and have a fixed frame rate of 25 FPS with the resolution of 320×240 . In this work, the middle frame of each video is fed to the image encoder.

C.2 BASELINES

We compare **REACT** against three state-of-the-art TTA methods for VLMs, which can be categorized into prompt-tuning based (*e.g.*, TPT, C-TPT) and training-free approaches (*e.g.*, TDA).

Prompt Tuning-based TTA. We select TPT (Shu et al., 2022b) and its concurrent extension C-TPT (Yoon et al., 2024) as the representatives of this category. These methods adapt a set of learnable prompt vectors for each individual test sample. The optimization is guided by a self-supervised objective, which aims to minimize the entropy of the model’s predictions across multiple augmented views of that sample, thereby fine-tuning the prompt without requiring true labels.

Training-free TTA. As a training-free counterpart, we use TDA (Karmanov et al., 2024). In contrast to prompt tuning, TDA is a non-parametric method that requires no backpropagation at test time. It maintains a dynamic cache that stores features from past predictions, separating them into positive

Model	Aircraft	Caltech101	Cars	DTD	EuroSAT	IN	IN-A
CLIP	22.59	85.76	65.61	40.60	44.25	63.52	54.65
+ REACT	27.33	90.31	67.77	47.94	80.63	65.90	55.85
BLIP-2	12.75	92.58	78.54	53.49	48.88	60.23	63.35
+ REACT	22.20	92.60	79.92	53.66	56.58	61.83	63.89
SigLIP	36.66	95.86	88.47	61.70	33.88	75.14	43.49
+ REACT	39.48	96.06	88.50	63.30	34.30	75.22	44.24

Table 5: Performance with more recent VLMs.

Method	Aircraft	Caltech101	Cars	DTD	EuroSAT	IN	IN-A
CLIP (Zero-shot)	22.59	85.76	65.61	40.60	44.25	63.52	54.65
CLIP + CoOp (Prompt learning)	26.22	89.17	66.68	42.61	72.43	68.50	52.47
CLIP+ REACT (Train-free)	27.33	90.31	67.77	47.94	80.63	65.90	55.85

Table 6: Performance comparison of training-based TTA.

and negative caches using confidence scores. These caches are then used to adjust the prediction scores of the current test sample, effectively adapting the model on the fly.

C.3 IMPLEMENTATION DETAILS

All models in our experiments are built upon the pre-trained CLIP model, which consists of an image encoder and a text encoder. The image encoder can be either a ResNet or a Vision Transformer (ViT), while the text encoder is a Transformer. TTA is performed in a single-image setting with a batch size of 1. Specifically, the thresholds of uncertainty (Equation 4) and retrieval-augmented correction (Equation 7) are set to 0.2 and 0.85, respectively, the initial number of labeled examples N is set to 5, and the label budget \mathfrak{B} is set to 10% of the size of the test set. These hyperparameters remain fixed and are evaluated across various datasets. For evaluation, we use the *top-1 accuracy* (%) as the standard classification metric. All experiments were conducted three times on a single NVIDIA RTX 4090, and the results were then averaged with standard deviation.

D FURTHER ANALYSES

D.1 VARIOUS VLMs

While recent vision-language models (VLMs) such as BLIP-2 (Li et al., 2023) and SigLIP (Zhai et al., 2023) have emerged, outperforming traditional models like CLIP, the majority of prior TTA research has been conducted on CLIP. Therefore, for baseline consistency and fair comparison, we initially adopted CLIP in our main experiments (as presented in Table 1 and Table 2). To further showcase the generalizability of our approach, we extend our evaluation to include BLIP-2 and SigLIP. As shown in Table 5, applying **REACT** yields consistent improvements across these modern architectures. These findings underscore that **REACT** is a versatile and effective method, capable of enhancing a wide range of VLMs.

D.2 COMPARISON WITH SUPERVISED TTA

To rigorously evaluate our method in an active TTA setup, we compare it against a supervised, training-based approach, CoOp (Zhou et al., 2022). For a fair comparison, both CoOp and CLIP+**REACT** utilize the same labeled set generated by **REACT**, and we summarize the results in Table 6. Critically, CoOp leverages this set for supervised fine-tuning with gradient updates. Despite this advantage of learning directly from labels, our training-free CLIP+**REACT** demonstrates superior performance across the majority of datasets. This outcome underscores a critical limitation of supervised TTA: even with access to labels, the effectiveness of training-based methods is fundamentally hampered by the computational constraints of the TTA setting, which permit only a few update iterations. These results confirm that CLIP+**REACT** is not only more efficient by sidestepping backpropagation but also achieves a more powerful adaptation, ultimately surpassing a supervised method under practical TTA constraints.

Metric	Aircraft	Caltech101	Cars	DTD	EuroSAT	IN	IN-A
Max Softmax	27.69	85.76	59.25	48.05	82.14	64.54	55.89
Energy	25.74	94.04	67.57	44.74	61.07	70.70	60.42
Entropy (Ours)	27.84	94.06	68.76	51.63	79.61	70.88	60.73

976 **Table 7: Performance with various uncertainty metrics.**

977 **D.3 ABLATION ON UNCERTAINTY METRIC**

980 To validate our choice of *entropy* as the uncertainty metric, we performed an ablation study by
 981 replacing it with two other prominent metrics: Max Softmax probability and Energy Score (Liu et al.,
 982 2020). In Table 7, the results clearly indicate that entropy is the most effective choice, achieving the
 983 highest accuracy on six out of the seven benchmark datasets. The performance gain is particularly
 984 notable on DTD, where entropy surpasses the next best metric by a significant margin. While Max
 985 Softmax showed a stronger result on the EuroSAT, the consistent top-tier performance of entropy
 986 across a diverse range of benchmarks underscores its general robustness.

987 **E CONVENTIONAL SAMPLE SELECTION**

989 To evaluate the effectiveness of **REACT**, Figure 5 compared it against three well-known sample
 990 selection methods: Random, Coreset, and Entropy. We adapt each method for online use by incor-
 991 porating a criterion threshold and tailoring Equation 7 to fit their specific approaches. Below, we
 992 describe each method and its customized criterion.

994 **Random.** This baseline randomly generates a value v between 0 and 1. Retrieval-augmented pre-
 995 diction is triggered when v exceeds the retrieval threshold τ_r . The criterion is simple and defined as
 996 $\mathcal{C}(x_t) = v$.

997 **Coreset (Sener & Savarese, 2018).** This method focuses on selecting diverse samples based on
 998 model embeddings. It triggers annotation when the cosine similarity between a test sample x_t and
 999 its nearest labeled sample x_t^R (Referrer) falls below the retrieval threshold τ_r . The criterion is for-
 1000 mulated as

$$1001 \mathcal{C}(x_t) = \cos(f_{\text{img}}(x_t), f_{\text{img}}(x_t^R)).$$

1003 **Entropy (Holub et al., 2008).** This method selects samples with high uncertainty, measured using
 1004 the entropy from the model’s output probabilities (see Equation 4). Retrieval-augmented prediction
 1005 is activated when the entropy $\mathcal{H}(p(x_t))$ exceeds the retrieval threshold τ_r . Since we already apply
 1006 uncertainty-based filtering with $\tau_u = 0.2$ (as noted in Section 3.1), we ensure $\tau_r > 0.2$. The criterion
 1007 is formulated as

$$1008 \mathcal{C}(x_t) = \mathcal{H}(p(x_t)) = - \sum_{c \in \mathcal{C}} p(y_t = c|x_t) \cdot \log p(y_t = c|x_t).$$