Under review as a conference paper at ICLR 2023

DROPAUT: AUTOMATIC DROPOUT APPROACHES
TO LEARN AND ADAPT DROP RATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Over time, it has been shown that Dropout is one of the best techniques to fight
overfitting and at the same time improve the overall performance of deep learn-
ing models. When training with Dropout, a randomly selected subset of activa-
tions are set to zero within each layer based on a hyper-parameter called drop
rate. Finding a suitable drop rate can be very expensive, especially nowadays
where modern neural networks contain a large number of parameters. We intro-
duce DropAut, a completely data-driven extension of Dropout which enables the
model to learn and adapt the drop rate based on the task and data it is dealing
with. However, both Dropout and DropAut exploit the same drop rate for all the
units of a layer, but this could be a sub-optimal solution since not all of them have
the same importance. Based on this, we also propose two DropAut extensions
called UnitsDropAut and BottleneckDropAut which additionally allow the model
to learn and use different and specific drop rates for each unit of a layer. We first
derived a bound on the generalization performance of Dropout, DropAut, Units-
DropAut and BottleneckDropAut and then we evaluated the proposed approaches
using different kinds of neural models on a range of datasets, showing good im-
provements over Dropout in all the experiments conducted. The code is available
at https://github.com/<anonymous >,

1 INTRODUCTION

In recent years, deep learning has led to considerable advances in almost all the tasks of Natural
Language Processing (NLP), Computer Vision (CV) and Speech fields. These improvements can
be attributed to the use of increasingly powerful neural models such as Recurrent Neural Networks
(RNN)|Hochreiter & Schmidhuber((1997));/Cho et al.|(2014)), Convolutional Neural Networks (CNN)
LeCun et al.|(1999) and, recently, Transformers|Vaswani et al.|(2017)). Modern architectures contain
millions or billions of parameters which are needed to provide the necessary representational power
to the models, but the use of these huge networks could lead to a greater probability of overfitting.

In 2012, Hinton et al. proposed a new form of regularization called Dropout Hinton et al.| (2012),
specifically designed to fight overfitting. With Dropout, the activations of hidden units for each
training case are stochastically set to zero at training time. More specifically, each element of a
layer’s output is kept with probability p (keep rate), otherwise is set to zero with probability g =1 -
p (drop rate), where p (or qﬁ} is a hyper-parameter. However, although in|Srivastava et al.[(2014) the
authors have provided guidelines for setting g, it can be difficult to understand which is the correct
probability to use|Park & Kwak|(2017). In their paper, the authors recommended using a ¢ of 0.5 for
hidden layers but, over time, architectures have evolved, increasingly preferring lower drop rates.
Nowadays, the best way to find a good value for q is to try different configurations using a validation
set, an approach that could be very expensive and could still lead to a sub-optimal solution.

In this paper, we propose DropAut, a completely data-driven extension of Dropout which allows the
model to automatically learn and adapt the drop rate during the training based on the task and data it
is dealing with. Basically, a DropAut layer works like a Dropout one but tries to learn ¢ as a function
of the inputs instead of considering it as a hyper-parameter. Furthermore, Dropout uses a constant
probability for omitting units, but not all units of a layer have the same importance, some may be

'In modern deep learning frameworks, the hyper-parameter is actually g.

https://github.com/

Under review as a conference paper at ICLR 2023

more receptive to certain features and consequently may be more important than others. Dropout
will ignore this confidence and drop these units out stochastically. Based on this, we also propose
two DropAut extensions called UnitsDropAut and BottleneckDropAut which additionally allow the
model to learn and use different and specific drop rates for each unit of the layer.

By using standard datasets such as MNIST|Lecun et al.[(1998]), CIFAR-10/100 Krizhevsky & Hinton
(2009) and IMDb Movie Reviews Maas et al.| (2011)), we show that all three proposed approaches
improve the performance of each tested networks, namely feedforwards, CNNs and Transformers,
surpassing the classic Dropout in almost all the experiments conducted.

The paper is organized as follows: Section [2] describes relevant previous work; Section [3] formally
describes the Automatic Dropout approaches; Section [] reports experiments and results done to
evaluate the proposed solutions; finally conclusions are reported in Section 5}

2 RELATED WORK

Overfitting is still one of the biggest problems to deal with when trying to train very large networks.
Over time, a wide range of techniques for regularizing the training have been developed. Dropout
was introduced in[Hinton et al.[(2012) as a powerful form of regularization for feedforward networks
and is implemented by setting hidden activations to zero with some fixed probability during the
training. On the contrary, all activations are kept during the evaluation phase except that the output
is scaled according to the dropout probability. This technique works well as a robust type of bagging
Breiman|(1996), which discourages the co-adaptation of neighboring units within the network.

DropConnect Wan et al.| (2013)) is an extension of Dropout also for regularizing feedforward net-
works. Instead of setting to zero the activations, it sets a randomly picked subset of weights within
the network to zero with a fixed probability. Standout |Ba & Frey| (2013) is another extension of
Dropout where the dropout probability for each hidden unit is computed using a binary belief net-
work that shares parameters with the deep network. Our UnitsDropAut is similar in using a network
to predict different dropout probability for each hidden unit but it has its own weights which are
trained jointly with the deep network. Furthermore, our method does not require the scale (o) and
bias () hyper-parameters expected by Standout. In addition, we have proven that our proposal does
not work well only with feedforward networks but also with CNN and Transformer architectures.

Compared to the original work on Dropout, |Srivastava et al.| (2014) provided more exhaustive ex-
perimental results, also showing that applying Dropout to CNNs aided generalization. Despite this,
Dropout is not often used with Convolutional layers as it appears to be less powerful than when used
with Fully Connected layers Tompson et al.|(2015)). This can be attributed to the fact that neighbour-
ing pixels in images share much of the same information. If any of them are dropped out then the
information will likely still be passed on from the neighbouring pixels that are still active.

In an attempt to increase the effectiveness of Dropout in Convolutional layers, several variations have
been proposed. Spatial Dropout|/Tompson et al.|(2015) randomly discards entire feature maps rather
than individual pixels, effectively bypassing the issue of neighbouring pixels passing similar infor-
mation. Probabilistic weighted pooling Wu & Gu| (2015) drops with some probability activations
in each pooling region. Max-drop |Park & Kwak! (2017) drops the maximal activation across fea-
ture maps or channels with some probability. In the same work, the authors propose also Stochastic
Dropout, another variation of Dropout whose dropout probability varies for each iteration based on a
probability distribution. Similarly, our approaches change the dropout probabilities at each iteration
but it is the network that decides how to (and if to) change them rather than doing it stochastically.

3 METHODS

Like the classic Dropout, all the proposed approaches can be implemented as a layer of a neural
network that takes the output vector of the previous layer as input and turns it into a new vector with
the same dimensions but with some units disabled. This layer is called Automatic Dropout (AD)
Layer and can be placed either after the input layer or after a hidden one.

During the training stage, the AD Layer predicts a vector of drop probabilities using an internal neu-
ral network called AD Network. Each item of this vector parameterizes an independent Bernoulli

Under review as a conference paper at ICLR 2023

AD Layer AD Network AD Network AD Network
Cmin €41, qn < Cmax
O Cmin < q < Cmax Cmin < q1, " qn < Cmax 4
I
@) kY 4
- O @ g - ! | Linear (Sigmoid)
\ o (Linear (Sigmoid) | (Linear (Sigmoid) |
1 I I 4
[
0
(a) Automatic Dropout (b) DropAut(c) (c) UnitsDropAut(c) (d) BottleneckDropAut(r, ¢)

Figure 1: (a) High level overview of the Automatic Dropout (AD) layer. (b) AD Network of DropAut
composed by one Linear layer with a single unit; ¢ in this case is a scalar. (c¢) AD Network of Units-
DropAut composed by a single Linear layer but with n units; g here is a n-dimensional vector. (d)
AD Network of BottleneckDropAut composed by a dimensionality-reduction Linear layer (bottle-
neck) and a dimensionality-increasing Linear layer; g again is a n-dimensional vector.

distribution and this allows for the sampling of a binary mask, i.e. a new vector containing only ze-
ros and ones. This mask is then multiplied element-wise with the input vector to get the final result
returned by the layer. This is illustrated in Figure[I|(a). The process just described is the same for all
the proposed approaches with the exception of the AD Network which is built differently and specif-
ically by the method considered. Figure [I{b), Figure [[{c) and Figure [[(d) show the three different
types of AD Network implemented respectively by DropAut, UnitsDropAut and BottleneckDropAut.

In addition, each proposal is equipped with an optional hyper-parameter called constraint range c
which allows the narrowing of the probability values that the AD Network can predict within a
specified range. See Appendix [A]for further details about this useful hyper-parameter.

When applying Dropout, one needs to compensate for the fact that at training time a portion of the
units were deactivated. To do so, it is necessary to scale the activations of a layer after omitting some
units |[Hinton et al.| (2012); Srivastava et al.| (2014). Accordingly, there exist two common strategies:
scale up the retained activations of the considered layer by multiplying them by % at training time’

or scale down the activations by multiplying them by the keep rate p at test time. We have decided
to implement the scale of activations at test time. We will motivate this choice in Subsection[d.1.1]

After this brief informal introduction, the approaches are formally defined below starting from the
classic Dropout. For simplicity, let’s consider a simple feedforward network although the following
applies to any type of network and any dimensionality of the inputs.

3.1 DROPOUT

Consider a neural network with L hidden layers and let [€ {1,..., L} index them. Let x € R™ be
the vector of inputs into layer / and y € R™ the vector of outputs from layer I/, where m is the input
features and n is the number of units of . W € R"*™ and b € R" are the weights and biases at
layer [. The standard feedforward operation can be described as (for any [):

y=f(W'z+b) (D
where f is an activation function.

Applying Dropout to layer [, the feedforward operation becomes (for any hidden unit 2):

g=f(Whz +0b) 2
m; ~ Bernoulli(q) 3)
Yy=yxm 4)

where * denotes an element-wise product, ¢ is the drop rate hyper-parameter and m € R" is a vector
of independent Bernoulli random variables each of which has probability ¢ of being 0.

2This method is also known as Inverted Dropout and is generally the preferred way to implement Dropout
in modern deep learning frameworks.

Under review as a conference paper at ICLR 2023

At test time, activations are scaled down multiplying them by the keep rate p, as explained above:
y=p*f(W'z+b) (5)
With Inverted Dropout instead, the equation |4{ must be modified as follows:
B y*xm

y— (6)
p

and nothing is done at test time.

3.2 DROPAUT

DropAut works exactly like Dropout with the only difference that q is no longer a hyper-parameter
but a scalar value that is predicted by a neural network called AD Network. For DropAut, the
AD Network is composed only of one Linear layer with a single unit, as shown in Figure [I{b).
Consequently, ¢ in the equation[3]is now computed as:

qg=o0 (W;‘\PD?] +bap) @)

where Wyp € R™" and b AD € R™ are the weights and biases of the AD Linear layer, n’ = 1
and o is the sigmoid activation function. If there were multiple dimensions, ¢ would be obtained by
computing the mean of elements across all dimensions.

If the hyper-parameter c is specified, then a function g : R — [cg, ¢1] is applied such that if ¢ < ¢,
then it is set to ¢y while if ¢ > ¢1, then it is set to ¢;:
¢ = min(max(q, ¢p), ¢1) 8)

At test time, ¢ is computed by the AD Network using its learned weights and the activations are
scaled down as follows:
y=f(W'z+b) 9)

y=1-0(Wipg+bap))*y (10)
3.3 UNITS DROPAUT

Unlike DropAut, UnitsDropAut’s AD Network does not predict ¢ as a scalar value but as an n-
dimensional vector g € R™. The AD Network is composed again of a single Linear layer but with n
units. Therefore, the main difference with DropAut is that a different and specific ¢ for each hidden
unit will be generated, as shown in Figure[I|c). Equations [7] [§] and [3|now become:

a=0(Wipy+bap) (11)
¢; = min(max(g;, o), c1) (12)
m; ~ Bernoulli(q;) (13)

where Wyp € R™ ™ and byp € R" are the weights and biases of the AD Linear layer.

3.4 BOTTLENECK DROPAUT

BottleneckDropAut is an extension of UnitsDropAut with an additional layer called bottleneck layer.
Like the UnitsDropAut, the AD Network of the BottleneckDropAut will generate a specific drop
rate for each hidden unit. Basically, the AD Network of the BottleneckDropAut is composed of two
Linear layers placed one after the other, as shown in Figure [T(d). The first, the bottleneck layer,
acts as a dimensionality-reduction layer while the second is a dimensionality-increasing layer which
restores the input dimensionality. The choice of how much the bottleneck layer should reduce the
dimensionality depends on the hyper-parameter reduction ratio 7.

A bottleneck layer could be useful as it reduces the number of parameters of the network and im-
proves its generalization skills. Indeed, by converting the input vector to a low-dimensional repre-
sentation (i.e., an embedding), the bottleneck step forces the AD Network to learn a more general
representation of the feature combinations, allowing to get a more robust network at the end.

Under review as a conference paper at ICLR 2023

With the addition of the second Linear layer, Equation [TT|becomes:
’UZ(S(WZ;DIg-‘rbADl) (14)

qg=0(Wjip,v+bap,) (15)

wherev € R, Wap, € R™ T andb AD, € R™ are the otputs, weights and biases of the bottleneck

layer, Wap, € R**" and by D, € R™ are the weights and biases of the output layer and ¢ is the
ReLU Nair & Hinton|(2010) activation function.

The idea of the BottleneckDropAut is similar to that of a Squeeze and Excitation (SE) layer of the
SENet Hu et al.|(2018)) but without the Squeeze part and without the Global Average Pooling layer
in the Excitation stage. Moreover, our BottleneckDropAut outputs a vector of independent Bernoulli
random variables that is used to drop out some units of the layer rather than a vector of real numbers
useful to recalibrate the features of the layer based on the correlations between them.

4 EXPERIMENTS

We conducted several experiments across a range of tasks, datasets and model architectures in order
to evaluate our Automatic Dropout approaches. We used the TensorFlow framework |Abadi et al.
(2015) for implementing the architectures and ran the first two experiments on a MacBook Apple
M1 Pro 14-Core-GPU workspace with 16 Gigabyte of RAM and the others on a Linux machine
with a single Tesla P100 GPU with 16 Gigabyte of RAM. In all experiments, our goal was only to
compare our approaches with Dropout rather than matching or exceeding the state of the art.

4.1 MNIST

MNIST Lecun et al.|(1998) is one of the most popular computer vision datasets consisting of 28 x 28
black and white images of handwritten digits, from 0 to 9. The dataset consists of 60, 000 examples
for the training set, 10, 000 for the test set and 10 classes.

On this dataset, we tried two different architectures, a feedforward and a CNN. In both cases, the
only preprocessing applied is to scale the pixel values to the [0, 1] range before inputting to our
models. No data augmentation was used. In addition to Dropout and the proposed approaches, the
Baseline was also analyzed, i.e. the base network without Dropout or Automatic Dropout.

4.1.1 FEEDFORWARD MODEL

For our first experiment on this dataset, we examined the same simple feedforward model of |Srivas-
tava et al. (2014) and Wan et al.|(2013) composed by two Linear hidden layers with 800 units each
and ReLU as activation functions. The first hidden layer takes the image pixels as input, while the
second’s output is fed into a 10-class softmax classification layer. Dropout or Automatic Dropout,
when used, is placed after both the Linear hidden layers.

With this experiment, we also tried to verify whether the Automatic Dropout approaches work better
by scaling activations during the training or test phase. The hypothesis is that, since each method
produces drop rates through a neural network, it might make sense to scale the activations during
the test phase in order to exploit the weights learned during the training phase. To understand if the
above is correct, we examined a version with the scale during the training and a version with the
scale during the test for each Automatic Dropout approach.

We first trained each model for 50 epochs in order to study their behavior during the training. For
this training stage, which we called stuff training, we used Adam Kingma & Bal(2014)) as optimizer,
a batch size of 128 and the 10% of the training set as validation set; the drop rate of Dropout was set
to 0.5 as in|Srivastava et al.|(2014)) and Wan et al.|(2013) and the learning rate was fixed at 0.001.
For BottleneckDropAut, r was set to 16 as in[Hu et al.|(2018)). Figure E] shows the training trend of
the different models during the stuff training.

The Baseline overfits almost immediately. The model overfits also with Dropout but later than the
Baseline and has a much better training trend in general. The same is true for the three test scale
whose trend is very similar to that of Dropout. On the other hand, the trends of the three train scales

Under review as a conference paper at ICLR 2023

— Taining Training mainin
020 Valdation Validation Valdation

(b) Train Scale DropAut (c) Train Scale Units (d) Train Scale Bottleneck

— Trainin 035 — Taining

Validation

o 10 20 EY o EY o 10 20 By £y 50 o 10 20 E) £y EY o 10 20 B % £y

(e) Dropout (f) Test Scale DropAut (g) Test Scale Units (h) Test Scale Bottleneck

Figure 2: Training and validation loss of each model examined during the stuff training. Here, and
y axes represent respectively the number of training epochs and the values of the loss function.

are more particular, with the Train Scale DropAut which is the only one that is good enough; in fact,
the Train Scale UnitsDropAut even underfits, with much lower validation loss than the training one
while the Train Scale BottleneckDropAut has a very jagged trend, with continuous ups and downs.

In addition to the trend of the training, we also analyzed how the approaches change and adapt
their drop rates during the stuff training and the sparsity property of the Automatic Dropout. See
Appendices and [B.2] for further details.

After the stuff training, we performed two more training stages on each model: first, we trained with
the early stoppingE] technique to find out the epoch e in which the model performed best in terms
of validation loss; second, we trained again using the whole training set for e epochs. The resulting
model was then evaluated on the test set. Table [Tl summarizes the results obtained on the test set.

Table 1: MNIST test accuracy with feedforward models.

Train Time Best Epoch Test Accuracy Test Time Parameters
Baseline 6 ms/step 7 0.9801 5 ms/step 1,276,810
Dropout 7 ms/step 14 0.9834 5 ms/step 1,276,810
Train scale DropAut 8 ms/step 9 0.9821 5 ms/step 1,278,412
Test scale DropAut 7 ms/step 13 0.9838 5 ms/step 1,278,412
Train scale UnitsDropAut 11 ms/step 27 0.9803 5 ms/step 2,558,410
Test scale UnitsDropAut 9 ms/step 9 0.9840 6 ms/step 2,558,410
Train scale BottleneckDropAut 11 ms/step 10 0.9740 5 ms/step 1,438,510
Test scale BottleneckDropAut 9 ms/step 9 0.9842 6 ms/step 1,438,510

Basically, the three test scales achieve a better accuracy than Baseline and Dropout in a lower number
of epochs. Much worse are the train scales, with the Train Scale BottleneckDropAut which is even
worse than the Baseline. However, the Automatic Dropout approaches are a bit slower in terms of
step execution speed due to the increased computation required by the training of the AD Networks.

Given these results, we decided to scale activations at test time in the remainder of the experiments.

4.1.2 CNN MODEL

For our second experiment on this dataset, we examined a more complex network in order to
study how the proposed approaches perform in terms of test accuracy compared to the Baseline
and Dropout. The model chosen is called SimpleNet [Hasanpour et al.[(2016) and is a fairly deep

3Stop the training as soon as performance on a validation set starts to get worse.

Under review as a conference paper at ICLR 2023

CNN architecture consisting of 13 layer blocks, each of which is composed of a Convolutional layer,
a Batch Normalization [loffe & Szegedy| (2015) layer and a ReLU activation function. In addition,
there are also Max Pooling layers after the first 4 blocks, after another 3 blocks, after 2 more blocks
and finally after still 3 blocks. The architecture is ended by a classifier composed by a Global
Max Pooling layer and a Linear layer with 10 units and softmax as activation function. Dropout or
Automatic Dropout, when used, is placed after all the Max Pooling layers.

We re-implemented the PyTorch |Paszke et al.| (2019) version of SimpleNeIE] in TensorFlow and
trained the models for 400 epochs using Adam as optimizer and a batch size of 120. The learning
rate starts from 0.001 and exponentially decays during training with a decay rate of 0.98. For
Dropout, we show the results using both 0.1 and O.ﬂas drop rate values and for BottleneckDropout,
r was set to 16. This configuration was found using a validation set consisting of the 10% of the
training set. Table 2] summarizes the details of the different models on the MNIST test set.

Table 2: MNIST test accuracy with CNN models.

Train Time Test Accuracy Test Time Parameters

Baseline 136 ms/step 0.9966 37 ms/step 5,492,682
Dropout_01 139 ms/step 0.9967 37 ms/step 5,492,682
Dropout_02 139 ms/step 0.9966 37 ms/step 5,492,682
DropAut 143 ms/step 0.9970 40 ms/step 5,493,839
UnitsDropAut 148 ms/step 0.9975 43 ms/step 5,772,362
BottleneckDropAut 151 ms/step 0.9975 47 ms/step 5,528,722

Dropout does not improve the performance of the model, actually following the assertion of the loffe
& Szegedy| (2015)’s authors that when Batch Normalization is used, it is not useful to use Dropout
too. On the contrary, all the three proposed approaches seem to work better than Dropout together
with Batch Normalization, effectively increasing the accuracy of the models at the cost, however,
of some training and test speed. In particular, UnitsDropAut and BottleneckDropAut show good
improvements over both the Baseline and the classic Dropout.

4.2 CIFAR

The CIFAR-10 and CIFAR-100 Krizhevsky & Hinton| (2009) datasets consist of 60,000 colour
images of size 32 x 32 pixels. CIFAR-10 has 10 classes while CIFAR-100 contains 100 classes.
Each dataset is split into a training set with 50, 000 images and a test set with 10, 000 images.

On these datasets, we studied how the proposed approaches perform in terms of test accuracy com-
pared to the Dropout using a Transformer architecture known as Vision Transformer (ViT) |Doso-
vitskiy et al.|(2021). However, in their paper the authors mention that ViT is very data-hungry
and pre-training it on a large-sized dataset is essential to achieve state of the art performances on
medium-sized datasets like CIFAR. Since we were not interested in the state of the art, we imple-
mented a version called SL—ViTE] Lee et al.|(2021) that allows the training even on smaller datasets.

Before inputting the images to our models, both datasets were normalized using per-channel mean
and standard deviation. Data augmentation was applied with the following schema: resizing of the
images from 32 x 32 to 72 x 72; flipping images horizontally; introducing 2% of rotation variation;
introducing 20% of vertical and horizontal zoom.

4.2.1 VISION TRANSFORMER: CIFAR-10

For our third experiment on the CIFAR-10 dataset, the Baseline coincides with the network with
Dropout, as the basic model already has Dropout with a drop rate of 0.1. In particular, following
Dosovitskiy et al.| (2021), Dropout or Automatic Dropout is placed after every Linear layer except
for the gkv-projections and directly after adding positional to patch embeddings.

4 Available on github at https://github.com/Coderx7/SimpleNet_Pytorch,
30.2 is actually the drop rate value used by the authors.
8 Available on github at https://github.com/aanna0701/SPT_LSA_ViT,

https://github.com/Coderx7/SimpleNet_Pytorch
https://github.com/aanna0701/SPT_LSA_ViT

Under review as a conference paper at ICLR 2023

According to [Lee et al.| (2021), the number of layers (i.e., Transformer blocks) was set to 9, the
hidden size to 192, the number of attention heads to 12 and the hidden size of the MLP to 384.
Moreover, the patch size of the patch embedding layer was set to 8 and we added learnable positional
encodings to the patch embeddings to retain positional information. Note that the resize of the
images allowed us to exploit a higher sequence length (i.e., number of patches) of 81 rather than 16.

We trained the models for 200 epochs using AdamW Loshchilov & Hutter| (2019) as optimizer with a
base learning rate of 0.003, warmup over the first 10 epochs and cosine learning rate decay. We used
a batch size of 128, a label smoothing|Szegedy et al.|(2016) of 0.1 and a weight decay of 0.0001. For
BottleneckDropAut, r was set to 16. Moreover, unlike the previous experiments, we decided to also
specify a value for the constraint range ¢ hyper-parameter, see Equation 8] In particular, we trained
and tested the models with DropAut, UnitsDropAut and BottleneckDropAut either by not using c or
by setting ¢ to [0.0,0.2] or to [0.0,0.1]. The hypothesis here is that some steps that a Transformer
performs on a vision dataset, such as the attention one, are crucial to understand the relationships
between the input tokens. Consequently, having too high drop rates may mean that there are higher
probabilities to drop essential information.

Table 3: CIFAR-10/100 test accuracy with SL-ViT models.

Train Time Test Accuracy Test Time Parameters

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Dropout 560 ms/step 570 ms/step 0.8639 0.6028 189 ms/step 190 ms/step 17,532,691 17,550,061
DropAut 563 ms/step 575 ms/step 0.8170 0.5187 204 ms/step 205 ms/step 17,538,824 17,556,194
DropAut_02 564 ms/step 577 ms/step 0.8590 0.6019 205 ms/step 207 ms/step 17,538,824 17,556,194
DropAut_01 564 ms/step 577 ms/step 0.8645 0.6070 205 ms/step 207 ms/step 17,538,824 17,556,194
UnitsDropAut 577 ms/step 587 ms/step 0.8174 0.5541 225 ms/step 227 ms/step 19,293,589 19,310,959
UnitsDropAut_02 579 ms/step 589 ms/step 0.8593 0.5974 226 ms/step 229 ms/step 19,293,589 19,310,959
UnitsDropAut_01 579 ms/step 589 ms/step 0.8665 0.6085 226 ms/step 229 ms/step 19,293,589 19,310,959
BottleneckDropAut 583 ms/step 595 ms/step 0.8241 0.5597 230 ms/step 232 ms/step 17,758,435 17,775,805
BottleneckDropAut 02 584 ms/step 597 ms/step 0.8571 0.5996 231 ms/step 234 ms/step 17,758,435 17,775,805
BottleneckDropAut_ 01 584 ms/step 597 ms/step 0.8660 0.6150 231 ms/step 234 ms/step 17,758,435 17,775,805

Looking at Table 3| the hypothesis seems to be correct: for a Transformer on a vision dataset with
a fairly small sequence length, the use of lower drop rates is crucial in order for the model to learn
well in a limited number of epochs. In fact, DropAut, UnitsDropAut and BottleneckDropAut without
c have lower performance than Dropout; specifying a ¢ with a tight upper limit such as 0.1 instead
not only improves the performance but also makes them superior to Dropout. This means that the
model benefits from using drop rates even lower than 0.1, or potentially not using Dropout at all.

4.2.2 VISION TRANSFORMER: CIFAR-100

To verify whether the CIFAR-10 hypothesis applies to another vision dataset, we examined ex-
actly the same models and training configurations also on the CIFAR-100 dataset during our fourth
experiment. Table[3|shows the accuracy of the models on the CIFAR-100 test set. Obviously, the ac-
curacies are generally lower than CIFAR-10 because CIFAR-100 is a more complex dataset, which
requires much more fine-grained recognition as some classes are very visually similar. Nevertheless,
the behavior of the models follows that already observed for CIFAR-10, with the three approaches
with the upper limit set at 0.1 which carry to the best accuracy levels again.

4.3 IMDB MOVIE REVIEWS

IMDb Movie Reviews is a binary sentiment analysis dataset consisting of 50, 000 reviews from the
Internet Movie Database (IMDb) labeled as positive or negative. The dataset has an even number of
positive and negative reviews and is split into a training and test set with 25, 000 reviews each.

With our fifth experiment, we examined a Transformer Encoder architecture similar to that of BERT
Devlin et al| (2019). Specifically, models were trained from scratch on the dataset without pre-
training using single sequences as inputs (rather than pairs of sequences packed together) and not
using segment embeddings. Following Vaswani et al.[(2017), the number of layers (i.e., Transformer
blocks) was set to 6 and the number of self-attention heads to 8. We used a hidden size of 256 and
a hidden size of the MLP of 512. Moreover, according to |Vaswani et al.[(2017)) and |Devlin et al.

Under review as a conference paper at ICLR 2023

(2019), Dropout or Automatic Dropout was applied to the output of the attention, to the output of the
MLP and to the sums of the embeddings and the positional encodings. We used learnable positional
encodings to retain positional information. Before inputting the sequences to our models, each text
was preprocessed by removing the HTML tags and any multiple spaces and converting it to lower
case. After that, as in |Devlin et al.[|(2019)), the sentences were tokenized using the WordPiece Wu
et al.|(2016) model with a 30, 000 token vocabulary and their length was set to a maximum of 512.

We trained the models for 50 epochs using Adam as optimizer with a base learning rate of 0.0001,
warmup over the first 5 epochs and linear learning rate decay. We used a batch size of 64, a drop
rate of 0.1 for Dropout and the same c ranges of the previous experiment. For BottleneckDropAut, r
was set to 16. Table [4] shows the results obtained on the IMDDb test set.

Table 4: IMDb test accuracy with Transformer Encoder models.

Train Time Test Accuracy Test Time Parameters

Dropout 2 s/step 0.8648 484 ms/step 22,016,257
DropAut 2 s/step 0.8801 492 ms/step 22,019,598
DropAut_02 2 s/step 0.8746 496 ms/step 22,019,598
DropAut_01 2 s/step 0.8714 496 ms/step 22,019,598
UnitsDropAut 2 s/step 0.8820 503 ms/step 22,871,553
UnitsDropAut_02 2 s/step 0.8746 508 ms/step 22,871,553
UnitsDropAut_01 2 s/step 0.8713 508 ms/step 22,871,553
BottleneckDropAut 2 s/step 0.8790 513 ms/step 22,126,289
BottleneckDropAut_02 2 s/step 0.8704 515 ms/step 22,126,289
BottleneckDropAut_01 2 s/step 0.8676 515 ms/step 22,126,289

In this case, all the approaches overcame Dropout but in particular those without specifying ¢, which
in previous experiments were unsuccessful, proved to be the best with a gap of about 2% compared
to Dropout. This different behavior despite the similar architecture may be due to the type of dataset
(vision for CIFAR versus textual for IMDb) or to the different sequence lengths (81 for CIFAR
against 512 for IMDb). However, we leave a more careful analysis of this topic to future work.

5 CONCLUSION AND FUTURE WORK

In this work, we presented three Dropout extensions able to automatically detect how to regularize
the activities of the layers of a neural model. We proposed DropAut which predicts the drop rate ¢
using an internal neural network called AD Network, UnitsDropAut whose AD Network predicts dif-
ferent drop rates for each unit of the layer and BottleneckDropAut which is similar to UnitsDropAut
but with a slightly different AD Network architecture.

We have proven that our methods have similar behaviors to the classic Dropout using different neu-
ral models on a range of datasets, showing good training trends and improvements in performance.
Moreover, we have seen that DropAut, UnitsDropAut and BottleneckDropAut work well also to-
gether with other widely used techniques such as data augmentation and Batch Normalization. The
other side of the coin is that they are slower though this is compensated by the fact that the expensive
phase of finding a good value for the hyper-parameter ¢ is no longer necessary. In addition, we have
shown that the use of specific drop rates for the different units of a layer brings performance benefits.

Although UnitsDropAut turned out to be the best approach from the experiments, it is the heaviest
in terms of parameters. In general, if model size is not an issue, UnitsDropAut might be the ideal
solution; if instead memory is an important point, BottleneckDropAut could be better. On the other
hand, if both speed and memory are crucial, DropAut is the solution to be preferred.

While these initial results are encouraging, many challenges remain. One is to further investigate the
different behavior found on datasets of different types with a Transformer architecture examining
other textual and vision datasets. Another topic might be to investigate deeper architectures for the
AD Network to see if it can lead to further improvement in performance. Finally, an extension of
this work could be the deactivation of entire layers of the network rather than some of its units. This
could help bring even more generalization and robustness to the model.

Under review as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In
CJ. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
7b5b23f4aadf9513306bcd59%afboedc9-Paper.pdf.

Leo Breiman. Bagging Predictors. Machine Learning, 24:123-140, 1996. doi: 10.1007/
BF00058655.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the prop-
erties of neural machine translation: Encoder—decoder approaches. In Proceedings of SSST-S,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103111,
Doha, Qatar, oct 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-4012.
URLhttps://aclanthology.org/W14-4012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.orqg/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and Mohammad Sabokrou. Lets
keep it simple, using simple architectures to outperform deeper and more complex architectures,
2016. URL https://arxiv.org/abs/1608.06037.

Mohamed Hebiri and Johannes Lederer. Layer sparsity in neural networks, 2020. URL https:
//arxiv.org/abs/2006.15604.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012. URL http://arxiv.org/abs/1207.0580.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9:1735—
80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7132-7141, 2018. doi: 10.1109/CVPR.2018.
00745.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pp. 448-456, Lille, France, 07-09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/ioffel5.html.

10

https://www.tensorflow.org/
https://proceedings.neurips.cc/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://aclanthology.org/W14-4012
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/1608.06037
https://arxiv.org/abs/2006.15604
https://arxiv.org/abs/2006.15604
http://arxiv.org/abs/1207.0580
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html

Under review as a conference paper at ICLR 2023

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report 0, University of Toronto, Toronto, Ontario, 2009.

Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Shape, Contour and Grouping in Computer Vision, pp. 319-345. Springer
Verlag, 1999. ISBN 3540667229. doi: 10.1007/3-540-46805-6_19.

Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size
datasets, 2021. URL https://arxiv.org/abs/2112.13492.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqgY7.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142—-150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015!.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’ 10, pp. 807-814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Sungheon Park and Nojun Kwak. Analysis on the dropout effect in convolutional neural networks. In
Shang-Hong Lai, Vincent Lepetit, Ko Nishino, and Yoichi Sato (eds.), Computer Vision — ACCV
2016, pp. 189-204, Cham, 2017. Springer International Publishing. ISBN 978-3-319-54184-6.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style—-high-performance-deep-learning-library.
pdf.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15(56):1929-1958, 2014. URL http://jmlr.org/papers/
vl5/srivastavalda.html.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818-2826, 2016. doi: 10.1109/CVPR.2016.308.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 648—656, 2015. doi: 10.1109/CVPR.2015.7298664.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL |https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053clcd4al845aa-Paper.pdf.

11

https://arxiv.org/abs/2112.13492
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as a conference paper at ICLR 2023

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neu-
ral networks using dropconnect. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings
of the 30th International Conference on Machine Learning, Proceedings of Machine Learning
Research, pp. 1058-1066, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR. URL https:
//proceedings.mlr.press/v28/wanl3.html.

Haibing Wu and Xiaodong Gu. Towards dropout training for convolutional neural networks. Neural
networks : the official journal of the International Neural Network Society, 71:1-10, 07 2015.
doi: 10.1016/j.neunet.2015.07.007.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neu-
ral machine translation system: Bridging the gap between human and machine translation, 2016.
URLhttps://arxiv.org/abs/1609.08144.

A THE CONSTRAINT RANGE HYPER-PARAMETER

Each proposed approach gives you the possibility to narrow the probability values that the AD Net-
work can predict within a specified range through the hyper-parameter constraint range c. By default,
its value coincides with the probability range [0.0, 1.0] (i.e., the output of the sigmoid function) but
in some cases it may be useful to specify a different range in which the network can search.

For example, in|Srivastava et al.|(2014) the dropout probability is much lower (0.1 or 0.2) if Dropout
is applied to the input layer rather than to a hidden one. In this case, it may be useful to set an upper
limit that the predicted probabilities cannot exceed by specifying a ¢ of [0.0, 0.2] or even [0.0,0.1].

Probably, during the training, the AD Network will be able by itself to understand that the values
to be predicted must be lower in such cases, but specifying the range in advance allows the faster
finding of good probabilities, without looking into spaces that may not be interesting. In addition,
it also limits the risk of the AD Network being trapped in non-useful places and therefore never
finding an optimal solution.

It is also important to note that specifying a very small ¢ like [0.0, 0.1] is not equivalent to using the
classic Dropout with a drop rate ¢ = 0.1. This is because the output of the AD Network is only
constrained in a range whose maximum value is 0.1 but it does not necessarily mean that it must
always predict 0.1 as a drop rate: it could in fact also predict a lower value or even decide not to use
the Dropout at all (¢ = 0.0).

B ADDITIONAL ANALYSES

This section shows other details of the analysis done on the Automatic Dropout approaches during
the stuff training on the MNIST dataset with the simple feedforward model of Subsection [4.1.1]

B.1 TREND OF DROP RATES

One of the great differences of DropAut, UnitsDropAut and BottleneckDropAut compared to the
classic Dropout is that the drop rates are predicted by an internal neural network called AD Network.
Consequently, the deep network can choose or change them during the course of a training according
to its needs and based on the data it is dealing with.

Since DropAut generates a single drop rate which is the same for all units, it was possible to study
the trend of the predicted drop rate during the training epochs through the simple trend charts shown

in Figure

It is interesting to see how behaviors change according to the chosen activation scale method. For
the Train Scale DropAut, both rates decrease almost exponentially during the epochs until reach
practically O from the 20th epoch. In practice, from epoch 20, the network becomes the Baseline

12

https://proceedings.mlr.press/v28/wan13.html
https://proceedings.mlr.press/v28/wan13.html
https://arxiv.org/abs/1609.08144

Under review as a conference paper at ICLR 2023

W By EY

o 20 BY) 2 0
(a) Train Scale Ratel (b) Train Scale Rate2

o w0

10 20 EY 10 2 E)
(c) Test Scale Ratel (d) Test Scale Rate2

Figure 3: Drop rate trend of (a) the Train Scale DropAut layer placed after the first hidden layer; (b)
the Train Scale DropAut layer placed after the second hidden layer; (c) the Test Scale DropAut layer
placed after the first hidden layer and (d) the Test Scale DropAut layer placed after the second hidden
layer, during the stuff training. For each chart, x and y axes represent respectively the number of
training epochs and the values of the drop rate.

(with the addition of the activations scale). On the other hand, the charts of the Test Scale DropAut
are more interesting, where drop rates vary over the epochs in a range between [0.48,0.68] for
the first layer and [0.40, 0.65] for the second layer. However, towards the end of the training, the
predicted drop rate is generally higher than 0.5 for both layers, showing that|Srivastava et al.|(2014));
Wan et al.| (2013)’s choice of 0.5 as the hyper-parameter value for Dropout could be close to the
correct solution but presumably sub-optimal.

UnitsDropAut and BottleneckDropAut instead predict a different drop rate value for each unit of the
layer, so it was necessary to draw heatmaps to study the trend of their predicted drop rates. Figure
shows the heatmaps for UnitsDropAut, where the darker the color the lower the drop rate and vice
versa.

Unlike the Train Scale DropAut where the drop rate becomes practically zero after a while, the
opposite happens with the Train Scale UnitsDropAut. Especially for the second hidden layer, the
drop rates are quite high during the whole training. The second Train Scale UnitsDropAut layer
practically does not let almost anything go forward. This explains the underfitting shown in Figure
Also in this case, the trends of the test scales are more stable. It is interesting to see that some
drop rates are very high for some units and this is because the network has probably understood that
those units are not very important. Conversely, much lower drop rates are assigned by the network
to the units that it considers most important.

Finally, Figure [5] shows the heatmaps for the BottleneckDropAut. The charts are similar to those of
the UnitsDropAut with the only difference of the behaviour of the Train Scale BottleneckDropAut
for the second hidden layer which is more similar to that of the Train Scale DropAut layer. In fact,
here we have again very low drop rates, tending to zero during the training.

B.2 SPARSITY

Another analysis we conducted during the stuff training is the study of the sparsity of the activa-
tions after applying the DropAut, UnitsDropAut or BottleneckDropAut layer. Sparsity is a good and
desirable property for a neural network because it can save computational resources, facilitate in-
terpretations, and prevent overfitting Hebir1 & Lederer| (2020). It is verified from [Srivastava et al.
(2014) that in the fully connected layer, the activations are sparser when Dropout is used. Moreover,
Park & Kwak| (2017) confirmed that this statement also holds for CNNs in both lower and higher
layers.

13

Under review as a conference paper at ICLR 2023

83 10
760
737
714
691
658
645
“s 08
599
576
553
530
507
484
ps 06
438
415
392
369
36
323 04
300
217
254
21
208
85
162 02
139
116
S
70
a7
2]
1 00

1357 9 111315171921232527 2031333537 394143454749

(a) Train Scale Ratel (b) Train Scale Rate2

-10 -10
737
08 08
[06
438 438
392
04 04
254
208
02 02
)
00 00

1
1357 9 111315171921232527 2031333537 394143454749 13 57 9111315171921232527 2931333537 394143454749

(c) Test Scale Ratel (d) Test Scale Rate2

Figure 4: Drop rates trend of (a) the Train Scale UnitsDropAut layer placed after the first hidden
layer; (b) the Train Scale UnitsDropAut layer placed after the second hidden layer; (c) the Test Scale
UnitsDropAut layer placed after the first hidden layer and (d) the Test Scale UnitsDropAut layer
placed after the second hidden layer, during the stuff training. For each chart, x and y axes represent
respectively the number of training epochs and the number of units.

To verify if the proposed approaches also lead to the sparsity of the activations, we calculated the
mean activations of the units in both the hidden layers of the feedforward model on a random mini-
batch taken from the test set, starting from the classic Dropout shown in Figure[6]

In a good sparse model, there should only be a few highly activated units for any data case. More-
over, the average activation of any unit across data cases should be low. This is actually true for both
the hidden layers. Indeed, the histogram of mean activations of the first hidden layer shows a sharp
peak at zero and the histogram of the second hidden layer shows that most units have a small mean
activation of about 0.3. Definitely, very few units have high activations.

In Figure [7] the histograms relating to the train scale versions of DropAut, UnitsDropAut and Bot-
tleneckDropAut are reported. From the histograms it is clear that all the proposed approaches create
much more sparse activations than the classic Dropout, especially the UnitsDropAut which, as one
might have expected, definitively leads to a much more sparsity than the others. This is largely due
to the fact that, especially regarding the second hidden layer, the predicted drop rates of the Train
Scale UnitsDropAut are very high (Figure[d). The sparsity of the test scale versions, shown in Figure
are much more similar to that of the Dropout, with also in this case the UnitsDropAut having the
greatest sparsity.

Ultimately, we can conclude by saying that, like the classic Dropout, the proposed approaches also
lead to sparse activations of a layer after being applied.

14

Under review as a conference paper at ICLR 2023

755 10
760
737
714
691
668
645
e 08
599
576
553
530
384
prs 06
438
415
392
369
36
323 04
300
277
254
21
208
185
162 02
139
116
%
70
a7
2
1 00

1357 9 111315171921232527 2931333537 394143454749

-10

08
484 06
43
30

04
254

02
£

00

1357 9 111315171921232527 2931333537 394143454749

(a) Train Scale Ratel (b) Train Scale Rate2

783 o 783 10
760 760
737 737
714 714
61 691
668 668
645 645

22 08 622 08
599 599
576 576
553 553
530 530
507 4521

484 06
461 06 461
438 438
415 418
392 392
369 369
46 46

323 323 04
300 04 300
217 27
254 254
21 281
208 208
185 122

162 02 1 02
139 139
16 16
B KB
70 70
47 47
24 24

1 00 1 00

1357 9111315171921232527 2931333537 394143454749 1367 9111315171921232527 2031 333537 394143454749
(c) Test Scale Ratel (d) Test Scale Rate2

Figure 5: Drop rates trend of (a) the Train Scale BottleneckDropAut layer placed after the first
hidden layer; (b) the Train Scale BottleneckDropAut layer placed after the second hidden layer; (c)
the Test Scale BottleneckDropAut layer placed after the first hidden layer and (d) the Test Scale
BottleneckDropAut layer placed after the second hidden layer, during the stuff training. For each
chart, z and y axes represent respectively the number of training epochs and the number of units.

T 20

050
(b) Dropout Hidden2

02 04 06 075 100 125 150

(a) Dropout Hidden1

Figure 6: Histogram of mean activations of (a) the first hidden layer after applying Dropout and
(b) the second hidden layer after applying Dropout. For each histogram, x and y axes represent
respectively the values of mean activations and the number of units.

15

Under review as a conference paper at ICLR 2023

500

400

300

200

100

- 8 8 % B ¥ 8 8
s 8 & 8 ¥ 8

00 04 02 03 o4 05 00 1T oz T 03T od . 0s 00 05 0 15 20 25

(a) Train Scale DropAut Hidden1 (b) Train Scale Units Hidden1 (c) Train Scale Bottleneck Hiddenl

300

200
250
200 150
150

100

100

Y

8 10 00 01 02 03 04 05 00 05

(d) Train Scale DropAut Hidden2 (e) Train Scale Units Hidden2 (f) Train Scale Bottleneck Hidden2

s 20

Figure 7: Histogram of mean activations of (a) the first hidden layer after applying Train Scale
DropAut; (b) the first hidden layer after applying Train Scale UnitsDropAut; (c) the first hidden layer
after applying Train Scale BottleneckDropAut; (d) the second hidden layer after applying Train Scale
DropAut; (e) the second hidden layer after applying Train Scale UnitsDropAut and (f) the second
hidden layer after applying Train Scale BottleneckDropAut.

20 20

175

0 150

125
150

100

100

o ® 8 3

—_ —_ e
00 01 02 03 04 05 00] 02 03 04 05 06 00 01 02 03 04 05 06

(a) Test Scale DropAut Hidden1 (b) Test Scale Units Hidden1 (c) Test Scale Bottleneck Hidden1

[0

-
00 02 04 06 08 10 08 10

00 02 04 06 08 10

(d) Test Scale DropAut Hidden2 (e) Test Scale Units Hidden2 (f) Test Scale Bottleneck Hidden2

Figure 8: Histogram of mean activations of (a) the first hidden layer after applying Test Scale
DropAut; (b) the first hidden layer after applying Test Scale UnitsDropAut; (c) the first hidden layer
after applying Test Scale BottleneckDropAut; (d) the second hidden layer after applying 7est Scale
DropAut; (e) the second hidden layer after applying Test Scale UnitsDropAut and (f) the second
hidden layer after applying Test Scale BottleneckDropAut.

	Introduction
	Related Work
	Methods
	Dropout
	Dropaut
	Units Dropaut
	Bottleneck Dropaut

	Experiments
	MNIST
	Feedforward Model
	CNN Model

	Cifar
	Vision Transformer: CIFAR-10
	Vision Transformer: CIFAR-100

	IMDb Movie Reviews

	Conclusion and Future Work
	The Constraint Range Hyper-Parameter
	Additional Analyses
	Trend of Drop Rates
	Sparsity

