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ABSTRACT

Mammography is an X-ray-based imaging technique widely used for breast can-
cer screening and early-risk assessment. A large number of mammograms are
acquired in regular breast cancer screening programs. The assessment of mam-
mograms is a tedious task and may be difficult to accomplish due to a shortage of
expert radiologists in breast imaging. Artificial intelligence-powered algorithms,
especially deep learning, could assist radiologists by automating the assessment,
however, substantial trust needs to be established in incorporating such algorithms
in real-world settings. The evidential neural networks algorithm provides an inter-
pretable approach using Dempster-Shafter evidential theory that supports network
predictive confidence. Recent studies have suggested that multi-view analysis im-
proves the assessment of mammograms. In this study, we advance the multi-view
assessment of mammograms by using a deep evidential neural network to address
the following questions:

1. What is the effect of various pre-trained convolutional neural networks in
extracting features from mammograms?

2. Which fusion strategies work better for the multi-view assessment of mam-
mograms using a deep evidential learning framework?

The multi-view deep evidential neural network extracts features from each mam-
mogram’s view using a pre-trained convolutional neural network. The extracted
features are combined using Dempster-Shafer evidence theory for the following
two classification tasks, mammogram density assessment in BI-RADS categories
and mammogram finding as benign or malignant. We conducted extensive experi-
ments using two open-sourced digital mammogram datasets, VinDr-mammo, and
mini-DDSM, with 4,977 and 1,885 patients, each with four mammogram views,
respectively. The results suggest that the multi-view approach outperforms the
single-view by relative improvements of 2.99% and 2.64% for VinDr-mammo,
and 6.51% and 8.75% for mini-DDSM datasets, in terms of F1-score, in mammo-
gram density assessment and BI-RADS findings benign/malignant classification
tasks, respectively. Our results show that the multi-view assessment of mammo-
grams using a deep evidential fusion approach not only provides superior perfor-
mance than the single-view assessment but also enhances trust in incorporating
artificial intelligence-powered algorithms for the assessment of screening mam-
mograms.

1 INTRODUCTION

Breast cancer (BC) is the women’s most common and leading cancer type, with an estimated
290,560new cases in United States, 2022 (Siegel et al., 2022). Early detection of BC is critical
to lower the BC mortality rate and healthcare costs. Breast screening techniques, especially mam-
mography, are utilized for early BC detection. A typical mammogram consists of four views: left
craniocaudal (L-CC), right craniocaudal (R-CC), left mediolateral oblique (L-MLO), and right medi-
olateral oblique (R-MLO). In a standard screening process, a radiologist qualitatively assesses mam-
mograms and reports the findings according to the Breast Imaging Reporting and Data System (BI-
RADS) (D’Orsi et al., 2013). BI-RADS scoring is widely accepted to report mammogram density
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assessment and mammogram findings. The BI-RADS score contains seven assessment categories:
BI-RADS 0 (incomplete), BI-RADS 1 (negative), BI-RADS 2 (benign), BI-RADS 3 (probably be-
nign), BI-RADS 4 (suspicious for malignancy), BI-RADS 5 (highly suggestive of malignancy), and
BI-RADS 6 (known biopsy-proven malignancy). In addition to the BI-RADS score, radiologists re-
port the breast density, which is the relative amount of fibroglandular tissues within the breast area,
by examining the mammograms. The breast density assessment contains four categories, including
A (almost entirely fatty breast), B (scattered areas of fibroglandular density), C (heterogeneously
dense breast), and D (extremely dense) (D’Orsi et al., 2013). The European Commission Initia-
tive on Breast Cancer (ECIBC) strongly recommends organizing regular mammography screening
programs for the early detection of breast cancer in asymptomatic women. The assessment of the
enormous number of screening mammograms is challenging to accomplish due to the shortage of
expert breast imaging radiologists. Artificial intelligence (AI) approaches, specifically deep learning
(DL) methods, could assist radiologists by automating the assessment of screening mammograms.

Deep learning algorithms have been widely used for tasks, such as mass detection (Dhungel et al.,
2015), micro-classification (Wang et al., 2016), and breast density assessment (Shen et al., 2019)
using mammograms. Recent studies have suggested that multi-view-based approaches improve the
performance of such tasks (Wu et al., 2019; Khan et al., 2019; Geras et al., 2017; Li et al., 2020;
Seyyedi et al., 2020; Nguyen et al., 2022b). In general, multi-view approaches extract the imag-
ing features from all four mammogram views and combine them for various downstream tasks.
Feature extraction is the most crucial step; the behavior of the predictive models depends on the
extracted features. Pre-trained convolutional neural networks (CNNs), trained on Imagenet (Deng
et al., 2009), have been applied successfully to various image recognition tasks as feature extrac-
tors or as a backbone architecture for transfer learning (Penatti et al., 2015; Azizpour et al., 2015;
Tajbakhsh et al., 2016). However, a best-performing pre-trained model should be chosen from many
available models for each downstream task. Moreover in mammogram-based classification tasks,
the gap still exists in selecting the best multi-view fusion strategies, i.e., fusion at feature or decision
levels.

Incorporating multi-view fusion strategies for mammogram assessment in a radiology practice re-
quires trust. Developing trust-aware and robust models is crucial in the medical domain. Emerging
evidential deep learning (EDL) explores cutting-edge possibilities to develop trust-aware AI models.
Dempster-Shafter theory of evidence (DST) (Shafer, 1976) mathematically provides an end-to-end
interpretable approach to quantify the uncertainty in the model predictions. The Dirichlet distri-
bution generates the evidence from the extracted features, then the subjective logic (Jøsang, 2016)
formalizes the evidence to belief masses that support the model decision. Inspired by the EDL (Sen-
soy et al., 2018) and information fusion (Tong et al., 2021; Han et al., 2021) strategies, we develop
a trust-aware and robust model for the assessment of screening mammograms in the following two
image classification tasks, mammogram density assessment in terms of BI-RADS categories and
mammogram’s finding as benign or malignant classes. We conduct extensive experiments to inves-
tigate the effect of using various pre-trained models to extract mammogram features and compare
different evidential fusion strategies.

2 METHODOLOGY

2.1 PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) have been incorporated for various tasks in the medical
domain. The depth of the network plays a vital role in extracting high-, mid-, and low-level features
from the given input image. Increase in the depth of the CNNs poses a challenging to train the
models (He et al., 2016). Recently, CNNs pre-trained on ImageNet weights (Deng et al., 2009)
have been widely utilized to extract the input features. Transfer learning and fine-tuning techniques
work well in the medical domain (Raghu et al., 2019); however, there is inconsistency in adopting
pre-trained CNN models for mammogram classification task (Wang et al., 2020). In this study,
we investigate different pre-trained CNN models for two downstream mammogram classification
tasks, namely mammogram density assessment and mammogram’s BI-RADS findings as benign or
malignant. In this study, we selected five pre-trained CNN architectures, including VGG (Simonyan
& Zisserman, 2014), Resnet (He et al., 2016), Densenet (Huang et al., 2017), Inceptionnet (Szegedy
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et al., 2016), and Efficientnet (Tan & Le, 2019), to extract mammogram features. We investigated
29 pre-trained CNN variants from these five CNN architectures.

2.2 DEMPESTER-SHAFTER EVIDENCE THEORY

Convolutional neural networks generally use the SoftMax activation function (Szandała, 2021) at the
output layer to estimate the class probabilities. However, the SoftMax predictions lead to overconfi-
dence (Moon et al., 2020). To quantify the uncertainty in the output predictions, different techniques,
including Monte-Carlo dropout regularization (Gal & Ghahramani, 2016), deep ensemble networks
(Rahaman et al., 2021), and test-time augmentations (Wang et al., 2019), have been proposed. These
techniques require additional sampling processes and are computationally expensive (Sensoy et al.,
2018). In contrast to the existing approaches, DST provides an interpretable approach to quantify
the evidence and the total predictive uncertainty within the same neural network model. The ex-
tracted features at the CNN output layer are sampled using Dirichlet distribution with concentration
parameter α. The subjective logic then formalizes the distribution as belief masses based on the
evidence of each classification category and an overall uncertainty associated with the network. For
the classification task with K mutually exclusive classes, the acquired subjective belief masses are
all non-negative, and their sum is equal to 1, defining as below (Han et al., 2021):

u+

K∑
k

bk = 1 (1)

where, u ≥ 0 and bk ≥ 0 denote the overall uncertainty and belief mass of the kth class, respectively.

The acquired associated evidence ek from the input to the classification support, is closely related
to the expected concentration parameters αk , specifically related as ek = αk − 1. Accordingly, the
belief masses are computed as (Han et al., 2021):

bk =
ek
S
, u =

K

S
(2)

Where S =
∑K

k=1(ek + 1) =
∑K

k=1 αk is known as the Dirichlet strength. From eq. 2, the more
evidence obtained for the kth class, the higher the assigned belief mass will be.

Mathematical intuition behind the EDL and the end-to-end trainable loss function details are pro-
vided in appendix A.

2.3 EVIDENTIAL FUSION STRATEGIES

Recent studies suggested that combining multiple mammogram views enhances the model predic-
tion accuracy (Khan et al., 2019). In general, the fusion strategies include two categories (Ilhan et al.,
2022); feature-level fusion, where the mammogram features from each view are concatenated before
the classification and late fusion, where the mammogram-view classification network decision are
combined. In this study, we investigated feature-level and late-fusion strategies at the mammogram
and view-specific levels. Figure 1 illustrates various fusion strategies considered in this study. In
the feature-level fusion strategies, the extracted mammogram features from the pre-trained CNN
model are concatenated and then the combined features pass through the evidential layer. In late-
fusion strategy, the extracted mammogram features are first passed through the evidential layers and
then belief mass of each mammogram are combined using Dempster’s combination rule (Han et al.,
2021):

The investigated evidential fusion strategies are:

1. Feature-level evidential fusion (FLEF): The mammogram features of all the four-view are
extracted independently using a pre-trained CNN and then concatenated. The concatenated
features are passed through the evidential layer consisting of variational Dirichlet distribu-
tion and subjective belief mass of each category.

2. View-specific feature-level evidential fusion (VS-FLEF): The mammogram features of the
right and left side are concatenated, and then the combined view-specific features are passed
through the evidential layers. The view-specific subjective belief masses are combined
using the Dempster’s combination rule.
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Figure 1: Different evidential fusion strategies considered in this study. The sub-figures A and
B represent mammogram feature-level, and late evidential fusion strategies, and the sub-figures
C and D represent the view-specific mammogram feature-level and view-specific late evidential
fusion strategies. The features extracted from the pre-trained CNN models are concatenated in the
feature-level fusion strategies, followed by evidential learning. In late fusion strategies, the extracted
mammogram features are passed through the evidential layer, and then the evidences are combined
using Dempster’s combination rule.

3. Late evidential fusion (LEF): The extracted mammogram features of each view are inde-
pendently passed through the evidential layers. Then the subjective belief masses of each
view are combined using the Dempster’s combination rule.

4. View-specific late evidential fusion (VS-LEF): The extracted mammogram features of each
view are independently passed through the evidential layers. The subjective belief masses
of each side are combined, followed by combining the view-specific subjective belief
masses using the Dempster’s combination rule.
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3 DATASETS

We used two open-sourced digital mammogram datasets, namely VinDr-mammo (Nguyen et al.,
2022a) and mini-DDSM (Lekamlage et al., 2020), with 5,000 and 1,975 patients, respectively. The
datasets are provided with BI-RADS scoring and density annotations. For simplicity, based on the
supervision of an expert radiologist, we categorized BI-RADS density scores into two separate cat-
egories: BI-RADS 2 and 3 as benign and BI-RADS 5 and 6 as malignant. Table 1 shows the
distribution of patients in VinDr-mammo and mini-DDSM datasets for mammogram density assess-
ment in terms of BI-RADS categories and mammogram findings as benign or malignant classes.
Note that we only considered the patient’s data having all four views of the mammogram. For the
mammogram BI-RADS findings task, the number of patients is less than the density assessment
task, as we considered only the benign and malignant cases.

Table 1: Distribution of mammograms in the VinDr-mammo and mini-DDSM datasets for the den-
sity assessment and BI-RADS findings tasks.

Dataset Mammogram density assessment
Density A Density B Density C Density D

VinDr-mammo (4977) 24 477 3807 669
mini-DDSM (1885) 264 710 568 343

Dataset Mammogram BI-RADS findings
Benign Malignant

VinDr-mammo (4263) 3178 1085
mini-DDSM(1350) 671 679

3.1 DATA PRE-PROCESSING

Most mammograms have a black background with view labels. We pre-processed the mammograms
using a minimum bounding box which captures only the mammogram and then, normalized each
mammogram using a min-max scaler. The presence of pectoral muscle in the MLO-view mammo-
grams will disrupt mammogram diagnosis and may also result in a false positive diagnosis (Cardoso
et al., 2010). Thus, detecting the pectoral muscle and its removal is essential for mammogram diag-
nosis. Therefore, we employed a breast segmentation algorithm proposed by Gudhe et al. (2022) to
segment the pectoral muscle from mammograms. The pre-trained CNN models used in this study
have different image resolutions. We employed the default image resolution of each pre-trained
CNN architecture and resized it using the bicubic interpolation technique (Han, 2013). Figure 2
illustrates the pre-processing steps for a randomly-selected MLO-view mammogram from the mini-
DDSM dataset.

Figure 2: Pre-processing steps for a randomly selected mammogram from the mini-DDSM dataset.
Sub-figure A represents the original mammogram. The red bounding box in sub-figure B indicates
a minimum bounding box approach which captures the mammogram by excluding the noisy labels.
Finally, sub-figure C represents the segmented breast region by delineating the pectoral muscle.

5



Under review as a conference paper at ICLR 2023

4 IMPLEMENTATION DETAILS AND PERFORMANCE EVALUATION

We randomly split individual datasets into 60:20:20 subsets for training, validation, and testing,
using a patient-wise splitting protocol, to avoid data leakage issues. We used the training subset
to train the models, the validation subset to optimize the hyper-parameters, and the test set for the
final model evaluation. VinDr-mammo and mini-DDSM datasets induce class imbalance, and we
employed a weighted random sampling approach to handle the class imbalance. (Abd Elrahman &
Abraham, 2013).

Experiments were performed on a machine equipped with an Nvidia Tesla V100 16GB graphic card
on an Intel Xeon processor provided by the IT Service Centre for Science (CSC) Finland (csc), and
in python 3.8 using PyTorch 1.12 (Paszke et al., 2019), as the DL framework enabled with cuda
11.3. We trained the models for 100 epochs using an Adam optimizer with an initial learning rate
of 1e-5 at a mini-batch size of 16. The pre-trained CNN classification layer was fine-tuned based
on each task, using cross-entropy as the loss function. We evaluated the performance of the trained
models on individual test sets with precision, recall, and F1-score, as the evaluation metrics.

5 RESULTS

5.1 PRE-TRAINED CNN MODELS GIVE INCONSISTENT PERFORMANCE FOR DOWNSTREAM
CLASSIFICATION TASKS

We investigated different variants (in terms of depth) of five CNN models for mammogram feature
extraction. We used these extracted features to train the models for mammogram density assessment
and BI-RADS findings classification tasks. Table 2 reveals the pre-trained models’ performances for
the two downstream classification tasks on the test sets of VinDr-mammo and mini-DDSM datasets
with the best numbers bolded for each task. Note that we have investigated different versions of
each pre-trained models and only reported the version with higher performance (See B for all the
pre-trained CNN model performances for the two downstream tasks). For the density assessment
task, Inception Resnet-v2 has shown the highest accuracy of 67% and 68% for the VinDr-mammo
and mini-DDSM test sets in terms of F1-score, respectively. For the BI-RADS findings task, the
VGG13 and Inception Resnet-v2 models outperform other model in the VinDr-mammo dataset,
while Densenet-121 gives the best performance in the mini-DDSM dataset. These results indicate
that the pre-trained models achieve inconsistent performances in the two downstream classification
tasks for the mammogram datasets. From this experiment, we select Inception ResNet-v2 as the
backbone architecture to extract mammogram features independently from each view for different
fusion strategies.

5.2 DEEP EVIDENTIAL FUSION NETWORK OUTPERFORMS THE SINGLE-VIEW ASSESSMENT
OF MAMMOGRAMS

Table 3 illustrates the results of the two downstream classification tasks with different fusion strate-
gies. The performance of the multi-view evidential fusion strategy (last column of Table 3) has
surpassed the single-view for mammogram density assessment and BI-RADS findings tasks in both
datasets.

The View-specific late-evidential fusion strategy (VS-LEF, Figure 1 D) outperforms other strategies
in both tasks in the mammogram datasets. Considering the multi-view assessment, the VS-LEF
strategy shows superior performance than the VS-FLEF strategy (Figure 1 C) by relative F1-score
improvements of 7.5% and 3.19% in the VinDr-mammo test set for the mammogram density as-
sessment and BI-RADS findings classification tasks, respectively. Similarly, the VS-LEF strategy
outperforms the VS-FLEF strategy by relative F1-score improvements of 21.62% and 4.48% in the
mini-DDSM test set for the mammogram density assessment and BI-RADS findings classification
tasks, respectively.

The VS-LEF similarly outperforms the LEF strategy (Figure 1 B) by relative F1-score improvements
of 1.18% and 4.3% in the VinDr-mammo tests set; and with relative F1-score improvements of
9.75% and 2.35% in the mini-DDSM test set, for mammogram density assessment and BI-RADS
findings classification tasks, respectively.
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Table 2: Pre-trained CNN model performances on the test sets of the VinDr-mammo and mini-
DDSM datasets for density assessment and BI-RADS finding mammogram tasks.

Task Dataset Pre-trained models Precision Recall F1-score

Density assessment

VinDr-mammo

VGG13 0.60 0.60 0.60
Resnet-18 0.64 0.63 0.63

Inception v3 0.65 0.64 0.64
Inception Resnet-v2 0.67 0.67 0.67

Densenet-121 0.65 0.65 0.65
Efficientnet-B1 0.62 0.61 0.61

mini-DDSM

VGG13 0.57 0.67 0.55
Resnet-18 0.59 0.68 0.58

Inception v3 0.58 0.65 0.63
Inception Resnet-v2 0.68 0.68 0.68

Densenet-121 0.66 0.67 0.67
Efficientnet-B1 0.63 0.61 0.61

BI-RADS findings

VinDr-mammo

VGG13 0.93 0.95 0.94
Resnet-18 0.93 0.93 0.93

Inception v3 0.90 0.91 0.91
Inception Resnet-v2 0.92 0.92 0.94

DenseNet-121 0.92 0.90 0.91
Efficientnet-B1 0.92 0.92 0.92

mini-DDSM

VGG13 0.56 0.54 0.50
Resnet-18 0.58 0.58 0.58

Inception v3 0.61 0.58 0.54
Inception Resnet-v2 0.59 0.59 0.59

Densenet-121 0.62 0.67 0.68
Efficientnet-B1 0.65 0.65 0.65

The VS-LEF outperforms the FLEF strategy (Figure 1 A) by relative F1-score improvements of
6.17% and 2.10% in the VinDr-mammo tests set; and with relative F1-score improvements of
45.16% and 24.28% in the mini-DDSM test set, for mammogram density assessment and BI-RADS
findings classification tasks, respectively.

Table 3: The performance evaluation of the single-view and multi-view fusion strategies on the test
sets of the VinDr-mammo and mini-DDSM datasets, considering all the evidential fusion strategies:
FLEF: feature-level evidential fusion; VS-FLEF: view-specific feature-level evidential fusion; LEF:
late-evidential fusion; VS-LEF: view-specific late-evidential fusion.

Task Dataset Fusion strategy L-CC L-MLO R-CC R-MLO Multi
view

Density

assessment

VinDr-mammo

FLEF 0.72 0.72 0.72 0.71 0.81
VS-FLEF 0.79 0.82 0.87 0.83 0.80

LEF 0.81 0.82 0.81 0.82 0.85
VS-LEF 0.83 0.84 0.83 0.84 0.86

mini-DDSM

FLEF 0.61 0.61 0.54 0.54 0.62
VS-FLEF 0.70 0.70 0.76 0.76 0.74

LEF 0.85 0.85 0.80 0.80 0.82
VS-LEF 0.84 0.84 0.85 0.85 0.90

BI-RADS

findings

VinDr-mammo

FLEF 0.93 0.93 0.93 0.93 0.95
VS-FLEF 0.91 0.91 0.91 0.91 0.94

LEF 0.94 0.93 0.91 0.92 0.93
VS-LEF 0.96 0.97 0.93 0.92 0.97

mini-DDSM

FLEF 0.73 0.73 0.70 0.70 0.70
VS-FLEF 0.81 0.81 0.87 0.87 0.83

LEF 0.84 0.84 0.81 0.81 0.85
VS-LEF 0.82 0.73 0.83 0.82 0.87
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6 DISCUSSION AND CONCLUSION

In this study, we have shown that the multi-view evidential deep fusion learning is a promising ap-
proach for the assessment of mammograms, which could be efficiently deployed in a clinical setting.
We investigated different pre-trained CNN models and multi-view fusion strategies using evidential
deep learning approach on two mammogram classification tasks, namely mammograms density as-
sessment and BI-RADS findings. We empirically demonstrated our findings using VinDr-mammo
and mini-DDSM datasets respectively with 5,000 and 1,975 patients with all the four mammogram
views available.

The pre-trained CNN models showed inconsistent performances on each task. Appendix B demon-
strates the performance of all the pre-trained CNN model variants considered in this study for den-
sity assessment and BI-RADS findings tasks. The Inception Resnet-v2 pre-trained model has shown
consistent performance for the two datasets and in the two tasks. We additionally interpreted the
pre-trained CNN models’ classification confidence by visualizing the gradients of the output layer
using the saliency maps, illustrated in Figures 4 and 5. Interestingly, the networks with higher accu-
racies in BI-RADS findings, i.e., the Resnet-101 and Resnet-152, have failed to provide confidence
that influences the class probability score for this example. These networks have focused more on
the background pixels at the output layer suggesting that intermediate layers might have extracted
features, which have been more relevant for the task. Note that transfer learning gap still persists in
the medical image domain, specifically in the mammogram-based tasks.

In summary, our experimental results in the two downstream mammogram classification tasks have
shown that i) pre-trained CNN models achieve inconsistent performances, ii) the multi-view fusion
outperforms the single-view analysis, and iii) the performance of the late-evidential fusion network
is superior to the feature-level evidential fusion network.

In future study, we will focus on the following research paths for further improvement; extensive
hyper-parameter tuning of the pre-trained CNN models to adapt to the learning of each task, visu-
alizing the intermediate layers’ gradients to interpret the model decision at each layer, and finally
tuning the evidential loss function to address the class imbalance.
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A MATHEMATICAL DESCRIPTION OF THE EVIDENTIAL DEEP LEARNING AND
THE TRAINING LOSS FUNCTION

Consider the classification task with K mutually exclusive classes, the features that are extracted
from the pretrained models are viewed as a sample of Dirichlet distribution with concentration pa-
rameters α = [α1, α2, . . . , αK ] , the probability density function on the vector is given by:

Dir(p|α) = 1

B(α)

K∏
k=1

pαk−1
k (3)

where, B(α) is the K-dimensional multinomial beta function.

After obtaining the Dirichlet distribution, the subjective logic assigns belief mass {bk}Kk to each
class and an overall uncertainty mass u for the whole classes based on the Dirichlet distribution.
The k + 1 belief masses are all non-negative and their sum is equal to 1:

u+

K∑
k

bk = 1 (4)

where, u ≥ 0 and bk ≥ 0 denote the overall uncertainty and belief mass of the kth class, respectively.

The associated evidence ek from the input to the classification support, is closely related to the
expected concentration parameters αk , specifically related as ek = αk − 1. Accordingly, the belief
masses are computed as

bk =
ek
S
, u =

K

S
(5)

where, S =
∑K

k=1(ek + 1) =
∑K

k=1 αk is known as Dirichlet strength. From eq. 5, the more
evidence obtained from the kth class, the higher the assigned belief mass is.

A.1 DEMPSTER’S COMBINATION RULE

We employed reduced Dempster’s combination rule [15] to combine the evidences from different
views. Consider, four mammogram views forK mutually exclusive classes, the reduced Dempster’s
rule of combination is defined as:

M⊕ = ⊕V
v=1M

V (6)

where, Mv = {bv1, bv2, . . . , bvk, uv} is the belief mass of the view v. specifically, the fusion of
two belief masses M1 = {b11, b12, . . . , b1k, u1} and M2 = {b21, b22, . . . , b2k, u2} can be formulated as
follows:

M12 =M1 ⊕M2 = {b121 , b122 , . . . , b12k , u12} (7)

b121 = 1
1−C (b1kb

2
k + b

1
ku

2+ b2ku
1) and u12 = 1

1−Cu
1u2 where, C =

∑
i ̸=j b

1
i b

2
j is the measure of the

amount of relative conflict between the two masses. After obtaining the combined belief mass M12,
a SoftPlus activation layer [19] is used to output the network class probabilities.

A.2 END TO END MULTI-VIEW FUSION LEARNING FUNCTION

In general, cross-entropy loss function is employed to train a neural network classifier, which is
defined as:

Lce = −
K∑
j=1

yij log(pij) (8)
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where, pij is the predicted probability of ith sample for class j. The conventional neural networks
can be transformed into evidential neural network by replacing the SoftMax activation with SoftPlus.
The output of the ith sample of the SoftPlus activation is parameterized by αi of the Dirichlet dis-
tribution. From the multinomial opinions D(p|α), we get the modified cross-entropy loss function
for the evidential neural networks:

Lmce =

∫
[

K∑
j=1

−yij log(pij)]
1

B(αi)

K∏
j=1

p
αij−1
ij d(Pi =

K
j=1 yij(ψ(Sj)− ψ(αij))] (9)

where, ψ(.) is the digamma function. To ensure that the correct classified label generates more
evidence while the incorrect classified label, low evidence, Kullback libeler divergence term is added
as a regularization term to the eq. 9. Thus, the final loss function becomes:

L(αi) = Lmce + λtKL[D(Pi|αi)||D(pi|1)] (10)

The KL is defined as:
KL[D(Pi|αi)||D(pi|1)] = log(

Γ(
∑K

k=1 α̃ik)

Γ(K)
∏

k=1)KΓ(α̃ik)
) +

∑
k=1(α̃jk − 1)[ψ(α̃jk)− ψ(

∑K
j=1(α̃ij))]

where, α̃i = yi+(1−yi)
⊙
αi is the adjusted Dirichlet distribution to avoid penalizing the evidence,

and Γ(.) is the gamma function.

The overall loss multi-view evidential loss function is:

Loverall =

N∑
i=1

[L(αi) +

V∑
v=1

L(αv
i )] (11)

B INCONSISTENT PERFORMANCE OF THE PRE-TRAINED CNN MODELS

Figure 3 illustrates the performance of various pre-trained CNN models for mammogram density
assessment and BI-RADS findings classification tasks using mini-DDSM and VinDr-mammo valida-
tion sets. For the density assessment task, the VGG19 performs better with 81% in terms of F1-score
in the VinDr-mammo evaluation set, while VGG16 exhibits better performance with an F1-score of
70% in the mini-DDSM evaluation set. For the BI-RADS findings task, Inception Resnet v2 demon-
strates excellent performance with an F1-score of 71% in the VinDr-mammo evaluation set, while
Resnet-152 exhibits better performance with an F1-score of 68% in the mini-DDSM evaluation set.

We interpreted the CNN model’s classification confidence by visualizing the gradients using saliency
maps. Figure ?? illustrates the saliency maps of various pre-trained CNN models for BI-RADS find-
ings tasks on a randomly selected mammogram from the VinDr-mammo evaluation set. Figure 4
shows the benign category mammogram, and the saliency maps demonstrate the necessary pixels
that influence the network confidence prediction for each class probability score. The results demon-
strate that most CNN models focus on the foreground mammogram pixels. However, the saliency
visualizations are not sometimes in agreement with the F1-score values. For instance, in Figure 5,
the Inception Resnet v2 shows the best performance, however, the saliency visualizations show that
the model focuses mostly on the background pixels.

Incorporating the pre-trained CNN models as backbone architecture to extract features is challeng-
ing in the medical domain. In future work, we will explore more the pre-trained CNN models
by extensive hyper-parameter tuning, loss function generalizations, and by measuring the effect of
dataset sizes on the extracted features.
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Figure 3: Extensive evaluation of the pre-trained CNN models for the density assessment and BI-
RADS findings classification tasks.
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Figure 4: A random benign mammogram from the VinDr-mammo test set. The saliency map vi-
sualization indicates the model prediction confidence level. saliency maps show where the model
focuses to come up with a decision.
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Figure 5: A random benign mammogram from the VinDr-mammo test set. The saliency map vi-
sualization indicates the model prediction confidence level. saliency maps show where the model
focuses to come up with a decision.
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