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Abstract
We study online learning in constrained Markov
decision processes (CMDPs) in which rewards
and constraints may be either stochastic or ad-
versarial. In such settings, Stradi et al. (2024b)
proposed the first best-of-both-worlds algorithm
able to seamlessly handle stochastic and adver-
sarial constraints, achieving optimal regret and
constraint violation bounds in both cases. This
algorithm suffers from two major drawbacks.
First, it only works under full feedback, which
severely limits its applicability in practice. More-
over, it relies on optimizing over the space of
occupancy measures, which requires solving con-
vex optimization problems, an highly inefficient
task. In this paper, we provide the first best-of-
both-worlds algorithm for CMDPs with bandit
feedback. Specifically, when the constraints are
stochastic, the algorithm achieves Õ(

√
T ) regret

and constraint violation, while, when they are ad-
versarial, it attains Õ(

√
T ) constraint violation

and a tight fraction of the optimal reward. More-
over, our algorithm is based on a policy optimiza-
tion approach, which is much more efficient than
occupancy-measure-based methods.

1. Introduction
Most of the learning tasks arising in real-world scenarios
involve an agent sequentially interacting with an unknown
environment. Markov decision processes (MDPs) (Puter-
man, 2014) have emerged as the most natural models for
such interactions, as they allow to capture the fundamental
goal of learning an optimal (i.e., reward-maximizing) action-
selection policy for the agent. However, in most of the real-
world applications, the learner has to satisfy some additional
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requirements. For instance, in autonomous driving one has
to avoid crashing with other cars (Isele et al., 2018), in ad
auctions one must not deplete the allocated budget (He et al.,
2021), while in recommendation systems offending items
should not be presented to the users (Singh et al., 2020).
In order to capture such requirements, constrained MDPs
(CMDPs) (Altman, 1999) have been introduced. These
augment classical MDPs by adding costs that the agent is
constrained to keep below some given thresholds.

Over the last years, online learning problems in episodic
CMDPs have received a growing attention (see, e.g., (Efroni
et al., 2020) for a seminal work in the field). These are
problems in which the learner repeatedly interacts with the
CMDP environment over multiple episodes. In such set-
tings, the learner’s goal is to minimize the regret of not
always selecting a best-in-hindsight policy that satisfies cost
constraints, while at the same time ensuring that the cumula-
tive violation of cost constraints does not grow too fast over
the episodes. Ideally, one would like that both the regret and
the constraint violation grow sublinearly in the number of
episodes T .

In online learning in episodic Markov decision processes,
two different assumptions on how rewards and costs are
determined at each episode are possible. They can be se-
lected either stochastically according to fixed (unknown)
probability distributions or adversarially, meaning that no
statistical assumption is made.

Very recently, Stradi et al. (2024b) proposed the first best-
of-both-worlds learning algorithm for online learning in
episodic constrained MDPs. Such an algorithm is able to
seamlessly handle stochastic and adversarial constraints,
achieving optimal regret and violation bounds in both cases.
However, it suffers from two major drawbacks. First, it
only works under full feedback, meaning that the learning
agent needs to observe rewards and costs defined over the
whole environment after each episode. This is extremely
unreasonable in practice, where only some feedback along
the realized trajectory is usually available. Moreover, the
algorithm works by optimizing over the space of occupancy
measures, which requires solving a convex problem at every
episode, an highly inefficient task.
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1.1. Original Contributions

We provide the first best-of-both-worlds algorithm for online
learning in episodic CMDPs with bandit feedback. This
means that, after each episode, the algorithm only needs to
observe the realized rewards and costs along the trajectory
traversed during that episode, as it is the case in most of the
real-world applications. Moreover, our algorithm is based
on a primal-dual policy optimization method, and, thus, it
is arguably much more efficient than the one by Stradi et al.
(2024b), it does not require solving convex programs.

When the costs are stochastic, our algorithm attains Õ(
√
T )

regret and constraint violation, while, when they are ad-
versarial, it achieves Õ(

√
T ) violation and a fraction of

the optimal reward. These results match those of the full-
feedback algorithm by Stradi et al. (2024b) and are provably
tight. We also analyze the performances of our algorithm
with respect to a parameter ρ measuring by “how much”
Slater’s condition is satisfied. Specifically, if ρ is arbitrarily
small, our algorithm can still guarantee Õ(T 3/4) regret and
violation in the stochastic setting.

Crucially, similarly to the algorithm by Stradi et al. (2024b),
ours does not require any knowledge of the Slater’s pa-
rameter ρ. In order to obtain this result, we show that the
Lagrangian multipliers are automatically bounded during
the learning dynamics, by employing the no-interval-regret
property of our primal and dual regret minimizers. Indeed,
we develop the first algorithm for unconstrained MDPs with
no-interval-regret, under bandit feedback. We believe that
this result may also be of independent interest.

Finally, differently from Stradi et al. (2024b), we show that
our algorithm may achieve sublinear regret and violation
in the adversarial setting, by using a weaker baseline that
has to satisfy the constraints at every round. Specifically,
when ρ is large enough our algorithm attains Õ(

√
T ) regret

and violation, while it still achieves Õ(T 3/4) regret and
violation when ρ is arbitrarily small.

1.2. Technical Challenges

To achieve best-of-both-worlds guarantees in CMDPs with
bandit feedback when the Slater’s parameter is unknown,
this work faces several challenges, and it introduces novel
approaches to overcome them. Specifically, the main techni-
cal challenges are highlighted in the following:

• Bounding the Lagrange multipliers. Bounding the
Lagrange multipliers during the learning dynamics is
necessary to guarantee that the primal regret minimizer
has low regret, since any regret bound scales as the
payoff range. This is done by employing no-interval
regret algorithms for both primal and dual. Notice
that the no-interval regret property is stronger than
the classical no-regret one and requires a smoother

learning dynamics. Guaranteeing the no-interval regret
property in bandit settings harder than standard multi-
armed bandits was an open problem in the literature.

• Fixed share update in Markov decision processes.
To design a primal regret minimizer for MDPs with
bandit feedback having the no-interval regret property,
we employ a policy optimization approach with a fixed-
share update, which was originally introduced by Cesa-
Bianchi et al. (2012). Specifically, the fixed-share up-
date performs at each episode a combination between
the solution to the per-episode optimization problem
and the "uniform" solution on the decision space. How-
ever, applying the fixed share update in the space of
the occupancy measures is problematic, since the re-
sult of the interpolation may lie outside the space of
the estimated occupancy measures. Hence, techniques
such as the one in (Stradi et al., 2024b) are not gen-
erally applicable in bandit settings. To overcome this
problem, we design a primal algorithm that is policy-
based, where the combination is clearly meaningful.
Employing fixed-share updates in policy optimization
algorithms for MDPs requires a novel analysis, which
we fully report in Appendix D.

• Addressing the dependence on the primal loss range.
A key challenge in designing an effective primal al-
gorithm is controlling how the primal regret bound
depends on the range of the losses. Notice that this
is not a trivial task, since the magnitude of the losses
is unknown a-priori. Thus, by employing a standard
approach, the regret would scale quadratically in the
Lagrangian multipliers, as it depends on the square
of the loss magnitude. To mitigate this and ensure
the regret dependence on the Lagrangian multipliers is
only linear, we introduce an episode-dependent learn-
ing rate. This parameter is dynamically adjusted to
be proportional to the highest value of the Lagrangian
multipliers observed up to the current episode.

1.3. Related Works

In the following, we highlight the works that are mainly
related to ours. Due to space constraints, we refer to Ap-
pendix A for a complete discussion about related works.

Online learning in MDPs has been widely studied both un-
der stochastic settings (Auer et al., 2008) and adversarial
ones (Neu et al., 2010). In adversarial settings, two feed-
backs are usually investigated. In the full-feedback setting,
the reward function (or loss) is entirely revealed at the end
of the episode. In this case, Rosenberg & Mansour (2019b)
show that it is possible to achieve an optimal Õ(

√
T ) re-

gret bound. In the more challenging bandit-feedback setting,
with rewards revealed along the traversed trajectory only, Jin
et al. (2020) show that the optimal bound is still attainable.

2



Policy Optimization for CMDPs with Bandit Feedback: Learning Stochastic and Adversarial Constraints

As concerns MDPs with constraints, online learning has
been studied mainly in the stochastic setting (see Efroni
et al. (2020) for a seminal work on the topic). As concerns
adversarial settings, namely, when the constraints are not
assumed to be stochastic, there exists an impossibility re-
sult from Mannor et al. (2009) that prevents from attaining
sublinear regret and violation when the optimal solution
is computed with respect to a policy that satisfies the con-
straints on average. Thus, many works focused on achieving
Õ(
√
T ) regret and violation for adversarial rewards and

stochastic constraints (Qiu et al., 2020) or non-stationary en-
vironments with bounded non-stationarity (Ding & Lavaei,
2023; Wei et al., 2023; Stradi et al., 2024c).

Recently, Stradi et al. (2024b) showed the first best-of-
both-worlds (with respect to the constraints) algorithm for
CMDPs. Precisely, the authors propose a primal-dual al-
gorithm that optimizes over the occupancy measure space,
under full feedback. When the constraints are stochastic,
the algorithm achieves Õ(

√
T ) regret and violation, both in

the case in which rewards are adversarial and the one where
they are stochastic. Contrariwise, in the adversarial setting,
the algorithms attains Õ(

√
T ) violatios, and the no-α-regret

property with α = ρ/(H+ρ), where ρ is a suitably-defined
Slater’s parameter. Notice that this result is in line with
the best-of-both-worlds results in the single-state online
constrained settings, e.g., (Castiglioni et al., 2022b).

2. Problem Setting
2.1. Online Constrained Markov Decision Processes

Algorithm 1 Learner-Environment Interaction

1: for t = 1, . . . , T do
2: rt and Gt are chosen stochastically or adversarially
3: The learner chooses a policy πt : X ×A→ [0, 1]
4: The state is initialized to x0
5: for h = 0, . . . ,H − 1 do
6: The learner plays ah ∼ πt(·|xh)
7: The learner observes rt(xh, ah) and gt,i(xh, ah)

for all i ∈ [m]
8: The environment evolves to xh+1 ∼ P (·|xh, ah)
9: The learner observes xh+1

10: end for
11: end for

An online episodic constrained MDPs (CMDPs) (Alt-
man, 1999) is a tuple M := (X,A,P, {rt}Tt=1 , {Gt}

T
t=1).

Specifically, T is the number of episodes, with t ∈ [T ] de-
noting a specific episode. X,A are finite state and action
spaces, respectively. P : X × A → ∆(X) is the transi-
tion function. We denote by P (x′|x, a) the probability of
going from state x ∈ X to state x′ ∈ X by taking action
a ∈ A. Notice that, w.l.o.g., in this work we consider loop-

free CMDPs. Formally, this means that X is partitioned
into H layers X0, . . . , XH such that the first and the last
layers are singletons, i.e., X0 = {x0} and XH = {xH},
and that P (x′|x, a) > 0 only if x′ ∈ Xh+1 and x ∈ Xh for
some h ∈ [0 .. H − 1]. Any episodic CMDP with horizon
H that is not loop-free can be cast into a loop-free one by
suitably duplicating the state space H times. {rt}Tt=1 is a
sequence of vectors describing the rewards at each episode
t ∈ [T ], namely rt ∈ [0, 1]|X×A|. We refer to the reward
of a specific state-action pair x ∈ X, a ∈ A for an episode
t ∈ [T ] as rt(x, a). Rewards may be either stochastic, in
that case rt is a random variable distributed according to a
distributionR for every t ∈ [T ], or chosen by an adversary.
{Gt}Tt=1 is a sequence of constraint matrices describing the
m constraint violations at each episode t ∈ [T ], namely
Gt ∈ [−1, 1]|X×A|×m, where non-positive violation values
stand for satisfaction of the constraints. For i ∈ [m], we
refer to the violation of the i-th constraint for a specific state-
action pair x ∈ X, a ∈ A at episode t ∈ [T ] as gt,i(x, a).
Constraint violations may be stochastic, in that case Gt
is a random variable distributed according to a probability
distribution G for every t ∈ [T ], or chosen by an adversary.

The learner chooses a policy π : X → ∆(A) at each
episode, defining a probability distribution over actions at
each state. We denote by π(·|x) the probability distribution
for a state x ∈ X , with π(a|x) being the probability of
action a ∈ A. In Algorithm 1 we provide the interaction
between the learner and the environment in a CMDP. Fur-
thermore, we assume that the learner knows X and A, but
they do not know anything about P . Notice that the interac-
tion between the learner and the environment is with bandit
feedback, namely, the rewards and the constraint violations
are revealed for the traversed trajectory only.

Occupancy Measures Given a transition function P and
a policy π, the occupancy measure qP,π ∈ [0, 1]|X×A×X|

induced by P and π is such that, for all x ∈ Xh, a ∈ A, and
x′ ∈ Xh+1 with h ∈ [0 .. H − 1], it holds

qP,π(x, a, x′) = P {xh = x, ah = a, xh+1 = x′|P, π} .

Moreover, we let qP,π(x, a) =
∑
x′∈Xh+1

qP,π(x, a, x′)

and qP,π(x) =
∑
a∈A q

P,π(x, a). Then, the set of valid
occupancy measures can be characterized as follows (Rosen-
berg & Mansour, 2019b). A vector q ∈ [0, 1]|X×A×X| is a
valid occupancy measure of an episodic loop-free MDP if
and only if the following three conditions hold:

(i)
∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

q(x, a, x′) = 1 ∀h ∈ [0, . . . ,H − 1]

(ii)
∑
a∈A

∑
x′∈Xh+1

q(x, a, x′) =
∑

x′∈Xh−1

∑
a∈A

q(x′, a, x)

∀h ∈ [1, . . . ,H − 1],∀x ∈ Xh
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(iii) P q = P,

where P is the transition function of the MDP and P q is the
one induced by q. Indeed, any valid occupancy measure q
induces a transition function P q and a policy πq , defined as
P q(x′|x, a) := q(x,a,x′)

q(x,a) and πq(a|x) := q(x,a)
q(x) .

2.2. Offline CMDPs Baseline

In the following, we introduce the offline CMDP optimiza-
tion problem, which is needed to define a proper baseline
to evaluate the performances of online learning algorithms.
Specifically, we introduce the following linear program pa-
rameterized by a reward vector r and a constraint matrix
G:

OPTr,G :=

{
maxq∈∆(M) r⊤q

s.t. G⊤q ≤ 0,
(1)

where q ∈ [0, 1]|X×A| is an occupancy measure and ∆(M)
is the set of valid occupancy measures.

Furthermore, we state the following well-known condition
on the offline CMDP problem.

Condition 2.1 (Slater’s condition). Given a constraint ma-
trix G, the Slater’s condition holds when there is a strictly
feasible solution q⋄ such that G⊤q⋄ < 0.

Notice that, in this work, we do not assume that the Slater’s
condition holds. Indeed, our algorithm still works when
a strictly feasible solution does not exists. We refer to
Section 2.4 for further details on this. Finally, we define the
Lagrangian function of Problem (1), as follows.

Definition 2.2 (Lagrangian function). Given a reward vec-
tor r and a constraint matrix G, the Lagrangian function
Lr,G : ∆(M)× Rm≥0 → R of Problem (1) is defined as:

Lr,G(q, λ) := r⊤q − λ⊤(G⊤q).

2.3. Online Learning Problem

As it is standard in online learning (Cesa-Bianchi & Lugosi,
2006), we evaluate the performance of learning algorithms
by means of the notion of cumulative regret.

Definition 2.3 (Regret). We define the cumulative regret up
to episode T as follows:

RT := T OPTr,G −
T∑
t=1

r⊤t q
P,πt ,

where r := Er∼R[r] if the rewards are stochastic, while
r := 1

T

∑T
t=1 rt if they are adversarial, andG := EG∼G [G]

if the constraints are stochastic, while G := 1
T

∑T
t=1Gt if

they are adversarial.

We refer to an optimal occupancy measure, i.e., a feasible
one achieving value OPTr,G, as q∗. Thus, we can rewrite

the regret definition asRT =
∑T
t=1 r

⊤q∗−
∑T
t=1 r

⊤
t q

P,πt .
Notice that, in the adversarial setting, the regret is computed
with respect to an optimal feasible strategy in hindsight.
Indeed, an optimal solution is not required to satisfy the
constraints at every episode t ∈ [T ].

Next, we define the performance measure related to con-
straints: the cumulative constraint violation.

Definition 2.4 (Constraint violation). The cumulative con-
straint violation up to episode T is defined as:

VT := max
i∈[m]

T∑
t=1

[
G⊤
t q

P,πt
]
i
.

Learning algorithms perform properly when they are capa-
ble of keeping both the quantities defined above sublinear
in T , namely, RT = o(T ) and VT = o(T ).

For the sake of simplicity, in the rest of the paper, we will
refer to qP,πt as qt, omitting the dependence on transition
unction P and policy π.

2.4. Feasibility

We introduce a problem-specific parameter of Problem (1),
called ρ ∈ [0, H], which identifies by “how much” Slater’s
condition is satisfied. Formally:

• When the constraints are selected stochastically,
namely, they are chosen from a fixed distribution, the
parameter ρ is defined as

ρ := max
q∈∆(M)

min
i∈[m]

−
[
G

⊤
q
]
i
.

• When the constraints are chosen adversarially, namely,
no statistical assumption is made, the parameter ρ is
defined as

ρ := max
q∈∆(M)

min
t∈[T ]

min
i∈[m]

−
[
G⊤
t q
]
i
.

Furthermore, we denote the occupancy measure q ∈ ∆(M)
leading to the value of ρ by q◦. Intuitively, ρ represents
the “margin” by which the “most feasible” strictly feasible
solution (i.e., q◦) satisfies the constraints. Finally, we state
the following condition on the parameter ρ, which will guide
the analyses of the performances of our algorithm.

Condition 2.5. It holds that ρ ≥ T− 1
8H
√
112m.

Remark 2.6. Notice that, it is standard in the literature
of primal-dual methods to assume that ρ is a constant in-
dependent of T and directly include in the regret bound
the dependence on 1/ρ (see, e.g, (Efroni et al., 2020; Liu
et al., 2021; Wei et al., 2022; Müller et al., 2024)). Never-
theless, when ρ is too small, this could result in suboptimal
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Algorithm 2 PDB-PS
Require: State space X , action space A, number of

episodes T , confidence parameter δ ∈ (0, 1)
1: π1(a|x)← 1

|A| ∀(x, a) ∈ X ×A
2: λ1 ← 0, Γ1 ← 1, Ξ1 ← 2
3: K ←

[
0, T 1/4

]m
, η ← 1

D ln(|A||X|2T2/δ)
√
T

4: for t = 1, . . . , T do
5: Play policy πt, observe trajectory {(xh, ah)}H−1

h=0 ,
rewards {rt(xh, ah)}H−1

h=0 and constraint violations
{gt,i(xh, ah)}H−1

h=0 for all i ∈ [m]
6: for h = 0, . . . ,H − 1 do
7: ℓt(xh, ah)←Γt+

∑m
i=1λt,igt,i(xh,ah)−rt(xh,ah)

8: end for
9: πt+1 ← Call FS-PODB.UPDATE({(xh, ah)}H−1

h=0 ,
{ℓt(xh, ah)}H−1

h=0 , Ξt)

10: λt+1 ← ΠK

[
λt + η

∑H−1
h=0 Gt[xh, ah]

]
11: Γt+1 ← 1 + ∥λt+1∥1
12: Ξt+1 ← max {Ξt, 2Γt}
13: end for

regret bounds. In this paper, we take a different approach
by providing bounds for any value of ρ, that is, whether
Condition 2.5 holds or not.

3. A Policy Optimization Primal-Dual
Approach

In this section, we provide the description of our algorithm.
We resort to a primal-dual formulation of the CMDP prob-
lem, and we employ different regret minimizers to optimize
over the primal space (namely, the policy space) and the dual
one (that is, the Lagrangian variables space). Furthermore,
our primal algorithm is based on a policy optimization ap-
proach. Thus, the learning update is not performed over the
occupancy measure space, but state-by-state along the MDP
structure. This allows us to avoid solving a convex program
at each episode (as it is the case in the algorithm by (Stradi
et al., 2024b)). As concerns the dual, we employ online gra-
dient descent (OGD). We remark that our algorithm does not
require any knowledge of the Slater’s parameter ρ. Indeed,
as we further discuss in the rest of this work, we can show
that the Lagrangian multipliers are automatically bounded
given specific no-regret properties of the primal and dual
regret minimizers.

3.1. Meta-Algorithm

In Algorithm 2, we provide the pseudocode of primal-dual
bandit policy search (PDB-PS).

Algorithm 2 initializes the policy uniformly over the space
(see Line 1). Moreover, the Lagrangian variables are ini-

tialized as the zero vector, the loss scaling factor to 1, the
loss range to 2, and, finally, the dual space is instantiated
as
[
0, T 1/4

]m
(see Line 3). We underline that we force

the dual space to be bounded in
[
0, T 1/4

]m
only to deal

with degenerate cases where Condition 2.5 does not hold.
When Condition 2.5 holds, our algorithm guarantees that
the Lagrangian variables are automatically bounded during
learning. Furthermore, the algorithm keeps track of the max-
imum loss range observed by the primal algorithm Ξt, up to
episode t ∈ [T ], since the primal regret minimizer needs to
dynamically update its belief on the loss range, in order to
attain optimal regret bounds. The algorithm plays policy πt
and observes the bandit feedback as depicted in Algorithm 1
(see Line 5). Given the observed feedback, PDB-PS builds
a re-scaled Lagrangian loss for each layer h ∈ [H] as:

ℓt(xh, ah) := Γt +

m∑
i=1

λt,igt,i(xh, ah)− rt(xh, ah). (2)

Notice that the loss built in Equation (2) can been seen as
the Lagrangian suffered by πt for state-action pair (x, a),
scaled by Γt to guarantee that the losses are always positive
(see Line 7). This loss is properly built to feed the primal
policy optimization procedure. Moreover, we underline that
the feedback given to the primal algorithm encompasses
the trajectory and the maximum loss range observed, be-
sides the loss built in Equation (2). Policy πt+1 is returned
by the primal algorithm (Line 9). We refer the reader to
the next section for further discussion on the primal opti-
mization algorithm. Algorithm 2 updates the Lagrangian
multipliers using an online gradient descent update with loss
−
∑H
h=0Gt[xh, ah] in the bounded dual space [0, T 1/4]m:

λt+1 ← ΠK

[
λt + η

H−1∑
h=0

Gt[xh, ah]

]
,

where ΠK is the euclidean projection over the space K
and Gt[xh, ah] is the m-dimensional vector composed by
the violations of any constraint for the state-action pair
(xh, ah) (Line 10). Thus, the current loss scaling factor is
computed as Γt+1 ← 1 + ∥λt+1∥1 (Line 11). Finally, the
maximum observed loss range Ξt+1 is updated as Ξt+1 ←
max {Ξt, 2Γt+1} , since the range of losses observed by the
primal depends on the Lagrangian multipliers (Line 12).

3.2. Primal Regret Minimizer

In Algorithm 3, we provide the pseudocode of
fixed share policy optimization with dilated bonus
(FS-PODB.UPDATE), namely, the update performed by
the primal regret minimizer employed by Algorithm 2. Al-
gorithm 3 builds on top of the state-of-the-art policy opti-
mization algorithm for adversarial MDPs (see (Luo et al.,
2021)), equipping it with a fixed share update (Cesa-Bianchi
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et al., 2012). This modification allows us to achieve the no-
interval regret property, which, to the best of our knowledge,
has never been shown for adversarial MDPs with bandit
feedback. Thus, we believe that the theoretical guarantees
of Algorithm 3 are of independent interest.

Specifically, Algorithm 3 requires in input the trajectory
traversed during the learner-environment interaction, the in-
curred loss functions, and the maximum loss range observed
for any t ∈ [T ].1 During the first episode, the algorithm
initializes the estimated transitions space as the set of all
possible transition functions (Line 2). Thus, at each episode
the algorithm defines a dynamic learning rate ηt ∝ 1√

TΞt

(Line 4), where Ξt is the upper bound on the range of the
loss functions up to t. This is done to control the differ-
ent scales of the loss, due to the Lagrangian multipliers
choice of the dual algorithm. Then, Algorithm 3 builds an
optimistic estimator of the state-action value function as:

Q̂t(x, a) :=
Lt,h

qt(x, a) + γ
It(x, a),

where It(x, a) := I{xt,h = x, at,h = a} and Lt,h :=∑H−1
j=h ℓt(xj , aj) is the loss incurred by the algorithm at

episode t starting from layer h. Indeed, since qt(x, a) :=
maxP̂∈Pt

qP̂ ,πt(x, a),2 and γ is a positive quantity, Q̂t(x, a)
results in an optimistic estimator of the state-action value
function (Line 5). The optimistic estimator is employed to
control the variance of the loss estimation and, thus, in order
to achieve high-probability results. Finally, notice that the
state-action value function (as the estimated one) is com-
monly used in policy optimization as it allows to optimize
efficiently state-by-state. In addition to the estimated state-
action value function, Algorithm 3 defines a dilated bonus
similar to the one introduced by Luo et al. (2021), which is
then incorporated in the final objective of the optimization
update. The bonus is defined as:

Bt(x, a) := bt(x)+(
1 +

1

H

)
max
P̂∈Pt

Ex′∼P̂ (·|x,a)Ea∼πt(·|x′) [Bt(x
′, a′)] ,

where the term bt(x) depends on the uncertainty on the
transitions estimation and the range of the losses, while the
term

(
1 + 1

H

)
attributes more weight to the deeper layers,

so as to incentivize exploration (Line 6). The weights asso-
ciated to any action are computed employing the so called
fixed share update (Cesa-Bianchi et al., 2012); specifically,

1While the input of Algorithm 3 may seem different from the
standard bandit feedback received in adversarial MDPs, this is
not the case. Indeed, it is sufficient to set Ξt = 1 for all t ∈ [T ]
to achieve the same guarantees attained by Algorithm 3, in the
Lagrangian formulation of CMDPs, in standard adversarial MDPs.

2As shown in (Jin et al., 2020), qt(x, a) can be computed
efficiently by means of dynamic programming.

Algorithm 3 FS-PODB.UPDATE

Require: Observed trajectory {(xh, ah)}H−1
h=0 , observed

losses {ℓt(xh, ah)}H−1
h=0 , loss range upper bound Ξt

1: if t = 1 then
2: P1 ← set of all possible transitions
3: end if
4: ηt ← 1

2HΞtC
√
T

, γ ← 1
C
√
T

, σ ← 1
T

5: For all h = 0, . . . ,H − 1 and (x, a) ∈ Xh ×A:

Lt,h ←
H−1∑
j=h

ℓt(xj , aj)

Q̂t(x, a)←
Lt,h

qt(x, a) + γ
It(x, a),

where we let qt(x, a) := maxP̂∈Pt
qP̂ ,πt(x, a) and

It(x, a) := I{xt,h = x, at,h = a}
6: For all (x, a) ∈ X ×A:

bt(x)← E
a∼πt(·|x)

3γHΞt+HΞt

(
qt(x, a)−qt(x, a)

)
qt(x, a) + γ



Bt(x, a)← bt(x)+(
1 +

1

H

)
max
P̂∈Pt

Ex′∼P̂ (·|x,a)Ea∼πt(·|x′) [Bt(x
′, a′)]

where we let q
t
(x, a) := minP̂∈Pt

qP̂ ,πt(x, a), and
Bt(xH , a) := 0 for all a ∈ A

7: For all (x, a) ∈ X ×A:

wt+1(a|x)← (1− σ)wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a))

+
σ

|A|
∑
a′∈A

wt(a
′|x)e−ηt(Q̂t(x,a

′)−Bt(x,a
′))

πt+1(a|x)←
wt+1(a|x)∑

a′∈A wt+1(a′|x)

8: Pt+1 ←TRANSITION.UPDATE({(xh, ah)}H−1
h=0 )

the weights are computed as the convex combination be-
tween the uniform weight and the solution to optimization
step ∝ wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a)). The policy is simply
computed as a normalization between weights (see Line 7).
Notice that the convex combination mentioned above is cru-
cial to bound the regret for each interval (that is, to attain the
no-interval regret property). Indeed, it guarantees a lower
bound for the value taken by the policy in each available ac-
tion at each episode, and, thus, for all intervals [t1, t2] ⊂ [T ],
it allows to find a nice upper bound for the Bregman diver-
gence Dψ(π(·|a);πt1(·|a)), for all policies π. Finally, the
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estimation of the transitions is updated given the trajectory
traversed in the MDP (Line 8). This estimation is standard
in the literature. Thus, we refer to (Rosenberg & Mansour,
2019b) for further discussion on the use of counters and
epochs to estimate a superset of the transition space Pt.

3.3. No-Interval Regret Property

When the Slater’s parameter ρ is known, the only necessary
requirement for the primal and the dual regret minimizers is
to be no-regret. Thus, it is sufficient to bound the Lagrangian
space so that ∥λ∥1 ≤ O(H/ρ) to attain sublinear regret and
violation. Nevertheless, knowing ρ is generally not possible
in real-world scenarios. In order to relax the assumption on
the knowledge of ρ, we require our primal and dual regret
minimizers to have the no-interval regret property.3.

First, we introduce the interval regret as follows.

Definition 3.1 (Interval regret). Given an interval of consec-
utive episodes [t1, . . . , t2] ⊆ [1, . . . , T ], the interval regret
with respect to a general occupancy q (and the associated
policy π) and a sequence of loss functions {ℓt}Tt=1 with
ℓt : X ×A→ [0,K], with K > 0, is

Rt1,t2(q) :=

t2∑
t=t1

ℓ⊤t (qt − q).

In the following, we omit the dependence on the general
occupancy measure q when it is clear from the context. Thus,
given Definition 3.1, we are able to introduce the no-interval
regret property, as follows.

Definition 3.2 (No-interval regret property). An algorithm
attains the no-interval regret property when for any interval
of consecutive episodes [t1, . . . , t2] ⊆ [1, . . . , T ] and with
respect to any valid occupancy q (and the associated policy
π), it holds

Rt1,t2 ≤ Õ(
√
T ).

Intuitively, the no-interval regret property guarantees a more
stable learning dynamics over the episodes.

When full feedback is available, as for the dual algorithm,
it is sufficient to employ OGD-like updates to attain the de-
sired result. This is not the case when the feedback is bandit.
Nevertheless, given that we use a policy optimization proce-
dure and the fixed share update, we build the first algorithm
for adversarial MDPs with no-interval-regret. We state the
result in the following theorem.

Theorem 3.3. For any δ ∈ (0, 1), with probability at least

3What we require is generally known in the literature as the
weak no-interval regret property. For the sake of simplicity, in our
work, we introduce only the weak property.

1− 8δ, Algorithm FS-PODB attains:

Rt1,t2 ≤ Õ
(
Ξt1,t2

√
T + Ξt1,t2

t2 − t1√
T

)
,

where the regret can be computed with respect to any policy
function π : X → ∆(A).

As it is standard for online learning algorithms,Rt1,t2 scales
as the loss range, as shown by the dependence on Ξt1,t2 ,
that is, the maximum possible range of losses in the interval.

3.4. Bound on the Lagrangian Multipliers Dynamics

Next, we show that, given the no-interval regret property
of the primal and the dual regret minimizers, it is possible
to show that the Lagrangian multipliers are automatically
bounded during learning. Notice that this bound is necessary
since any adversarial regret minimizer needs the loss to be
bounded to achieve the no-regret property. Thus, since the
rewards {rt}Tt=1 and the constraints {Gt}Tt=1 are assumed
to be bounded for all episodes, the problem of bounding the
loss suffered by the primal algorithm becomes the problem
of bounding the Lagrangian multipliers {λt}Tt=1.

Theorem 3.4. Under Condition 2.5, for any δ ∈ (0, 1), with
probability at least 1− 11δ, it holds:

∥λt∥1 ≤ Λ ∀t ∈ [T + 1],

where Λ = 112mH2

ρ2 .

The general idea behind the proof is to compare, for every
interval [t1, t2] ⊂ [T ], the upper bound to −

∑t2
t=t1

ℓL,⊤t qt
obtained through the regret of the dual algorithm with the
lower bound to the same quantity obtained through the pri-
mal interval regret, where we define the non-scaled La-
grangian loss ℓLt as the vector composed by

ℓLt (x, a) :=

m∑
i=1

λt,igt,i(x, a)− rt(x, a)

for all (x, a) ∈ X × A and for all t ∈ [T ]. The resulting
inequality leads, by contradiction, to the desired bound.
In this sense, a fundamental requirement for the proof is
that the regret guarantees for both the primal and the dual
algorithm hold for all subsets of episodes.

4. Theoretical Analysis
In this section, we prove the best-of-both-world guarantees
attained by Algorithm 2.

4.1. Stochastic Setting

We first study the performance of Algorithm 2 when the
constraints are stochastic.
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In such a setting, our algorithm can handle two scenarios. In
both of them, employing a primal-dual analysis shows that
both the regret and the violations are bounded with order
Õ(
√
T ) times the maximum value taken over all episodes of

the Lagrangian multipliers, i.e. maxt∈[T ]∥λt∥1. In the first
scenario, Condition 2.5 holds and thus we can apply Theo-
rem 3.4 to show that the Lagrangian multipliers are bounded.
In such a case, maxt∈[T ]∥λt∥1 can be easily bounded by Λ.
When Conditions 2.5 does not hold, we need to resort to the
bound of Lagrangian multipliers derived by the instantia-
tion of OGD decision space, leading to Õ(T 3/4) regret and
violations bounds.

Specifically, when Condition 2.5 holds, the Lagrangian mul-
tipliers are nicely bounded by Λ.

Theorem 4.1. Suppose that Condition 2.5 holds and the
constraints are generated stochastically. Then, for any δ ∈
(0, 1), Algorithm 2 attains:

RT ≤ Õ
(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
,

with probability at least 1 − 14δ when the rewards are
stochastic, and with probability at least 1− 13δ when the
rewards are adversarial.

When Condition 2.5 does not hold, we can still use the
bound forced by Algorithm 2 on the dual space. Therefore,
the Lagrangian multipliers are bounded by mT 1/4, leading
to the following result.

Theorem 4.2. Suppose that Condition 2.5 does not hold
and the constraints are generated stochastically. Then, for
any δ ∈ (0, 1), Algorithm 2 attains:

RT ≤ Õ
(
T

3/4
)
, VT ≤ Õ

(
T

3/4
)
,

with probability at least 1 − 11δ when the rewards are
stochastic, and with probability at least 1− 10δ when the
rewards are adversarial.

4.2. Adversarial Setting

We then study the performance of Algorithm 2 when the
constraints are adversarial.

Notice that, in such a setting, there exists an impossibility
result from (Mannor et al., 2009) that prevents any algorithm
from attaining both sulinear regret and sublinear violations.
Thus, best-of-both-worlds algorithms in constrained settings
focus on attaining sublinear violations and a fraction of the
optimal rewards (see e.g., (Castiglioni et al., 2022b; Stradi
et al., 2024b)).4

4Attaining the no-α-regret property, that is, being no-regret
w.r.t. a fraction of the optimum, achieving a competitive ratio, and
guaranteeing a fraction of the optimal rewards are used as syn-
onyms in the literature, since any of the aforementioned guarantees
can be derived by the others.

In such a setting, we can show the following result.

Theorem 4.3. Suppose Condition 2.5 holds and the con-
straints are adversarial. Then, for any δ ∈ (0, 1), Algo-
rithm 2 attains:
T∑
t=1

r⊤t qt ≥ Ω

(
ρ

ρ+H
· OPTr,G

)
, VT ≤ Õ

(
Λ
√
T
)
,

with probability at least 1 − 14δ when the rewards are
stochastic, and with probability at least 1− 13δ when the
rewards are adversarial.

4.2.1. A WEAKER BASELINE

In this section, we show that the impossibility result by Man-
nor et al. (2009) can be circumvented by adopting a different
baseline in the regret definition. Precisely, we compute the
weaker baseline as the solution to the following linear pro-
gram:

OPTW :=

{
maxq∈∆(M) r⊤q

s.t. G⊤
t q ≤ 0 ∀t ∈ [T ].

Notice that, in the previous sections, we allow the opti-
mal policy q∗ to satisfy the constraints on average, i.e.,∑T
t=1G

⊤
t q

∗ ≤ 0. In such a case, the set of feasible policies
is much smaller than the one associated with the weaker
baseline, that is, when a feasible policy must satisfy the
constraints at each episode. Given the new baseline, we can
rewrite the regret as RT := T OPTW −

∑T
t=1 r

⊤
t qt.

When the regret is computed w.r.t. the weaker baseline, we
can recover the same theoretical results of the stochastic
setting. Precisely, when Condition 2.5 holds we have the
following result.

Theorem 4.4. Suppose that Condition 2.5 holds and the
constraints are generated adversarially. Then, for any δ ∈
(0, 1), Algorithm 2 attains:

RT ≤ Õ
(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
,

with probability at least 1 − 13δ when the rewards are
stochastic, and with probability at least 1− 12δ when the
rewards are adversarial.

We conclude the section by analyzing the scenario in which
Condition 2.5 does not hold.

Theorem 4.5. Suppose that Condition 2.5 does not hold
and the constraints are generated adversarially. Then, for
any δ ∈ (0, 1), Algorithm 2 attains:

RT ≤ Õ
(
T

3/4
)
, VT ≤ Õ

(
T

3/4
)
,

with probability at least 1 − 12δ when the rewards are
stochastic, and with probability at least 1− 11δ when the
rewards are adversarial.
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Intuitively, Theorems 4.4 and 4.5 can be proved by the fact
that playing the optimal policy guarantees small violations
independently on the episode the optimum is chosen. This
is not the case for the stronger baseline, since playing the
optimum in some episodes may lead to arbitrarily large
constraint violations.
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Appendix
The Appendix is structured as follows:

• In Section A, we provide additional related works.

• In Section B, we provide additional notation employed in the rest of the appendix.

• In Section C, we provide the events dictionary.

• In Section D we provide the theoretical guarantees attained by Algorithm 3. Precisely, we provide the complete version
of the primal algorithm (see Algorithm 4), and analyze the related performances.

• In Section E, we provide the theoretical guarantees attained by the dual algorithm.

• In Section F, we provide the analysis to bound the Lagrange multipliers during the learning dynamic.

• In Section G, we provide the theoretical guarantees attained by Algorithm 2 when the constraints are stochastic.

• In Section H, we provide the theoretical guarantees attained by Algorithm 2 when the constraints are adversarial.

• In Section I we provide the theoretical guarantees attained by Algorithm 2 when the constraints are adversarial and the
baseline is computed w.r.t. the policies that satisfy the constraints at each episode.

• In Section J we provide technical lemmas employed in our work.

• In Section K, we provide auxiliary lemmas from existing works.

A. Related Works
In this section we provide further discussions on the works closely related to ours. We first provide some works in the field
of unconstrained online MDPs (see (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010) for some initial results on
the topic). The setting studied in these works generally differentiates the problem based on the nature of the losses (either
stochastic or adversarial), the knowledge of the transition probability, and the nature of the feedback. Usually two types
of feedback are considered: in the full-information feedback model, the entire loss function is observed after the learner’s
choice, while in the bandit feedback model, the learner only observes the loss due to the chosen action.

Azar et al. (2017) study the problem of optimal exploration in episodic MDPs with unknown transitions, stochastic losses
and bandit feedback . The authors improve the previous result by Auer et al. (2008) designing an algorithm whose upper
bound on the regret match the lower bound for this class, Õ(

√
T ). Rosenberg & Mansour (2019b) studies the setting of

episodic MDPs with adversarial losses, unknown transitions, and full information feedback. In this case the authors present
an online algorithm exploiting entropic regularization and providing a regret upper bound of Õ(

√
T ). The same setting is

investigated when the feedback is bandit by Rosenberg & Mansour (2019a) who attain a regret upper bound of the order of
Õ(T 3/4), which is improved by Jin et al. (2020) by providing an algorithm that achieves in the same setting a regret upper
bound of Õ(

√
T ). Finally, Luo et al. (2021) provide an optimal policy optimization algorithm for adversarial MDPs with

bandit feedback.

In case of constrained problem, an fundamental result is presented by Mannor et al. (2009), who show that it is impossible
to attain both sublinear regret and constraints violations when both the losses and constraints are adversarial. To overcome
such an impossibility result, Liakopoulos et al. (2019) study a class of online learning problems with long-term budget
constraints that can be chosen by an adversary and they define a new notion of regret. The new learner’s regret metric
introduces the notion of a K-benchmark, i.e., a comparator that meets the problem’s allotted budget over any window of
length K. Castiglioni et al. (2022a;b) are the first to provide a best-of-both-worlds algorithm for online learning problems
with long-term constraints, being the constraints stochastic or chosen by an adversary.

Constrained problems have been also studied in the context of CMDPs; however almost all previous works focus on the
setting where the constraints are chosen stochastically. Wei et al. (2018) study the case of episodic CMDPs with known
transition proabability, full-feedback, adversarial losses and stochastic constraints. The algorithm presented by the authors
attains an upper bound both for constraints violation and for the regret of the order of Õ(

√
T ) . Zheng & Ratliff (2020)

12
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present, in the setting of stochastic losses and constraints, where the transition probabilities are known and the feedback is
bandit, an upper bound on the regret of their algorithm of the order of Õ(T 3/4), while the cumulative constraint violations is
guaranteed to be below a threshold with a given probability. Bai et al. (2020) provide the first algorithm to achieve sublinear
regret when the transition probabilities are unknown, assuming that the rewards are deterministic and the constraints
are stochastic with a particular structure. Efroni et al. (2020) study the case where transition probabilities, rewards, and
constraints are unknown and stochastic, while the feedback is bandit. The authors propose two approaches to deal with the
exploration-exploitation dilemma in episodic CMDPs guaranteeing sublinear regret and constraint violations. Qiu et al.
(2020) provide a primal-dual approach based on optimism in the face of uncertainty. This work shows the effectiveness
of such an approach when dealing with episodic CMDPs with adversarial losses and stochastic constraints, achieving
both sublinear regret and constraint violation with full-information feedback. Liu et al. (2021) study the case where the
rewards and the constrained are stochastic with a sub-gaussian form, and it achieves regret Õ(

√
T ) regret and zero violation

when a strictly safe policy exists and it is known and a bounded violation when the strictly safe policy exists but it not
known a priori. Ding et al. (2021) design a primal-dual policy optimization no-regret algorithm for CMDPs with stochastic
rewards and stochastic constraints. Wei et al. (2022) design a model-free, simulator-free reinforcement learning algorithm
for CMDPs that achieves regret of order Õ(T 4/5) with zero constraints violation, assuming the number of episodes to be
exponentially large in 1/ρ. Wei et al. (2023), Ding & Lavaei (2023) and Stradi et al. (2024c) consider the case in which
rewards and constraints are non-stationary, assuming that their variation is bounded. Thus, their results are not applicable to
general adversarial settings. Ghosh et al. (2024) attain sublinear regret and sublinear strong constraint violation, that is, not
allowing for cancellations. Their algorithm works when both the rewards and the costs are stochastic; thus, these results are
not applicable to our stochastic setting, as we allow the rewards to be adversarial. Similarly, Müller et al. (2024) study the
harder problem of bounding the regret and the constraints violation without allowing cancellation between episodes. They
were the first to prove a sublinear regret guarantee without error cancellations for an efficient primal-dual algorithm in the
online setup. Stradi et al. (2025) attains optimal bounds in the same setting. However the whole analysis of both works is
structured considering the feasibility parameter ρ as a constant. Stradi et al. (2024a), in the setting with adversarial losses,
stochastic constraints and partial feedback, achieve sublinear regret and sublinear positive constraints violations. Finally,
Stradi et al. (2024b) propose the first best-of-both-worlds algorithm for CMDPs, assuming full feedback on the rewards and
constraints.

B. Additional Notation
In the following section, we introduce some useful notation from policy optimization. First, we define the value function
V π(x; f), for policy π, state x and generic function f that assumes values for each state x ∈ X and for each action a ∈ A.
Formally,

V π(x; f) := E

 H∑
j=h(x)+1

f(xj , aj)|aj ∼ π(·|xj), xj ∼ P (·|xj−1, aj−1)

 ,
where h(x) is the layer h such that x ∈ Xh. Notice that the value function can be written using the occupancy measure qπ,P

generated by the policy π and the transition probability P as : V π(x0; f) =
∑
x,a q

π,P (x, a)f(x, a). We introduce also a
Q-function of a generic function f as:


Q(x, a; f) = f(x, a) + Ex′∼P (·|x,a) [V

π(x′; f)]

V π(x; f) = Ea∼π(·|x) [Qπ(x, a; f)]
V π(xH ; f) = 0

In addition we will use the notation Qt(x, a) to indicate the Q-function computed with respect to the function ℓt, i.e.
Q(x, a; ℓt) .

C. Dictionary
In the following, we provide the definition of different quantities which will be employed in the rest of the appendix. This is
done for the ease of presentation.

13
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• Quantity EPt1,t2 :

EPt1,t2 = U1Ξt1,t2C
√
T + U2Ξt1,t2

(t2 − t1 + 1)

C
√
T

+ U3Ξt1,t2
1

C
√
T

+ U4Ξt1,t2
√
T ,

where:

– U1 = 6H2 ln
(
H|A|T 2

δ

)
– U2 = 9H|X||A|

– U3 = H
2 ln

(
HT 2

δ

)
– U4 = 30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)
.

With probability at least 1− 4δ it holds RPt1,t2 ≤ E
P
t1,t2 , ∀t1, t2 ∈ [T ] : 1 ≤ t1 ≤ t2 ≤ T by Theorem 3.3.

• Quantity ED(0):

ED(0) = D1
∥λt1∥22
η

+D2η(t2 − t1 + 1),

where:

– D1 = 1
2

– D2 = mH2

2 .

It holds RDt1,t2(0) ≤ E
D(0), ∀t1, t2 ∈ [T ] : 1 ≤ t1 ≤ t2 ≤ T by Theorem E.1.

• Quantity EGt1,t2 :

EGt1,t2 = B1

√
(t2 − t1 + 1),

where:

– B1 = 2H
√
ln
(
T 2

δ

)
.

Given a q ∈ ∆(M), with probability at least 1−δ it holds in case of stochastic constraints
∑t2
t=t1

(G⊤
t q−G

⊤
q) ≤ EGt1,t2 ,

by Azuma-Hoeffding inequality.

• Quantity E It1,t2 :

E It1,t2 = F1

√
(t2 − t1 + 1),

where:

– F1 = H
√
2 ln

(
T 2

δ

)
.

With probability at least 1− δ it holds
∑t2
t=t1

∑
x,a(It(x, a)− qt(x, a)) ≤ E It1,t2 , and with probability at least 1− δ it

holds
∑t2
t=t1

∑
x,a(qt(x, a)− It(x, a)) ≤ E It1,t2 , by Azuma-Hoeffding inequality.

• Quantity C:
C = 252|X||A|H

• Quantity D:

D = 84672mH2|X|2|A|
= 336mH|X|C.
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D. Omitted Proofs for The Primal Algorithm
In this section we study the guarantees attained by the primal procedure, namely Algorithm 4.

Algorithm 4 FS-PODB

Require: X,A, σ = 1
T , C

1: P1 ← set of all possible transitions
2: π1(a|x) = 1

|A| ∀(x, a) ∈ X ×A
3: Ξ0 ← 1
4: γ ← 1

C
√
T

5: for t = 1, . . . , T do
6: Play πt, observe {(xh, ah)}H−1

h=0 , losses {ℓt(xh, ah)}H−1
h=0 and Ξt

7: ηt ← 1
2HΞtC

√
T

8: For all h = 0, . . . ,H − 1 and (x, a) ∈ Xh ×A:

Lt,h =

H−1∑
j=h

ℓt(xh, ah)

Q̂t(x, a) =
Lt,h

qt(x, a) + γ
It(x, a),

where qt(x, a) = max
P̂∈Pt

qP̂ ,πt(x, a) and It(x, a) = I{xt,h = x, at,h = a}.

9: For all (x, a) ∈ X ×A:

bt(x) = Ea∼πt(·|x)

3γHΞt +HΞt

(
qt(x, a)− qt(x, a)

)
qt(x, a) + γ


Bt(x, a) = bt(x) +

(
1 +

1

H

)
max
P̂∈Pt

Ex′∼P̂ (·|x,a)Ea∼πt(·|x′) [Bt(x
′, a′)]

where q
t
= min
P̂∈Pt

qP̂ ,πt(x, a), and Bt(xH , a) = 0 for all a.

10: For all (x, a) ∈ X ×A:

wt+1(a|x) = (1− σ)wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a)) +
σ

|A|
∑
a′∈A

wt(a
′|x)e−ηt(Q̂t(x,a

′)−Bt(x,a
′)).

πt+1(a|x) =
wt+1(a|x)∑

a′∈A wt+1(a′|x)
.

11: Pt+1 ←TRANSITION.UPDATE({(xh, ah)}H−1
h=0 )

12: end for

Theorem D.1. For any δ ∈ (0, 1), Algorithm 4 attains, with probability at least 1− 4δ and for all [t1, . . . , t2] ⊂ [T ]:

∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a))

= Ξt1,t2o(T ) +

t2∑
t=t1

V π
∗
(x0; bt) +

1

H

t2∑
t=t1

∑
x,a

q∗(x)πt(a|x)Bt(x, a),

for all t1, t2 ∈ [T ] s.t. 1 ≤ t1 ≤ t2 ≤ T and where Ξt1,t2 ≥ maxt∈[t1,...,t2] maxx,a ℓt(x, a).
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Proof. In the rest of the proof, we will refer as L̄t to maxτ∈[t] maxh∈[H] Lτ,h and L̄t1,t2 to maxτ∈[t1,...,t2] maxh∈[H] Lτ,h;
therefore, by definition it holds L̄t ≤ HΞt for all t ∈ [T ].
As a first step, we decompose

∑
x q

∗(x)
∑t2
t=t1

∑
a (πt(a|x)− π∗(a|x)) (Qπt

t (x, a)−Bt(x, a)) in three different quanti-
ties:

∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a))

=
∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x))
(
Q̂t(x, a)−Bt(x, a)

)
︸ ︷︷ ︸

1

+
∑
x

q∗(x)

t2∑
t=t1

∑
a

πt(a|x)
(
Qπt
t (x, a)− Q̂t(x, a)

)
︸ ︷︷ ︸

2

+
∑
x

q∗(x)

t2∑
t=t1

∑
a

π∗(a|x)
(
Q̂t(x, a)−Qπt

t (x, a)
)

︸ ︷︷ ︸
3

,

which we proceed to bound separately.

Bound on 1 . The quantity of interest can be bounded after noticing that Algorithm 4 employs a slightly modified version
of OMD. In fact, recalling the definition of πt, we can write:

πt+1(a|x) =
wt+1(a|x)∑
a′ wt+1(a′|x)

=
(1− σ)wt(a|x)e−ηt(Q̂t(x,a)−Bt(x,a)) + σ

|A|
∑
a′∈A wt(a

′|x)e−ηt(Q̂t(x,a
′)−Bt(x,a

′))∑
a′∈A wt(a

′|x)e−ηt(Q̂t(x,a′)−Bt(x,a′))

= (1− σ) πt(a|x)e−η(Q̂t(x,a)−Bt(x,a))∑
a′ πt(a

′|x)e−η(Q̂t(x,a′)−Bt(x,a′))
+ σ

1

|A|
.

From now on we will refer to πt(a|x)e−η(Q̂t(x,a)−Bt(x,a))∑
a′ πt(a′|x)e−η(Q̂t(x,a′)−Bt(x,a′)) as π̃t+1(x, a). Thus,

πt+1(a|x) = (1− σ)π̃t+1(x, a) +
σ

|A|
.

Calling ψ(·) the negative entropy function defined as ψ(π(·|x)) :=
∑
a π(a|x) ln (π(a|x)), by standard analysis

(e.g. (Orabona, 2019)), it holds:

π̃t+1(·|x) = argmin
π(·|x)∈∆(A)

∑
a

(
Q̂t(x, a)−Bt(x, a)

)
π(a|x) + 1

η
Dψ(π(·|x);πt(·|x)),

where Dψ is Bregman divergence w.r.t. the negative entropy function ψ(·). Thus, for all π(·|x) it holds

ηt
∑
a

(
Q̂t(x, a)−Bt(x, a)

)
(π(a|x)− π̃t+1(x, a)) + ⟨∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π(·|x)− π̃t+1(·|x)⟩ ≥ 0. So, for

all π(·|x) the following holds:

ηt⟨Q̂t(x, ·)−Bt(x, ·), πt(·|x)− π(·|x)⟩

= ηt⟨Q̂t(x, ·)−Bt(x, ·) +∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π̃t+1(·|x)− π(·|x)⟩

+ ηt⟨Q̂t(x, ·)−Bt(x, ·), πt(·|x)− π̃t+1(·|x)⟩
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+ ⟨∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π(·|x)− π̃t+1(·|x)⟩

≤ ⟨ηt
(
Q̂t(x, ·)−Bt(x, ·)

)
, πt(·|x)− π̃t+1(·|x)⟩

+ ⟨∇ψ(π̃t+1(·|x))−∇ψ(πt(·|x)), π(·|x)− π̃t+1(·|x)⟩
≤ Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t+1(·|x))−Dψ(π̃t+1(·|x);πt(·|x))

+ ηt⟨Q̂t(x, ·)−Bt(x, ·), πt(·|x)− π̃t+1(·|x)⟩ (3)

= Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t+1(·|x)) +
η2t
2

∑
a∈A

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x), (4)

where Inequality (3) and Inequality (4) are based on the proofs of Lemma 6.6. and Lemma 6.9. in (Orabona, 2019).

Additionally we can show that for all t ∈ [T ]: Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t(·|x)) ≤ σ ln(|A|). Indeed,

Dψ (π(·|x);πt(·|x))−Dψ (π(·|x); π̃t(·|x))

= Dψ

(
π(·|x); (1− σ)π̃t(·|x) + σπ

1
|A|

)
−Dψ (π(·|x); π̃t(·|x))

≤ σDψ

(
π(·|x);π

1
|A|

)
− σDψ (π(·|x); π̃t(·|x))

≤ σ ln(|A|),

where the last inequality holds since Dψ(π(·|x); π̃t(·|x)) ≥ 0 and

Dψ(π(·|x);π
1

|A| ) =
∑
a∈A

π(a|x) ln

(
π(a|x)
π

1
|A| (a|x)

)

≤
∑
a∈A

π(a|x) ln

(
1

π
1

|A| (a|x)

)
=
∑
a∈A

π(a|x) ln (|A|)

= ln(|A|).

Notice that with we refer as π
1

|A| to the vector strategy in [0, 1]|A| with all elements equal to 1
|A| .

Moreover we bound Dψ(π(·|x);πt1(·|x)), since πt1(a|x) = (1− σ)π̃t1(a|x) + σ( 1
|A| ) ≥

σ
|A| , as follows:

Dψ(π(·|x);πt1(·|x)) =
∑
a∈A

π(a|x) ln
(
π(a|x)
πt1(a|x)

)
≤
∑
a∈A

π(a|x) ln
(

1

πt1(a|x)

)
≤
∑
a∈A

π(a|x) ln
(
|A|
σ

)
= ln

(
|A|
σ

)
.

Putting everything together we have that:

1 =
∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x))
(
Q̂t(x, a)−Bt(x, a)

)
≤
∑
x

q∗(x)

(
Dψ(π(·|x);πt1(·|x))

ηt1
+

t2∑
t=t1+1

(
Dψ(π(·|x);πt(·|x))

ηt
− Dψ(π(·|x); π̃t(·|x))

ηt+1

))
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+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x) (5a)

≤
∑
x

q∗(x)

(
Dψ(π(·|x);πt1(·|x))

ηt1
+

t2∑
t=t1+1

(
Dψ(π(·|x);πt(·|x))−Dψ(π(·|x); π̃t(·|x))

ηt

))

+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x) (5b)

≤
ln
(

|A|
σ

)
ηt1

+ σ

t2∑
t=t1+1

ln(|A|)
ηt2

+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x) (5c)

≤
ln
(

|A|
σ

)
ηt1

+
σT ln(|A|)

ηt2
+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x)

=
ln (|A|T )
ηt1

+
ln(|A|)
ηt2

+
∑
x

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x),

where σ = 1
T , Inequality (5a) holds by Inequality (4) , Inequality (5b) holds since 1

ηt+1
≥ 1

ηt
for all t ∈ [T ], and Inequality

(5c) holds since ηt2 ≤ ηt for all t in [t1 +1, . . . , t2]. Focusing now on the last part of the right term, with probability at least
1− 2δ the following holds:

∑
x

∑
a

q∗(x)

t2∑
t=t1

ηt
2

(
Q̂t(x, a)−Bt(x, a)

)2
πt(a|x)

≤
t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)2 +
t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2 (6a)

=

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)
L2
t,h

(qt(x, a) + γ)2
It(x, a) +

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2 (6b)

≤ L̄t1,t2
t2∑
t=t1

ηtL̄t
∑
x

∑
a

q∗(x)πt(a|x)
qt(x, a) + γ

It(x, a)
qt(x, a) + γ

+

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2 (6c)

≤ γ

2H
L̄t1,t2

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
qt(x, a) + γ

qt(x, a)

qt(x, a) + γ
+
γL̄t1,t2

2
ln

(
HT 2

δ

)

+

t2∑
t=t1

ηt
∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a)2 (6d)

≤
t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
γΞt1,t2

2(qt(x, a) + γ)
+
γL̄t1,t2

2
ln

(
HT 2

δ

)

+
1

2H

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)Bt(x, a) (6e)

=

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
(

γΞt1,t2
2(qt(x, a) + γ)

+
Bt(x, a)

2H

)
+
γL̄t1,t2

2
ln

(
HT 2

δ

)
,

where Inequality (6a) holds since (a − b)2 ≤ 2a2 + 2b2, for all a, b ∈ R, Equality (6b) holds by definition of Q̂(x, a),
Inequality (6c) is motivated by the fact that Lt,h ≤ L̄t1,t2 by its definition, Inequality (6d) holds with probability at least
1− δ by applying Lemma J.4 and taking αt(x, a) =

q∗(x)πt(a|x)
qt(x,a)+γ

since q∗(x)πt(a|x)
qt(x,a)+γ

≤ 1
γ and considering that by definition

ηtΞt =
γ
2H , and finally Inequality (6e) holds since qt(x, a) ≥ qt(x, a), ∀(x, a) ∈ X ×A,∀t ∈ [t1 . . . t2] with probability
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at least 1− δ by Lemma K.2 and by Lemma J.1. Setting γ = 2ηtHΞt, we can conclude that, with probability at least 1− 2δ,
1 is bounded as:

4HΞt1,t2 ln(|A|T )
γ

+ γ
HΞt1,t2

2
ln

(
HT 2

δ

)
+

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
(

γΞt1,t2
2(qt(x, a) + γ)

+
Bt(x, a)

2H

)
.

Bound on 2 . To bound 2 we employ the same approach as in (Luo et al., 2021). First we define Yt as Yt :=∑
x

∑
a q

∗(x)πt(a|x)Q̂t(x, a), for all t ∈ [T ]. Now since
∑t2
t=t1

Yt is a martingale sequence , we apply Freedman’s
inequality. First notice that under the event P ∈ Pi(t) for all t ∈ [T ]:

E[Y 2
t ] ≤ Et

(∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)

)2


≤ Et

[(∑
x

∑
a

q∗(x)πt(a|x)

)(∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)2
)]

= HEt

[∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)2
]

= H
∑
x

∑
a

q∗(x)πt(a|x)
L2
t,h

(qt(x, a) + γ)2
qt(x, a)

≤
∑
x

∑
a

q∗(x)πt(a|x)
HL̄2

t

qt(x, a) + γ
.

Thus, thanks to Lemma J.3, since |Yt| ≤ H supx′,a′ Q̂t(x, a) ≤ HL̄t

γ , with probability at least 1− δ it holds simultaneously
for all t1, t2 : 1 ≤ t1 ≤ t2 ≤ T :

t2∑
t=t1

(Et[Yt]− Yt) ≤
γ

HL̄t1,t2

t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)
HL̄2

t

qt(x, a) + γ
+
HL̄t1,t2

γ
log

(
T 2

δ

)
.

We notice also the following result with probability at least 1− δ for all t ∈ [T ]:∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)− E[Yt]

=
∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)− E

[∑
x

∑
a

q∗(x)πt(a|x)Q̂t(x, a)

]

=
∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)
(
1− qt(x, a)

qt(x, a) + γ

)
≤
∑
x

∑
a

q∗(x)πt(a|x)HΞt

(
qt(x, a)− qt(x, a) + γ

qt(x, a) + γ

)

≤
∑
x

∑
a

q∗(x)πt(a|x)HΞt

(
(qt(x, a)− qt(x, a)) + γ

qt(x, a) + γ

)
.

Finally we can bound 2 with probability at least 1− 2δ as follows.

2 =
∑
x

q∗(x)

t2∑
t=t1

∑
a

πt(a|x)
(
Qπt
t (x, a)− Q̂t(x, a)

)
=

t2∑
t=t1

(Et[Yt]− Yt) +
t2∑
t=t1

(∑
x

∑
a

q∗(x)πt(a|x)Qt(x, a)− E[Yt]

)
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≤
t2∑
t=t1

∑
x

∑
a

q∗(x)πt(a|x)HΞt

(
(qt(x, a)− qt(x, a)) + 2γ

qt(x, a) + γ

)
+
HL̄t1,t2

γ
ln

(
T 2

δ

)
.

Bound on 3 . With probability at least 1− 2δ it holds:

3 =
∑
x

q∗(x)

t2∑
t=t1

∑
a

π∗(a|x)
(
Q̂t(x, a)−Qπt

t (x, a)
)
≤ H2Ξt1,t2

2γ
ln

(
HT 2

δ

)
,

by Corollary J.5.

Conclusion of the proof Finally we notice that, with probability at least 1− 4δ, we have the following result.

∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a)) = 1 + 2 + 3

≤ γHΞt1,t2
2

ln

(
HT 2

δ

)
+

6H2Ξt1,t2
γ

ln

(
H|A|T 2

δ

)
+

t2∑
t=t1

∑
x,a

q∗(x)πt(a|x)

(
Ξt(3γH +H(qt(x, a)− qt(x, a)))

qt(x, a) + γ
+
Bt(x, a)

H

)
.

This concludes the proof.

Theorem 3.3. For any δ ∈ (0, 1), with probability at least 1− 8δ, Algorithm FS-PODB attains:

Rt1,t2 ≤ Õ
(
Ξt1,t2

√
T + Ξt1,t2

t2 − t1√
T

)
,

where the regret can be computed with respect to any policy function π : X → ∆(A).

Proof. By means of Theorem D.1 and by Lemma J.2 we have that with probability at least 1− 4δ:

RPt1,t2 ≤ γ
HΞt1,t2

2
ln

(
HT 2

δ

)
+

6H2Ξt1,t2
γ

ln

(
H|A|T 2

δ

)
+ 3

t2∑
t=t1

V̂ πt(x0; bt).

We can bound
∑T
t=1 V̂

πt(x0; bt), with probability at least 1− 4δ, as:

t2∑
t=t1

V̂ πt(x0; bt)

=

t2∑
t=t1

∑
x,a

qP̂t,πt(x, a)

(
HΞt(qt(x, a)− qt(x, a)) + 3HΞtγ

qt(x, a) + γ

)

≤
t2∑
t=t1

∑
x,a

HΞt

(
(qt(x, a)− qt(x, a)) + 3γ

)

≤
t2∑
t=t1

∑
x,a

HΞt(qt(x, a)− qt(x, a)) + 3Ξt1,t2γH(t2 − t1 + 1)|X||A|

≤ 4H2Ξt1,t2 |X|2
√

2T ln

(
H|X|
δ

)
+ 6Ξt1,t2H

2|X|2
√
2T |A| ln

(
T |X|2|A|

δ

)
+ 3Ξt1,t2γH|X||A|(t2 − t1 + 1),
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where the second inequality holds under the event qP̂t,πt(x, a) ≤ q̄t(x, a) for all (x, a) ∈ X ×A and for all t ∈ [T ] and the
last inequality uses Lemma J.6. Thus, with probability at least 1− 8δ, it holds:

RPt1,t2

≤ γHΞt1,t2
2

ln

(
HT 2

δ

)
+

6H2Ξt1,t2
γ

ln

(
H|A|T 2

δ

)
+ 30Ξt1,t2H

2|X|2
√
2T |A| ln

(
T |X|2|A|

δ

)
+

+ 9Ξt1,t2γH|X||A|(t2 − t1 + 1)

≤ HΞt1,t2
2C
√
T

ln

(
HT 2

δ

)
+ 6H2Ξt1,t2C

√
T ln

(
H|A|T 2

δ

)
+ 30Ξt1,t2H

2|X|2
√
2T |A| ln

(
T |X|2|A|

δ

)
+ 9H|X||A|Ξt1,t2

(t2 − t1 + 1)

C
√
T

= U1Ξt1,t2C
√
T + U2Ξt1,t2

(t2 − t1 + 1)

C
√
T

+ U3Ξt1,t2
1

C
√
T

+ U4Ξt1,t2
√
T

= EPt1,t2 ,

which concludes the proof.

E. Omitted Proofs for the Dual Algorithm
Theorem E.1. When employed by Algorithm 2, online projected gradient descent (OGD) attains:

RDt1,t2(λ) =

t2∑
t=t1

(λ− λt)⊤
H−1∑
h=0

Gt(xh, ah) ≤
∥λt1 − λ∥22

2η
+
η

2
(t2 − t1 + 1)mH2.

Proof. We proceed to prove the theorem following (Orabona, 2019). Indeed, it holds:

RDt1,t2(λ) =

t2∑
t=t1

(λ− λt)⊤
H−1∑
h=0

Gt(xh, ah)

≤ ∥λt1 − λ∥
2
2

2η
+
η

2

t2∑
t=t1

∥
H−1∑
h=0

Gt(xh, ah)∥22

≤ ∥λt1 − λ∥
2
2

2η
+
η

2

t2∑
t=t1

m∑
i=1

(
H−1∑
h=0

Gt,i(xh, ah)

)2

≤ ∥λt1 − λ∥
2
2

2η
+
η

2

t2∑
t=t1

mH2

≤ ∥λt1 − λ∥
2
2

2η
+
η

2
(t2 − t1 + 1)mH2.

This concludes the proof.

Lemma E.2. When employed by Algorithm 2, online projected gradient descent (OGD) guarantees for all t ∈ [T ]:

∥λt+1∥1 − ∥λt∥1 ≤ mHη.

Proof. It holds:

λt+1,i = min

{
max

{
0, λt,i + η

H−1∑
h=0

gt,i(xh, ah)

}
, T

1
4

}
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≤ max

{
0, λt,i + η

H−1∑
h=0

gt,i(xh, ah)

}

≤ max

{
0, λt,i + η

H−1∑
h=0

1

}
= λt,i + ηH,

which concludes the proof when we take the sum over all i ∈ [m].

F. Analysis on Lagrangian multipliers
Lemma F.1. The loss given to the primal algorithm at episode t ∈ [T ], which is defined as ℓt(x, a) = Γt +∑
i∈[m] λt,igt,i(x, a)− rt(x, a), is such that, considering the Lagrangian loss function ℓLt (x, a) =

∑
i∈[m] λt,igt,i(x, a)−

rt(x, a), it holds:
ℓ⊤t (qt − q∗) = ℓL,⊤t (qt − q∗),

and additionally, ℓt assume values in the bounded interval [0,Ξt].

Proof. By simple computation, it holds:

ℓ⊤t (qt − q∗)− ℓ
L,⊤
t (qt − q∗)

=

(∑
x,a

Γt(qt(x, a)− q∗(x, a)) +
∑
i∈[m]

∑
x,a

λt,igt,i(x, a)(qt(x, a)− q∗(x, a))

−
∑
x,a

rt(x, a)(qt(x, a)− q∗(x, a))

)

−

∑
i∈[m]

∑
x,a

λt,igt,i(x, a)(qt(x, a)− q∗(x, a))−
∑
x,a

rt(x, a)(qt(x, a)− q∗(x, a))


=
∑
x,a

Γt(qt(x, a)− q∗(x, a))

= Γt(H −H)

= 0,

where the last steps hold since Γt is a constant and by the definition of valid occupancy measures.

In addition it holds:

ℓt(x, a) = Γt +
∑
i∈[m]

λt,igt,i(x, a)− rt(x, a) ≥ 1 + ∥λt∥1 −
∑
i∈[m]

λt,i − 1 = 0,

and similarly,

ℓt(x, a) = Γt +
∑
i∈[m]

λt,igt,i(x, a)− rt(x, a) ≤ Γt +
∑
i∈[m]

λt,i = 1 + 2∥λt∥ ≤ Ξt.

This concludes the proof.

Theorem 3.4. Under Condition 2.5, for any δ ∈ (0, 1), with probability at least 1− 11δ, it holds:

∥λt∥1 ≤ Λ ∀t ∈ [T + 1],

where Λ = 112mH2

ρ2 .
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Proof. Let M > 1 be a constant. By absurd suppose ∃t2 ∈ [T ] s.t.

∀t ≤ t2 ∥λt∥1 ≤
2HM

ρ2
∧ ∥λt2+1∥1 >

2HM

ρ2
(7)

and let t1 < t2 s.t.

∥λt1−1∥1 ≤
2H

ρ
∧ ∀t : t1 ≤ t ≤ t2 ∥λt∥1 ≥

2H

ρ
.

By construction 1 < 2H
ρ ≤ ∥λt∥1 ≤

2HM
ρ2 for all t1 ≤ t ≤ t2, and it holds if η ≤ 1

mH :

∥λt1∥1 ≤ ∥λt1−1∥1 +mηH ≤ 2H

ρ
+mηH ≤ 4H

ρ
. (8)

Notice also that by construction, calling λt1,t2 = maxt∈[t1,...t2]∥λt∥1, it holds:

1 < λt1,t2 ≤
2HM

ρ2
∧ 1 + λt1,t2 <

4HM

ρ2
. (9)

In the stochastic setting the following holds by Azuma-Hoeffding inequality with probability at least 1− δ:

t2∑
t=t1

−λ⊤t G⊤
t q

◦ ≥
t2∑
t=t1

−λ⊤t G
⊤
q◦ − λt1,t2EGt1,t2

≥ λt1,t2(t2 − t1 + 1)ρ− λt1,t2EGt1,t2
≥ (t2 − t1 + 1)2H − λt1,t2EGt1,t2 ,

where EGt1,t2 = B1

√
(t2 − t1 + 1) = 2H

√
ln
(
T 2
/δ
)√

(t2 − t1 + 1). Instead, in the adversarial setting, it holds:

t2∑
t=t1

−λ⊤t G⊤
t q

◦ ≥
t2∑
t=t1

m∑
i=1

−λt,i
[
G⊤
t q

◦]
i

≥ ρ
t2∑
t=t1

m∑
i=1

λt,i

= ρ

t2∑
t=t1

∥λt∥1

≥ (t2 − t1 + 1)2H.

Generalizing the result, it holds, both for the stochastic and the adversarial setting, the following inequality with probability
equal to 1 in the adversarial case and with probability at least 1− δ in the stochastic case:

t2∑
t=t1

−λ⊤t G⊤
t q

◦ ≥ (t2 − t1 + 1)2H − λt1,t2EGt1,t2 .

Thank to this result we can find a lower bound for −
∑t2
t=t1

ℓL,⊤t qt with probability at least 1− 9δ in the stochastic setting
and with probability at least 1− 8δ in the adversarial case, employing Theorem 3.3 .

−
t2∑
t=t1

ℓL,⊤t qt =

t2∑
t=t1

(r⊤t q
◦ − λ⊤G⊤

t q
◦)−

t2∑
t=t1

ℓL,⊤t (qt − q◦)

≥
t2∑
t=t1

−λ⊤G⊤
t q

◦ −
t2∑
t=t1

ℓL,⊤t (qt − q◦) (10)

≥ 2H(t2 − t1 + 1)− λt1,t2EGt1,t2 − E
P
t1,t2 , (11)
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where Inequality (10) holds since r⊤t q
◦ ≥ 0, for all t ∈ [T ], and Inequality (11) is derived using the bound on the primal

interval regret given by Theorem 3.3 and defined as EPt1,t2 and by Lemma F.1.
At the same time, it is possible to define also an upper bound for the same quantity −

∑t2
t=t1

ℓL,⊤t qt with probability at least
1− 2δ:

−
t2∑
t=t1

ℓL,⊤t qt =

t2∑
t=t1

(r⊤t qt − λ⊤t G⊤
t qt)

≤
t2∑
t=t1

H −
t2∑
t=t1

λ⊤t (G
⊤
t qt −

H−1∑
h=0

Gt(xh, ah)) +

t2∑
t=t1

(0− λt)
H−1∑
h=0

Gt(xh, ah)

≤ H(t2 − t1 + 1) + λt1,t2

t2∑
t=t1

∑
x,a

Gt(x, a)(It(x, a)− qt(x, a)) + EDt1,t2(0)

≤ H(t2 − t1 + 1) + λt1,t2E It1,t2 + E
D
t1,t2(0),

where E I = F1

√
(t2 − t1 + 1) = H

√
2 ln

(
T 2
/δ
)√

(t2 − t1 + 1) and ED(0) = D1
∥λt1

∥2
2

η +D2η(t2−t1+1) = 1
2

∥λt1
∥2
2

η +

mH2

2 η(t2 − t1 + 1). Thus, combining the two bounds we get with probability at least 1− 10δ in the adversarial case and
1− 11δ in the stochastic case the following bound,

2H(t2 − t1 + 1)− λt1,t2EGt1,t2 − E
P
t1,t2 ≤ H(t2 − t1 + 1) + λt1,t2E It1,t2 + E

D
t1,t2(0),

which can be reordered as

H(t2 − t1 + 1) ≤ λt1,t2EGt1,t2 + λt1,t2E It1,t2 + E
D
t1,t2(0) + E

P
t1,t2 .

We recall here the definitions of the bounds EGt1,t2 , E
I
t1,t2 , E

D
t1,t2(0) and EPt1,t2 .

EGt1,t2 = B1

√
(t2 − t1 + 1),

where B1 = 2H
√
ln
(
T 2

δ

)
.

E It1,t2 = F1

√
(t2 − t1 + 1),

where F1 = H
√

2 ln
(
T 2

δ

)
.

EDt1,t2(0) = D1
∥λt1∥22
η

+D2η(t2 − t1 + 1),

where D1 = 1
2 , D2 = mH2

2 .

EPt1,t2 = U1Ξt1,t2C
√
T + U2Ξt1,t2

(t2 − t1 + 1)

C
√
T

+ U3Ξt1,t2
1

C
√
T

+ U4Ξt1,t2
√
T ,

where U1 = 6H2 ln
(
H|A|T 2

δ

)
, U2 = 9H|X||A|, U3 = H

2 ln
(
HT 2

δ

)
and U4 = 30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)
.

Thus, we can write:

H(t2 − t1 + 1) ≤λt1,t2(F1 +B1)
√
(t2 − t1 + 1)︸ ︷︷ ︸

1

+U2Ξt1,t2
t2 − t1 + 1

C
√
T︸ ︷︷ ︸

2

+ U3Ξt1,t2
1

C
√
T︸ ︷︷ ︸

3

+U1Ξt1,t2C
√
T︸ ︷︷ ︸

4

+D2η(t2 − t1 + 1)︸ ︷︷ ︸
5
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+D1
∥λt1∥22
η︸ ︷︷ ︸

6

+U4Ξt1,t2
√
T︸ ︷︷ ︸

7

.

To conclude the proof by absurd it is sufficient to prove that all 1 , 2 , 3 , 4 , 5 , 6 , 7 are smaller or equal to H(t2−t1+1)
7 ,

with at least one being strictly smaller.

Prove 1 < H(t2−t1+1)
7 If η ≤ 1

14m(F1+B1)
√
T

, then 1 < H(t2−t1+1)
7 holds. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(12a)

≥ 2HM

ρ2
(F1 +B1)

√
T (12b)

≥ λt1,t2(F1 +B1)
√
T (12c)

≥ λt1,t2(F1 +B1)
√
t2 − t1 + 1,

where Inequality (12a) holds by Lemma K.1, Inequality (12b) is equivalent to condition η ≤ 1
14m(F1+B1)

√
T

and Inequality
(12c) is true by Assumption (7).

Prove 2 < H(t2−t1+1)
7 If C ≥ 56 MU2

ρ2
√
T

holds, then 2 < H(t2−t1+1)
7 also holds. Indeed:

H(t2 − t1 + 1)

7
≥ 2U2

(
4HM

ρ2

)
t2 − t1 + 1

C
√
T

(13a)

> U22(1 + λt1,t2)
t2 − t1 + 1

C
√
T

(13b)

≥ U2Ξt1,t2
t2 − t1 + 1

C
√
T

, (13c)

where Inequality (13a) is equivalent to the condition C ≥ 56 MU2

ρ2
√
T

, Inequality (13b) holds by Inequality (9) and Inequality
(13c) is true since Ξt1,t2 ≤ 2(1 + λt1,t2).

Prove 3 < H(t2−t1+1)
7 If η ≤ C

√
T

56mU3
holds then also 3 < H(t2−t1+1)

7 holds. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(14a)

≥ U32
4HM

ρ2
1

C
√
T

(14b)

≥ U32(1 + λt1,t2)
1

C
√
T

(14c)

≥ U3Ξt1,t2
1

C
√
T
, (14d)

where Inequality (14a) hold by Lemma K.1, Inequality (14b) holds if condition η ≤ C
√
T

56mU3
holds, and Inequality (14c) and

Inequality (14d) follow the same reasoning as Inequality (13b) and Inequality (13c).

Prove 4 < H(t2−t1+1)
7 If η ≤ 1

56mU1C
√
T

holds then also 4 < H(t2−t1+1)
7 holds. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη

≥ U12
4HM

ρ2
C
√
T (15)
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≥ U12(1 + λt1,t2)C
√
T

≥ U1Ξt1,t2C
√
T ,

where Inequality (15) holds when condition η ≤ 1
56mU1C

√
T

also holds, and the rest of the inequalities follow a similar
reasoning to the one used to bound 3 .

Prove 5 ≤ H(t2−t1+1)
7 It is immediate to see that if η ≤ H

7D2
holds, then it holds also that:

5 = D2η(t2 − t1 + 1) ≤ H(t2 − t1 + 1)

7
.

Prove 6 < H(t2−t1+1)
7

If the condition M ≥ 112D1Hm is satisfied than the inequality 6 < H(t2−t1+1)
7 holds too. Indeed:

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(16a)

≥ D1
16H2

ρ2
1

η
(16b)

≥ D1
∥λt1∥21
η

(16c)

≥ D1
∥λt1∥22
η

,

where Inequality 16a holds by Lemma K.1, Inequality (16b) holds when the condition M ≥ 112D1Hm is satisfied and
Inequality (16c) holds by Inequality (8).

Prove 7 < H(t2−t1+1)
7

If the condition η ≤ 1
56mU4

√
T

is satisfied then 7 < H(t2−t1+1)
7 also holds. In fact

H(t2 − t1 + 1)

7
>

HM

7ρ2mη
(17a)

≥ U42
4HM

ρ2

√
T (17b)

≥ U42(1 + λt1,t2)
√
T

≥ U4Ξt1,t2
√
T .

where Inequality (17a) holds by Lemma K.1 and inequality (17b) holds if condition η ≤ 1
56mU4

√
T

also holds.

Conclusion of the proof Thus, we have the following 3 conditions:

• First condition:

M ≥ 112D1Hm

= 112
1

2
Hm

= 56Hm.

• Second condition:

C ≥ 56
MU2

ρ2
√
T

= 56
M9H|X||A|

ρ2
√
T

.
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• Third condition:

η ≤ min

{
1

14m(F1 +B1)
√
T
,
C
√
T

56mU3
,

1

56mU1C
√
T
,
H

7D2
,

1

56mU4

√
T

}
.

Thus, we set M as M = 56Hm, and consequently, under Condition 2.5 we set C = 252|X||A|H since

C = 252|X||A|H
≥ 252|X||A|

≥ 252|X||A|112mH
2

ρ2
1√
T

= 56
(56Hm)9H|X||A|

ρ2
√
T

= 56
9MH|X||A|

ρ2
√
T

.

Notice that the inequality is deduced directly by Condition 2.5. In fact if ρ ≥ T− 1
8H
√
112m then it is also true that

112mH2

ρ2
≤ T 1

4 ≤
√
T .

As a final remark, we choose 252|X||A|H as value of C instead of the smaller value 252|X||A|, which is useful for Lemma
J.1. Finally we study the condition on η.

min

{
1

14m(F1 +B1)
√
T
,
C
√
T

56mU3
,

1

56mU1C
√
T
,
H

7D2
,

1

56mU4

√
T

}
≥ min

{
1

14m

(
4H
√

ln
(
T 2

δ

))√
T

,
252|X||A|H

√
T

56m
(
H
2 ln

(
HT 2

δ

)) ,
1

56m
(
6H2 ln

(
H|A|T 2

δ

))
(252|X||A|H)

√
T
,

H

7
(
mH2

2

) ,
1

56m

(
30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

))√
T

}

≥ 1

84672mH2|X|2|A| ln
(

|A||X|2T 2

δ

)√
T
.

Thus, the proof is concluded taking η = 1

84672mH2|X|2|A| ln
(

|A||X|2T2

δ

)√
T

.

Lemma F.2. If Condition 2.5 holds, for all t ∈ [T ] and for each constraints i ∈ [m], it holds:

λt,i ≥ ηV̂t−1,i,

where V̂t,i :=
∑t
τ=1

∑
x,a gτ,i(x, a)Iτ (x, a).

Proof. First observe that with t = 1 we have that V̂t−1,i is the sum of zero elements and as such, it is equal to zero. This
means that for t = 1 the inequality λt,i ≥ ηV̂t−1,i is equivalent to

λt,i ≥ 0,
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which is true by construction. We finish the proof by induction. Suppose λt,i ≥ ηV̂t−1,i is true for a t ∈ [T ], we show that it
also holds for t+ 1, indeed:

λt+1,i = max

{
λt,i + η

H−1∑
h=0

gt,i(xh, ah), 0

}
= max

{
λt,i + η

∑
x,a

gt,i(x, a)It(x, a), 0
}

≥ λt,i + η
∑
x,a

gt,i(x, a)It(x, a)

≥ ηV̂t−1,i + η
∑
x,a

gt,i(x, a)It(x, a)

= η

(
t−1∑
τ=1

gτ,i(x, a)Iτ (x, a) + gt,i(x, a)It(x, a)

)

= η

t∑
τ=1

gτ,i(x, a)It(x, a)

= ηV̂t,i.

This concludes the proof.

Lemma F.3. If Condition 2.5 holds, referring as i∗ to the element in [m] such that i∗ = argmaxi∈[m]

∑T
t=1

[
G⊤
t q

P,πt
]
i

,
then with probability at least 1− δ, it holds:

VT ≤ V̂T,i∗ + E I.

Proof. We observe with probability at least 1− δ:

VT =

T∑
t=1

[
G⊤
t q

P,πt
]
i∗

=

T∑
t=1

∑
x,a

gt,i∗(x, a) (qt(x, a)− It(x, a)) +
T∑
t=1

∑
x,a

gt,i∗(x, a)It(x, a)

≤
T∑
t=1

∑
x,a

gt,i∗(x, a) (qt(x, a)− It(x, a)) + V̂T,i∗

≤ E I + VT,i∗ .

This concludes the proof.

Lemma F.4. When Condition 2.5 does not hold, with probability at least 1− 10δ in case of stochastic costs and 1− 9δ in
case of adversarial costs it holds for all i ∈ [m]:

V̂T,i ≤
4T

1
4

η
.

Proof. Recall the definition of V̂t,i as V̂t,i =
∑t
τ=1

∑
x,a gt,i(x, a)It(x, a). We first focus on the stochastic setting. Thus,

with probability at least 1− δ, it holds:

T∑
t=1

r⊤t qt −
T∑
t=1

λ⊤t G
⊤
t qt =

T∑
t=1

r⊤t q
◦ −

T∑
t=1

λ⊤t G
⊤
t q

◦ +

T∑
t=1

ℓL,⊤t (q◦ − qt)

≥ −
T∑
t=1

λ⊤t G
⊤
q◦ − λ1,TEGT +

T∑
t=1

ℓL,⊤t (q◦ − qt)

28



Policy Optimization for CMDPs with Bandit Feedback: Learning Stochastic and Adversarial Constraints

≥ −mT 1
4 EGT +

T∑
t=1

ℓL,⊤t (q◦ − qt).

On the other hand, in case of adversarial constraints, it holds:

T∑
t=1

r⊤t qt −
T∑
t=1

λ⊤t G
⊤
t qt =

T∑
t=1

r⊤t q
◦ −

T∑
t=1

λ⊤t G
⊤
t q

◦ +

T∑
t=1

ℓLt
⊤(q◦ − qt)

≥
T∑
t=1

ℓL,⊤t (q◦ − qt).

Define a vector λ̃ ∈ [0, T
1
4 ]m as λ̃j = 0 if j ̸= i and λ̃j = T

1
4 if j = i. Simultaneously with probability at least 1− δ it

holds:

T∑
t=1

r⊤t qt −
T∑
t=1

λ⊤t G
⊤
t qt

≤
T∑
t=1

r⊤t qt −
T∑
t=1

λ̃⊤
∑
x,a

Gt(x, a)It(x, a) +
T∑
t=1

(λ̃− λt)⊤
∑
x,a

Gt(x, a)It(x, a) + λ1,TE I

≤
T∑
t=1

r⊤t qt −
T∑
t=1

λ̃⊤
∑
x,a

Gt(x, a)It(x, a) + EDT (λ̃) +mT
1
4 E I

≤ HT − T 1
4 V̂T,i + EDT (λ̃) +mT

1
4 E I,

where in the first equality we used the definition of E IT , in the first inequality we used the definition of the dual space
[0, T

1
4 ]m to bound λ1,T as mT

1
4 , and in the last inequality we used the definition of λ̃. We can then compare the lower and

the upper bound for
∑T
t=1 r

⊤
t qt −

∑T
t=1 λ

⊤
t G

⊤
t qt obtaining the following inequality, which holds with probability at least

1− δ with adversarial constraints and with probability at least 1− 2δ with stochastic constraints:

−mT 1
4 EGT +

T∑
t=1

ℓL,⊤t (q◦ − qt) ≤ HT − T
1
4 V̂T,i + EDT (λ̃) +mT

1
4 E I,

from which we can write the following inequality that holds with probability at least 1− 9δ with adversarial constraints and
1− 10δ with stochastic constraints:

T
1
4 V̂T,i ≤ mT

1
4 (EGT + E IT ) + EPT + EDT (λ̃) +HT. (18)

We proceed now to bound each element of the right side of the inequality.
To bound EP we use the fact that Ξ1,T ≤ (1 + λ1,T ) ≤ (1 +mT

1
4 ) and the definition of η as following:

EPT = Ξ1,T

(
U1C
√
T + U2

√
T

C
+ U3

1

C
√
T

)
+ U4

√
T

≤ 2(1 +mT
1
4 )
√
T

1512H3|X||A| ln
(
H|A|T 2

δ

)
+

9H|X||A|
252H|X||A|

+

H
2 ln

(
HT 2

δ

)
252H|X||A|


+
√
T30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)

≤ T 1
4

√
T6056H3m|X||A| ln

(
H|A|T 2

δ

)
+
√
T30H2|X|2

√
2|A| ln

(
T |X|2|A|

δ

)
≤ T 1

4

√
T6116H2m|X|2|A| ln

(
|X|2|A|T 2

δ

)
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≤ T
1
4

η

To bound EDT (λ̃) we use Theorem E.1, the fact that by its definition ∥λ̃∥22 =
(
T

1
4

)2
=
√
T , the initialization of the dual

λ1 = 0 and the definition of η in the following way:

EDT (λ̃) ≤ ∥λ1 − λ̃∥
2
2

2η
+
η

2
TmH2

=
∥λ̃∥22
2η

+
η

2
TmH2

=

√
T

2η
+
η

2
TmH2

≤
√
T

2η
+
mH2T

2

1

84672mH2|X|2|A| ln
(

|A||X|2T 2

δ

)√
T

≤
√
T

2η
+

√
T

2η
=

√
T

η

We proceed to simply bound also mT
1
4

(
EGT + E IT

)
through their definition:

mT
1
4

(
EGT + E IT

)
= mT

1
4

√
T

(
2H

√
ln

(
T 2

δ

)
+H

√
2 ln

(
T 2

δ

))

≤ T
1
4

η

Finally we bound HT as HT ≤
√
T
η .

Thus, Inequality (18) becomes

V̂T,i ≤
1

T
1
4

(
mT

1
4 (EGT + E IT ) + EPT + EDT (λ̃) +HT

)
≤ 4
√
T

T
1
4 η

=
4T

1
4

η
,

which concludes the proof.

G. Analysis with Stochastic Constraints
Theorem 4.1. Suppose that Condition 2.5 holds and the constraints are generated stochastically. Then, for any δ ∈ (0, 1),
Algorithm 2 attains:

RT ≤ Õ
(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
,

with probability at least 1− 14δ when the rewards are stochastic, and with probability at least 1− 13δ when the rewards
are adversarial.

Proof. With probability at least 1− 12δ it holds:

VT ≤ V̂T,i∗ + E I (19a)

≤ 1

η
λT+1,i∗ + E I (19b)

≤ 1

η
Λ + E I, (19c)
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where Inequality (19a) holds by Lemma F.3, Inequality (19b) holds by Lemma F.2 and Inequality (19c) holds by Theorem 3.4.
Then, with probability at least 1− 12δ we observe that:

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t q
P,πt ≤

T∑
t=1

(
r⊤t q

∗ − λ⊤t G⊤
t q

∗)− T∑
t=1

(
r⊤t qt − λ⊤t G⊤

t qt
)
+

T∑
t=1

λ⊤t G
⊤
t (q

∗ − qt)

≤ EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t G
⊤
t q

∗ (20a)

= EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t (Gt −G)⊤q∗ +
T∑
t=1

λ⊤t G
⊤
q∗

≤ EP + ED(0) + λ1,TE I + λ1,TEG (20b)

≤ EP + ED(0) + ΛE I + ΛEG, (20c)

where Inequality (20a) holds by Theorem 3.3 and by Theorem E.1, Inequality (20b) holds since in the stochastic constraint
case

∑T
t=1(Gt − G)⊤q∗ ≤ EG with probability at least 1 − δ by definition of EG, and finally Inequality (20c) holds by

Theorem 3.4. Finally we observe that in the stochastic case with probability at least 1− δ:(
T · OPTr,G −

T∑
t=1

r⊤t qt

)
−

T∑
t=1

r⊤t (q
∗ − qt) ≤ Er.

Thus, if the rewards are stochastic with probability at least 1− 14δ it holds:

RT ≤ EP + ED(0) + ΛE I + ΛEG + Er, VT ≤
1

η
Λ + E I

and if the rewards are adversarial with probability at least 1− 13δ it holds:

RT ≤ EP + ED(0) + ΛE I + ΛEG, VT ≤
1

η
Λ + E I

which concludes the proof.

Theorem 4.2. Suppose that Condition 2.5 does not hold and the constraints are generated stochastically. Then, for any
δ ∈ (0, 1), Algorithm 2 attains:

RT ≤ Õ
(
T

3/4
)
, VT ≤ Õ

(
T

3/4
)
,

with probability at least 1− 11δ when the rewards are stochastic, and with probability at least 1− 10δ when the rewards
are adversarial.

Proof. Similar to the proof of Lemma 4.1 it holds with probability at least 1− 10δ:

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t q
P,πt ≤

T∑
t=1

(
r⊤t q

∗ − λ⊤t G⊤
t q

∗)− T∑
t=1

(
r⊤t qt − λ⊤t G⊤

t qt
)
+

T∑
t=1

λ⊤t G
⊤
t (q

∗ − qt)

≤ EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t G
⊤
t q

∗

= EP + ED(0) + λ1,TE I +
T∑
t=1

λ⊤t (Gt −G)⊤q∗ +
T∑
t=1

λ⊤t G
⊤
q∗

≤ EP + ED(0) + λ1,TE I + λ1,TEG,

therefore with probability at least 1− 10δ following the reasoning of Lemma F.4 it holds with adversarial rewards:

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1/4EG +mT

1/4E I − ED(0)− EP ,
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and with stochastic rewards with probability ta least 1− 11δ:

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1/4EG +mT

1/4E I − ED(0)− EP − Er.

Applying Lemma F.4 to bound the constraints violation concludes the proof.

H. Analysis with Adversarial Constraints
Theorem 4.3. Suppose Condition 2.5 holds and the constraints are adversarial. Then, for any δ ∈ (0, 1), Algorithm 2
attains:

T∑
t=1

r⊤t qt ≥ Ω

(
ρ

ρ+H
· OPTr,G

)
, VT ≤ Õ

(
Λ
√
T
)
,

with probability at least 1− 14δ when the rewards are stochastic, and with probability at least 1− 13δ when the rewards
are adversarial.

Proof. Thanks to Theorem 3.3 , Theorem E.1 and Theorem 3.4 with probability at least 1− 11δ it holds for all q ∈ ∆(P ):

T∑
t=1

r⊤t q −
T∑
t=1

r⊤t qt

≤ −
T∑
t=1

ℓL,⊤t q +

T∑
t=1

ℓL,⊤t qt +

T∑
t=1

λ⊤t G
⊤
t q −

T∑
t=1

λ⊤t G
⊤
t qt

≤ EPT +

T∑
t=1

λ⊤t G
⊤
t q +

T∑
t=1

(0− λt)⊤
H−1∑
h=0

Gt(xh, ah) +

T∑
t=1

λ⊤t

(
H−1∑
h=0

Gt(xh, ah)−G⊤
t qt

)

≤ EPT + EDT (0) + λ1,TE I +
T∑
t=1

m∑
i=1

λt,ig
⊤
t,iq

≤ EPT + EDT (0) + λ1,TE I +
T∑
t=1

m∑
i=1

λt,ig
⊤
t,iq

≤ EPT + EDT (0) + ΛE I +
T∑
t=1

m∑
i=1

λt,ig
⊤
t,iq.

Consider now the occupancy measure q̃ = ρ
H+ρq

∗ + H
H+ρq

◦. For all i ∈ [m] and for all t ∈ [T ]:

g⊤t,iq̃ ≤
(

ρ

H + ρ
g⊤t,iq

∗ +
H

H + ρ
g⊤t,iq

◦
)

≤
(

Hρ

H + ρ
− Hρ

H + ρ

)
= 0,

given that g⊤t,iq
∗ ≤ ∥q∗∥1 ≤ H , and g⊤t,iq

◦ ≤ −ρ by definition of q◦ and by definition of ρ.

T∑
t=1

r⊤t q̃ =

T∑
t=1

(
ρ

H + ρ
r⊤t q

∗ +
H

H + ρ
r⊤t q

◦
)

≥ ρ

H + ρ

T∑
t=1

r⊤t q
∗,
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since r⊤t q
◦ ≥ 0. Notice also that with adversarial rewards

∑T
t=1 r

⊤
t q

∗ = T · OPTr,G, while with stochastic rewards with

probability at least 1− δ it holds
∑T
t=1 r

⊤
t q

∗ ≥ T · OPTr,G − Er, by definition of Er and OPTr,G for stochastic rewards.
By reordering the terms we get that with probability at least 1− 11δ

T∑
t=1

r⊤t qt ≥
ρ

H + ρ

T∑
t=1

r⊤t q
∗ − EPT − EDT (0)− ΛE I,

we can proceed to bound the regret in both cases: adversarial rewards and stochastic rewards.

With probability at least 1− 11δ with adversarial rewards it holds:

RT =

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t qt

≤
T∑
t=1

r⊤t q
∗ −

(
ρ

H + ρ

T∑
t=1

r⊤t q
∗ − EPT − EDT (0)− ΛE I

)

≤ H

H + ρ

T∑
t=1

r⊤t q
∗ + EPT + EDT (0) + ΛE I

≤ H

H + ρ
T · OPTr,G + EPT + EDT (0) + ΛE I.

With stochastic rewards it holds with probability at least 1− 11δ:

T∑
t=1

r⊤t qt ≥
ρ

H + ρ

T∑
t=1

r⊤t q
∗ − EPT − EDT (0)− ΛE I,

and with probability at least 1− 12δ:

T∑
t=1

r⊤t qt ≥
ρ

H + ρ
T · OPTr,G − E

P
T − EDT (0)− ΛE I − Er.

To conclude the proof we observe that following the analogous reasoning to Theorem 4.1 in case of adversarial constraints it
also holds with probability at least 1− 12δ:

VT ≤
1

η
Λ + E I.

I. Analysis with respect to The Weaker Baseline
In this section we will study the guarantees of Algorithm 2 when the regret is computed with respect to a policy q∗ that
respect the constraints at each episode, i.e. g⊤t q

∗ ≤ 0 for all i ∈ [m], for all t ∈ [T ].

Theorem 4.4. Suppose that Condition 2.5 holds and the constraints are generated adversarially. Then, for any δ ∈ (0, 1),
Algorithm 2 attains:

RT ≤ Õ
(
Λ
√
T
)
, VT ≤ Õ

(
Λ
√
T
)
,

with probability at least 1− 13δ when the rewards are stochastic, and with probability at least 1− 12δ when the rewards
are adversarial.

Proof. The violation can be bounded as in Theorem 4.1. Also similarly to Theorem 4.1 it holds with probability 1− 12δ

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t qt ≤ −
T∑
t=1

ℓL,⊤t q∗ +

T∑
t=1

ℓL,⊤t qt +

T∑
t=1

λ⊤t G
⊤
t q

∗ −
T∑
t=1

λ⊤t G
⊤
t qt
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≤ EPT +

T∑
t=1

(0− λt)⊤
H−1∑
h=0

Gt(xh, ah) +

T∑
t=1

λ⊤t

(
H−1∑
h=0

Gt(xh, ah)−G⊤
t qt

)
≤ EPT + EDT (0) + λ1,TE I

≤ EPT + EDT (0) + ΛE I.

Finally with stochastic rewards with probability at least 1− δ:

T · OPTr,G −
T∑
t=1

r⊤t q
∗ ≤ Er.

Therefore, with adversarial rewards it holds with probability at least 1− 12δ:

RT ≤ EP + ED(0) + ΛE I, VT ≤
1

η
Λ + E I,

and with stochastic rewards it holds with probability at least 1− 13δ:

RT ≤ EP + ED(0) + ΛE I + Er, VT ≤
1

η
Λ + E I,

which concludes the proof.

Theorem 4.5. Suppose that Condition 2.5 does not hold and the constraints are generated adversarially. Then, for any
δ ∈ (0, 1), Algorithm 2 attains:

RT ≤ Õ
(
T

3/4
)
, VT ≤ Õ

(
T

3/4
)
,

with probability at least 1− 12δ when the rewards are stochastic, and with probability at least 1− 11δ when the rewards
are adversarial.

Proof. The violation can be bounded thanks to Lemma F.2, as in Theorem 4.2. To bound the regret, notice that it holds with
probability 1− 9δ:

T∑
t=1

r⊤t q
∗ −

T∑
t=1

r⊤t qt ≤ −
T∑
t=1

ℓL,⊤t q∗ +

T∑
t=1

ℓL,⊤t qt +

T∑
t=1

λ⊤t G
⊤
t q

∗ −
T∑
t=1

λ⊤t G
⊤
t qt

≤ EPT +

T∑
t=1

(0− λt)⊤
H−1∑
h=0

Gt(xh, ah) +

T∑
t=1

λ⊤t

(
H−1∑
h=0

Gt(xh, ah)−G⊤
t qt

)
≤ EPT + EDT (0) + λ1,TE I

≤ EPT + EDT (0) +mT
1/4E I.

Finally with stochastic rewards with probability at least 1− δ:

T · OPTr,G −
T∑
t=1

r⊤t q
∗ ≤ Er.

Therefore, with adversarial rewards it holds with probability at least 1− 11δ:

RT ≤ EP + ED(0) +mT
1/4E I, VT ≤

4T 1/4

η
,

and with stochastic rewards it holds with probability at least 1− 12δ:

RT ≤ EP + ED(0) +mT
1/4E I + Er, VT ≤

4T 1/4

η
,

which concludes the proof.
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J. Auxiliary Lemmas
Lemma J.1 (Adapted from (Luo et al., 2021) Lemma C.4).

ηtQ̂t(x, a) ≤
1

2
∧ ηtBt(x, a) ≤

1

2H
.

Proof. Recall γ = 2ηtHΞt. Thus, it holds:

ηtQ̂t(x, a) ≤
ηtHΞt
γ

=
ηtHΞt
2ηtHΞt

=
1

2

and

ηtbt(x, a) =
3ηtHΞtγ + ηtΞtH(qt(x, a)− qt(x, a))

qt(x, a) + γ
≤ 3ηtΞtH + ηtHΞt = 2γ.

Finally,

ηtBt(x, a) ≤ H
(
1 +

1

H

)H
ηt sup
x′,a′

bt(x
′, a′)

≤ 3H2γ

= 6Hγ

=
6H

C
√
T

=
6H

252|X||A|H
√
T

≤ 1

42H

≤ 1

2H
.

This concludes the poof.

Lemma J.2 (Adapted from (Luo et al., 2021), Lemma B.1). If the following inequality holds:

∑
x

q∗(x)

t2∑
t=t1

∑
a

(πt(a|x)− π∗(a|x)) (Qπt
t (x, a)−Bt(x, a))

≤ o(T ) +
t2∑
t=t1

V π
∗
(x0; bt) +

1

H

t2∑
t=t1

∑
x,a

q∗(x)πt(a|x)Bt(x, a), (21)

with Bt defined as

Bt(x, a) = bt(x, a) +

(
1 +

1

H

)
Ex′∼P (·|x,a)Ea′∼πt(·|x′) [Bt(x

′, a′)] ∀t ∈ [T ],∀x ∈ X,∀a ∈ A, (22)

then it holds that:

Rt1,t2 ≤ o(T ) + 3

t2∑
t=t1

V̂ πt(x0; bt).

Proof. The proof is analogous to the one proposed by (Luo et al., 2021), Lemma B.1, since the proof is episode based and
then the sum over t is taken.

Lemma J.3 (Adapted from (Luo et al., 2021), Lemma A.1). Let F0, . . . ,FT be a filtration and X1, . . . , XT be real random
variables such that Xt is Ft-measurable, E[Xt|Ft] = 0, |Xt| ≤ b for all t ∈ [T ] and

∑t2
t=t1

E[X2
t |Ft] ≤ Vt1,t2 for some
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fixed Vt1,t2 > 0 and b > 0 for every t1, t2 ∈ [T ] such that 1 ≤ t1 ≤ t2 ≤ T . Then with probability at least 1− δ it holds
simultaneously for all [t1, . . . , t2] ⊂ [T ]:

t2∑
t=t1

Xt ≤
Vt1,t2
b

+ b log

(
T 2

δ

)
.

Proof. For all δ′ ∈ (0, 1) by Lemma A.1 (Luo et al., 2021) it holds:

P

(
t2∑
t=t1

Xt ≥
Vt1,t2
b

+ b log

(
1

δ′

))
≤ δ′.

It is sufficient to consider the intersection of all events for all possible intervals [t1, . . . , t2], that are less than T 2.

P

(⋂
t1,t2

{ t2∑
t=t1

Xt ≥
Vt1,t2
b

+ b log

(
1

δ′

)})
≤ T 2δ′.

To conclude the proof we take δ as T 2δ′.

Consider a loss function ft(x, a) ∈ [0, Z], for all t ∈ [T ], (x, a) ∈ X × A, with Z > 0. Define another function

f̃t ∈ [0, Z]|X×A|. If we define the estimator f̂t(x, a) = f̃t(x,a)It(x,a)
qt(x,a)+γ

where E[f̃t(x, a)] = ft(x, a), we can state the
following result.

Lemma J.4 (Adapted from (Jin et al., 2020)). For every sequence of functions α1, . . . αT such that αt ∈ [0, 2γZ ]|X×A| is
Ft measurable for all t ∈ [T ], we have with probability at least 1 − δ that simultaneously for all t1, t2 ∈ [T ] such that
1 ≤ t1 ≤ t2 ≤ T it holds:

t2∑
t=t1

∑
x,a

αt(x, a)

(
f̂t(x, a)−

qt(x, a)

qt(x, a)
ft(x, a)

)
≤ H ln

(
HT 2

δ

)
.

Proof.

ℓ̂t(x, a) =
f̃t(x, a)It(x, a)
qt(x, a) + γ

≤ f̃t(x, a)It(x, a)

qt(x, a) +
f̃t(x,a)
Z γ

=
It(x, a)Z

2γ

2γ f̃t(x,a)Z

qt(x, a) + γ f̃t(x,a)Z

=
It(x, a)Z

2γ

2γ f̃t(x,a)
Zqt(x,a)

1 + γ f̃t(x,a)
Zqt(x,a)

≤ Z

2γ
ln

(
1 + 2γ

It(x, a)f̃t(x, a)
Zqt(x, a)

)
.

For each layer h ∈ [H] we define Ŝt,h :=
∑
x∈Xh,a∈A αt(x, a)f̂t(x, a) and St,h :=

∑
x∈Xh,a∈A αt(x, a)

qt(x,a)
qt(x,a)

ft(x, a).

Et[exp(Ŝt,h)] = E

exp
 ∑
x∈Xh,a∈A

αt(x, a)f̂t(x, a)


≤ E

exp
 ∑
x∈Xh,a∈A

αt(x, a)
Z

2γ
ln

(
1 + 2γ

It(x, a)f̃t(x, a)
Zqt(x, a)

)
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≤ E

 ∏
x∈Xh,a∈A

(
1 + αt(x, a)

It(x, a)f̃t(x, a)
qt(x, a)

)
≤ 1 +

∑
x∈Xh,a∈A

αt(x, a)
qt(x, a)ft(x, a)

qt(x, a)
= 1 + St,h

≤ exp(St,h)

For each interval [t1, . . . , t2] ⊂ [T ] it holds:

P

[
t2∑
t=t1

(Ŝt,h − St,h) ≥ ln

(
H

δ′

)]
≤ δ′

H
.

Taking the intersection event for all intervals [t1, . . . , t2] ⊂ [T ]:

P

[ ⋂
t1,t2

{ t2∑
t=t1

(Ŝt,h − St,h) ≥ ln

(
H

δ′

)}]
≤ T 2 δ

′

H
.

δ = T 2δ′,

and

P

[ ⋂
t1,t2

{ t2∑
t=t1

(Ŝt,h − St,h) ≥ ln

(
HT 2

δ

)}]
≤ δ

H
.

Finally we take the sum over h ∈ [H]:

P

[
t2∑
t=t1

∑
x,a

αt(x, a)

(
f̂t(x, a)−

qt(x, a)

ut(x, a)
ft(x, a)

)
≤ H ln

(
HT 2

δ

)]
≤ δ.

This concludes the proof.

Corollary J.5. Given δ ∈ (0, 1), it holds with probability at least 1 − 2δ simultaneously for all t1, t2 ∈ [T ] such that
1 ≤ t1 ≤ t2 ≤ T :

t2∑
t=t1

∑
x,a

(
f̂t(x, a)− ft(x, a)

)
≤ ZH

2γ
ln

(
HT 2

δ

)
.

Lemma J.6. Let {πt}Tt=1 policies, then for any collection of transition P xt ∈ Pi(t) with probability at least 1− 2δ,

T∑
t=1

∥qP,πt − qP
x
t ,πt∥1 ≤ 2H|X|2

√
2T ln

(
H|X|
δ

)
+ 3H|X|2

√
2T |A| ln

(
T |X|2|A|

δ

)
.

Proof. It holds:

T∑
t=1

∥qP,πt − qP
x
t ,πt∥1 =

T∑
t=1

∑
x,a

|qP,πt(x, a)− qP
x
t ,πt(x, a)|

≤
T∑
t=1

∑
x,a

∑
x′

|qP,πt(x′, a)− qP
x
t ,πt(x′, a)|

=
∑
x

T∑
t=1

∑
x′,a

|qP,πt(x′, a)− qP
x
t ,πt(x′, a)|

≤
∑
x

(
2H|X|

√
2T ln

(
H|X|
δ

)
+ 3H|X|

√
2T |A| ln

(
T |X|2|A|

δ

))
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≤ |X|

(
2H|X|

√
2T ln

(
|X|H
δ

)
+ 3H|X|

√
2T |A| ln

(
T |X|2|A|

δ

))
,

by Lemma K.3, taking the union bound over X
(
δ′ = δ

|X|

)
. This concludes the proof.

K. Auxiliary Lemmas From Existing Works
Lemma K.1 (Stradi et al. (2024b) Lemma D.2). For η ≤ 1

mH and M
ρ > 4, if ∥λt2+1∥1 > 2HM

ρ2 and ∥λt1∥1 ≤ 4H
ρ it holds:

(t2 − t1 + 1) >
M

ρ2mη

Lemma K.2 (Rosenberg & Mansour (2019b)). For any δ ∈ (0, 1)

∥P (·|x, a)− P i(·|x, a)∥1 ≤

√√√√2|Xh(x)+1| ln
(
T |X||A|

δ

)
max{1, Ni(x, a)}

,

simultaneously for all (x, a) ∈ X ×A and for all epochs with probability at least 1− δ.

Lemma K.3 (Rosenberg & Mansour (2019b)). Let {πt}Tt=1 policies and let {Pt}Tt=1 transition functions such that
qPt,πt ∈ ∆(Pi(t)) for every t ∈ [T ]. Then with probability at least 1− 2δ,

T∑
t=1

∥qP,πt − qPt,πt∥1 ≤ 2H|X|

√
2T ln

(
H

δ

)
+ 3H|X|

√
2T |A| ln

(
T |X||A|

δ

)
.
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