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Abstract

Recent research in 4D saliency detection is limited by

the deficiency of a large-scale 4D light field dataset. To

address this, we introduce a new dataset to assist the sub-

sequent research in 4D light field saliency detection. To

the best of our knowledge, this is to date the largest light

field dataset in which the dataset provides 1465 all-focus

images with human-labeled ground truth masks and the cor-

responding focal stacks for every light field image. To ver-

ify the effectiveness of the light field data, we first intro-

duce a fusion framework which includes two CNN streams

where the focal stacks and all-focus images serve as the

input. The focal stack stream utilizes a recurrent atten-

tion mechanism to adaptively learn to integrate every slice

in the focal stack, which benefits from the extracted fea-

tures of the good slices. Then it is incorporated with the

output map generated by the all-focus stream to make the

saliency prediction. In addition, we introduce adversar-

ial examples by adding noise intentionally into images to

help train the deep network, which can improve the ro-

bustness of the proposed network. The noise is designed

by users, which is imperceptible but can fool the CNNs to

make the wrong prediction. Extensive experiments show

the effectiveness and superiority of the proposed model on

the popular evaluation metrics. The proposed method per-

forms favorably compared with the existing 2D, 3D and 4D

saliency detection methods on the proposed dataset and ex-

isting LFSD light field dataset. The code and results can

be found at https://github.com/OIPLab-DUT/

ICCV2019_Deeplightfield_Saliency . More-

over, to facilitate research in this field, all images we col-

lected are shared in a ready-to-use manner.

1. Introduction

Salient object detection refers to locate and segment ob-

jects that grab human attention most, which has been a fun-

damental task in computer vision area for a long time.
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Figure 1. All-focus images (a) and focal stacks (b-d) generated by

the Lytro Illum camera. Usually a focal stack is a collection of im-

ages (slices) and each slice indicates the different focus distance.

In every slice, there are some scene points in clear focus and the

other points are in blurred defocus.

The existing methods measure saliency based on the

2D [7, 18, 21, 22, 27, 32, 42, 43, 62, 63, 66, 72, 78], 3D [10,

13, 25, 33, 47, 55, 77] or 4D [38, 39, 67, 69] images. A

large proportion of works lie in the first category, while

only a few belong to the last two. Recently, the perfor-

mance of saliency detection on 2D images has been dra-

matically improved, which derives from the rapid progress

of deep learning techniques. Usually RGB images serve

as the input to the deep networks and hierarchical features

are extracted to compute saliency from the local and global

perspectives. With the availability of commercial 3D sen-

sors such as Microsoft Kinect [74], depth maps are incor-

porated into the deep networks on saliency detection. De-

pendent of RGB features, the additional depth information

can describe 3D geometric information and help human in

the understanding of contextual information of salient ob-

jects. Recently, the light field are becoming popular for the

light field cameras can record multiple viewpoints in one

single exposure. The handheld light field camera Lytro Il-

lum [46] features a microlens array, which is composed

of thousands of tiny lenses and designed to measure light

from multiple directions. These information can synthesize

different kinds of 2D images, including focal stacks, depth

maps and all-focus images through rendering [34] and post-

shot refocusing techniques [46]. See Figure 1 for example,

every slice in the focal stack shows the varying focus depth

levels. Focal stacks are a rich source of 3D shape informa-

tion and have been used extensively for shape-from-focus
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and shape-from-defocus computations in computer vision

[4,23]. However, 4D data in saliency detection is limited to

traditional methods that utilize handcrafted features, such

as color, texture, contrast. It has less been explored because

of the limited number of light field saliency data. Currently,

there only exists one publicly available light field saliency

dataset [39] with per-pixel ground truth, which includes 100

all-focus images, a set of focal stacks and the corresponding

depth information. Without large-scale data, the scalability

of algorithms is less-studied and methods that fully utilize

data richness are less likely to be exploited. In light of this,

it is of importance to introduce a large-scale dataset to assist

the further saliency detection.

After obtaining the light field data, how to effectively

incorporate them still needs to be handled. As shown in

Figure 1, each focal stack slice respectively indicates that

how much of an image region falls into focus, which is con-

trolled by the depth of field. Apparently, those slices play

different roles in the final saliency prediction for the reason

that the refocused region in one image contains salient ob-

jects and some defocused region only represents the back-

ground. We prefer to select the salient refocused slices for

measuring saliency. In this case, we expect that the pro-

posed method can focus on the ’good’ slices, which present

relatively clear foreground object and blurred background

noise. Hence, inspired by [80], we employ a novel slice-

wise attention model, which utilizes the recurrent neural

network based on the convolutional features of each slice.

This model can learn to adaptively incorporate the feature

of each slice to learn more effective feature representation.

The output features generated by the proposed model show

better performance compared to other fusion structures de-

scribed in Section 3. To further assist in the training pro-

cess of the network, we propose to utilize adversarial ex-

amples for the saliency detection. Adversarial examples

are first introduced by Szegedy et al. [58], which verify

that existing DNNs are vulnerable to human crafted images.

That is, though there is only a small perceptual difference

with correctly classified inputs, the CNNs can still be mis-

classified by the existing state-of-the art classification net-

works [26, 57]. Motivated by their work, in this paper we

demonstrate that introducing adversarial examples can help

train the saliency network to some extent, which can further

improve the performance for saliency detection.

Overall, our contributions are summarized below:

• We collect and annotate the first large scale light-field

saliency dataset, which contains 1000 training images

and 465 test ones. Each image contains one all-focus

image labeled with per-pixel ground truth and a focal

stack with varied refocused and defocused regions.

• We investigate several CNN fusion frameworks specif-

ically designed for the integration of the light field data

and propose a novel framework in which an attentive

recurrent CNN is utilized to integrate all focal slices.

By increasing the data diversity via the adversarial ex-

amples, the robustness of the framework can be im-

proved among varied input data.

• Compared with the state-of-the-art 2D, 3D and 4D

methods, the proposed method performs favorably on

the two light field benchmark datasets.

2. Related Works

Here we briefly introduce the related works from two as-

pects of saliency detection and deep fusion methods.

2.1. Saliency Detection

According to the types of the input data, existing saliency

detection methods can be generally summarized into three

categories [39] : 1) Saliency on RGB images; 2) Saliency

on RGB-D images; 3) Saliency on Light Field images. The

previous methods focus on the hand-crafted features which

cannot handle the objects with complicated background.

The recent deep learning can handle more complicated im-

ages, which has made a breakthrough in pixel-wise task,

such as saliency, segmentation [14–16, 75] and so forth.

RGB Saliency Detection. The RGB saliency detection

approaches mainly adopt handcrafted 2D visual cues, such

as color, contrast and background prior [3, 8, 17, 31, 41, 50,

54, 70]. In [28], Itti et al. propose the local center-surround

contrast of intensity, color and orientation to detect salient

targets. In [65], Yang et al. compute the similarity of every

superpixel [2,76] with the background ones via graph-based

manifold ranking. These methods are based on the ideal-

istic assumption that image boundary regions are mostly

background or the color contrast between foreground and

background are high. Although they achieve promising per-

formance on certain widely used 2D datasets [6, 30, 45],

they are difficult to deal with the challenging cases where

the idealistic assumption is not suitable for. To overcome

this, CNNs based saliency detection have been proposed

[35, 36, 60, 79] and achieve the state-of-the-art performace,

which benefits from the advantages of high-level semantic

information and low-level structured cues. In [60], Wang

et al. present two different CNNs to learn the local infor-

mation as well as the global contrast for saliency detection.

Li et al. [36] propose an end-to-end deep contrast network

consisting of a pixel-level fully convolutional stream and a

segment-wise spatial pooling stream.

RGB-D Saliency Detection. Detecting salient objects

from RGB-D images [10, 13, 33, 47, 55] attracts lots of in-

terests due to the birth of Microsoft Kinect [5]. Depth prior

is widely used in RGB-D saliency detection, which is moti-

vated by that the objects located closest to observers always

attract the most attention. Peng et al. [47] propose a special-

8839



(a)

(b)

Conv1-Conv5 Deconv1 

(c)

All-focus image

Cascaded Focal slices

Separated Focal slices

Predictor

Conv1 

Conv1 

Deconv1 

Deconv1 

Conv5 

Conv5 

(d)

Deconv2 Conv1-Conv5 

Deconv1 Conv1-Conv5 

Average

+

+ + +

C Conv1-Conv5 Deconv1 

Convolutional 
Feature MapCombined Feature 

+ C
Element-wise

Addition
Concatenation

Figure 2. Different CNN architectures for the 4D inputs.

ized multi-stage RGB-D model by taking account of both

depth and appearance cues. Ren et al. [55] present a two-

stage RGB-D salient object detection framework by exploit-

ing the effectiveness of global priors. In [33], depth prior

is integrated into saliency detection models by Lang et al.

to enhance the saliency prediction. Desingh et al. [13] use

RGB-D saliency in conjunction with RGB saliency mod-

els through non-linear regression to measure saliency value.

These methods demonstrate the depth cue plays an impor-

tant role in determining the salient object. However, these

methods may suffer from false positives when salient ob-

jects are situated at distant location. Recent works based on

CNNs [25,52,56] start from different motivation by treating

the depth image as the input of CNNs to compute saliency.

Qu et al. [52] design a convolutional neural network (CNN)

on RGB-D images to fuse different low-level saliency cues

with hierarchical features. In [25], Han et al. utilize CNNs

to learn the high-level representation in both RGB view and

depth view and propose a multiview CNN (MV-CNN) fu-

sion model to combine both representations. Shigematsu

et al. [56] propose a deep CNN architecture by exploiting

high-level, mid-level and low-level features.

Light Field Saliency Detection. Compared to RGB

and RGB-D saliency detection methods, saliency detection

for light field is still at the early exploration stage with

fewer methods using light field information and no CNNs

based methods are proposed because of the limited access

to enough data. Li et al. [39] develop the first saliency de-

tection method which utilizes the focusness and objectness

simutaneously. Then, a unified saliency detection frame-

work is presented by Li et al. [38] for handling heteroge-

neous types of input data (RGB images, RGB-D images

and light field images). In [67], Zhang et al. introduce

the depth cue in conjuction with background prior and lo-

cation prior into light field saliency computation. Zhang et

al. [69] obtain a list of saliency cues from light-field images,

such as color, depth, flow and multiple viewpoints and then

integrate them by using location prior as a multiplicative

weighting factor. These works show that the unique refo-

cusing capability of light fields can greatly improve the ac-

curacy of saliency detection. However, all the existing light

field methods are limited to computing the hand-crafted fea-

tures and omit the semantic information of salient objects

which is effective in some complex scenarios.

Overall, compared with the traditional saliency methods,

the CNNs based ones can improve the prediction perfor-

mance by a large margin. However, existing deep salient

methods are only based on RGB or RGB-D images, which

ignore the important aspect of eye movement, that is, atten-

tion shifting across depth planes. The focal slices focusing

on different depth in light field dataset shows the unique re-

focusing capability of light fields. Images in the focal stack

value different in saliency prediction because various ob-

jects and background are located in different slices. To ex-

plore the interaction mechanism between light field cues,

in this paper we focus on how to effectively fuse the focal

stacks and all focus images in a united framework.

2.2. Deep Fusion Methods

Many existing works have performed fusion in different

ways, including early [11,61], late fusion [9,37] and layer-

wise fusion [24]. Couprie et al. [11] utilize a multiscale

CNN for semantic segmentation. RGB image and depth

image are concatenated and then transformed by a Lapla-

cian pyramid to be fed into a CNN. In [61] , saliency prior

map and RGB image are concatenated to serve as the four-

channel input to a recurrent fully convolutional network.

In [9] , a gated fusion layer is learned to combine RGB

and depth prediction maps for semantic segmentation. Li et

al. [61] propose a pixel-level fully convolutional stream

and a segment-wise spatial pooling stream to produce two

saliency predictions. Then those predictions are fused to

produce the saliency map. In [24], Gao et al. learn to

automatically fuse features at every convolutional layer for

different tasks.

Different from their works, our method can utilize the

advantage of refocused region in every slice to help saliency

detection. Also, our method can pay more attention to the
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useful slices by the recurrent attentive network. When ap-

plying the aforementioned different fusion mechanism to

focal stacks, early fusion treats each slice (with RGB im-

age) equally and only concatenate them across RGB chan-

nels without high-level semantic interaction among slices.

Layer-wise fusion have the interaction between focal stacks

and RGB image but omit the interaction between each two

slices. Late fusion of focal stack extract features of each

slice and them average the features to make prediction,

which do not consider the importance priority of each slice.

By the recurrent attention, our method can iteratively com-

pute the weight of each slice in the focal stack and get a

weighted fusion of the semantic feature of each slice, which

can help improve the performance compared to the afore-

mentioned fusion methods.
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Figure 3. Statistics of the proposed light field dataset. (a), (b), (c)

and (d) are located from left to right and from top to bottom, re-

spectively. (a): the size of the salient objects. (b): the number

of slices in each focal stack. (c): color contrast between the fore-

ground and background. (d): the spatial distribution of the center

of salient objects.

Scale Object Num. Object Types Object Size Color Contrast

LFSD 100 one (mostly) <100 0.28 0.39

HFUT-Lytro 255 multiple <250 - -

Ours 1465 multiple >1000 0.22 0.30

Table 1. Comparison of the proposed dataset with two existing

datasets in terms of the dataset scale, number of salient objects,

type of objects, averaged size of objects and the color contrast.

3. The 4D light field dataset

The 4D light-field images are rarely available on the In-

ternet, especially the ones including salient objects. In order

to remedy the shortage of light field images, we introduce a

large-scale light field dataset, which is captured with a wide

range of indoor and outdoor scenes. The indoor scenes in-

clude libraries, offices, classrooms, supermarkets and so on

while outdoor locations include the streets, campuses, out-

door markets and the like. Also, the images in our dataset

involve various lighting condition and different camera pa-

rameters. We utilize Lytro Desktop to convert the light field

format files to jpeg images which can be handled directly

and easily. We initially capture over 3000 images using the

Lytro Illum camera.

(a) Image (b) GT (c) UCF (d) PAGRN (e) Ours

Figure 4. Example benefits of using light-field images.

Then, we discard the images which are repetitive,

blurred, or contain large salient objects. After the prepro-

cessing, we retain 1465 images to build the final dataset.

Each image contains one all-focus image with the pixel-

wise ground truth and one focal stack. The spatial reso-

lution of the images is 600×400. To obtain the pixel-wise

ground truth, we manually label the images using a custom

segmentation tool. We first draw the coarse boundary along

the salient objects and then check the segmentation results

to further refine the boundaries until we obtain final accu-

rate annotation. Finally, the dataset are randomly divideed

into two parts, including 1000 training and 465 test images.

We also provide the statistics of the proposed dataset

in Figure 3, which shows the object size, focal stack size,

mean color contrast and location distribution of salient ob-

jects among all images. From Figure 3(a), we can see that

the area percentage of all salient objects over the whole im-

age lies in a range of [0.05, 0.8] and most objects occupy

less than 40% area of the image. Corresponding to every

all-focus image, the number of focal slices varies from 2 to

13 (see Figure 3(b)). And most focal stacks contain more

than 5 slices, which can demonstrate the diversity of image

depths. The color contrast is another criterion for evaluat-

ing the challenge of an image. We compute the averaged

RGB feature of all pixels inside and outside salient objects

and then compute the Euclidean distance between two av-

eraged RGB feature for each image. Figure 3(c) shows that

the salient objects have low color contrast against the back-

ground and the averaged contrast is 0.30. To avoid that

salient objects can be easily extracted by the center prior

cue, we provide the location distribution for the center of

every salient objects across the whole dataset. It can be seen

from Figure 3(d) that the center of the salient objects appear

at a variety of locations. Morever, some detailed compari-

son of the proposed dataset and the existing two datasets are

given in Table 1.

We provide some examples to demonstrate the benefits

of using light-fields in Figure 4. For examples in the first

and second rows, from the 2D images alone, the prediction

map generate more noise on background. However, with
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Figure 5. The overall two branch network based on the weighted late integration of the focal stack.

the aid of light field images, this prediction becomes much

easier, since the object and background noise lie in different

focal slice and we can choose the most relevant one to make

salient objects stand out from the background.

4. CNN structures

In this section, we concentrate on the problem-how to

make effective use of the captured 4D light field images, in-

cluding the all-focus images and focal stacks. We propose a

two-stream trainable convolutional neural network architec-

ture to address the problem of salient object detection. The

proposed model can be trained end-to-end. We first present

the basic structure in Section 4.1 and then introduce the

proposed framework in Section 4.2. Besides the proposed

method, we also describe four alternative fusion structures

which one may put forward straightforwardly based on the

rich light field data. Though those architectures can also

address the proposed task, we analyze the difference among

those methods and emphasize the advantages of the pro-

posed one. Finally, we introduce the adversarial examples

and integrate them with the original images to help fine-tune

the proposed network in Section 4.3.

4.1. Basic Structure

As shown in the Figure 2(b-d), each of the two-stream

CNN is composed of the basic structure (a), which is a

FCN-based network. For the two-stream network, we feed

the focal stacks into the first stream and treat all-focus im-

ages as the input of the second stream. Both streams are

based on the VGG19 network. We just retain the first 16

convolutional layers and remove the last max pooling, two

fully connected and softmax loss layers which are designed

for the task of classification. There are five convolutional

blocks in VGG19 and given an input image, the output fea-

ture maps of each convolutional block are represented as

f1, f2, ..., f5. The feature maps f4 and f5 has the smallest

spatial resolution which are the 1/16 of the input image. To

construct the first stream, we connect three convolutional

layers behind f3, f4, f5 to reduce the dimension of the cor-

responding output feature maps to 64, which are denoted by

f3

r , f
4

r , f
5

r . Then we utilize a FCN-like structure where the

features f4

r , f
5

r are upsampled by using the bilinear inter-

polation and using element-wise addition operation on the

upsamled f4

r and f5

r with f3

r to produce the final feature

representation. The output feature map is 1/4 of the input

spatial resolution and the feature dimension is 64. The sec-

ond stream employs the similar architecture as the first one

and the only difference is that we connect one convolutional

layer with 2 kernels of 3×3 after the output 64×64 feature

map to generate the prediction map. The first channel is the

background mask while the second one denotes the salient

mask. The spatial size of the prediction map is same as the

output feature of the first stream. The detailed framework

of the two streams can be found in Figure 5.

4.2. Different Fusion Structures

As shown in Figure 2, there are several different ways to

perform the integration of these two data streams, ranging

from the early fusion to the later one.

Early integration of light field data. As shown in Fig-

ure 2(b), we only utilize the second stream and concatenate

each slice in the focal stack and all-focus image across their

RGB channels before feeding them into the second stream.

This can be realized by changing the input channel of the

first convolutional layer of VGG19 while leaving the rest

layers unchanged. However, each focal stack slice and all-

focus image are only dealt with through the low-level color

features, which definitely lose the high-level semantic rela-

tionship among those images.

Layer-wise integration of light field data. For every

convolutional block of VGG19, we extract the feature maps

of both streams indicated in Figure 2(c). Then we integrate

both features through element-wise addition. The output

features serve as the input to the next convolutional layer

for both streams. This can exploit the hierarchical feature

correlation of each focal stack and all-focus image. How-

ever, the input are the concatenated RGB features of the

focal slices, which omit the interactive relevance between

each two slices.

Late integration of focal stack. See Figure 2(d), we
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Figure 6. The structure of the recurrent attention network is shown in (a) and (b) denotes the attention subnet.

feedforward each slice independently into the first stream

and average each output feature map directly. This method

combines the information extracted from hierarchical fea-

tures of the CNN. However, this just treat the features of

each slice equally and does not fully consider the role of

each slice plays in the salient prediction.

Weighted late integration of focal stack. Our proposed

fusion process is based on the model of Figure 2(d), as

shown in Figure 5. We focus on the integration of the di-

versified focal slices with an recurrent attention model in

Figure 6. Specifically, an attention subnet is utilized to learn

the importance of each slice in a focal stack and a recurrent

ConvLSTM [64] is employed to learn the integrated feature

representation.

Here, we utilize I = {In|In ∈ R
W×H×C}Nn=1

to denote

the input focal stack I with N slices. W and H represents

the width and height of the slice, respectively. C is the di-

mension of the image. The focal stack stream accepts I
as the input and output the feature map of each slice, de-

noted by F = {Fn|Fn ∈ R
Ws×Hs×Cs}Nn=1

. We show the

detailed framework of the recurrent attention model in Fig-

ure 6. At each time step t, the attention subnet adopts the

N features and the hidden state ht−1 of ConvLSTM as the

input and the output F̄t is a weigted average of the input

features. The attention subnet is described in the right of

Figure 6. We connect one convolutional layer behind Fc

and ht−1 to reduce the dimension of the feature maps to 64

for efficient computation. Then an element-wise addition

is operated on both features and a global average pooling

layer is adopted to aggregate the spatial information of each

position. Next, we use a convolutional layer with N kernels

of 1 × 1 to predict the weight wt,n of each feature map in

F . wt,n is spatially normalized with the softmax operation

via w̄t,n = exp(wt,n)/
∑N

n=1
exp(wt,n). The output map

of the attention subnet is calculated by

F̄t =

N∑

n=1

w̄t,nFn. (1)

The attention subnet can focus on the focal slices which

contribute much to the saliency detection. To further exploit

the spatial relevance among the attentive features, we next

feed the F̄t into the ConvLSTM network. At each time step

t, the ConvLSTM uses the hidden state ht−1 from previous

time step and attentive feature F̄t as input and generate the

output ot. which is described by the following formulations,

it = σ(Wxi ∗ F̄t +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ F̄t +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ F̄t +Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ F̄t +Who ∗ Ht−1 +Wco ◦ Ct−1 + bo)

Ht = ot ◦ tanh(Ct),

(2)

where Ct denotes the cell output at time step t, H1, ...,Ht

is the hidden state and it, ft, ot represents the gates. it is

the input gate which determines if the information will be

accumulated to the cell state Ct. ft is the forget gate, which

decides what information can be thrown from the cell state

Ct. Input information will be accumulated to the cell Ct if

the input gate it is on and the past cell state Ct−1 will be

forgotten if the forget gate ft is on. The final state Ht will

accumulate the latest cell output Ct if the output gate ot is

on. All b means the bias of the convolutional layer. The

symbol ∗ denotes the convolution operation, ◦ denotes the

Hadamard product (element-wise product) and σ(·) means

sigmoid function.

The final feature representation of the focal stack is the

concatenation of the feature maps of its output ot at each

time step t ∈ {1, 2, ..., T}. After obtaining the integrated

features of each slice, we connect one convolutional layer

with 64 channels and another one layer with two channels to

make the saliency prediction of the first stream. Finally, the

prediction map generated by the first stream will combine

with the one generated by the second stream to make the

final prediction.

4.3. Adversarial Examples

Adversarial perturbations cause a neural network to

change its original prediction when added to the original
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Datasets MST BSCA DCL DHS DSS Amulet UCF PAGRN PiCANet R3Net DFRGBD RGBD ACSD DILF LFS WSC Ours

LFSD

maxF 0.704 0.795 0.780 0.856 0.768 0.863 0.865 0.840 0.867 0.876 0.841 0.841 0.780 0.849 0.779 0.786 0.863

MAE 0.209 0.205 0.161 0.115 0.178 0.093 0.143 0.132 0.111 0.098 0.180 0.197 0.218 0.153 0.239 0.168 0.093

S-m 0.646 0.725 0.742 0.803 0.678 0.801 0.808 0.766 0.822 0.811 0.732 0.650 0.681 0.801 0.655 0.700 0.826

E-m 0.720 0.766 0.784 0.844 0.865 0.847 0.844 0.791 0.847 0.852 0.737 0.650 0.675 0.845 0.625 0.770 0.877

Ours

maxF 0.545 0.642 0.716 0.816 0.735 0.782 0.789 0.849 0.851 0.761 0.722 0.570 0.262 - 0.439 - 0.868

MAE 0.210 0.215 0.156 0.095 0.132 0.070 0.153 0.084 0.089 0.114 0.163 0.202 0.337 - 0.259 - 0.070

S-m 0.594 0.66 0.710 0.803 0.714 0.777 0.770 0.810 0.838 0.733 0.687 0.5 0.357 - 0.517 - 0.852

E-m 0.717 0.742 0.781 0.865 0.784 0.843 0.828 0.841 0.872 0.808 0.684 0.432 0.545 - 0.545 - 0.905

Table 2. Quantitative comparison of maximum F-measure, MAE, S-measure, E-measure scores on two datasets. The color in red and blue

represent the best and second scores.

input I . By training using the original images and the ad-

versarial examples, the whole network of CNNs can avoid

overfitting to some extent and can still predict exactly when

facing the perturbation from different source. To generate

the adversarial examples, we utilize the formulation which

is described below,

Iadv = I + ǫ · sign(▽IJ(f(I; θ), S)), (3)

which is motivated by increasing the cross-entropy of the

network on the input image I and ground truth mask S. The

symbol f(·) denotes the neural network parametrized by θ.

ǫ is set to the constant 0.1 which can control the magnitude

of the noise. ▽IJ(·, ·) is the gradient of the models loss

function with respect to the input image I .

We show visual examples with and without adopting ad-

versarial examples in Figure 7. It can be seen that by intro-

ducing the adversarial examples to help traininig process,

the predicted map can prohibit the background noise better.

Image GT w/o Ours
Figure 7. Examples with and without adversraial examples.

5. Experiments

5.1. Training Details

All networks are implemented using the publicly avail-

able Pytorch toolbox with two Nvidia 1080-Ti GPUs. We

employ the general data augmentation schemes, including

the flipping, cropping and rotating operations. Specifically,

we use the horizontal-flipping and vertical-flipping and crop

out the most top, bottom, left, right and middle 9/10 image.

We also rotate all images with the angles of 90◦, 180◦, 270◦.

In sum, we increase the training set by 11 times including

the original image. We set the momentum and weight de-

cay to 0.99 and 0.0005 respectively. The learning rate of the

initial VGG19 and other layers is fixed to 10−10 and 10−8,

respectively. We utilize the official VGG19 Pytorch model

to initialize the whole network. All the weight parameters

for convolutional layers not in the VGG19 network are ini-

tialized by a normal distribution with zero mean and 10−2

variance, while the biases are initialized with constant zero.

The minibatch size is set to 4. We resize all training im-

ages and testing ones to 256× 256. We first train the whole

network in Figure 5 with the augmented images, and after

this we utilize Equation 3 with the ground truth masks to

generate adversarial examples. Then we finetune the whole

network by integrating the original images with the adver-

sarial ones until it converges.

5.2. Datasets

To evaluate the performance of the proposed approach,

we conduct experiments on LFSD [39] dataset as well as

the proposed dataset.

LFSD contains 100 light field images captured by the

Lytro light field camera, including 60 indoor and 40 outdoor

scenes. This is first light field dataset designed for saliency

detection. Most of the scenes contain only one salient object

with high contrast with the background.

The proposed dataset contains 1000 training images and

465 test images. This is a more challenging dataset with the

following characteristics: lower contrast between the salient

objects and the background, more small-scale salient ob-

jects, multiple disconnected salient objects and various light

conditions such as the dark light or strong light.

5.3. Evaluation Metrics

We adopt precision-recall (PR) curves, F-measure [1],

mean absolute error (MAE) scores [49], Structure-measure

(S-measure) [19] and Enhanced-alignment measure (E-

measure) [20] to verify the effectiveness of our proposed

algorithm.

5.4. Comparison with the stateoftheart

Here we provide the quantitative comparison of 16 state-

of-the-art salient object detection methods, including the

2D, 3D and 4D algorithms, i.e., BSCA [51], MST [59],

DCL [37], DHS [43], DSS [27], Amulet [71], UCF [72],

PAGRN [73], PiCANet [44], R3Net [12], DFRGBD [53],

RGBD [48], ACSD [29], LFS [40], WSC [38] and
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Figure 8. Comparison of several state-of-the-art methods on our dataset. The first and second columns show the P-R curves and the last

two columns show the F-measure scores.

DILF [68]. We either use the saliency maps provided by

the authors or run the available codes by using the default

parameters set by the authors.

For quantitative evaluation, we list the MAE, F-measure,

S-measure and E-measure scores in Table 2. It can be seen

that the proposed method performs favorably against the

2D, 3D and 4D algorithms across two datasets in terms of

four metrics. We then further provide the P-R curves in Fig-

ure 8, which can also demonstrate the effectiveness of the

proposed method among all algorithms.

Qualitative results of the proposed method, other state-

of-the-art methods and more results can be found in the sup-

plementary material.

5.5. Ablation Analysis

To verify the advantages of the proposed method, we

provide the experimental results in terms of Max F-measure

and MAE scores in Table 3 for different variants. First,

compared with the framework without using the focal stacks

(a), most methods produce better results which demon-

strates that the introduction of focal stacks can supply sup-

plementary information for saliency detection. Second, we

can see the performance of different models (b-d) varies in

terms of different integration mechanism, which shows that

how to perform integration between all-focus images and

focal stacks are of vital importance. Some example sam-

ples can be found in Figure 9. We find that the proposed

method can highlight salient objects uniformly and produce

sharp boundaries.

We also provide the results of our structure without em-

ploying ConvLSTM (+att). Compared to (d) where the out-

put features of each focal stack are operated by an element-

wise addition and the utilization of both ConvLSTM and

attention modules, the attention mechanism without LSTM

decreases the performance, which demonstrates the inter-

action between LSTM and attention mechanism are impor-

tant for the saliency detection. By utilizing the ConvLSTM,

our method can learn more effective feature representation

with the recurrent mechanism. Also, compared to the model

without adversarial examples (+att+LSTM), our model per-

forms better which derives from the advantages that adver-

sarial examples in assisting training the deep networks.

*
LFSD Our dataset

MAE maxF MAE maxF

(a) 0.133 0.817 0.104 0.819

(b) 0.125 0.825 0.086 0.847

(c) 0.126 0.831 0.104 0.823

(d) 0.132 0.830 0.110 0.822

+ att 0.236 0.825 0.227 0.819

+ att + LSTM 0.100 0.851 0.072 0.863

Ours 0.093 0.863 0.070 0.868

Table 3. Ablation study of various structures. (a)-(d) represent the

structures in Figure 2. The symbol ‘+’ means we gradually add

modules on the late fusion of focal stacks (d). ‘att’ denotes the

attention mechanism.

Image GT (a) (b) (c) (d) Ours
Figure 9. Visual comparison among different networks.

6. Conclusion

In this paper, we first introduce a large-scale light field

dataset to address the deficiency problem of light field data.

Our dataset contains 1465 images, which is much larger

than all the previous datasets. Then we focus on the prob-

lem of how to introduce the light field data into deep learn-

ing and how to effectively combine the light field data (all-

focus images and focal stacks). We utilize a recurrent at-

tention network to fuse each slice in the focal stack. The

attention network can focus on the most informative fea-

tures of each slice and generate a weighted fusion of them.

The recurrent network (ConvLSTM) is employed to effec-

tively learn the feature representation relying on the spatial

relation among the focal slices. To further increase the ro-

bustness of the proposed method, we introduce adversarial

examples to serve as the input to help train the network. Ex-

tensively quantitative and qualitative evaluations show the

promising results of the proposed method over the existing

2D, 3D and 4D images.
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