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ABSTRACT

Pre-trained vision-language models (VLMs) have demonstrated remarkable per-
formance across various real-world benchmarks. In particular, CLIP, one of the
famous VLMs, has achieved satisfactory performance on vision-language tasks
without fine-tuning (i.e., zero-shot setting). Nevertheless, it is well-known that
effectively leveraging a pre-trained model requires adaptation to the test distribu-
tion. Since the test distribution is typically unknown, test-time adaptation (TTA)
has emerged as one of the solutions. However, existing TTA algorithms rely not
on expert-provided ground-truth knowledge but on pseudo-labels derived from the
knowledge of the pre-trained model itself. This undesirable reliance can lead to a
cascade of incorrect knowledge propagation. To address this issue, we propose
a novel framework, active test-time adaptation, which selectively queries human
experts for ground-truth labels of uncertain samples and incorporates them for an-
swering future queries. Then, we develop a novel algorithm, REtrieval-augmented
ACTive TTA (REACT), which is designed to be plug-and-play with any TTA algo-
rithms. Through extensive experiments on ten real-world benchmarks commonly
used in CLIP evaluation as well as a domain transfer benchmark based on Ima-
geNet, the proposed algorithm is shown to effectively identify and query informa-
tive samples, leveraging them to enhance test-time inference capabilities.

1 INTRODUCTION

Vision-language models (VLMs) have received significant attention by integrating human language
into various computer vision tasks. For example, various VLMs (Radford et al., 2021; Bai et al.,
2023; Li et al., 2022; 2023; Liu et al., 2024; Bai et al., 2025) have been introduced and have demon-
strated remarkable performance on zero-shot classification, captioning, image-text retrieval, and so
on. In detail, CLIP (Radford et al., 2021) models, one of the pioneering VLMs, map text including
class candidates and image inputs into a shared embedding space, respectively, and classify a given
image by selecting the label with the highest matching score.

ⅹ: Incorrectly classified, •: correctly classified, color: true label

(a) (b) (c)
Figure 1: Conventional TTA has difficulty clas-
sifying unseen classes. (a) In this t-SNE plot of a
conventional TTA, samples are correctly clustered
by class (green, red) but are entirely misclassified.
In contrast, our approach REACT (b) first selects
informative samples as anchors for human label-
ing. (c) Subsequently, these labeled anchors prop-
agate correct labels to nearby misclassified sam-
ples, improving overall accuracy.

Recent studies (Feng et al., 2023b; Shu et al.,
2022a; Yoon et al., 2024; Karmanov et al.,
2024) began to propose the test-time adap-
tation strategies for VLMs, enabling them to
quickly adjust to domain shifts in real-world
scenarios. For example, TPT (Feng et al.,
2023b) and DiffTPT (Feng et al., 2023a) op-
timize prompts for each test image via vari-
ous visual augmentations to boost the confi-
dence of the CLIP model’s predictions. In con-
trast, the authors (Karmanov et al., 2024) pro-
posed a backpropagation-free test-time adapta-
tion algorithm called TDA that leverages a Tip-
adapter (Zhang et al., 2022), which is a train-
free adapter with a few samples, to reduce in-
ference costs—a known drawback of previous
prompt optimization techniques. However, as illustrated in Figure 1, these methods struggle to clas-
sify unseen classes using only the inherent knowledge of the pre-trained model. In particular, TDA
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↓
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Label:

Any Test-time Adaptation
…

Test-time Prompt Tuning (TPT) 

Training-free Dynamic Adapter (TDA)

Test samples

Zero-shot prediction
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↓
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Figure 2: Overall framework of REACT. It identifies and labels uncertain samples from any test-
time adaptation method. Future samples are then predicted by retrieving similar labeled examples.
Even if REACT makes incorrect predictions (i.e., at time t), it consults a labeler to refine the predic-
tions and stores ground-truth labels in the database for later retrieval (i.e., at time t+ 1), ultimately
improving classification performance through retrieval-augmented correction.
can correctly classify only a small fraction of the samples that are initially misclassified by CLIP.
Our findings indicate that when a few labels from selected samples among the uncertain ones are
provided by a labeler, the majority of these ambiguous cases can be correctly recovered. Further,
several works (Lin et al., 2022; Pearl, 2009) have demonstrated that it is theoretically infeasible to
learn unseen classes without extra information.

Regarding the critical limitation of TTA, simATTA (Gui et al., 2024) was the first work that empha-
sized the necessity of extra information for TTA and proposed a sample selection strategy to acquire
and use labels for updating the model through lightweight training. However, this training-based
approach accompanies high computational overhead and likely incurs catastrophic forgetting that
undermines the knowledge from pre-training data. Therefore, we seek to investigate the feasibil-
ity of training-free TTA for VLMs, posing the following research question: How can we design a
train-free method that incorporates extra information into TTA while improving performance?

In response to the question, our framework introduces a novel retrieval-augmented correction, which
significantly enhances TTA without requiring additional model training. Our approach maintains and
strategically leverages a growing database of labeled examples. Maintaining this database and ap-
propriately retrieving labeled examples effectively substitute the training requirement. As illustrated
in Figure 2, the test sample is confidently classified (i.e., certain) at time t− 1, so we simply rely on
a conventional TTA method to make a prediction. In contrast, at time t, the model identifies a more
challenging sample as uncertain, prompting us to query a labeler for its ground-truth label. Then, at
time t + 1, we again encounter an uncertain sample. Differently from time t, by retrieving proper
labeled examples, we can correct its label to the circle (◦) based on the neighboring labeled exam-
ple obtained at time t. This retrieval-augmented correction process allows us to make the correct
classification, whereas existing TTA methods fail to do so.

Obviously, the key challenge for retrieval-augmented correction lies in minimizing the correction
error. This challenge requires making strategic decisions about which samples need human labeling
and which can be effectively corrected by retrieving labeled examples. Our approach—plug-and-
play REtrieval-augmented ACTive test-time adaptation (REACT)—addresses the challenge by care-
fully analyzing the relationships between test samples and existing labeled examples. We observe
that the effectiveness of retrieval-augmented correction heavily depends on the quality of neighbor-
ing labeled examples. For example, if labeled examples in close proximity to a test sample con-
sistently share the same label, the likelihood of making a correct prediction significantly increases.
Motivated by this insight, we introduce two novel criteria to make optimal decisions at test time: con-
sistency and reliability. The former guarantees high consistency with retrieved examples in terms of
labels, and the latter guarantees high similarity to retrieved examples. These criteria enable us to se-
lectively apply retrieval-augmented correction only when it is likely to succeed, thereby minimizing
the correction error.

Our contributions are summarized as follows:

• We introduce a novel framework for active test-time adaptation of VLMs, REACT, which
exploits retrieval-augmented correction with a labeled dataset. Importantly, owing to its
training-free aspect, REACT can be incorporated into any conventional TTA methods.
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• We propose a retrieval-augmented correction strategy for minimizing the errors by design-
ing consistency and reliability from neighboring labeled examples.

• Extensive experiments on both out-of-distribution and cross-domain benchmarks demon-
strate that REACT significantly enhances the performance of state-of-the-art TTA methods,
paving the way for more robust and cost-efficient adaptation in real-world scenarios.

2 PRELIMINARY

2.1 TEST-TIME ADAPTATION WITH VLMS

CLIP (Radford et al., 2021), one of the famous VLMs, consists of two encoders: an image encoder
fimg and a text encoder ftxt. Its classification process with a class set C relies on the similarity score
for a pair of an image and a text prompt. Given an image xt, the similarity score is formulated as

sc = cos(fimg(xt), ftxt(tc)), (1)
where tc is the text prompt for class c ∈ C, and cos(·, ·) is the cosine similarity. By using this
similarity score, the prediction probability of each class is formulated as

zct =
exp(sc/τ)∑C
i=1 exp(si/τ)

, (2)

where τ represents a temperature parameter. When applying a CLIP model to the TTA setup, we can
unify the formulation of the prediction probability as

p(xt) = Tξ(xt; fimg, ftxt), (3)
where Tξ(·) is the any TTA method with the pre-trained CLIP image encoder fimg and text encoder
ftxt, along with the context variables ξ (e.g., learnable prompts) that TTA requires (see Appendix A).
However, such methods inevitably rely on pseduo-labels from the pre-trained model itself, thereby
limiting their ability to handle severe distribution shifts or unseen classes. While we use CLIP as
the VLM for simplicity, the same approach and its limitation apply equally to more advanced VLMs
such as BLIP-2 (Li et al., 2023) and SigLIP (Zhai et al., 2023) (See Section D.1 for ablation studies).

2.2 PROBLEM FORMULATION

To overcome the limitation of pseudo-label-based TTA, we allow the model to occasionally query
ground-truth labels for incoming test samples under a constrained budget. This idea is closely related
to active test-time adaptation (ATTA) (Gui et al., 2024); once the label of a sample is acquired, it
is immediately used to update the model, and the updated model can influence predictions for both
future and even concurrent samples. We instead consider a more realistic problem formulation.
Definition (Our problem formulation). For each test-time data sample xt ∈ Dtest arriving at time t,
the pre-trained VLM image encoder fimg and text encoder ftxt must decide whether to label it under
the label budget B. Note that, due to real-time requirements in the TTA setup, the annotation for xt

cannot be used as its prediction; instead, it is added to the labeled set Dl(t) for use with future data.

3 REACT: RETRIEVAL-AUGMENTED ACTIVE TEST-TIME ADAPTATION

The key challenges of our problem from Section 2.2 are (1) determining which samples should
be labeled to better adapt to the test distribution and (2) effectively leveraging the labeled data for
adaptation. Here is the brief summary of its process (See Appendix B for the overall design).

1. Apply uncertainty-based filtering to identify the samples that the model is most likely to
misclassify. ▷ Section 3.1

2. Among uncertain samples, we construct Dl(t) that is sufficiently populated (i.e., larger than
N ) by adding labeled samples from an oracle. After constructing Dl(t):
(a) If the sample meets our criteria based on consistency and reliability, we perform

retrieval-augmented correction. ▷ Section 3.2
(b) Even if there is no remaining label budget, we still conduct retrieval-augmented cor-

rection upon relaxed criteria. ▷ Section 3.3
(c) Otherwise, we query an oracle for the correct label and add the labeled sample into

Dl(t) for future use.
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3.1 UNCERTAINTY-BASED FILTERING

We first choose the samples that the model is most likely to misclassify. For the test sample xt,
we first compute the logit p(xt) = Tξ(xt; fimg, ftxt) that is applied for the TTA method. Then, we
calculate the entropy (Karmanov et al., 2024),

H(p(xt)) = −
∑
c∈C

p(yt = c;xt) · log p(yt = c;xt). (4)

Since the entropy is a measure of how uncertain a model is in its prediction for a given sample, a
sample with a high-entropy value is more likely to be predicted incorrectly by the model (Holub
et al., 2008). Therefore, we conduct retrieval-augmented correction only for high-entropy samples.

3.2 RETRIEVAL-AUGMENTED CORRECTION

𝑥! 𝑥!" (Referrer)

𝑥!# (Verifier)

Cons 𝑥!|R, V = 0
Rel 𝑥!|R,V =	high

(a) Low consistency

𝑥!"
𝑥!#

𝑥!

Cons 𝑥!|R, V = 1
Rel 𝑥!|R,V =	low

(b) High consistency,
but low reliability

𝑥!"

𝑥!#
𝑥!

Cons 𝑥!|R, V = 1
Rel 𝑥!|R,V =	high

(c) High consistency
and high reliability

Figure 3: Conceptual illustration of retrieval-augmented
correction. REACT operates under the philosophy of reflect-
ing predictions based on proximity to a given test sample, pro-
vided the labels between neighboring samples are consistent.

We employ our retrieval-augmented
correction strategy that leverages
Dl(t) to correct the predictions
made by TTA methods. However,
blindly applying this correction to
every sample can significantly in-
crease correction errors. Thus, to se-
lectively apply the correction, we
propose two criteria: consistency
for indicating whether the labeled
samples nearest to a test sample
share the same ground truth and re-
liability for measuring how close those labeled samples are to the test sample. Intuitively, if the
nearest labeled samples have the same ground truth and are near the test sample, the test sample’s
ground truth is likely to match those labeled samples, reducing the chance of retrieval-augmented
correction errors. For simplicity, we refer to the first and second nearest labeled samples as a Referrer
R = (xR

t , y
R
t ) and a Verifier V = (xV

t , y
V
t ), respectively.

Figure 3 depicts three common cases for the Referrer-Verifier interactions. In Figure 3a, the Referrer
and Verifier disagree on the label, so no retrieval-augmented correction is applied. In Figure 3b, the
labels match, but the Verifier is far from the test sample, making its endorsement of the Referrer’s
label less trustworthy. In contrast, Figure 3c shows both high consistency (same label) and high
reliability (all close), thus allowing retrieval-augmented correction to proceed confidently. Based on
these common cases, we now provide the detailed mathematical formulation as follows.

Consistency. To ensure that the candidate label from the Referrer is reliable, we define the consis-
tency metric to check whether the Verifier’s label agrees with the Referrer’s. Formally, this metric is
given by

Cons(xt|R,V) = 1{yR
t = yV

t }, (5)

where 1{·} is the indicator function. A value of 1 indicates full agreement between the Referrer and
the Verifier, thus confirming the candidate label.

Reliability. To ensure that both the Referrer and the Verifier are close enough to a test sample xt, we
define the reliability to compute the average cosine similarity between xt and these two neighbors.
Formally, this metric is given by

Rel(xt|R,V) =
1

2

(
cos

(
fimg(xt), fimg(x

R
t )

)
+ cos

(
fimg(xt), fimg(x

V
t )

))
. (6)

A higher reliability score indicates that both neighbors are strongly aligned with xt, thereby increas-
ing our confidence in the retrieval-augmented correction.

Overall, the condition for retrieval-augmented correction is thus formulated as

C(xt|R,V) = Cons(xt|R,V) · Rel(xt|R,V). (7)

This multiplicative formulation guarantees that if the Verifier disagrees with the Referrer (i.e., ,
Cons(xt|R,V) = 0), no retrieval-augmented correction is applied.
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Avg Avg
Method IN IN-A IN-V2 IN-R IN-S (All5) (OOD)

ResNet-50
Zero-shot 56.47 26.96 50.83 55.87 31.50 44.33 41.29
+REACT 57.66±0.06 28.11±0.19 50.76±0.07 56.93±0.07 36.94±0.04 46.08 43.18

TPT 60.68±0.01 25.12±0.07 54.33±0.23 59.11±0.04 35.29±0.04 46.91 43.46
+REACT 61.20±0.10 26.28±0.05 54.34±0.02 59.65±0.18 39.67±0.18 48.23 44.98

C-TPT 60.42±0.06 23.25±0.06 54.13±0.13 57.72±0.01 34.76±0.01 46.05 42.46
+REACT 61.10±0.11 24.76±0.30 53.88±0.03 58.66±0.12 39.62±0.02 47.60 44.23

TDA† 57.78±0.01 27.84±0.01 51.10±0.03 57.01±0.01 33.85±0.11 45.52 42.45
+REACT 58.64±0.01 28.73±0.28 51.31±0.09 57.84±0.06 39.00±0.01 47.10 44.22

TDA 61.72±0.04 30.59±0.21 55.10±0.26 62.76±0.04 38.05±0.04 49.64 46.62
+REACT 62.06±0.04 31.00±0.15 54.99±0.29 63.25±0.12 42.73±0.10 50.80 47.99

ViT-B/16
Zero-shot 63.52 54.65 59.80 75.36 44.05 59.48 58.47
+REACT 65.90±1.03 55.85±0.74 59.69±0.14 76.33±0.02 50.29±0.13 61.61 60.54

TPT 68.76±0.01 52.99±0.06 63.20±0.04 76.97±0.10 47.86±0.02 61.95 60.25
+REACT 69.27±0.12 54.89±0.05 61.94±1.49 77.18±0.08 51.30±0.94 62.91 61.32

C-TPT 68.31±0.01 50.71±0.04 62.50±0.04 75.68±0.08 47.46±0.06 60.93 59.08
+REACT 69.09±0.01 53.09±0.17 62.14±0.03 76.39±0.13 52.13±0.01 62.57 60.94

TDA† 65.81±0.81 55.42±0.06 60.06±0.13 75.99±0.13 46.01±0.08 60.66 59.37
+REACT 67.48±0.03 56.49±0.20 60.09±0.12 76.70±0.08 51.23±0.02 62.40 61.13

TDA 70.08±0.88 60.13±0.33 64.41±0.16 80.52±0.06 50.96±0.06 65.22 64.01
+REACT 70.88±0.11 60.73±0.60 64.54±0.10 80.83±0.11 55.01±0.07 66.40 65.28

Table 1: Results on the out-of-distribution benchmark. All the compared methods are built upon
CLIP-ResNet-50 or CLIP-ViT-B/16 baselines. The two average metrics All 5 and OOD are calcu-
lated by taking the mean accuracy across all five datasets and four OOD datasets excluding ImageNet
(IN). Note that the bold type represents the best performance overall.

3.3 CORRECTION AFTER LABEL BUDGET

As described in Section 3.2, we request samples for labeling if Equation 7 is below a certain thresh-
old. As we continue labeling, we might eventually reach our labeling budget B and no longer be
able to request new labels from the oracle. Even in this scenario, we would like to benefit from
retrieval-augmented correction. However, since proper labeled examples could not be inserted into
the labeled dataset, there is a risk that the retrieval-augmented correction leveraging the Referrer and
the Verifier may run incorrectly. To mitigate this issue, we choose the top-5 predictions from TTA as
the Verifiers instead of the second nearest labeled sample and only proceed with corrections when
matching the labels of the Verifiers and the Referrer. This technique is formulated as

p(xt) =

{
one_hot(yR

t ), if yR
t ∈ Top_5

(
p(xt)

)
,

Tξ(xt; fimg, ftxt), otherwise.
(8)

Here, Top_5
(
p(xt)

)
denotes the set of labels associated with the five highest confidence predictions

generated by the TTA method. This technique enables our framework to apply corrections by setting
the Referrer’s label whenever it appears within these top-5 predictions (which function as the Veri-
fiers), even in situations where no additional labeling resources are available. If the Referrer’s label
is not present in the top-5 predictions from TTA, we default to using the TTA’s prediction instead.

4 EXPERIMENT

We provide details of the experimental setup, including datasets, baselines, and implementation
details, in Appendix C due to space constraints. This section focuses on the main results and ablation
studies using CLIP for the VLM. See Appendix D for additional results, particularly those involving
more advanced VLMs such as BLIP-2 (Li et al., 2023) and SigLIP (Zhai et al., 2023).

† Since TDA uses a different prompt template than other baselines, we report its results with a unified template
for fair comparison.
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Method Aircraft Caltech101 Cars DTD EuroSAT Flowers102 Food101 Pets SUN397 UCF101 Average

ResNet50
Zero-shot 15.30 80.61 56.27 37.53 25.89 56.44 73.45 80.46 58.16 59.16 54.33
+REACT 18.16±0.25 84.61±0.26 57.54±0.42 43.35±1.05 74.16±1.12 72.55±0.06 73.73±0.08 81.71±0.11 59.41±0.08 70.15±0.62 63.53

TPT 16.02±0.47 85.36±0.40 57.95±0.16 39.69±0.37 28.04±0.03 60.22±0.40 73.63±0.02 78.39±0.12 59.86±0.12 60.77±0.34 55.99
+REACT 18.60±0.25 87.73±0.83 60.31±0.52 45.16±0.50 62.16±0.69 70.61±0.40 73.89±0.04 80.86±0.02 61.45±0.13 69.20±0.52 62.99

C-TPT 13.70±0.15 85.82±0.20 56.51±0.06 40.58±0.29 23.13±0.45 61.29±0.21 73.13±0.04 80.04±0.13 59.54±0.04 59.31±0.02 55.30
+REACT 16.65±0.51 87.59±0.69 59.35±0.11 45.89±0.96 60.76±0.78 73.02±1.23 73.64±0.03 81.85±0.38 61.28±0.45 69.83±0.25 62.98

TDA† 15.93±0.81 85.13±0.03 57.17±0.08 39.34±0.29 36.71±1.01 59.24±0.11 74.62±0.04 80.69±0.10 59.68±0.11 60.75±0.26 56.92
+REACT 17.75±0.74 85.52±0.23 58.48±0.09 44.18±0.79 70.81±1.08 71.64±0.66 74.63±0.19 81.84±0.06 60.40±0.04 68.86±0.98 63.41

TDA 16.79±0.23 89.36±0.43 57.36±0.17 43.91±0.08 41.66±0.61 68.17±0.28 77.78±0.11 86.29±0.27 62.48±0.01 64.03±0.15 60.78
+REACT 19.01±0.02 89.57±0.01 58.67±0.33 48.17±0.08 71.08±1.29 77.19±0.63 77.28±0.20 86.62±0.50 62.81±0.11 71.27±1.12 66.16

ViT-B/16
Zero-shot 22.59 85.76 65.61 40.60 44.25 64.07 82.68 83.81 63.68 66.30 61.94
+REACT 27.33±0.71 90.31±0.12 67.77±0.25 47.94±0.42 80.63±0.54 80.53±0.20 83.57±0.06 87.10±0.13 65.30±0.03 76.28±0.54 70.67

TPT 23.43±0.08 93.21±1.07 66.52±0.20 46.33±1.10 42.69±0.16 68.25±0.93 83.94±1.18 84.42±0.98 65.19±0.47 67.62±0.41 64.16
+REACT 25.56±0.47 93.37±0.08 67.97±0.04 49.53±0.01 73.03±0.33 74.63±0.80 83.54±0.04 85.96±0.16 66.49±0.06 72.67±0.23 69.27

C-TPT 24.09±0.25 92.98±0.69 65.24±0.78 45.01±1.21 42.28±0.10 70.36±0.75 83.22±0.11 87.82±0.72 64.07±0.59 65.58±0.79 64.06
+REACT 27.78±0.47 93.27±0.18 66.88±0.37 50.59±0.17 74.72±0.79 77.49±0.43 83.73±0.05 87.70±0.02 66.22±0.05 74.65±0.64 70.30

TDA† 23.48±0.28 88.54±0.08 66.59±0.11 42.97±0.67 54.82±0.77 65.27±0.49 83.82±0.08 85.12±0.27 65.14±0.01 69.63±0.15 64.54
+REACT 25.74±0.21 90.41±0.43 67.94±0.04 49.41±0.34 75.40±0.54 79.20±0.49 84.20±0.06 87.37±0.10 66.18±0.01 76.01±0.62 70.18

TDA 25.29±0.30 94.06±0.08 66.39±1.72 45.48±0.79 63.95±0.92 71.62±0.23 86.14±0.06 89.85±0.13 67.70±0.04 70.94±0.28 68.14
+REACT 27.84±0.08 94.06±0.03 68.76±0.13 51.63±0.88 79.61±1.40 82.28±0.54 86.09±0.06 90.75±0.18 68.20±0.11 77.38±1.01 72.66

Table 2: Results on the cross-domain benchmark. The Average is calculated by taking the mean
accuracy across all ten datasets. Note that the bold type represents the best performance overall.

4.1 MAIN RESULTS

Consistent performance gains with a plug-and-play design. Our approach can be integrated into
any test-time adaptation (TTA) pipeline, yielding substantial performance improvements. As shown
in Table 1, when our plug-and-play module is added to a baseline TTA method, the top-1 accu-
racy on the OOD benchmark improves noticeably, ImageNet-A (65.8%→71.3%) and ImageNet-R
(70.1%→75.8%), with similar gains observed on ImageNet-V2 and ImageNet-S, averaging around
a 5% boost. On the cross-domain benchmark in Table 2, our method enhances performance as well,
with datasets like Aircraft (82.0%→86.5%) and Food101 (73.5%→78.0%). These results demon-
strate that our plug-and-play design consistently elevates performance across diverse datasets with-
out the need for per-dataset tuning.

Architecture-agnostic efficacy. The effectiveness of our method is evident across different back-
bone architectures, demonstrating its architecture-agnostic nature. As shown in both the OOD and
cross-domain benchmarks, integrating our module consistently improves performance regardless of
whether the base model is ResNet-based or Transformer-based. For instance, for the OOD bench-
mark in Table 1, applying our method to TDA with a ResNet-50 backbone leads to an increase
in average accuracy (49.64%→50.82%), while the ViT-B/16 backbone experiences a similar im-
provement (65.12%→66.49%). Likewise, for the Cross-Domain benchmark in Table 2, the ResNet-
50 model benefits from a substantial accuracy gain (57.09%→63.29%), and the ViT-B/16 model
achieves a comparable boost (68.08%→72.77%). These results highlight the adaptability of REACT,
ensuring consistent performance gains across various architectures and datasets, making it a robust
enhancement for both CNN- and Transformer-based vision models.

REACT Zero-shot TPT C-TPT TDA

✗ 10.07 509.87 511.33 10.84
O 10.16 510.22 511.55 11.27

Rel. +0.8% +0.06% +0.04% +3.4%

Table 3: Per-sample cost analysis. Our
method adds only at most 0.4ms while
consistently achieving improved accuracy
when integrating with any TTA methods.

Inference cost. For a fair comparison, we run all
experiments on Intel Xeon Gold 6326 CPUs with a
single NVIDIA RTX 4090. We first warmed up the
system with 100 samples and then measure the time
taken to process 100 samples, as reported in Table 3.
Our observations indicate that train-based TTA meth-
ods (e.g., TPT and C-TPT) have an additional cost
of roughly 500 ms per sample compared to train-free
methods (e.g., TDA). Notably, REACT only introduces
a negligible overhead below 1 ms while still improving
performance compared to each TTA method.
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TPT+REACT C-TPT+REACT TDA+REACT

(a) ImageNet-S (b) DTD (c) Flowers-102
Figure 4: Performance variation when con-
trolling the budget across three datasets. As
the budget increases, the accuracy tends to rise
owing to an enriched set of labeled examples.

REACT Coreset Entropy Random

Figure 5: Comparison of conventional sample
selection methods on Flowers-102. We cus-
tomize the active learning methods to be suit-
able for streaming data (see Appendix E).

4.2 FURTHER ANALYSIS RESULTS

Larger budget makes more precise retrieval-augmented correction. The retrieval-augmented
approach relies on the labeled dataset Dl(t). Allocating a larger budget enables the model to search
through a broader range of potential matches, leading to more accurate identification of relevant
examples and, in turn, higher final prediction accuracy. To validate this hypothesis, we conducted
experiments under varying budget settings across three different datasets, and summarized the out-
comes in Figure 4. The results consistently show that as the budget increases, accuracy improves
for each dataset, highlighting the importance of dedicating sufficient resources for retrieval. More-
over, this trend remains robust across diverse datasets, underscoring the importance of reserving a
sufficient budget.

Comparison with diverse sample selection methods. To enhance adaptation under shifting test
distributions, REACT naturally involves a sample selection mechanism. We evaluate REACT against
standard active learning methods, Coreset (Sener & Savarese, 2018), Entropy (Holub et al., 2008),
and Random, on the Flowers-102 dataset, as presented in Figure 5. Since these active learning ap-
proaches are not originally designed for streaming data, we adapt them to an online setting (see Ap-
pendix E). Across all active learning methods, REACT consistently outperforms these baselines,
illustrating its ability to select more informative samples for constructing the labeled dataset Dl(t).
This performance highlights the robustness of our approach in streaming environments and under-
scores the value of its sample selection mechanism.

(a) ImageNet-S (b) DTD (c) Flowers-102

TPT+REACT C-TPT+REACT TDA+REACT TPT C-TPT TDA

Figure 6: Hyperparameter sensitivity. We
vary the uncertainty threshold τu with τr =
0.85 (upper) and the retrieval-augmented cor-
rection threshold τr with τu = 0.2 (lower).

Hyperparameter sensitivity. REACT intro-
duces two hyperparameters, τu and τr, that de-
cide whether a sample should undergo retrieval-
augmented correction. First, τu dictates how many
samples rely on TTA predictions. Specifically, low-
ering τu makes more samples appear uncertain,
diverting them away from direct TTA-based de-
cisions, whereas raising τu increases the likeli-
hood of accepting TTA outputs. Second, τr gov-
erns which of these uncertain samples undergo
retrieval-augmented correction. A lower τr in-
cludes more samples in retrieval-augmented cor-
rection, while a higher τr imposes stricter condi-
tions, causing more samples to label.

To assess potential sensitivity of REACT, we tested
different values of τu and τr, as reported in Fig-
ure 6. Results across three datasets show that each
one behaves differently due to varying levels of difficulty in each dataset. Nonetheless, on ev-
ery dataset and for every TTA method, incorporating REACT consistently surpasses the baseline
(i.e., without REACT), regardless of the specific hyperparameter settings. This observation confirms
the robustness for a reasonable range of the thresholds.

REACT selects the labeled samples in the boundary. Figure 7 illustrates how REACT reshapes
the decision boundary. Here, the examples with black outlines highlight the samples that REACT
selected for labeling, which act as a Referrer or a Verifier. They have a noticeable influence on their
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(a) TDA (b) TDA + REACT
Figure 7: Partial t-SNE (Van der Maaten
& Hinton, 2008) visualization to check the
decision boundary changes (left) and cor-
rect misalignment of image and text (right)
by retrieval-augmented correction as the la-
beled dataset Dl(t) is built on EuroSAT. Cir-
cles (◦) represent samples where the prediction
matches the ground truth, while crosses (×) in-
dicate samples that were misclassified. Black
outlines indicate the samples selected and la-
beled through REACT.
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Figure 8: Performance changes as the num-
ber of Verifiers increases. (a) indicates the ac-
curacy specifically for retrieval-augmented cor-
rection, whereas (b) refers to the accuracy cal-
culated over all samples.
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(a) ImageNet-S (b) DTD (c) Flowers-102

Figure 9: Robustness for label latency in
REACT. Note that labeling latency is defined as
the number of samples between when REACT
decides to label a sample and when it is labeled.

neighborhood where many samples initially misclassified (depicted as crosses in Figure 7a) have
their predictions corrected and align with the ground truth (depicted as circles in Figure 7b). This
visualization clearly demonstrates the power of strategically chosen labeled samples in guiding the
overall prediction landscape.

REACT corrects the sample prediction that misaligns image and text embeddings. Figure 7b
shows that REACT can use a set of carefully selected labeled examples to properly correct false
predictions stemming from misalignment issue in TTA methods. By leveraging retrieval-augmented
correction, REACT demonstrates its ability to correct sample prediction that misaligns image and
text embeddings in TTA methods. Accordingly, this finding verifies the fuel-efficiency of REACT
that works with a small amount of labeled data (∼ 10% of the test set).

Impact of a Verifier (xV
t , y

V
t ). The role of a Verifier is to minimize errors in retrieval-augmented

correction, as argued in Section 3.2. To validate this hypothesis, we conducted experiments by vary-
ing the number of Verifiers and summarized the results in Figure 8. As shown in Figure 7a, introduc-
ing the Verifier concept (i.e., 0 −→ 1) leads to a significant boost in retrieval-augmented correction
accuracy. Additionally, the retrieval-augmented correction accuracy increases as the number of Veri-
fiers increases. On the other hand, Figure 7b demonstrates that the overall accuracy is dropped when
the number of Verifiers increases (i.e., 1 −→ 2). This degradation is attributed to Equation 7 becom-
ing overly strict as the number of Verifiers increases, which in turn reduces the number of samples
where retrieval-augmented correction is applied.

Sensitivity of labeling latency of REACT. Although we used the ground truth as the answers from
an oracle, because a powerful VLM is likely to act as an oracle in real-world applications, some de-
lays in labeling are unavoidable. Figure 9 shows that even though longer delays can gradually reduce
the performance gap of REACT over traditional TTA methods, REACT still maintains robustness by
at least matching TTA’s performance. We evaluated this sensitivity on three datasets, ImageNet-S
(50,000 samples), DTD (about 2,000 samples), and Flowers-102 (about 2,000 samples), using la-
beling delays of 1, 100, 500, and 1,000 samples. On the large ImageNet-S dataset, the performance
remained stable at around 43% for TDA+REACT and 40% for C-TPT+REACT. However, on the
smaller DTD and Flowers-102 datasets, the same delays led to more noticeable drops in accuracy
(e.g., DTD: 46%→ 42% and Flowers-102: 74%→67%). These results confirm that performance
degradation occurs when the labeling latency constitutes a significant portion of the entire test set
size. In other words, increasing the size of the streaming set is expected to minimize the negative
impact on performance.
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5 RELATED WORK

Vision language models (VLMs). To comprehend the visual and language representations, multiple
approaches have been explored (Lu et al., 2019; Das et al., 2017; De Vries et al., 2017; Qi et al.,
2020; Gan et al., 2020; Yu et al., 2021; Li et al., 2020). In the stream of trials to understand both
modalities at once, CLIP (Radford et al., 2021) emerged in 2021, drawing significant attention due to
its remarkable zero-shot performance across various tasks. In a similar vein, ALIGN (Jia et al., 2021)
was introduced, employing a comparable training methodology but featuring distinct architectural
and training dataset characteristics. Unlike CLIP, BLIP (Li et al., 2022) introduced a captioning
module aimed at improving model performance by rectifying noisy captions. LiT (Zhai et al., 2022)
and BLIP-2 (Li et al., 2023) enhanced training efficiency by freezing specific encoder parameters.
FILIP (Yao et al., 2021) endeavored to enable a model to discern finer image details through a
fine-grained, i.e., patch-level, training approach.

Test-time adaptation for VLMs. When transferring the zero-shot capabilities of VLMs, the distri-
bution shift between pre-training data and test data is the main obstacle. Test-time adaptation (TTA)
methods for VLMs have been proposed to adapt VLMs to the distribution shift. These methods
adapt to an input test image on-the-fly, without any training requirements; they usually leverage the
output of a VLM because only a single unlabeled test image is available. TPT (Shu et al., 2022b)
uses data augmentation to enrich the test image, filters out unreliable augmented images based on
prediction entropy, and then updates learnable prompts by minimizing the entropy of the reliable
predictions. DiffTPT (Feng et al., 2023a) enhances TPT by augmenting an input image with infor-
mative and diverse images generated from a pre-trained diffusion model. C-TPT (Yoon et al., 2024)
also enhances TPT by calibrating the prediction uncertainty. Unlike previous methods, TDA (Kar-
manov et al., 2024) introduces training-free TTA by leveraging Tip-Adapter (Zhang et al., 2022),
thereby boosting performance while lowering inference cost. However, existing methods solely rely
on the internal knowledge encoded in the VLM parameters which are constrained to the pre-training
data (Agarwal et al., 2021), as opposed to our framework featuring retrieval-augmented correction.

Active learning. Active learning (Settles, 2009; Ren et al., 2021; Geifman & El-Yaniv, 2019; Mun-
jal et al., 2022) aims to minimize human labeling costs by identifying informative data that maxi-
mize model performance. Research in this area generally follows two main trajectories: uncertainty-
based sampling and diversity-based sampling. In the former, prediction probability-based strate-
gies such as soft-max confidence (Lewis & Catlett, 1994), margin (Roth & Small, 2006), and en-
tropy (Holub et al., 2008) are straightforward yet effective approaches. In the latter, diversity-based
strategies (Sener & Savarese, 2018; Parvaneh et al., 2022) employ clustering or coreset selection
protocols, such as the coreset method (Sener & Savarese, 2018) which aims to maximize coverage
distance across unlabeled data. Additionally, hybrid methods like BADGE (Ash et al., 2019) com-
bine uncertainty and diversity by performing k-means++ clustering in gradient embedding space.
More recently, PCB (Bang et al., 2024) firstly proposed the active learning framework for VLMs,
which focused on the balance of classes using pseudo labels when selecting samples. While most
active learning research focuses on static datasets, a few studies (Qin et al., 2021; DeSalvo et al.,
2021) investigate online active learning in data streams. However, they do not account for shifts in
the data stream, such as out-of-distribution or cross-domain variations. simATTA (Gui et al., 2024)
is the first algorithm developed for active test-time adaptation, but it necessitates training of the
model, which is susceptible to catastrophic forgetting and expensive.

6 CONCLUSION

We have proposed REACT, a framework that integrates active sample selection with retrieval-
augmented correction to boost pre-trained VLMs under distribution shifts. By querying uncertain
samples for labeling, REACT builds a compact yet informative labeled dataset. During inference, it
effectively corrects uncertain predictions by exploiting this extra information. Experiments on OOD
and cross-domain benchmarks show that REACT boosts accuracy by up to 7.68 percentage points
across two backbones (ResNet and ViT) with minimal overhead, offering an efficient plug-and-play
solution for TTA under limited label budgets.
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ETHICAL CONSIDERATIONS

This work focuses on the development of a general-purpose algorithm, and no direct ethical issues
arise from the research process itself. Moreover, all experiments were conducted exclusively using
widely-used public academic benchmark datasets, such as ImageNet and Caltech101, thereby no
new data containing personally identifiable or sensitive information was collected, processed, or
distributed. We therefore conclude that our work does not raise any major ethical issues.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive implementation details including the REACT
algorithm (See Algorithm 1), mathematical formulations for all components (See Section 3), and
fixed hyperparameters. Experimental setup details are described in Appendix C, covering all 15
benchmark datasets, baseline implementations, and evaluation metrics. Source code is available at
https://anonymous.4open.science/r/react_iclr26 with implementations for all
TTA baselines and evaluation scripts for reproducibility.
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-Supplementary Material-

Plug-and-Play Retrieval-Augmented Active Test-Time
Adaptation for VLMs

A CONVENTIONAL TTA

fTest-time adaptation (TTA) using vision-language models (VLMs) can be classified into two types:
prompt tuning-based approaches (e.g., TPT (Shu et al., 2022b) and C-TPT (Yoon et al., 2024)) and
training-free approaches (e.g., TDA (Karmanov et al., 2024)). Depending on the approach, we can
formulate the TTA operator Tξ(·) as follows. Note that C-TPT is omitted here due to its conceptual
similarity to TPT.

A.1 TEST-TIME PROMPT TUNING (TPT)

TPT is achieved by fine-tuning a learnable prompt p using a single test sample xt. Given multiple
augmented views of xt, denoted by Ai(xt) for i = {1, . . . ,M}, the goal is to minimize the entropy
(as defined in Equation 4) of the model’s predictions across these augmentations.

Objective Function. The probability distribution over classes generated by the CLIP model with
prompt p on the i-th augmented view can be formulated as

p(i)(xt) = p(Ai(xt)) =
exp(s(i)/τ)∑C
k=1 exp(s

(i)
k /τ)

,

where s(i) = {s(i)c |c ∈ {1, . . . , C}}, and the similarity s
(i)
c is defined as

s(i)c = cos
(
fimg(Ai(xt)), ftxt([p; tc])

)
,

where tc is the text prompt of class c. Note that it is similarly calculated by Equation 3, but the
difference is that the text prompt concatenates learnable prompt p and text prompt tc for class c,
and the input image is augmented when calculating the similarity score. After then, the averaged
prediction p̃p(xt) (with confidence selection) is defined as

p̃p(xt) =
1

ρN

M∑
i=1

1
[
H(p(i)(xt)) ≤ τ

]
p(i)(xt),

where H(·) denotes the entropy function, τ is the entropy threshold, and ρ is the proportion of
augmented views selected.

The optimization problem is then given by

p∗ = argmin
p
LTPT(p;xt),

with the loss defined as the marginal entropy,

LTPT(p;xt) = −
∑
y∈Y

p̃p(xt) log p̃p(xt).

After optimization, the test-time adapted prediction function is defined as

Tξ(xt) = Tp∗(xt) ≜ pp∗(xt).

A.2 TRAINING-FREE DYNAMIC ADAPTER (TDA)

In contrast to prompt tuning-based approaches, TDA leverages a non-parametric dynamic cache
to adapt predictions without backpropagation. Here, ξ comprises the components of the dynamic
cache,

ξ = {Qp, L̂p, Qn, L̂n},
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where (Qp, L̂p) denotes the keys and corresponding pseudo labels in the positive cache (collected
from high-confidence predictions), and (Qn, L̂n) denotes the keys and corresponding negative
pseudo labels in the negative cache (collected from low-confidence predictions).

Then, the final prediction is computed as

Tξ(xt) =fimg(xt)W
c
T

+A
(
fimg(xt)Q

T
p

)
L̂p −A

(
fimg(xt)Q

T
n

)
L̂n,

where W c
T =

[
ftxt(tc) | c ∈ C

]
represents the text embedding matrix computed from the class

names, and A(·) is an adapter function (e.g., an exponential weighting function as used in Tip-
Adapter (Zhang et al., 2022)).

B ALGORITHM DETAILS

Algorithm 1 outlines our proposed method, REACT. For each test sample xt, our method first as-
sesses its prediction uncertainty. If the sample is certain, REACT directly returns the base TTA
prediction. For uncertain samples, it employs a hierarchical strategy to manage its labeling budget
efficiently. The process begins with a brief warm-up phase, building a foundational labeled set Dl

by querying the oracle for the first N uncertain samples encountered.

Once this foundational set is established, REACT’s core retrieval-augmented correction mech-
anism is activated for subsequent uncertain samples. It first attempts a budget-free correction by
retrieving high-confidence matches from the existing labeled set Dl. Only if this retrieval fails to
yield a confident correction and the labeling budget B is not exhausted, the algorithm does query
the oracle to annotate the sample. This strategy ensures that the valuable labeling budget is reserved
for the most genuinely ambiguous and informative samples, making the adaptation process both
effective and efficient.

Algorithm 1: REACT

Input: Labeled dataset Dl(t), Uncertainty threshold τu, Retrieval-augmented correction
threshold τr, Labeling budget B, Minimum labeled samples N , TTA method Tξ(·),
Oracle labeler Oracle(·), Test sample xt

Compute uncertainty u← H
(
p(xt)

)
▷ Eq. (4)

# Certain sample: Use TTA prediction ▷ Section 3.1
if u < τu then

return p(xt) = Tξ(xt; fimg, ftxt)
# Uncertain sample: Calculate criteria
else

# Warm-up: Construct Dl(t)
if |Dl(t)| < N then

Dl(t+ 1)← Dl(t) ∪ {(xt,Oracle(xt))}
return p(xt) = Tξ(xt; fimg, ftxt)

Retrieve R,V ∈ Dl(t)
Compute C(xt|R,V) ▷ Eq. (7)
# Retrieval-augmented correction ▷ Section 3.2
if C(xt|R,V) > τr then

return p(xt) = one_hot(yRt )
# Correction after label budget ▷ Section 3.3
else if |Dl(t)| ≥ B then

Calculate the logit p(xt) ▷Eq. (8)
return p(xt)

# Annotate xt by oracle, and update Dl(t+ 1)
else

Dl(t+ 1)← Dl(t) ∪ {(xt,Oracle(xt))}
return p(xt) = Tξ(xt; fimg, ftxt)
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C EXPERIMENTAL SETUP

C.1 DATASETS

Our experiments were conducted on two benchmarks: the out-of-distribution (OOD) benchmark
and the cross-domain benchmark, both used in previous research on adapting VLMs during test
time. The OOD benchmark evaluates the robustness of our approach by assessing its performance
on four datasets derived from ImageNet (Deng et al., 2009), ImageNet-A (Hendrycks et al., 2021b),
ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-S (Gao
et al., 2022), which are specifically designed to test a model’s ability to generalize to new and unseen
data. In contrast, the cross-domain benchmark examines the model’s adaptability across different
domains by evaluating it on ten diverse image classification datasets, each representing a distinct
class space. These datasets include Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al., 2004),
Stanford Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019),
Flower102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), Oxford Pets (Parkhi
et al., 2012), SUN397 (Xiao et al., 2010), and UCF101 (Soomro et al., 2012). Using these two
benchmarks, we provide a comprehensive evaluation of the model’s generalization capability and
adaptability during test time. We summarize the statistics of datasets in Table 4, and belows are the
details of each dataset.

C.1.1 OOD BENCHMARKS

ImageNet (Deng et al., 2009) contains 14,197,122 annotated images according to the WordNet
hierarchy. This dataset has been used in the ImageNet large scale visual recognition challenge
(ILSVRC), a benchmark in image classification and object detection, since 2010.

ImageNet-A (Hendrycks et al., 2021b) is a subset of 7,500 visually similar but naturally perturbed
ImageNet images of 200 classes.

ImageNet-V2 (Recht et al., 2019) consists of 10,000 images and 1,000 ImageNet classes, and was
collected by applying an updated natural data collection pipeline to the original ImageNet dataset.

ImageNet-R (Hendrycks et al., 2021a) includes 30,000 images belonging to 200 categories of the
ImageNet dataset, but with diverse artistic styles.

ImageNet-S (Gao et al., 2022) consists of 50,000 sketches of 1,000 class objects from the ImageNet
dataset, and represents a domain shift from natural images to sketches.

C.1.2 CROSS DOMAIN BENCHMARK

FGVC-Aircraft (Maji et al., 2013) encompasses a total of 10,200 images depicting various air-
craft. This dataset is organized into 102 distinct classes, and each class corresponds to a specific
aircraft model variant. Notably, there are 100 images available for each of these 102 different air-
craft model variants. The class name in this dataset is composed of the make, model, and specific
variant, e.g., Boeing 737-76J.

Caltech101 (Fei-Fei et al., 2004) is composed of 101 unique object categories, each corresponding
to a different type of objects or scenes. These categories encompass a wide range of objects, such
as various animals, vehicles, and more. The dataset comprises a total of 9,000 images with varying
numbers of images allocated to each category. Notably, it is considered a severely imbalanced dataset
due to the uneven distribution of images across its categories.

Stanford Cars (Krause et al., 2013) consists of a collection of 16,185 images categorized into
196 different classes, with each class typically representing a specific car make, model, and year,
e.g., 2012 Tesla Model S.

DTD (Cimpoi et al., 2014), abbreviated from Describable Texture Dataset, is designed for texture
classification task. This dataset consists of 47 distinct classes, including categories like fabrics and
natural materials. In total, DTD comprises 5,640 samples. Notably, when examining the perfor-
mance reported in the CLIP (Radford et al., 2021), it becomes evident that DTD poses a challenging
problem for pre-trained CLIP models, as textures are not typical, easily recognizable objects.
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Dataset # of Classes # of Test Instances

ImageNet 1000 50,000
ImageNet-A 200 7,500
ImageNetV2 1000 10,000
ImageNet-R 200 30,000
ImageNet-S 1000 50,889

FGVC Aircraft 100 3,333
Caltech101 100 2,465
Stanford Cars 196 8,041
DTD 47 1,692
EuroSAT 10 8,100
Flowers102 102 2,463
Food101 101 30,300
Oxford Pets 37 3,669
SUN397 397 19,850
UCF101 101 3,783

Table 4: Profiles of the datasets used for the experiments.

EuroSAT (Helber et al., 2019) comprises 10 distinct classes that represent various land use and
land cover categories. In total, this dataset includes 27,000 satellite images, with 2,700 images allo-
cated to each of the 10 classes. Notably, each class contains an equal number of images, ensuring a
balanced distribution within the dataset.

Flowers102 (Nilsback & Zisserman, 2008) consists of 102 different categories of flowers, each
representing a distinct flower species such as roses, sunflowers, and daisies. There are 8,189 image
and label pairs in total. Some categories have more images than the others, which means that it
is imbalanced as typical real-world datasets; each category contains at least 40 and at most 258
samples.

Food-101 (Bossard et al., 2014) consists of 101 food categories with 750 training and 250 test
images per category, summing up to 101K images. The labels for the test images have been manually
cleaned, while the training set contains some noise.

Oxford Pets (Parkhi et al., 2012) consists of 37 different pet categories, including various dogs
and cats. This dataset contains 7,400 samples. In particular, it has 4,978 dog images and 2,371 cat
images. We use only class labels even though the dataset has segmentation, i.e., both RoI and class.

SUN397 (Xiao et al., 2010) is the the Scene UNderstanding (SUN) database that contains 899 cat-
egories and 130,519 images. There are 397 well-sampled categories to evaluate numerous state-of-
the-art algorithms for scene recognition.

UCF101 (Soomro et al., 2012) is an extension of UCF50 and consists of 13,320 video clips, which
are classified into 101 categories. These 101 categories can be classified into 5 types (body motion,
human-human interactions, human-object interactions, playing musical instruments, and sports).
The total length of these video clips is over 27 hours. All the videos are collected from YouTube and
have a fixed frame rate of 25 FPS with the resolution of 320×240. In this work, the middle frame of
each video is fed to the image encoder.

C.2 BASELINES

We compare REACT against three state-of-the-art TTA methods for VLMs, which can be categorized
into prompt-tuning based (e.g., TPT, C-TPT) and training-free approaches (e.g., TDA).

Prompt Tuning-based TTA. We select TPT (Shu et al., 2022b) and its concurrent extension C-
TPT (Yoon et al., 2024) as the representatives of this category. These methods adapt a set of learnable
prompt vectors for each individual test sample. The optimization is guided by a self-supervised
objective, which aims to minimize the entropy of the model’s predictions across multiple augmented
views of that sample, thereby fine-tuning the prompt without requiring true labels.

Training-free TTA. As a training-free counterpart, we use TDA (Karmanov et al., 2024). In contrast
to prompt tuning, TDA is a non-parametric method that requires no backpropagation at test time. It
maintains a dynamic cache that stores features from past predictions, separating them into positive
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Model Aircraft Caltech101 Cars DTD EuroSAT IN IN-A

CLIP 22.59 85.76 65.61 40.60 44.25 63.52 54.65
+ REACT 27.33 90.31 67.77 47.94 80.63 65.90 55.85

BLIP-2 12.75 92.58 78.54 53.49 48.88 60.23 63.35
+ REACT 22.20 92.60 79.92 53.66 56.58 61.83 63.89

SigLIP 36.66 95.86 88.47 61.70 33.88 75.14 43.49
+ REACT 39.48 96.06 88.50 63.30 34.30 75.22 44.24

Table 5: Performance with more recent VLMs.

Method Aircraft Caltech101 Cars DTD EuroSAT IN IN-A

CLIP (Zero-shot) 22.59 85.76 65.61 40.60 44.25 63.52 54.65
CLIP + CoOp (Prompt learning) 26.22 89.17 66.68 42.61 72.43 68.50 52.47
CLIP+REACT (Train-free) 27.33 90.31 67.77 47.94 80.63 65.90 55.85

Table 6: Performance comparison of training-based TTA.

and negative caches using confidence scores. These caches are then used to adjust the prediction
scores of the current test sample, effectively adapting the model on the fly.

C.3 IMPLEMENTATION DETAILS

All models in our experiments are built upon the pre-trained CLIP model, which consists of an image
encoder and a text encoder. The image encoder can be either a ResNet or a Vision Transformer
(ViT), while the text encoder is a Transformer. TTA is performed in a single-image setting with
a batch size of 1. Specifically, the thresholds of uncertainty (Equation 4) and retrieval-augmented
correction (Equation 7) are set to 0.2 and 0.85, respectively, the initial number of labeled examples
N is set to 5, and the label budget B is set to 10% of the size of the test set. These hyperparameters
remain fixed and are evaluated across various datasets. For evaluation, we use the top-1 accuracy
(%) as the standard classification metric. All experiments were conducted three times on a single
NVIDIA RTX 4090, and the results were then averaged with standard deviation.

D FURTHER ANALYSES

D.1 VARIOUS VLMS

While recent vision-language models (VLMs) such as BLIP-2 (Li et al., 2023) and SigLIP (Zhai
et al., 2023) have emerged, outperforming traditional models like CLIP, the majority of prior TTA
research has been conducted on CLIP. Therefore, for baseline consistency and fair comparison, we
initially adopted CLIP in our main experiments (as presented in Table 1 and Table 2). To further
showcase the generalizability of our approach, we extend our evaluation to include BLIP-2 and
SigLIP. As shown in Table 5, applying REACT yields consistent improvements across these modern
architectures. These findings underscore that REACT is a versatile and effective method, capable of
enhancing a wide range of VLMs.

D.2 COMPARISON WITH SUPERVISED TTA

To rigorously evaluate our method in an active TTA setup, we compare it against a super-
vised, training-based approach, CoOp (Zhou et al., 2022). For a fair comparison, both CoOp and
CLIP+REACT utilize the same labeled set generated by REACT, and we summarize the results in Ta-
ble 6. Critically, CoOp leverages this set for supervised fine-tuning with gradient updates. Despite
this advantage of learning directly from labels, our training-free CLIP+REACT demonstrates supe-
rior performance across the majority of datasets. This outcome underscores a critical limitation of
supervised TTA: even with access to labels, the effectiveness of training-based methods is funda-
mentally hampered by the computational constraints of the TTA setting, which permit only a few
update iterations. These results confirm that CLIP+REACT is not only more efficient by sidestepping
backpropagation but also achieves a more powerful adaptation, ultimately surpassing a supervised
method under practical TTA constraints.
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Metric Aircraft Caltech101 Cars DTD EuroSAT IN IN-A

Max Softmax 27.69 85.76 59.25 48.05 82.14 64.54 55.89
Energy 25.74 94.04 67.57 44.74 61.07 70.70 60.42
Entropy (Ours) 27.84 94.06 68.76 51.63 79.61 70.88 60.73

Table 7: Performance with various uncertainty metrics.

D.3 ABLATION ON UNCERTAINTY METRIC

To validate our choice of entropy as the uncertainty metric, we performed an ablation study by
replacing it with two other prominent metrics: Max Softmax probability and Energy Score (Liu et al.,
2020). In Table 7, the results clearly indicate that entropy is the most effective choice, achieving the
highest accuracy on six out of the seven benchmark datasets. The performance gain is particularly
notable on DTD, where entropy surpasses the next best metric by a significant margin. While Max
Softmax showed a stronger result on the EuroSAT, the consistent top-tier performance of entropy
across a diverse range of benchmarks underscores its general robustness.

E CONVENTIONAL SAMPLE SELECTION

To evaluate the effectiveness of REACT, Figure 5 compared it against three well-known sample
selection methods: Random, Coreset, and Entropy. We adapt each method for online use by incor-
porating a criterion threshold and tailoring Equation 7 to fit their specific approaches. Below, we
describe each method and its customized criterion.

Random. This baseline randomly generates a value v between 0 and 1. Retrieval-augmented pre-
diction is triggered when v exceeds the retrieval threshold τr. The criterion is simple and defined as
C(xt) = v.

Coreset (Sener & Savarese, 2018). This method focuses on selecting diverse samples based on
model embeddings. It triggers annotation when the cosine similarity between a test sample xt and
its nearest labeled sample xR

t (Referrer) falls below the retrieval threshold τr. The criterion is for-
mulated as

C(xt) = cos
(
fimg(xt), fimg(x

R
t )

)
.

Entropy (Holub et al., 2008). This method selects samples with high uncertainty, measured using
the entropy from the model’s output probabilities (see Equation 4). Retrieval-augmented prediction
is activated when the entropy H(p(xt)) exceeds the retrieval threshold τr. Since we already apply
uncertainty-based filtering with τu = 0.2 (as noted in Section 3.1), we ensure τr > 0.2. The criterion
is formulated as

C(xt) = H(p(xt)) = −
∑
c∈C

p(yt = c|xt) · log p(yt = c|xt).
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