
Re-ranking for image retrieval and transductive
few-shot classification

Xi Shen1, Yang Xiao2, Shell Xu Hu3, Othman Sbai4, and Mathieu Aubry5

1, 2, 4, 5LIGM (UMR 8049), École des Ponts ParisTech
3Samsung AI Center, Cambridge

Abstract

In the problems of image retrieval and few-shot classification, the mainstream
approaches focus on learning a better feature representation. However, directly
tackling the distance or similarity measure between images could also be efficient.
To this end, we revisit the idea of re-ranking the top-k retrieved images in the
context of image retrieval (e.g., the k-reciprocal nearest neighbors [48, 75]) and
generalize this idea to transductive few-shot learning.
We propose to meta-learn the re-ranking updates such that the similarity graph con-
verges towards the target similairty graph induced by the image labels. Specifically,
the re-ranking module takes as input an initial similarity graph between the query
image and the contextual images using a pre-trained feature extractor, and predicts
an improved similarity graph by leveraging the structure among the involved im-
ages. We show that our re-ranking approach can be applied to unseen images and
can further boost existing approaches for both image retrieval and few-shot learn-
ing problems. Our approach operates either independently or in conjunction with
classical re-ranking approaches, yielding clear and consistent improvements on
image retrieval (CUB, Cars, SOP, rOxford5K, rParis6K) and transductive few-shot
classification (Mini-ImageNet, tiered-ImageNet and CIFAR-FS) benchmarks. Our
code is available at https://imagine.enpc.fr/~shenx/SSR/.

1 Introduction

Learning deep image features that generalize beyond the training classes they have been trained
on has been a clear success [63]. Using these strong features, recent works have shown that high
performances can be obtained simply by computing nearest neighbors, in particular for image
retrieval [1, 16, 50, 11, 30, 63] and few-shot image classification [71, 6]. In this paper we highlight
that, even with these strong features, results can be further improved by a large margin through
re-ranking images based on the similarity graph between neighbors. To this end, we present a graph
based deep architecture for re-ranking neighborhood images via a learning approach.

Our method can be seen as revisiting and complementing classical approaches to re-ranking with
deep learning techniques. These approaches can be broadly classified into query expansion that
compute a new query feature based on the top retrieved neighbors [9, 8, 2, 16, 50], and k-reciprocal
re-ranking that compute a new distance between images based on the Jaccard distance between
confident neighbors [48, 75]. The approach we propose is related to both approaches. Since on one
side, we focus successively on the neighbors of each sample, and on the other side, we update features
to compute new similarities. This is achieved by designing a neural network architecture that can
update the similarity graph by successively focusing on different subgraphs (as visualized in Figure
1) and updating features based on synthetic gradients [24, 21]. Our architecture for updating the
similarity graph, referred to as Subgraph Similarity Refiner (SSR), operates on the adjacency matrices

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://imagine.enpc.fr/~shenx/SSR/

Figure 1: Idea of our approach for image retrieval. Given an initial similarity graph between
a query and its top candidates in image retrieval (left), we propose a module dubbed Subgraph
Similarity Refiner (SSR) to improve the similarity graph (right). For each sample in the dataset we
build a subgraph by considering only edges with either the sample or the query (middle), order the
nodes according to their similarity to the sample and predict an update for the edges of the subgraph.
This idea can be applied with minor changes to transductive few-shot classification.

of the subgraphs. We focus successively on each image (as a query image), extract a subgraph, where
our key technical insight is to sort all other images according to the similarity to the query image.

We show that our approach can improve different image features for both image retrieval and
transductive few-shot classification. We relate both tasks by casting them as a similarity graph
refinement problem, where the refined similarity graph is used for task-specific predictions. In image
retrieval, based on classical re-ranking techniques query expansion [9, 8, 16, 50] and k-reciprocal [75],
our method consistently improves the image retrieval performance (mean average precision, mAP)
achieved by recent state-of-the-art features [11, 30, 63]. For example, applying our method with the
recent ProxyNCA++ [63] features improves the mAP@R from 55.4% to 60.6% on Stanford Online
Product dataset [62] and combining our approach with k-reciprocal [75] re-ranking further boost them
to 62.3%. In transductive few-shot classification, we show that k-reciprocal [75] based re-ranking
yields a simple but surprisingly good baseline, while by learning to re-rank our method consistently
improves over several competitive transductive approaches, e.g., the synthetic information bottleneck
(SIB) [21].

2 Approach

Motivation Consider the similarity graph among N images, each node of the graph corresponds
to one image and each weighted edge represents the similarity between two images. The similarity
graph plays an important role in computer vision. As an example, the k-nearest-neighbor classifier
remains a competitive method in image classification if the similarity graph is sufficiently informative.
Note that, during training, we do have access to the target similarity graph, which has similarity 1 if
two images belong to the same class and 0 otherwise, can we learn to improve an initial similarity
graph of test images given that we have seen the target similarity matrix for training images?

Indeed, in the context of image retrievel, this idea of exploring and improving the similarity graph is
called re-ranking, which refers to the case where an initial set of images have been retrieved, we then
re-rank their relevance to the query image by examining again their similarities. Certainly, this idea
can be hardly scaled to a large set of images as the complexity is quadratic, but it is quite interesting
in the case of few-shot learning for unseen categories / domains.

In this section, we first present an overview of our approach as a generalization to re-ranking
(Section 2.1); we then introduce our model architecture, called Subgraph Similarity Refiner (SSR)
(Section 2.2) and how to combine our approach with the classical k-reciprocal [75] re-ranking
approach (Section 2.3); finally, in Section 2.4 we explain how we train our approach and give
implementation details.

2.1 Learning to improve a similarity graph

We assume that we are given a set of N images and for each image an initial feature. During training,
we also assume that we are given a label for each image. Our goal is to predict an improved similarity,
where images with the same label have a higher similarity than images with different labels. We will

2

(a) Overview of our update prediction approach

(b) SSR for image retrieval (c) SSR for transductive few-shot classification

Figure 2: Subgraph Similarity Refiner (SSR) learns updates for a similarity graph. It decomposes
the similarity graph, that can be represented by its similarity matrix, into N subgraphs where rows
and columns of the matrix are ordered depending on similarities to the subgraph reference image.
The output of SSR is an improved similarity matrix. The final loss is between the predicted similarity
matrix and target similarity matrix. The details of subgraphs are shown in (b) for image retrieval:
the rows correspond to the subgraph reference image and the query image and the columns to the
test images; and (c) for transductive few-shot classification: the rows correspond to the subgraph
reference image and the support set S while the columns to the support set S and the query set Q.

represent the similarity graph by its adjacency matrix, which we will refer to as similarity matrix.
Note that the similarity matrix allows to explore neighbors of the nearest neighbors (high order
nearest neighbors), which is a classical and effective way to tackle the re-ranking problem [48, 75].

More formally, for i ∈ {1, . . . , N} we denote by f0i the initial feature of ith image and yi its label.
The initial similarity matrix is given by:

S0 =
[
s0ij
]
i,j∈{1,...,N} with s0ij =

〈f0i , f0j 〉
‖f0i ‖‖f0j ‖

. (1)

Our goal is to predict the target similarity matrix Ŝ = [1yi=yj]i,j∈{1,...,N} where 1yi=yj is the
indicator function of yi = yj . We refine the similarity matrix iteratively. First, consider the following
update given a similarity matrix St−1:

S̃t :=
[
s̃tij
]
i,j∈{0,1,...,N} = St−1 +G(St−1), (2)

where G is the Subgraph Similarity Refiner (SSR) that we will describe in the next section. The issue
with such an update is the flexibility. We therefore would like to constraint the updated similarity
matrix to have the form

St =
[
stij
]
i,j∈{1,...,N} with stij =

〈f ti , f tj 〉
‖f ti ‖‖f tj‖

. (3)

This amounts to construct the update in features rather than in the similarity matrix directly. As
such, St always remain positive semidefinite. Now, the question is how we make use of S̃t to obtain
f t. Given f t−1, in fact, we only need to move a single gradient step along the projection direction
according to the Euclidean distance Lf (f) :=

1
2

∑
i,j(s̃

t
i,j −

〈fi,fj〉
‖fi‖‖fj‖)

2. Specifically, we obtain f t

by considering S̃t as an intermediate result:

∀i : f ti = f t−1i − λ∂Lf

∂fi
(f t−1) with

∂Lf

∂fi
(f t−1) = −

∑
j

(s̃ti,j − st−1i,j)
∂st−1i,j

∂f t−1i

(f t−1) (4)

where λ is the step size. Indeed, this update can be seen as applying the synthetic gradient descent
[21, 24] on the features. Here, we motivate it from a different perspective.

Note that the network G defines a meta-model, as the update is supposed to generalize to unseen
image categories. We learn G by minimizing a task-specific loss between the target similarity matrix
Ŝ and the updated similarity matrix ST . The key for this approach to work is the architecture design
of the network G, which we detail in the next section.

3

2.2 Subgraph Similarity Refiner (SSR)

The adjacency matrix S is a natural way to encode a similarity graph. However, it is defined up to
the order of the nodes, i.e. permutations of its column and rows. For this reason, learning directly to
make a prediction from the similarity matrix is challenging. One can simply order the nodes with
respect to their distance to a specific sample, such as the query in the case of image retrieval, but
this gives one of the nodes a specific role and it might be hard for the network to use the similarity
structure among the other nodes, especially since S is very high dimensional and overfitting might be
an issue. Thus, we propose a permutation-invariant architecture illustrated in Figure 2a.

Our key idea is to make N update predictions by considering only subgraphs centered on each node
i and then to aggregate them to obtain an update prediction on the full graph. We can associate a
similarity matrix Mi to the ith subgraph, where we order nodes according to their similarity to the
node i. Note that the order will be different for each subgraph. We then predict updates g(Mi) for
each of the subgraphs using a simple network g . Finally, we aggregate the predictions on all the
subgraphs by summing the updates predicted for each subgraph at the relevant position in S:

G(S) = GraphSum
(
{g(Mi)}Ni=1

)
(5)

where g is a multi-layer perceptron (MLP) and GraphSum is an aggregation operator to account for
the summation with respect to graph structure since each node is contained in multiple subgraphs.

We now discuss the exact structure of the subgraph and associated similarity matrix Mi that we use
in the case of image retrieval or transductive few-shot classification. The choice of structures in both
cases are validated by the ablation studies presented in Section 3.3.

Image Retrieval. In image retrieval, we search for images similar to a query image in a pool of test
images. We assume that a first algorithm already selected the N − 1 test images most similar to the
query and we focus on improving the similarities between the resulting set of N images (the query
and its N − 1 nearest neighbors). By increasing the similarities between the query and the positive
images against those of the negatives, we aim to obtain a better retrieval result where positives should
be ranked before negatives for the N − 1 test images selected for the query. During training, we
optimize the InfoNCE loss [44] with a learnable temperature parameter τ :∑

i,j:yi=yj=yqry

− log
(exp(τsTij)

exp(τsTij) +
∑

k:yk 6=yi
exp(τsTik)

)
(6)

where sTij signifies the similarity between the ith sample and jth sample after T similarity updates.

As visualized in Figure 2b, we build the ith subgraph by considering only edges that connect nodes
to either the ith sample or the query. Rather than considering Mi as the adjacency matrix of this
graph, we define it as a 2 ×N matrix defined as follows. Each column corresponds to a different
sample and the samples are ordered with respect to their similarity of the ith sample. The values in
the first row are the similarities between the ith sample and the samples associated to each column, it
is thus decreasing. The values in the second row are the similarity between the query and the samples
associated with each column. Note that for the subgraph corresponding to the query, the two lines of
the matrix are the same and actually correspond to the same edges in the graph.

Transductive few-shot classification. In few-shot classification, the set of N images to consider
can be divided in two: a support set S with known labels and an unlabelled query setQ for which we
want to predict labels. Our approach assumes that Q is accessible during the inference. This setting
is known as transductive few-shot classification. For each sample in the query set, we aim to increase
the similarities between itself and the support images from the same class comparing to those from
different classes. To this end, we minimize the Cross Entropy loss:∑

i∈Q,j∈S:yq
i =ys

j

− log
(exp(τsTij)

exp(τsTij) +
∑

k∈S,yq
i 6=ys

k
exp(τsTik)

)
(7)

where τ is a learnable temperature parameter, yq· and ys· are labels of query and support samples.

As visualized in Figure 2c, we build the ith subgraph by considering only the edges that connect
nodes either to the ith sample or to the support set. Similar to the case of retrieval, we represent this

4

graph using a structured matrix, but we keep the nodes corresponding to the support and query set
separated. We define Mi as a (|S|+ 1)× (|S|+ |Q|) matrix with |·| the number of elements in a
set. Its first |S| columns and last |Q| columns correspond to the samples in support set and query
set, respectively. They are both sorted by decreasing similarity with respect to the ith sample. While
the values in the first row of Mi represent the similarities between the ith sample and the samples
in different columns, the last |S| rows represent similarities between support samples and different
columns. Note that if the ith sample comes from the support set, one row will be repeated in Mi.

2.3 Combination with k-reciprocal distance [75]

Instead of taking CNN feature similarities as input of G, our approach can be augmented with other
distances. In particular, we show that it leads to stronger results when using the k-reciprocal feature
distance [75]. We summarize in this section how the k-reciprocal feature distance is obtained and
how we update it with our approach.

The k-reciprocal feature is computed from k-reciprocal neighbors [19]. Writing top(a, k) the k
nearest neighbors of the feature a, the set of k-reciprocal neighborsR(a, k) of a is defined as :

R(a, k) = {b|b ∈ top(a, k) ∩ a ∈ top(b, k)}. (8)

The backward verification aims at reducing the number of false matches in the k-reciprocal neighbors.
To consider potential positive matches excluded from the k nearest neighbors, [75] proposed to add
the k

2 -reciprocal neighbors of b ∈ R(a, k) into an expanded setR∗(a, k) ifR(b, k
2
) shares enough

neighbors withR(a, k).
The final proposed distance d in k-reciprocal [75] is a combination of the euclidean distance between
normalized features and the Jaccard distance dJ computed with the expanded sets :

d(a, b) = α

∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥2 + (1− α)dJ(R∗(a, k),R∗(b, k)) (9)

where α is a hyper-parameter representing the contribution of the feature similarity. For more details
about the Jaccard distance, we refer to [75].

Now, we compute the distance matrix J corresponding to the Jaccard distance obtained from the
initial features and consider it as fixed. We then consider the distance defined by Equation 9 to build
our graphs updating only the feature similarity in the first part of the equation. More precisely, at
each iteration t, we use Dt = 2α(1− St) + (1− α)J as input of the SSR, and consider its output is
an update to St only and the final objective function remains on ST . We also tried to use the final
objective on DT , but observed a severe overfitting on the training set and worse results.

2.4 Network architecture and implementation details

Architecture. Each subgraph update in our SSR module is performed by a three-layer perceptron
with constant hidden-layer size 1,024 for image retrieval and 4,096 for few-shot classification. Further
increasing the model size leads to similar performances. All the layers except the last one are followed
by ReLU activations and Instance Normalization [64], which we also apply to the input matrix.

Optimization. We optimize our networks using SGD with momentum 0.9. The batch size is set to
1 since there are numerous images to consider in a single similarity graph and increasing the batch
size does not improve the performance. For image retrieval, we use a single update of the model
(T = 1) and training converges in 10K iterations with a fixed learning rate of 1e-5. Larger T leads to
similar performance. The analysis of T and λ on rOxford5K [49] and rParis6K [49] are available in
the supplimentary material. The entire training on CUB [67] takes 6 hours on a single GeForce 1080
Ti GPU. For few-shot classification, we first train for 30K iterations with T = 1: the learning rate is
set to 0.1 for 5K iterations then to 0.01 for another 25K iterations. Then, keeping a learning rate of
0.01, we train for 10K iterations with T = 2 and 10K more with T = 3. We find that T = 3 leads
to the most stable improvement and include this analysis in the supplementary material. The whole
training process on mini-ImageNet [66] takes 20 hours on a single GeForce 1080 Ti GPU.

5

Method \Feature CUB [67], mAP@R CARS [31], mAP@R SOP [62], mAP@R rOxford5K [49], mAP rParis6K [49], mAP
GL [11] PA [30] PNCA++ [63] GL [11] PA [30] PNCA++ [63] GL [11] PA [30] PNCA++ [63] Medium [17] Hard [17] Medium [17] Hard [17]

LAttQE [17] - - - - - - - - - 73.4 49.6 86.3 70.6
Region Diffusion [23, 49]† - - - - - - - - - 69.0 44.7 89.5 80.0
Feat. only 24.5 27.0 29.6 27.8 28.3 33.2 46.9 51.0 55.4 67.3 44.3 80.6 61.5
Feat + SSR 34.0 35.5 39.5 38.3 38.7 45.8 50.9 54.8 60.6 75.6 54.2 84.4 67.8
AQE [9] 28.3 31.2 34.1 34.4 34.9 40.9 49.3 54.8 58.4 70.8 48.0 85.3 68.8
AQE + Ours 34.1 36.1 40.0 40.3 39.5 48.3 49.5 53.8 60.5 74.2 54.4 84.5 68.7
AQEwD [16] 28.4 31.4 34.2 34.6 35.1 40.9 49.3 55.0 58.6 70.8 48.0 84.5 67.6
AQEwD + SSR 34.0 35.9 41.2 39.2 39.7 48.4 49.9 54.2 60.5 74.1 54.1 83.9 67.9
DQE [2] 26.4 30.6 33.0 31.8 34.5 37.0 48.7 55.0 58.3 69.5 46.1 84.0 67.0
DQE + SSR 33.1 35.5 39.9 39.4 39.0 46.2 49.8 53.8 60.4 73.6 53.7 83.1 67.0
αQE [50] 28.3 31.2 34.1 34.5 34.5 40.9 49.3 54.8 58.4 68.2 44.0 84.3 67.2
αQE + SSR 33.6 34.7 40.7 40.4 35.7 48.4 49.7 54.0 60.4 71.6 51.1 83.5 67.3
k-reciprocal [75]† 37.6 41.8 48.1 49.9 50.2 58.5 51.7 56.3 61.7 72.1 50.7 87.9 74.8
k-reciprocal [75]† + SSR 38.3 42.3 49.8 51.1 50.9 60.4 52.5 56.6 62.3 75.0 53.1 88.7 75.9
† carries the extra cost of the graph over the whole dataset.

Table 1: Image retrieval. For [67], CARS [31] and SOP [62], we use three features: GL [11],
PA [30] and PNCA++ [63], and report mAP@R, which follows [40]. For rOxford5K [49] and
rParis6K [49], we use the feature provided in [17] and report mAP, which follows [17].. The best and
the 2nd best results are in red and blue respectively.

3 Experiments

In this section, we cover our experimental setups and results for image retrieval and few-shot image
classification. Since these two problems are different in data processing and performance evaluation,
we separate the discussions into two sub-sections followed by a joint ablation study.

3.1 Image retrieval

Datasets. We consider five image retrieval datasets, namely, CUB [67], CARS [31], SOP [62],
rOxford5K [49] and rParis6K [49]. For CUB, CARS, SOP, we follow the standard split [11]: for
CUB, the first 100 species (5,864 images) are used for training and the remaining 100 species (5,924
images) are used for testing; for CARS, the first 98 classes (8,054 images) are used for training and
the other 98 classes (8,131 images) are kept for testing; for SOP, the dataset is separated into 11,318
training classes (59,551 images) and 11,316 testing classes (60 502 images). For rOxford5K [49] and
rParis6K [49], we follow [17] and use the dataset SFM120k [50] , which is built with structure-from-
motion pipeline, and clusters for the same 3D scene are cast as categories. We take features in [17],
which already leads to good performance on the training set. For most training samples, the mAPs
on the training set are already quite high and training SSR using the raw nearest neighbors makes it
perform well only for high mAP queries. To address this problem, we sample only difficult examples.
To combine other re-ranking methods and SSR, we directly apply the trained SSR to the top retrieved
samples given by other re-ranking methods. More details can be found in the supplementary material.

Evaluation metric. For CUB, CARS, SOP, following [40], we choose the Mean Average Precision
at R (MAP@R) as our main evaluation metric: MAP@R = 1

R

∑R
i=1 P (i) with R the total number

of true positive samples and P (i) is the precision at i if the ith retrieval is correct and 0 otherwise.
For rOxford5K and rParis6K, we follow [17] and report stand Mean Average Precision (mAP) on
medium and hard queries.

Baselines. We conduct exhaustive experiments with three recent feature representations: a) features
trained with group loss [11] (GL), b) features trained with proxy anchor loss [30] (PA) and c) features
trained with proxy neighborhood component analysis method [63] (PNCA++). For each feature,
we report the baseline results obtained from the k-reciprocal method [75] and four standard query
expansion methods [17]: Average Query Expansion (AQE, [9, 16, 50]), Average Query Expansion
with Decay (AQEwD, [50]), Alpha Query Expansion (αQE [50]) and Discriminative Query Expansion
(DQE [2]). The baselines and details are provided in the supplementary material.

Results. Our results are shown in Table 1. Applying our SSR on original features (“Feat. + SSR”)
largely improves the retrieval performance of using original features (“Feat.”) on different datasets for
different metric. In almost all cases our method alone outperforms all the query expansion baselines
and results can be further improved by applying it to the query-expanded results. The performance
improvement brought by k-reciprocal [75] should be attributed to the statistics of neighbors of
neighbors, while our method can further boost upon that. These results suggest that our method can
be combined with many feature extractors for image retrieval to attain better performance. Note that
the choices of N are available in the supplementary material.

6

mini-ImageNet [66] tiered-ImageNet [51] CIFAR-FS [45]
Methods Trans. Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchNet [66] Conv-4-64 44.2 57.0 – – – –
ProtoNet† [60] Conv-4-64 49.4±0.8 68.2±0.7 53.3±0.9 72.7±0.7 55.5±0.7 72.0±0.6
GNN [13] Conv-4-64 50.3 66.4 61.9 75.3
Gidaris et al. [14] Conv-4-64 54.8±0.4 71.9±0.3 – – 63.5±0.3 79.8±0.2
MAML‡ [12] BN Conv-4-64 48.7±1.8 63.1±0.9 51.7±1.8 70.3±1.8 – –
TPN [35] 3 Conv-4-64 55.5±0.9 69.9±0.7 59.9±0.9 73.3±0.8 – –
SIB [21] 3 Conv-4-64 58.0±0.6 70.7±0.4 – – 68.7±0.6 77.1±0.4
EPNet [53] 3 Conv-4-64 59.3±0.9 73.0±0.6 60.0±1.0 73.9±0.8 – –
Baseline Conv-4-64 52.4±0.4 69.6±0.4 55.2±0.5 72.3±0.4 57.8±0.5 75.3±0.4

+ k-reciprocal [75] 3 Conv-4-64 58.6±0.7 72.2±0.5 63.1±0.8 75.0±0.6 66.6±0.8 78.1±0.6
+ Ours 3 Conv-4-64 62.1±0.6 73.2±0.4 65.1±0.6 74.1±0.5 72.0±0.6 78.5±0.4

TADAM [45] ResNet-12 58.5±0.3 76.7±0.3 – – – –
MetaOptNet-RR [33] ResNet-12 61.4±0.6 77.9±0.5 65.4±0.7 81.3±0.5 72.6±0.7 84.3±0.5
ProtoNet+MABAS [28] ResNet-12 65.1±0.9 82.7±0.5 – – 73.5±0.9 85.5±0.7
EGNN* [29] 3 ResNet-12 64.0 77.2 66.5 82.5 – –
CAN [20] 3 ResNet-12 67.2±0.6 80.6±0.4 73.2±0.6 84.9±0.4 – –
EPNet [53] 3 ResNet-12 66.5±0.9 81.1±0.6 76.5±0.9 87.3±0.6 – –
Baseline ResNet-12 57.6±0.5 73.5±0.4 68.8±0.5 83.5±0.4 66.4±0.5 80.4±0.4

+ k-reciprocal [75] 3 ResNet-12 67.3±0.7 78.0 ±0.5 77.3±0.8 85.7±0.5 73.6±0.8 82.1±0.5
+ Ours 3 ResNet-12 68.1±0.6 76.9±0.4 81.2±0.6 85.7±0.4 76.8±0.6 83.7±0.4

LEO [55] WRN-28-10 61.8±0.1 77.6±0.1 66.3±0.1 81.4±0.1 – –
Gidaris et al. [14] WRN-28-10 62.9±0.5 79.9±0.3 70.5±0.5 85.0±0.4 76.1±0.3 87.8±0.2
SIB‡‡ [21] 3 WRN-28-10 70.0±0.6 78.9±0.4 72.9* 82.8* 80.0±0.6 85.3±0.4
SIB+E3BM [36] 3 WRN-28-10 71.4 81.2 75.6 84.3 – –
EPNet [53] 3 WRN-28-10 70.7±0.9 84.3±0.5 78.5±0.9 88.4±0.6 – –
Baseline WRN-28-10 61.9±0.5 77.8±0.3 69.4±0.5 83.4±0.4 69.5±0.5 83.5±0.4

+ k-reciprocal [75] 3 WRN-28-10 68.1±0.8 79.4±0.5 76.4±0.7 84.8±0.5 76.7±0.8 84.9±0.5
+ Ours 3 WRN-28-10 72.4±0.6 80.2±0.4 79.5±0.6 84.8±0.4 81.6±0.6 86.0±0.4

†Results from [33]. ‡Results from [35]. *Results from [36].
‡‡ we use the same pre-trained features of WRN and Conv-4-64 as [21] on mini-ImageNet.

Table 2: Transductive few-shot classification. 5-way few-shot classification accuracies (%) on mini-
ImageNet [66], tiered-ImageNet [51], and CIFAR-FS [4]. We report average classification accuracy
(with 95% confidence intervals) over 2000 episodes on the test set. We highlight in grey the results
of our baseline features with nearest neighbor classifier (entry “Baseline”), with k-reciprocal [75]
re-ranking (entry “+ k-reciprocal”), and with our approach (entry “+ Ours”). The best and the 2nd
best results are in red and blue respectively.

3.2 Transductive few-shot classification

Dataset. We evaluate our approach on three standard few-shot classification datasets: mini-
ImageNet [66], tiered-ImageNet [51], and CIFAR-FS [4]. mini-ImageNet and tiered-ImageNet
contain a subset of ImageNet images resized to 84×84. mini-ImageNet contains 100 classes and
600 images per class. It is split into 64 classes for training, 16 for validation and 10 for testing.
tiered-ImageNet contains a larger subset of ImageNet with 608 classes and 1 300 images per class. It
is split into 351 classes for training, 97 for validation and 160 for testing. CIFAR-FS was created by
dividing the original CIFAR-100 [32] into 64 training classes, 16 validation classes and 20 testing
classes. Each class has 600 images. The image resolution is 32×32.

Architectures and baseline features. We experimented with three architectures: WRN-28-10 [74,
15, 14, 21], ResNet-12 [38, 45, 33] and Conv-4-64 [15, 14, 21]. WRN-28-10 is commonly evaluated
in few-shot classification [74, 15, 14, 21]. ResNet-12 is the architecture used by [38, 45, 33].
Conv-4-64 is widely used in few-shot learning [15, 14, 21] and has 4 convolutional modules, with
3 × 3 convolutions, followed by Batch Normalization [22], ReLU non-linearity and 2 × 2 Max
Pooling. For all architectures and datasets, we use a baseline feature obtained by pre-training a cosine
classifier [15] to initialize our approach. Note that this pre-training is carried out on the train-set with
hyper-parameter selection on the validation set. The cosine classifier is trained following a standard
training strategy: we use the SGD optimizer with momentum 0.9 and batch size 64 for 120 epochs.
The first 50 epochs are with learning rate 0.1, the next 50 with learning rate 0.01, and the last 20 with
learning rate 0.001. We adopt standard data augmentation: resizing, cropping and horizontal flipping.

Results. We compare our approach to state-of-the-art methods in Table 2. For all the datasets
and backbones, we report the performance of the baseline features (‘Baseline‘), k-reciprocal [75]
with the baseline feature (‘+ k-reciprocal‘) and our approach with the baseline features (‘+ Ours‘).

7

Interestingly, a simple baseline by combining the baseline feature and k-reciprocal, without any
learning procedure, achieves comparable performance with recent methods [21, 36, 53] on all three
datasets. Moreover, our method achieves the best performance on 1-shot classification and obtains
competitive performance on 5-shot classification. In particular, compared to SIB [21], which is
also an approach using synthetic gradient and similar baseline features, our approach yields a clear
and consistent improvement. Note that combining k-reciprocal and our method did not bring any
improvement over our method alone for few-shot classification (see results in supplementary material).

3.3 Ablation study

Image retrieval. We provide an analysis on CARS [31] with using Group Loss features [11]
and N = 100 to analyze our approach for image retrieval. The results are presented in Ta-
ble 3. This ablation provides several insights. First, using subgraphs is essential: perfor-
mance simply using as input and predicting the full similarity matrix (w.o subgraph) leads to
performances close to the baseline. Second, sorting the columns in each subgraph is impor-
tant, because it makes the information about each sample easier for the network to extract,

Method mAP@R

Baseline (features) 27.8
Ours (sample and query) 34.0

w.o sample 32.9
w.o query 28.2
w. other 33.0
w.o local sort 32.2
w.o subgraph 27.9
w.o feat. update 30.2

(a) mAP@R on CARS [31] (b) Variants of Mi

Table 3: Image retrieval: Ablation study on
CARS [31].

as can be seen in the 1.8% performance loss
when the columns are sorted according to their
similarity with the query (w.o local sort). Third,
the feature update (w.o feat. update), which
allows to leverage the input features, is also im-
portant, removing it degrades the performance
by 3.8%. Finally, adding or removing rows in
Mi shows that using the subgraphs we define is
a good trade-off: removing connections to the
ith sample (w.o sample) or the query (w.o query)
degrades performance, and so does considering
the full graph (w.o other). Note that independently of the graph they represent, the matrices Mi are
still focused on sample i which is used to sort their rows and columns.

Transductive few-shot classification. We now present a similar analysis on transductive few-
shot classification. The results are in Table 4. We identify variants of the subgraph similarity
matrices Mi by writing the samples we use in rows and columns. First, note that the optimal

Method Acc %

Baseline (features) 61.9

Ours

Mi Rows Mi Col.
sample, S S, Q 72.4

sample, S , Q S , Q 72.2
S S, Q 72.0

sample S, Q 70.8
sample, S Q 71.7
sample, S S 66.3

w.o local sort sample, S S , Q 63.4
w.o subgraph sample, S S , Q 63.2

w.o feat. update sample, S S , Q 71.0

(a) 1-shot accuracy (b) Variants of Mi

Table 4: Transductive few-shot classification: Ablation
study on mini-ImageNet [66] with WRN [74].

choice is the one presented in Sec-
tion 2.2, using matrices Mi with
rows corresponding the ith sample
and the support set S and columns cor-
responding to the support set S and
the query set Q. Second, the local
sorting is more important for few-shot
classification than for image retrieval,
removing it (w.o local sort) degrades
the performance by 9%. The reason is
that in image retrieval we could order
images with respect to their similar-
ities to the query, while in few-shot
classification there is no natural order. Third, similar to image retrieval, the decomposition into
subgraphs (w.o subgraph) is crucial to obtain improved performance. Finally, updating features (w.o
feat. update) is also important in this task and brings an extra 1.4% improvement.

4 Related Work

Image Retrieval. Given a query image, image retrieval searches for similar images in a set of test
images. Traditional approaches [59, 37, 42, 46, 25, 2] seek to match a bag-of-words representation.
Recent approaches rather focus on learning a good global representation of images [16, 50, 52] to
map similar samples closer to each other against dissimilar ones, which is also addressed by deep
metric learning. Pair based loss has a long story in metric learning. Contrastive loss [5, 7, 18, 50]
pulls positive pairs together and pushes negatives far apart. Triplet loss [72, 68, 57, 16] enforces the

8

distance between of a positive pair to be smaller than a negative pair. N-pair [61] and Lifted Structure
loss [43] associate an anchor with a positive but multiple negatives. Both Ranked List [70] and Multi-
Similarity loss [69] take into account all positive and negative pairs in a batch and Multi-Similarity
assigns a different weight to each pair. Instead of optimizing on pairs of samples, proxy based losses
consider distances between samples and learnable proxies [39, 73, 47, 3, 63]. Proxy-NCA [39] allows
to reduce computation by approximating NCA [54] loss with proxies. Proxy Anchor [30] improves
Proxy-NCA [39] by assigning a proxy for each class and associating each proxy with the entire batch.
ProxyNCA++ [63] further improves ProxyNCA and proposes several enhancements, such as low
temperature scaling, Global Max Pooling, etc.

Few-shot classification. Few-shot learning [66, 60, 12] refers to learning from a few annotated
examples. Recent works are more focused on meta-learning [56] which aims at learning the ability to
solve new tasks from previous experiences. Our work focuses in particular on the transductive setting,
which differs from the standard few-shot learning by assuming the unlabelled query set to be accessible
during inference. By sharing information between test examples through Batch Normalization [22],
MAML [12, 41] is the first method to apply transduction. The goal of MAML is to learn a parameter
initialization that can be fine-tuned quickly on a new task. Reptile [41] approximates MAML with
first-order derivatives rather than second-order derivatives. In the same spirit of MAML, SIB [21]
proposed to adapt to a new task by learning to predict synthetic gradient [24]. SIB can be further
improved with the ensemble of epoch-wise empirical Bayes models [36]. CAN [20] designs a cross
attention module to adaptively extract support and query features. TPN [35] learns to propagate
labels with a neural network. EGNN [29] takes into account both node and edge feature to update
the graph. EPNet [53] proposed to use embedding propagation as an unsupervised regularizer for
manifold smoothing. While being related to graph based approaches, our method is different to the
previous works in the sense that the graph update is done in an implicit way learned automatically by
the network, rather than an explicitly designed scheme.

Re-ranking for image retrieval. Image retrieval results are usually improved by re-ranking the
nearest neighbors [9, 16, 50, 75]. Query expansion is a classic re-ranking approach that constructs an
expanded query from the top-k retrieved samples. The expanded query can be a linear combination
of the top-k retrievals (AQE, AQEwD, alphaQE) [9, 8, 16, 50], or as proposed in [2], a linear SVM
classifier for each query trained using top ranked features as positives, and low ranking features as
negatives. Recently, LAttQE [17] proposed to apply several successive explicit aggregators with
self-attention [65] to obtain the updated features. Another line of research focuses on exploring higher-
order neighbors [34]. The methods can either use explicitly label propagation on the nearest neighbor
graph [77, 76, 10, 23], or directly encode neighbor information into image descriptors [58, 34]. Shen
et al. [58] proposed to encode images by their k nearest neighbors. The final rank of a database image
is determined by its ranks in the retrieval results of the query and the query’s k nearest neighbors.
The k-reciprocal nearest neighbors is used in [26, 27] by taking into account the symmetry of k-
neighborhood relationship to update distances. The concept of k-reciprocal nearest neighbors is
formally presented in [48] where two images are k-reciprocal nearest neighbors if both are nearest
neighbors of each other. This idea is then further explored and demonstrated to be effective for person
re-identification in [75].

5 Conclusion

In this work, we presented a deep approach for image re-ranking and an architecture specifically
designed to update similarity graphs. We apply it to two problems that are usually tackled by different
methods: image retrieval and transductive few-shot classification. Experimental results suggested
that our approach can be applied alone or be complementary to classical re-ranking methods in
image retrieval and both lead to significant improvements. In transductive few-shot classification, we
showed that applying a classical re-ranking method to pre-trained features leads to strong results and
we can attain state of the art with our approach.

Acknowledgment This work was supported in part by ANR project EnHerit ANR-17-CE23-0008,
project Rapid Tabasco, and IDRIS under the allocation AD011011160R1 made by GENCI.

9

References

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn architecture
for weakly supervised place recognition. In CVPR, 2016. 1

[2] Relja Arandjelović and Andrew Zisserman. Three things everyone should know to improve object retrieval.
In CVPR, 2012. 1, 6, 8, 9

[3] Nicolas Aziere and Sinisa Todorovic. Ensemble deep manifold similarity learning using hard proxies. In
CVPR, 2019. 9

[4] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In ICLR, 2019. 7

[5] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verification
using a "siamese" time delay neural network. In NeurIPS, 1994. 8

[6] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look at
few-shot classification. In ICLR, 2019. 1

[7] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In CVPR, 2005. 8

[8] Ondřej Chum, Andrej Mikulik, Michal Perdoch, and Jiří Matas. Total recall ii: Query expansion revisited.
In CVPR, 2011. 1, 2, 9

[9] Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman. Total recall: Automatic
query expansion with a generative feature model for object retrieval. In ICCV, 2007. 1, 2, 6, 9

[10] Michael Donoser and Horst Bischof. Diffusion processes for retrieval revisited. In CVPR, 2013. 9
[11] Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich, M. Pelillo, and L. Leal-Taixé. The group loss

for deep metric learning. In ECCV, 2020. 1, 2, 6, 8
[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep

networks. In ICML, 2017. 7, 9
[13] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In ICLR, 2018. 7
[14] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Boosting few-shot

visual learning with self-supervision. In ICCV, 2019. 7
[15] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In CVPR,

2018. 7
[16] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. End-to-end learning of deep visual

representations for image retrieval. IJCV, 2017. 1, 2, 6, 8, 9
[17] Albert Gordo, Filip Radenovic, and Tamara Berg. Attention-based query expansion learning. In ECCV,

2020. 6, 9
[18] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping.

In CVPR, 2006. 8
[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In CVPR, 2016. 5
[20] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan, and Xilin Chen. Cross attention network for

few-shot classification. In NeurIPS, 2019. 7, 9
[21] Shell Xu Hu, Pablo Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil Lawrence, and Andreas

Damianou. Empirical bayes transductive meta-learning with synthetic gradients. In ICLR, 2019. 1, 2, 3, 7,
8, 9

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015. 7, 9

[23] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Teddy Furon, and Ondrej Chum. Efficient diffusion on
region manifolds: Recovering small objects with compact cnn representations. In CVPR, 2017. 6, 9

[24] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver,
and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In ICML, 2017. 1, 3, 9

[25] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descriptors into a
compact image representation. In CVPR, 2010. 8

[26] Herve Jegou, Hedi Harzallah, and Cordelia Schmid. A contextual dissimilarity measure for accurate and
efficient image search. In CVPR, pages 1–8, 2007. 9

[27] Herve Jegou, Cordelia Schmid, Hedi Harzallah, and Jakob Verbeek. Accurate image search using the
contextual dissimilarity measure. TPAMI, 2008. 9

[28] Jaekyeom Kim, Hyoungseok Kim, and Gunhee Kim. Model-agnostic boundary-adversarial sampling for
test-time generalization in few-shot learning. In ECCV, 2020. 7

[29] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural network for
few-shot learning. In CVPR, 2019. 7, 9

[30] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning.
In CVPR, June 2020. 1, 2, 6, 9

[31] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE Workshop on 3D Representation and Recognition, 2013. 6, 8

[32] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URL: https://www. cs.
toronto. edu/kriz/cifar. html, 2009. 7

[33] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with differen-
tiable convex optimization. In CVPR, 2019. 7

10

[34] Chundi Liu, Guangwei Yu, Maksims Volkovs, Cheng Chang, Himanshu Rai, Junwei Ma, and Satya Krishna
Gorti. Guided similarity separation for image retrieval. In NeurIPS, 2019. 9

[35] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang. Learning
to propagate labels: Transductive propagation network for few-shot learning. In ICLR, 2019. 7, 9

[36] Yaoyao Liu, Bernt Schiele, and Qianru Sun. An ensemble of epoch-wise empirical bayes for few-shot
learning. In ECCV, 2020. 7, 8, 9

[37] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 8
[38] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner.

In ICLR, 2018. 7
[39] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No fuss

distance metric learning using proxies. In ICCV, pages 360–368, 2017. 9
[40] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In ECCV, 2020. 6
[41] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv, 2018. 9
[42] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree. In CVPR, 2006. 8
[43] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured

feature embedding. In CVPR, 2016. 9
[44] A. Oord, Y. Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. ArXiv, 2018.

4
[45] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive metric for

improved few-shot learning. In NeurIPS, 2018. 7
[46] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object retrieval with

large vocabularies and fast spatial matching. In CVPR, 2007. 8
[47] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric learning

without triplet sampling. In ICCV, 2019. 9
[48] Danfeng Qin, Stephan Gammeter, Lukas Bossard, Till Quack, and Luc Van Gool. Hello neighbor: Accurate

object retrieval with k-reciprocal nearest neighbors. In CVPR, 2011. 1, 3, 9
[49] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Revisiting oxford and

paris: Large-scale image retrieval benchmarking. In CVPR, 2018. 5, 6
[50] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning cnn image retrieval with no human

annotation. TPAMI, 2018. 1, 2, 6, 8, 9
[51] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo

Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised few-shot classification. In ICLR,
2018. 7

[52] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning with average
precision: Training image retrieval with a listwise loss. In ICCV, 2019. 8

[53] Pau Rodríguez, Issam Laradji, Alexandre Drouin, and Alexandre Lacoste. Embedding propagation:
Smoother manifold for few-shot classification. In ECCV, 2020. 7, 8, 9

[54] Sam Roweis, Geoffrey Hinton, and Ruslan Salakhutdinov. Neighbourhood component analysis. In NeurIPS,
2004. 9

[55] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and
Raia Hadsell. Meta-learning with latent embedding optimization. In ICLR, 2019. 7

[56] Jurgen Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn: The
meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987. 9

[57] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, 2015. 8

[58] Xiaohui Shen, Zhe Lin, Jonathan Brandt, Shai Avidan, and Ying Wu. Object retrieval and localization with
spatially-constrained similarity measure and k-nn re-ranking. In CVPR, 2012. 9

[59] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in videos.
In ICCV, 2003. 8

[60] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NeurIPS,
2017. 7, 9

[61] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In NeurIPS, 2016. 9
[62] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured

feature embedding. In CVPR, 2016. 2, 6
[63] Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing proxy

neighborhood component analysis. In ECCV, 2020. 1, 2, 6, 9
[64] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient

for fast stylization. In ECCV, 2016. 5
[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 9
[66] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot

learning. In NeurIPS, 2016. 5, 7, 8, 9
[67] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset.

Technical Report CNS-TR-2011-001, California Institute of Technology, 2011. 5, 6
[68] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and

Ying Wu. Learning fine-grained image similarity with deep ranking. In CVPR, 2014. 8
[69] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss with

general pair weighting for deep metric learning. In CVPR, 2019. 9

11

[70] Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, Romain Garnier, and Neil M Robertson. Ranked
list loss for deep metric learning. In CVPR, 2019. 9

[71] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten. Simpleshot: Revisiting
nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623, 2019. 1

[72] Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin nearest
neighbor classification. NeurIPS, 2005. 8

[73] Hong Xuan, Richard Souvenir, and Robert Pless. Deep randomized ensembles for metric learning. In
ECCV, 2018. 9

[74] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2017. 7, 8
[75] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-ranking person re-identification with k-

reciprocal encoding. In CVPR, 2017. 1, 2, 3, 5, 6, 7, 9
[76] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with

local and global consistency. NeurIPS, 2003. 9
[77] Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Schölkopf. Ranking on

data manifolds. NeurIPS, 2003. 9

12

