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Abstract001

Reasoning large language models (RLLMs),002
such as OpenAI-O3 and DeepSeek-R1, have re-003
cently demonstrated remarkable capabilities by004
performing structured and multi-step reasoning.005
However, recent studies reveal that RLLMs of-006
ten suffer from overthinking, i.e., producing un-007
necessarily lengthy reasoning chains even for008
simple questions, leading to excessive token009
consumption and computational inefficiency.010
Interestingly, we observe that when process-011
ing multiple questions in batch mode, RLLMs012
exhibit more resource-efficient behavior by dy-013
namically compressing reasoning steps for eas-014
ier problems, due to implicit resource compe-015
tition. Inspired by this, we propose Dynamic016
Reasoning Quota Allocation (DRQA), a novel017
method that transfers the benefits of resource018
competition from batch processing to single-019
question inference. Specifically, DRQA lever-020
ages batch-generated preference data and re-021
inforcement learning to train the model to al-022
locate reasoning resources adaptively. By en-023
couraging the model to internalize a preference024
for responses that are both accurate and con-025
cise, DRQA enables it to generate concise an-026
swers for simple questions while retaining suf-027
ficient reasoning depth for more challenging028
ones. Extensive experiments on a wide range029
of mathematical and scientific reasoning bench-030
marks demonstrate that DRQA significantly031
reduces token usage while maintaining, and in032
many cases improving, answer accuracy. By ef-033
fectively mitigating the overthinking problem,034
DRQA offers a promising direction for more035
efficient and scalable deployment of RLLMs,036
and we hope it inspires further exploration into037
fine-grained control of reasoning behaviors.038

1 Introduction039

Reasoning large language models (RLLMs),040

such as OpenAI-O3 (OpenAI, 2025) and041

DeepSeek-R1 (DeepSeek-AI et al., 2025), have042

recently showcased remarkable capabilities in com-043

plex problem solving and decision-making, achiev- 044

ing state-of-the-art performance across a wide 045

range of tasks. However, recent studies have re- 046

vealed that LLMs often generate unnecessarily 047

lengthy reasoning chains, even for simple ques- 048

tions like “2+3=?” (Sui et al., 2025; Chen et al., 049

2025). While extended reasoning can improve ac- 050

curacy on complex tasks, this tendency to overthink 051

leads to excessive token usage and growing com- 052

putational and economic costs, posing significant 053

challenges for the scalable and practical deploy- 054

ment of RLLMs in real-world scenarios. 055

Interestingly, we uncover an emergent efficiency 056

behavior during batch inference: when multiple 057

questions are processed together, the total output 058

length is significantly shorter than the combined 059

length of the responses generated for each ques- 060

tion individually. For example, as shown in Fig- 061

ure 1, answering three questions together yields 062

only 648 tokens in total, compared to 1205 tokens 063

when answered separately. This suggests that un- 064

der a shared context window, questions implicitly 065

compete for a global reasoning quota, prompting 066

the model to prioritize essential logic and suppress 067

redundancy, an effect we refer to as “resource com- 068

petition pressure”. 069

This observation raises a core research question: 070

can the benefits of resource competition in batch 071

inference be transferred to single-question settings? 072

If so, RLLMs could dynamically adjust their rea- 073

soning behaviors, offering concise responses for 074

simple questions while allocating more resources 075

to more complex ones. To this end, we introduce 076

Dynamic Reasoning Quota Allocation (DRQA), 077

a novel approach that brings the advantages of 078

resource competition into single-question infer- 079

ence, enabling more efficient and adaptive reason- 080

ing. Specifically, we first collect diverse reasoning 081

chains under batch inference settings and analyze 082

how the model automatically allocates the length of 083

reasoning chains to problems of varying difficulty 084
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Divide 12 pencils equally among 3 friends. How many does each get?
<think> I have this problem: "Divide 12 pencils equally among 3 friends. How many does 
each get?" It seems straightforward, but I should make sure I understand it correctly. 
There are 12 pencils and 3 friends, and I need to split them equally.To find out how many 
each friend gets, I divide the total number of pencils by the number of friends. So, that 
would be 12 divided by 3.Let me do the division: 12 ÷ 3.  ...</think> 
To divide 12 pencils equally among 3 friends, divide the total number of pencils by the 
number of friends:12 ÷ 3 = 4.
Thus, each friend gets 4 pencils.
This can be verified by distributing the pencils:
- After the first round, each friend has 1 pencil, totaling 3 pencils distributed.
- After the second round, each friend has 2 pencils, totaling 6 pencils.
- After the third round, each friend has 3 pencils, totaling 9 pencils.
- After the fourth round, each friend has 4 pencils, totaling 12 pencils.
Since all pencils are distributed equally, each friend receives 4 pencils.

Question1 : 488 tokens

What is 5+8?
<think>Hmm, the user is asking what 5+8 is. This seems like a very basic arithmetic 
question - almost too simple.I wonder if this is a test of my capabilities? ... </think> 
The sum of 5 and 8 is 13.You can calculate it as follows:
5 + 8 = 13

Question2 : 260 tokens

A rectangle is 8 cm long and 5 cm wide. What is its area?
<think> I have a rectangle that's 8 cm long and 5 cm wide, and I need to find its area. 
The area of a rectangle is calculated by multiplying the length by the width. So, in this 
case, that would be 8 cm times 5 cm.Let me do the multiplication: 8 times 5 is 40. Since 
it's centimeters, the area should be in square centimeters. So, 40 square centimeters.I 
should write it properly. The area is 40 cm². Yeah, that makes sense.Just to be thorough, 
let me think about what area means. It's the space inside the...</think> 
The area of a rectangle is calculated by multiplying its length by its width.
Given:
Length = 8 cm
Width = 5 cm
Area = Length × Width
Area = 8 cm × 5 cm = 40 cm²
Thus, the area of the rectangle is 40 cm².

Question3 : 457 tokens

1.Divide 12 pencils equally among 3 friends. How many does each get?
2.What is 5+8?
3.A rectangle is 8 cm long and 5 cm wide. What is its area?
<think>
I have three questions to answer. Let's take them one at a time.First question: Divide 
12 pencils equally among 3 friends. How many does each get?This is straightforward 
division. I have 12 pencils and 3 friends, so I need to split 12 into 3 equal parts. That 
means dividing 12 by 3. What's 12 divided by 3? I know that 3 times 4 is 12, so each 
friend gets 4 pencils. Let me confirm: Friend 1 gets 4, friend 2 gets 4, friend 3 gets 4, 
total 12. Yes, that makes sense.Answer to question 1: Each friend gets 4 
pencils.Second question: What is 5 + 8?This is simple addition. 5 plus 8. I can think of 
it as 5 + 5 is 10, plus 3 more is 13, but that might be confusing. Better to just add: 5 
and 8, that's 13. Let me count: 5, then 6,7,8,9,10,11,12,13. No, starting from 5: adding 
8 means 5 + 8 = 13. Or, I know that 5 + 8 is the same as 8 + 5, and 8 + 5 is also 13. 
Yes, definitely 13.Answer to question 2: 13Third question: A rectangle is 8 cm long and 
5 cm wide. What is its area?The area of a rectangle is found by multiplying the length 
by the width. So, length is 8 cm, width is 5 cm. Area = length × width. Therefore, area 
= 8 cm × 5 cm.What's 8 times 5? That's 40. And since it's area, it should be in square 
centimeters. So, 40 square centimeters.Answer to question 3: 40 cm² or 40 square 
centimeters.Now, let me write the answers clearly.For question 1: Each gets 4 
pencils.For question 2: 13For question 3: 40 cm²I think that's it. The questions seem 
designed for basic math practice, so I shouldn't overcomplicate things. </think>
Here are the answers to your questions:
1. To divide 12 pencils equally among 3 friends, each friend gets:
12 ÷ 3 = 4 pencils.
2. The sum of 5 and 8 is:
5 + 8 = 13.
3. The area of a rectangle with a length of 8 cm and width of 5 cm is calculated as 
length × width:
8 cm × 5 cm = 40 cm² (or 40 square centimeters).

Batch Questions : 648 tokens

1205 tokens

648 tokens

Figure 1: Comparison between batch inference and single-question inference using Deepseek-R1. Answering three
questions together results in significantly fewer tokens than answering each question individually.

in the presence of resource competition. We then085

construct a preference dataset and introduce a rein-086

forcement learning objective that enables the model087

to distinguish and learn the advantages of “concise088

and accurate” reasoning chains over those that are089

“verbose or incorrect”. By indirectly encouraging090

the model to favor the “concise and accurate” pat-091

terns that emerge from batch inference, we enhance092

its overall reasoning capabilities.093

We evaluate the effectiveness of DRQA across094

a diverse set of reasoning benchmarks, in-095

cluding GSM8K (Cobbe et al., 2021), MATH-096

500 (Hendrycks et al., 2021), AIME 2024 and097

2025 (MAA Committees), AMC (AI-MO, 2024),098

and GPQA-Diamond (Rein et al., 2023). Exper-099

imental results show that DRQA reduces token100

usage by over 30% while consistently maintaining101

or improving answer accuracy, offering an effective102

and scalable solution to the overthinking problem.103

In summary, our main contributions are:104

• To the best of our knowledge, we for the first105

time systematically investigate how “resource106

competition pressure” can enhance the reasoning107

efficiency of RLLMs during batch inference.108

• We propose DRQA, a novel method that transfers109

this efficiency mechanism to single-question in-110

ference by leveraging batch-generated preference111

data and reinforcement learning. This enables 112

the model to generate concise answers for simple 113

questions while maintaining deep reasoning for 114

complex ones. 115

• With extensive experiments, we demonstrate the 116

effectiveness of DRQA compared to existing 117

ones and analyze the results thoroughly. 118

2 Resource Competition During Batch 119

Inference 120

Batch Inference Encourages Efficient Reason- 121

ing. As discussed in the introduction, a major 122

challenge for RLLMs is their tendency to overthink, 123

producing unnecessarily long reasoning chains 124

even for simple questions. To investigate whether 125

batch inference can encourage more efficient rea- 126

soning, we conduct a series of controlled experi- 127

ments. Specifically, we randomly select 500 sam- 128

ples from the DeepScaleR dataset (Luo et al., 129

2025c) and evaluate several mainstream LLMs 130

under two settings: (i) querying one question at 131

a time (Vanilla), and (ii) querying two questions 132

per prompt (Batch-2). As shown in Table 1, mod- 133

els including DeepSeek-R1 (DeepSeek-AI et al., 134

2025), Qwen3-32B (think) (Yang et al., 2025a), 135

and Doubao-Seed-1.6 (Seed, 2025) consistently 136

generate shorter outputs in the ‘Batch-2’ setting, 137
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Model Vanilla Batch-2

Deepseek-R1 5640.4 4035.2
Qwen3-32B (think) 7761.6 5274.7
Doubao-Seed-1.6 5288.1 3898.2

Table 1: Comparison of average output token lengths
across different models under the ‘Vanilla’ and ‘Batch-
2’ settings.
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Figure 2: Impact of batch size on output length and
accuracy using DeepSeek-R1.

suggesting that batch inference naturally promotes138

more concise reasoning and that this effect general-139

izes well across different model architectures.140

Scaling Up Batch Size Further Enhances Effi-141

ciency. To further analyze the effect, we vary the142

batch size using DeepSeek-R1 as a case study, test-143

ing batches of 2, 3, 5, 10 and 15 questions. As144

shown in Figure 2, increasing the batch size leads145

to a continuous and substantial reduction in the146

average output length per question. Notably, this147

compression is achieved with only minimal degra-148

dation in answer accuracy, indicating that when149

more questions are packed into a single context150

window, the model tends to prioritize conciseness,151

allocating fewer tokens to simpler problems while152

preserving reasoning quality for more challenging153

ones. We refer to this emergent behavior as re-154

source competition pressure.155

These findings provide compelling empirical ev-156

idence that RLLMs are capable of implicit reason-157

ing compression when facing context constraints.158

The behavior of allocating reasoning resources159

based on task complexity, without any explicit in-160

struction, points to a promising direction for mit-161

igating the overthinking problem commonly ob-162

served in single-question inference. Building on163

this insight, our work is driven by a central re- 164

search question: can we transfer the benefits of re- 165

source competition from batch inference to single- 166

question settings? If so, models could learn to 167

reason adaptively, producing concise answers for 168

simple queries while maintaining sufficient reason- 169

ing depth for more complex ones. To this end, we 170

introduce Dynamic Reasoning Quota Allocation 171

(DRQA), detailed in the following section. 172

3 Methodology 173

Our goal is to enable RLLMs to assess ques- 174

tion complexity and allocate reasoning resources 175

adaptively, even when processing a single query. 176

Ideally, the model should generate short responses 177

for simple problems while preserving sufficient rea- 178

soning depth for more challenging ones, thereby 179

improving inference efficiency without compromis- 180

ing answer accuracy. A key challenge in realizing 181

this capability lies in how to effectively transfer 182

“resource competition pressure” from batch infer- 183

ence to single-question settings. We first explore a 184

straightforward solution via supervised fine-tuning 185

(SFT) using batch-generated data. However, this 186

approach revealed inherent limitations in teach- 187

ing the model to internalize conciseness as a qual- 188

ity criterion. Inspired by recent advancements in 189

Reinforcement Learning with Verifiable Rewards 190

(RLVR) (Lambert et al., 2025; DeepSeek-AI et al., 191

2025), we introduce Dynamic Reasoning Quota Al- 192

location (DRQA), a reinforcement learning frame- 193

work that explicitly encourages reasoning that is 194

both accurate and concise. By optimizing an in- 195

trinsic reward aligned with these dual objectives, 196

DRQA guides models to dynamically allocate rea- 197

soning resources, enabling more efficient and adap- 198

tive inference. 199

3.1 Supervised Fine-Tuning with Batch Data 200

Our initial approach to transferring the bene- 201

fits of resource competition into single-question 202

inference is based on imitation learning, where we 203

apply supervised fine-tuning (SFT) to mimic the 204

efficient reasoning patterns exhibited by models 205

during batch inference. 206

Method We use DeepSeek-R1 (DeepSeek-AI 207

et al., 2025) to perform batch inference over mul- 208

tiple questions sampled from DeepScaleR (Luo 209

et al., 2025c) and collect the generated responses, 210

which are consistently more concise than those 211

from single-question inference. Based on these re- 212
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Figure 3: The pipeline of Dynamic Reasoning Quota Allocation (DRQA). Batched questions are input to LLM,
producing reasoning chains labeled as A/B/C. Reinforcement learning trains the model to prefer concise and accurate
reasoning for efficient resource allocation.

sults, we construct a dataset of “question–concise213

answer” pairs and apply full-parameter SFT on a214

Qwen3-8B (Yang et al., 2025a), with the goal of215

teaching it to generate similarly concise responses216

in single-question scenarios.217

Experimental Results and Analysis We evalu-218

ate the fine-tuned models on a comprehensive set of219

reasoning benchmarks, including GSM8K (Cobbe220

et al., 2021), MATH-500 (Hendrycks et al.,221

2021), AIME 2024 (MAA Committees), GPQA-222

Diamond (Rein et al., 2023), AMC (AI-MO, 2024),223

and AIME 2025 (MAA Committees). The results224

reported in Table 2 indicate that SFT does lead to225

substantial reductions in output length. For exam-226

ple, on GSM8K, the average response length drops227

from 1878.55 to 575.64 tokens, a 69.36% reduc-228

tion, demonstrating that overthinking is mitigated229

to some extent.230

However, the efficiency gains come at a consider-231

able cost to accuracy, particularly on more challeng-232

ing tasks. As shown in Table 2, models fine-tuned233

with two-question batch data experience accuracy234

drops of 1.67% on GSM8K and 1.00% on MATH-235

500 compared to vanilla prompting. More notably,236

the performance degradation becomes increasingly237

severe with higher batch sizes and task complex-238

ity. On AIME 2024, accuracy falls from 74.67%239

(Vanilla) to 57.33% (Batch-2), 26.00% (Batch-3),240

and just 9.33% (Batch-5). These results suggest241

the emergence of catastrophic forgetting (Luo et al.,242

2025d): in attempting to mimic the surface-level243

conciseness of batch responses, the model com-244

promises its ability to perform the deeper, more245

nuanced reasoning necessary for solving complex246

problems.247

In summary, while supervised fine-tuning with248

batch data effectively mitigates overthinking and249

improves inference efficiency, it comes at the cost 250

of reasoning accuracy, especially on complex tasks, 251

highlighting its limitations for real-world deploy- 252

ment. These shortcomings underscore the need for 253

a more principled solution that can balance con- 254

ciseness with reasoning depth, which motivates 255

our proposed method: Dynamic Reasoning Quota 256

Allocation (DRQA). 257

3.2 Dynamic Reasoning Quota Allocation 258

Rather than imitating outputs from batch infer- 259

ence, we aim to endow the model with an intrinsic 260

ability to evaluate and generate reasoning chains 261

that are both accurate and concise. To this end, 262

we propose Dynamic Reasoning Quota Allocation 263

(DRQA), a reinforcement learning framework that 264

enables RLLMs to dynamically allocate reasoning 265

resources in single-question inference. 266

Core Idea The core idea of DRQA is to en- 267

hance the model’s intrinsic reasoning capabilities 268

by equipping it with the ability to evaluate the qual- 269

ity of its own reasoning chains. Specifically, the 270

model is trained to make two key judgments: (i) 271

whether a given reasoning chain is logically cor- 272

rect, and (ii) if correct, whether it is unnecessarily 273

verbose. By developing this self-evaluation ability, 274

the model learns to strike a balance between accu- 275

racy and conciseness during generation, effectively 276

realizing adaptive resource allocation. 277

Preference Data Construction To train this eval- 278

uation ability, we construct a preference dataset 279

consisting of multiple-choice question-answering 280

samples. Each sample contains a question, a model- 281

generated chain of thought (CoT), and three evalua- 282

tion options that reflect different levels of reasoning 283

quality: 284
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Method GSM8K Math500 AIME2024 GPQA-Diamond AMC AIME2025 Overall
Acc tokens Acc tokens Acc tokens Acc tokens Acc tokens Acc tokens Acc tokens

Vanilla 95.67 1878.55 96.00 5270.58 74.67 15468.23 66.67 8685.21 97.50 8608.85 63.33 18058.65 82.31 9661.68
Batch-2 96.67 575.64 95.00 2359.21 57.33 11100.55 53.54 6874.42 90.00 4136.58 45.33 13130.95 72.98 6362.89
Batch-3 93.33 437.23 82.67 1593.53 26.00 5685.36 55.56 3555.65 77.50 4098.10 28.00 7400.53 60.51 3795.07
Batch-5 93.33 336.81 69.67 434.50 9.33 2486.77 46.46 1190.23 42.50 922.25 7.33 2365.41 44.77 1289.33

Table 2: Single-question evaluation results of Qwen3-8B after SFT with data generated by batch inference. Batch-X
denotes fine-tuning with data from batches of X questions, and Vanilla refers to the original model without SFT.

• A: The reasoning process is correct, but I think285

there is a simpler and quicker way to approach it.286

• B: The reasoning process is correct, and I believe287

the thinking is thorough and concise.288

• C: The reasoning process is wrong.289

The dataset construction process involves three290

key steps. First, for ease of evaluation, we select all291

questions in the DeepScaleR (Luo et al., 2025c)292

dataset whose answers are numbers of various293

types, resulting in approximately 30,000 samples.294

Second, for each question, we generate two types of295

reasoning chains using DeepSeek-R1 (DeepSeek-296

AI et al., 2025): (1) vanilla CoTs obtained by297

prompting the model with individual questions, and298

(2) batch CoTs generated by prompting the model299

with batched questions, followed by extracting the300

corresponding reasoning chain for each question.301

Finally, we assign labels based on reasoning cor-302

rectness and conciseness: for vanilla CoTs, we303

label A if the reasoning is correct, and C if incor-304

rect; for batch CoTs, we label B if the reasoning is305

correct, and C if incorrect. This labeling scheme306

enables the model to learn nuanced distinctions307

between correct-but-verbose reasoning (option A),308

correct-and-concise reasoning (option B), and in-309

correct reasoning (option C), thereby developing310

a clearer understanding of what constitutes a high-311

quality reasoning chain.312

Reinforcement Learning Framework We use313

Group Relative Policy Optimization (GRPO) (Shao314

et al., 2024) to train the model to accurately classify315

each reasoning chain as A, B, or C, thus encour-316

aging concise and accurate reasoning. Formally,317

the GRPO objective is defined as maximizing the318

likelihood of selecting the correct evaluation label:319

LGRPO(θ) = Eτ∼D

[∑
a∈G

log πθ(a | s) Â(a, s, a∗)320

− β KL (πθ ∥πold)

]
(1)321

where τ ∼ D denotes a sample from the dataset,322

with state s representing the question, reasoning323

chain, and multiple-choice options (A, B, C); a∗ 324

is the ground-truth label; G = {A,B,C} is the 325

set of actions; Â(a, s, a∗) is the relative advantage 326

estimate, positive if a = a∗ and negative other- 327

wise; KL(πθ∥πold) is the KL divergence between 328

the current and old policies, constrains the policy 329

update; and β is a regularization coefficient balanc- 330

ing learning efficiency and policy stability. This 331

training objective encourages the model to assign 332

higher probabilities to correct judgments while mit- 333

igating the risk of catastrophic forgetting caused by 334

over-updating, a common issue encountered in SFT. 335

As a result, the model gradually internalizes a pref- 336

erence for reasoning chains that are both correct 337

and concise. 338

Summary DRQA enables the model to move 339

beyond surface-level imitation and develop an in- 340

trinsic, reward-driven preference for high-quality 341

reasoning. By balancing accuracy and conciseness, 342

the model learns to allocate reasoning resources 343

more effectively, addressing the limitations of SFT 344

and supporting more efficient and adaptive infer- 345

ence in single-question settings. 346

4 Experiments 347

In this section, we systematically evaluate the 348

performance of the proposed DRQA algorithm, fo- 349

cusing on its ability to balance reasoning accuracy 350

and efficiency. We compare DRQA against a range 351

of strong baselines and and provide an in-depth 352

analysis of the results. 353

4.1 Experimental Setup 354

Models We evaluate all methods using two 355

widely adopted distilled models: DeepSeek- 356

R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill- 357

Qwen-7B. Both models are derived from the more 358

powerful DeepSeek-R1 (DeepSeek-AI et al., 2025) 359

through large-scale distillation, offering a favorable 360

trade-off between computational efficiency and rea- 361

soning capability. 362
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Datasets For training, we use the dataset de-363

scribed in Section 3.2, constructed by performing364

batch inference with DeepSeek-R1 on the Deep-365

ScaleR (Luo et al., 2025c) training set. This pro-366

cess yields over 50,000 multiple-choice examples367

annotated with reasoning quality labels.368

Baselines To assess the effectiveness of DRQA,369

we compare it against a comprehensive set of strong370

baselines approaches (refer to Appendix A for de-371

tailed descriptions of the baselines). All baselines372

are either publicly released or carefully reproduced373

according to their original protocols.374

Evaluation We evaluate the performance of dif-375

ferent methods across a diverse set of bench-376

marks. For mathematical reasoning, we in-377

clude GSM8K (Cobbe et al., 2021), MATH-378

500 (Hendrycks et al., 2021), AIME 2024 and379

2025 (MAA Committees), and AMC 2023 (AI-380

MO, 2024). For domain-specific scientific reason-381

ing, we use the high-quality GPQA-diamond sub-382

set (Rein et al., 2023). Detailed descriptions of383

these datasets are provided in Appendix B. We use384

both accuracy and response length as evaluation385

metrics and report the average performance across386

all test sets. For the AIME datasets, which contain387

only 30 questions each, we repeatedly sample 5 re-388

sponses for each case and report the average results389

to ensure more stable and reliable evaluation.390

All models are evaluated using a unified infer-391

ence configuration to ensure fair comparison. Ex-392

periments are conducted with the vLLM framework393

on a computing cluster equipped with eight A800394

(40GB) GPUs. The inference parameters are set395

to a temperature of 0.6 and a maximum generation396

length of 32K tokens.397

Training Details We use verl (Sheng et al., 2024)398

as the training framework. We set the batch size to399

256, the number of rollouts to 16, the learning rate400

to 1× 10−6, and the maximum response length to401

16K tokens. The model is trained for one epoch,402

consisting of 204 steps in total.403

4.2 Main Results404

As shown in Table 3, DRQA demonstrates clear405

superiority in both answer accuracy and response406

efficiency across all mathematical benchmarks. For407

example, on GSM8K with the 1.5B model, DRQA408

achieves an accuracy of 86.67%, outperforming409

the vanilla baseline by 2 percentage points, while410

reducing average token usage from 1928.96 to411

1427.63, a 25.9% reduction. Similar patterns are 412

observed on more challenging datasets such as 413

AIME 2024 and MATH-500, where DRQA main- 414

tains high accuracy while significantly reducing 415

output length. These results highlight DRQA’s ef- 416

fectiveness in dynamically allocating reasoning re- 417

sources, enabling it to strike a favorable balance be- 418

tween accuracy and efficiency across tasks of vary- 419

ing difficulties. Moreover, DRQA demonstrates 420

strong generalization on out-of-distribution (OOD) 421

benchmarks, as evidenced by its performance on 422

GPQA-Diamond. 423

We also compare DRQA with aggressive com- 424

pression methods such as ShorterBetter (Yi et al., 425

2025) and DAST (Shen et al., 2025), which can re- 426

duce output length even further, for example, gener- 427

ating outputs as short as 107.86 tokens on GSM8K. 428

However, these methods often suffer from severe 429

accuracy degradation, with performance drops ex- 430

ceeding 20 percentage points in some cases. This 431

highlights a key limitation of methods that rely 432

solely on length-based reward signals: they tend 433

to compromise the logical integrity of reasoning 434

chains, limiting their practical applicability. 435

Notably, DRQA remains highly effective on 436

larger models. On GSM8K with the 7B model, 437

DRQA improves accuracy by 1.34% over the 438

baseline while reducing token usage by 23.6%. 439

This demonstrates that DRQA continues to de- 440

liver substantial efficiency gains and accuracy 441

improvements at higher model scales.Across all 442

benchmarks, it consistently achieves the most fa- 443

vorable trade-off between accuracy and output 444

efficiency. Compared to strong baselines such 445

as DAST (Shen et al., 2025), O1-Pruner (Luo 446

et al., 2025b), Dynasor-CoT (Fu et al., 2025), and 447

DEER (Xia et al., 2024), DRQA not only matches 448

or surpasses them in length reduction but, more 449

importantly, maintains state-of-the-art reasoning 450

accuracy. 451

Overall, DRQA achieves an average accuracy 452

improvement of 1.5 percentage points and an av- 453

erage token usage reduction of 31.3% across all 454

evaluated benchmarks and both model sizes. These 455

results provide compelling evidence that DRQA 456

effectively transfers the benefits of “resource com- 457

petition pressure” from batch inference to single- 458

question settings, establishing a strong founda- 459

tion for the efficient and scalable deployment of 460

RLLMs. 461
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Method GSM8K MATH-500 AIME 2024 GPQA-Diamond AMC 2023 AIME 2025 Overall
Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens AccAll TokensAll

DeepSeek-R1-Distill-Qwen-1.5B
Vanilla 84.67% 1928.96 83.33% 5536.14 28.67% 14394.61 30.84% 14731.59 72.50% 8830.10 23.67% 15323.3 53.95% 10124.12
O1-Pruner 74.80% 458 82.20% 3212 28.90% 10361 - - - - - - – –
DAST 77.20% 586 83.00% 2428 26.90% 7745 - - - - - - – –
ShortBetter 63.67% 107.86 60.33% 1186.27 11.33% 2935.68 21.72% 1433.95 57.50% 1260.43 12.67% 3326.22 37.87%-16.08 1708.40-83.13%
AdaptThink 86.00% 324.26 83.67% 1244.98 29.33% 7044.06 29.80% 4744.23 72.50% 2441.45 24.67% 7490.79 54.33%+0.38 3881.63-61.66%

GRPO 87.33% 1691.19 84.67% 5743.01 32.67% 15017.54 27.78% 13809.53 77.50% 9378.21 24.00% 13082.98 55.66%+1.71 9787.08-3.33%

GRPO+Length Penalty 86.00% 722.34 84.67% 2479.14 24.67% 9011.46 26.76% 6148.50 67.50% 3130.51 22.00% 9782.34 51.93%-2.01 5212.38-48.52%

SFT 81.67% 2296.54 80.33% 5465.95 25.33% 21337.44 27.27% 18540.94 65.00% 8806.48 19.33% 20258.82 49.82%-4.13 12784.36+26.28%

DRQA(our) 86.67% 1427.63 84.67% 3488.08 32.00% 11008.31 31.81% 9148.83 75.00% 5355.03 24.00% 10382.12 55.69%+1.74 6801.67-32.82%

DeepSeek-R1-Distill-Qwen-7B
Vanilla 91.33% 1735.5 90.40% 5099.95 53.33% 13712.6 48.98% 13313.92 90.00% 6349.53 40.00% 14248.11 69.01% 9076.60
DAST 86.70% 459 89.60% 2162 45.60% 7578 - - - - - - – –
O1-Pruner 87.60% 428 86.60% 2534 49.20% 9719 - - - - - - – –
Dynasor-CoT 89.60% 1285 89.00% 2971 46.70% 12695 30.50% 7639 85.00% 5980 - - – –
DEER 90.60% 6917 89.80% 2143 49.20% 9839 31.30% 5469 85.00% 4451 - - – –
ShortBetter 70.00% 112.86 68.00% 623.44 41.33% 5005.96 43.43% 1811.43 57.50% 1567.50 30.67% 5393.96 51.82%-17.19 2419.19-73.35%
AdaptThink 89.67% 296.94 91.67% 1839.59 54.00% 9894.05 51.52% 7128.95 87.50% 3287.95 39.33% 12454.59 68.95%-0.06 5817.01-35.91%

AutoL2S 93.33% 444.8 83.33% 3113.93 40.67% 6499.32 45.39% 2553.01 85.00% 2613.05 31.33% 3669.53 63.18%-5.84 3148.94-65.31%

GRPO 93.67% 1524.24 92.00% 4532.21 54.67% 12013.92 47.47% 12124.10 87.50% 5130.13 41.33% 12192.12 69.44%+0.43 7919.45-12.75%

GRPO+Length Penalty 91.33% 876.25 91.33% 2751.13 52.00% 7213.11 45.96% 7124 92.50% 3256.02 39.67% 6058.40 68.80%-0.21 4546.49-49.91%

SFT 92.33% 1317.85 92.00% 3824.43 44.67% 14903.82 46.97% 12385.43 77.50% 5519.55 32.00% 13931.80 64.25%-4.76 8647.15-4.73%

DRQA(our) 92.67% 1324.24 91.40% 3902.74 54.67% 10007.18 49.50% 8988.50 92.50% 4463.03 40.67% 9545.44 70.24%+1.23 6371.85-29.80%

Table 3: Performance of different methods using two RLLMs. DRQA achieves competitive or superior accuracy
while greatly reducing token usage across all datasets and model sizes, striking an excellent balance between
performance and efficiency.

4.3 Ablation Study462

To thoroughly assess the contribution of each463

core component in DRQA, we conduct a series464

of ablation studies that isolate the effects of dif-465

ferent training paradigms and input conciseness466

on reasoning performance and efficiency. All ex-467

periments are performed using the same bench-468

mark datasets, evaluation metrics, and base model469

(DeepSeek-R1-Distill-Qwen-7B) as in the main470

study, with consistent inference configurations to471

ensure fair comparison.472

Effect of Batch Size in DRQA Data Construc-473

tion. We investigate the impact of different batch474

sizes on model performance. Specifically, we con-475

struct preference datasets by prompting DeepSeek-476

R1 with batches of 2, 3, or 5 questions, then split-477

ting the outputs into individual reasoning chains for478

downstream RL training. This design allows us to479

analyze how increasing levels of resource competi-480

tion influence both answer accuracy and response481

efficiency within the DRQA framework.482

Replacing Batch Reasoning Data with Qwen2.5-483

7B Concise Chains To evaluate the importance484

of batch-induced resource competition, we con-485

sider an alternative setting where the preference486

dataset is constructed using concise reasoning487

chains generated directly by Qwen2.5-7B (Qwen488

et al., 2025), without leveraging batch inference.489

This comparison allows us to disentangle the ef-490

fects of resource-driven compression from those491

achieved solely through the model’s inherent ability492
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Figure 4: The efficiency-accuracy trade-off on GPQA-
diamond for DRQA and ablation variants.

to generate concise outputs. 493

Critique Fine-Tuning with Preference data Be- 494

yond reinforcement learning, we also evaluate the 495

Critique Fine-Tuning (CFT) paradigm (Wang et al., 496

2025) as an alternative training strategy, applying 497

it to the preference data we constructed. 498

4.3.1 Results and Analysis 499

Table 4 presents the results of our ablation study. 500

As batch size increases, the model produces increas- 501

ingly concise outputs, with token usage reduced 502

by up to 45% for larger batches. However, this 503

efficiency gain comes at the cost of declining ac- 504

curacy, highlighting a trade-off between efficiency 505

and correctness. Notably, a batch size of 2 achieves 506

the best balance, improving accuracy while signif- 507

icantly reducing token consumption compared to 508

the vanilla baseline. 509
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Method GSM8K MATH-500 AIME 2024 Overall
Acc tokens Acc tokens Acc tokens Acc tokens

Vanilla 91.33% 1735.5 90.40% 5099.95 53.33% 13712.6 78.35% 6849.35
DRQA (Batch-2) 92.67% 1324.24 91.33% 3902.74 54.67% 10007.18 79.58%+1.23 5078.05-25.86%

DRQA (Batch-3) 91.67% 1212.59 90.20% 3311.20 53.33% 8805.24 78.4%+0.05 4443.01-35.13%

DRQA (Batch-5) 90.67% 1158.88 89.80% 2675.81 49.33% 7366.80 76.60%-1.75 3733.83-45.49%
Qwen2.5-7B Data + RL 90.00% 1434.65 89.60% 3313.12 50.67% 12190.59 76.76%-1.60 5646.12-17.57%

Batch-2 Data + CFT 89.67% 1361.00 88.20% 3973.54 49.66% 10012.55 75.84%-2.51 5115.70-25.31%

Table 4: Ablation experiments across different training paradigms.

When compared to concise reasoning chains gen-510

erated directly by Qwen2.5-7B (Qwen et al., 2025)511

without batch inference, we observe that only batch-512

induced compression achieves both high efficiency513

and strong accuracy. Similarly, while Critique Fine-514

Tuning helps reduce output length, it leads to a no-515

table accuracy drop, underscoring the importance516

of reinforcement learning for preserving reasoning517

quality. Figure 4 further supports these insights,518

showing that DRQA achieves the best overall trade-519

off on the OOD dataset GPQA-Diamond, highlight-520

ing its robustness across both in-distribution and521

out-of-distribution scenarios.522

5 Related Work523

5.1 Reasoning Large Language Models524

Recent reasoning large language models525

(RLLMs), such as OpenAI-O3 (OpenAI, 2025),526

Deepseek-R1 (DeepSeek-AI et al., 2025), and527

QwQ (Team, 2025) leverage chain-of-thought (Wei528

et al., 2023) for step-by-step reasoning, achieving529

state-of-the-art performance across a wide range of530

tasks, including mathematical reasoning and lan-531

guage understanding. Our work focuses on further532

improving the efficiency of such reasoning models.533

5.2 Efficient Reasoning534

Reasoning efficiency in RLLMs (Qu et al., 2025;535

Sui et al., 2025) refers to balancing task quality and536

computational cost. Models like OpenAI-O3 (Ope-537

nAI, 2025) and DeepSeek-R1 (DeepSeek-AI et al.,538

2025) often generate too long and redundant reason-539

ing chains, over explaining simple problems while540

sometimes offering shallow reasoning for complex541

ones. Main approaches for improving efficiency542

include:543

• Inference time control: Methods such as544

TALE (Han et al., 2025), DEER (Yang et al.,545

2025b) apply token budgets or early exit strate-546

gies inspired by dual-system theory.547

• Chain compression and supervised tuning: To-548

kenSkip (Xia et al., 2025), CoT-Valve (Ma et al., 549

2025), and AutoL2S (Luo et al., 2025a) use su- 550

pervised fine-tuning or distillation to shorten rea- 551

soning chains, often improving conciseness but 552

sometimes at the expense of complex reasoning. 553

• Reinforcement learning approaches: 554

DAST (Shen et al., 2025), O1-Pruner (Luo et al., 555

2025b), and S-GRPO (Dai et al., 2025) introduce 556

reward functions to penalize lengthy outputs and 557

promote token efficiency, supporting adaptive 558

reasoning with little loss of accuracy. 559

These methods largely depend on fixed budgets or 560

hand crafted rewards. Our DRQA instead trans- 561

fers the “resource competition pressure’ observed 562

in batch inference to single-question settings, en- 563

abling models to automatically adjust reasoning 564

length according to problem complexity, providing 565

brief responses for simple questions and detailed 566

explanations for challenging ones without manual 567

constraints. 568

6 Conclusion 569

This paper introduces Dynamic Reasoning 570

Quota Allocation (DRQA), a novel approach aimed 571

at addressing the overthinking problem in reason- 572

ing large language models (RLLMs). Motivated by 573

the observation that resource competition pressure 574

in batch inference naturally encourages efficient 575

reasoning, DRQA leverages batch-generated data 576

and reinforcement learning to transfer the benefits 577

of resource competition from batch inference to 578

single-question scenarios. Specifically, the model 579

is trained to recognize and prefer reasoning chains 580

that are both accurate and concise, resulting in 581

responses that are both concise and accurate for 582

single-question inference. Extensive experimental 583

results and analysis show that DRQA significantly 584

reduces token consumption while maintaining, or 585

even improving accuracy, effectively alleviating 586

overthinking. DRQA offers a new direction for 587

more efficient and scalable deployment of RLLMs. 588
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Limitations589

Although DRQA has demonstrated strong perfor-590

mance on both mathematical reasoning and OOD591

scientific benchmarks, its effectiveness on broader592

tasks and real-world applications remains to be fur-593

ther evaluated. In future work, we plan to extend594

DRQA to a wider range of domains and explore595

its potential for finer-grained control over reason-596

ing processes, as well as improvements on other597

efficiency dimensions beyond reasoning length.598
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A Baseline Methods 758

We consider the following baseline methods in our experiments: 759

• GRPO: We train a model on the DeepScaleR (Luo et al., 2025c) dataset using the Group Relative 760

Policy Optimization algorithm, where only answer correctness is used as the reward signal. 761

• GRPO+Length Penalty: This variant further introduces a length penalty to the reward design: for 762

correct answers, shorter responses yield higher rewards, while for incorrect answers, longer responses 763

incur greater penalties. This encourages the model to produce concise and accurate reasoning. 764

• SFT (Supervised Fine-Tuning): We perform full-parameter supervised fine-tuning on the model 765

using question-answer pairs generated via batch inference of Deepseek-R1 on the DeepScaleR (Luo 766

et al., 2025c) dataset. 767

• AdaptThink (Zhang et al., 2025): This approach encourages adaptive selection between direct answer 768

and step-by-step reasoning (Chain-of-Thought) based on question difficulty. Training objectives and 769

sample balancing enable the model to flexibly explore both thinking modes, improving reasoning 770

efficiency and performance. 771

• AutoL2S (Luo et al., 2025a): A dynamic, model-agnostic framework that annotates each question 772

with both long and short Chain-of-Thought (CoT) solutions. By marking simple questions with 773

<EASY>, the model is trained to automatically select concise CoT for simple problems and detailed 774

reasoning for complex ones. 775

• DAST (Shen et al., 2025): DAST explicitly quantifies problem difficulty via a token length budget 776

and employs a reward that penalizes redundant reasoning on simple problems while encouraging 777

extensive CoT for difficult ones. This preference data is optimized via SimPO, enabling efficient 778

dynamic control over reasoning path length. 779

• O1-Pruner (Luo et al., 2025b): Based on reinforcement learning, this method rewards shorter CoT 780

traces without compromising accuracy. It employs an offline PPO-like procedure to prune redundant 781

reasoning while preserving or even improving correctness. 782

• ShorterBetter (Yi et al., 2025): This RL-based approach defines the optimal length for each 783

question as the shortest possible correct response and leverages this dynamic signal as a reward for 784

GRPO-based training, guiding the model toward concise yet accurate answers. 785

• Dynasor-CoT (Fu et al., 2025): Without extra training, this method dynamically truncates reasoning 786

by probing intermediate answers, monitoring consistency, and detecting hesitancy tokens. This yields 787

substantial token savings while preserving accuracy. 788

• DEER (Xia et al., 2024): DEER employs a dynamic early-exit mechanism by monitoring reasoning 789

transitions (such as “Wait”) to induce trial answers. Decisions to terminate CoT generation are based 790

on confidence estimation, reducing reasoning length without additional training. 791

All baseline models are tested under identical inference configurations and on the same benchmark 792

datasets to guarantee fair and reliable comparison. For each baseline, we use either the officially released 793

model or reproduce the method using released data and code. 794

B Dataset Details 795

Mathematical Reasoning Datasets 796

• GSM8K: This dataset contains 8,500 English elementary school single-step math reasoning questions. 797

It serves as one of the mainstream benchmarks for evaluating the math reasoning abilities of large 798

language models, focusing on basic arithmetic reasoning skills. 799
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• MATH-500: Includes 500 medium-difficulty mathematical problems covering algebra, geometry,800

number theory, and other areas, designed to test the model’s comprehensive mathematical reasoning801

ability.802

• AIME 2024/2025: Originating from the American Invitational Mathematics Examination 2024 and803

2025, each set contains 30 high-difficulty math questions, mainly assessing complex mathematical804

reasoning and problem-solving skills.805

• AMC 2023: 40 questions from the American Mathematics Competitions (AMC), covering middle806

to high school levels, examining fundamental and advanced mathematics knowledge and problem807

solving abilities.808

Scientific Reasoning Dataset To evaluate model reasoning performance in other domains, we use809

the high-quality GPQA-diamond subset from the GPQA dataset. GPQA-diamond is a refined version810

of GPQA, focusing on challenging, high-quality scientific domain questions and designed to provide a811

comprehensive assessment of scientific understanding and reasoning ability.812

C Prompt Template813

Prompt for Batch Inference

Please answer the following math problems in order and summarize all answers at the end: Your
response should be in the following format:

[Solution Process]
Provide a detailed solution for each problem...

[Final Answer]
1. \\boxed{{Answer1}}
2. \\boxed{{Answer2}}
...
n. \\boxed{{Answern}}

Below is the list of questions:

{numbered_questions}
814

Prompt for Evaluation

{origin_question}\n\n
Please reason step by step, and put your final answer within \\boxed{}.

815
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