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Abstract

Decentralized bilevel optimization has garnered significant attention due to its
critical role in solving large-scale machine learning problems. However, existing
methods often rely on prior knowledge of problem parameters—such as smooth-
ness, convexity, or communication network topologies—to determine appropriate
stepsizes. In practice, these problem parameters are typically unavailable, leading
to substantial manual effort for hyperparameter tuning. In this paper, we propose
AdaSDBO, a fully problem-parameter-free algorithm for decentralized bilevel
optimization with a single-loop structure. AdaSDBO leverages adaptive stepsizes
based on cumulative gradient norms to update all variables simultaneously, dy-
namically adjusting its progress and eliminating the need for problem-specific
hyperparameter tuning. Through rigorous theoretical analysis, we establish that

AdaSDBO achieves a convergence rate of O (%), matching the performance of
well-tuned state-of-the-art methods up to polylogarithmic factors. Extensive nu-
merical experiments demonstrate that AdaSDBO delivers competitive performance
compared to existing decentralized bilevel optimization methods while exhibiting

remarkable robustness across diverse stepsize configurations.

1 Introduction

Bilevel optimization is a powerful framework widely applied in machine learning, artificial intel-
ligence, and operations research [Camacho-Vallejo et al.| [2024} (Caselli et al., [2024]]. In bilevel
optimization, the objective is to optimize a function that is itself dependent on an optimization
problem, creating a hierarchical structure of decision-making. This framework models numerous
real-world problems where decisions at one level influence outcomes at another, including reinforce-
ment learning [Hong et al., 2023} Thoma et al., [2024] |Shen et al.,|2025]], meta-learning [Bertinetto
et al.| 2018} |[Rajeswaran et al., 2019, Ji et al.,|2020], adversarial learning [Madry et al., 2017]], hy-
perparameter optimization [Pedregosal, [2016| [Franceschi et al.,[2018]], and imitation learning [Arora
et al.| 2020]]. The flexibility of bilevel optimization makes it an essential tool for modeling complex
systems and tackling a wide range of challenges in modern machine learning and optimization.

As datasets continue to grow and machine learning models become more complex, bilevel optimiza-
tion increasingly necessitates decentralized computation paradigms [Kong et al., 2024. Decentralized
approaches distribute computation across multiple agents that communicate only with their neighbors,
thereby significantly reducing communication overhead and enhancing scalability for large-scale
problems. These frameworks are particularly valuable in scenarios where centralizing data is in-
feasible due to privacy concerns or infrastructure limitations [Zhang et al., 2019, Kayaalp et al.,
2022]. Applications of decentralized bilevel optimization are prevalent in various domains, including
resource allocation [Ji and Ying, [2023]], collaborative decision-making [Hashemi et al., 2024, and
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distributed machine learning [Jiao et al.| 2022]], where agents collaboratively solve a global bilevel
problem while addressing local constraints.

Given its importance, numerous studies have explored the challenges of decentralized bilevel opti-
mization, focusing on algorithm design [Lu et al.l 2022b], convergence analysis [Wang et al., 2024],
and practical applications [Lu et al.,[2022a, |Liu et al.,|2022]. Among existing methods, double-loop
frameworks have been extensively studied for their effectiveness in achieving convergence across
various settings [Chen et al.,[2024a,2023]]. However, these approaches are computationally expensive
due to their nested structure, which requires repeatedly solving lower-level problems during each
upper-level iteration. This results in significant computational and communication overhead in decen-
tralized settings. To address these limitations, single-loop methods have emerged as a computationally
efficient alternative [Zhu et al., 2024} Dong et al.,|2023||. By integrating updates for both levels into a
unified process, single-loop frameworks reduce overall complexity and are better suited for real-world
decentralized bilevel optimization tasks.

Despite these advancements, existing decentralized bilevel optimization methods face a critical
challenge: problem-specific hyperparameter tuning (e.g., stepsizes). In particular, the selection of
hyperparameters in these algorithms often relies on problem-specific information, such as smoothness
and strong convexity constants, the spectral gap of the graph adjacency matrix, or other topological
characteristics. However, obtaining such information is typically infeasible due to physical or privacy
constraints and computational limitations, especially in large-scale machine learning applications
involving massive datasets. The nested structure of upper- and lower-level objectives in decentralized
bilevel problems further exacerbates this challenge. As a result, extensive hyperparameter tuning
remains necessary in existing methods, significantly limiting their practicality in real-world scenarios.
This raises a fundamental question:

Can we design a single-loop decentralized bilevel optimization algorithm that eliminates
reliance on problem-specific parameters while achieving comparable performance to
well-tuned counterparts?

1.1 Main Contributions

In this paper, we provide an affirmative answer to the above question by proposing an Adaptive
Single-loop Decentralized Bilevel Optimization Algorithm (AdaSDBO). AdaSDBO leverages accu-
mulated gradient norms to dynamically adjust stepsizes per iteration, thereby eliminating the need
for hyperparameter tuning. We conduct a comprehensive convergence analysis with nonconvex-
strongly-convex problem settings, showing that AdaSDBO achieves performance comparable to
existing well-tuned approaches. Our main contributions are summarized as follows:

* We propose AdaSDBO, the first parameter-free method for decentralized bilevel optimization with a
single-loop structure. AdaSDBO employs adaptive stepsizes based on accumulated (hyper)gradient
norms to update all variables simultaneously. However, due to the coupling of bilevel objectives,
adaptive stepsizes in a single-loop framework must carefully orchestrate the progress of primal,
dual, and auxiliary variables. Additionally, network heterogeneity in decentralized settings intro-
duces inconsistencies in local-gradient-based adaptive stepsizes. To address these challenges, our
method incorporates two key mechanisms: 1) hierarchical stepsize design, which respects the
interdependence of different variables while preserving the autonomy of adaptive stepsizes; 2)
stepsize tracking scheme, which synchronizes gradient-norm accumulators, effectively managing
stepsize discrepancies among agents.

* We provide a comprehensive theoretical analysis, demonstrating that our algorithm eliminates the
need for problem-specific hyperparameter tuning while achieving a convergence rate of O (%),
matching well-tuned counterparts [Ji et al.,[2022, [Dong et al.|[2023]] up to polylogarithmic factors.
Our analysis is inspired by the two-stage framework [Xie et al., 2020, [Ward et al.| [2020]], but
uniquely addresses the intricate coupling between optimization variables and adaptive stepsizes
in single-loop bilevel optimization. Furthermore, we conduct a more rigorous analysis to control
the interaction between hierarchical optimization errors and network-induced discrepancies, while
preserving the problem-parameter-free property.

* We conduct experiments on several machine learning problems, showing that our method performs
comparably with existing well-tuned approaches on both synthetic and real-world datasets. More-
over, our method exhibits remarkable robustness across a wide range of initial stepsizes, validating
the effectiveness of our adaptive stepsizes design.



Table 1: Comparison between different bilevel optimization algorithms.

T denotes the number of (upper-level) iterations; e is the target stationarity such that
ZtT;OI |V®(7,)||?/T < € pw measures the connectivity of the underlying graph; p and L are
the strongly convex and Lipschitz constants, respectively; 3 represents the momentum parameter.

Algorithm Loopless Convergence Rate® Gradient Complexity! Parameters’
DBO [Chen et al., 2024al] X O (%) O (Flog (1)) 1, L, pw
MDBO [Gao et al.| [2023] X O(7=) O (Hlog (1)) s L, pw, B
FSLA [Li et al., 2022a] v O(7#) O (%) n, L, B
AID [Ji et al.| [2022] v o(#) 0 () p, Ly e
SLDBO [Dong et al., 2023] v o(#) 0 (3) 1, L, pw
AdaSDBO (This paper) v/ o( log;(T) ) O (Llog* (1)) None

© The convergence rate when T' — oo.
T The number of gradient/Jacobian/Hessian evaluations per agent to achieve e-accuracy when e — 0.
T Stepsize-related problem-specific parameters.

1.2 Related Works

Decentralized Bilevel Optimization. Recent advancements in decentralized bilevel optimization
have focused on addressing the challenges of large-scale data and leveraging the computational
benefits of parallel environments. |Chen et al.[[2024a] proposed DBO, a general framework that
incorporates convergence analysis while accounting for data heterogeneity across agents. Similarly,
MA-DSBO [Chen et al.} 2023]] and MDBO [Gao et al., [2023]] employed a double-loop framework
with momentum techniques [Liu et al.;,2020]. More recently, single-loop frameworks have emerged
as efficient alternatives to double-loop methods. These approaches [[Chen et al., 2024b, |Dagréou
et al., 2022, Kong et al., 2024, Zhang et al.| 2023]] enable approximate solutions to decentralized
bilevel problems within a single iteration, significantly improving computational efficiency by
reducing redundant computations. Such methods have made decentralized bilevel optimization
more practical and scalable for large-scale applications. |Dong et al.| [2023]] further introduced
SLDBO, a low-complexity single-loop decentralized bilevel algorithm that leverages gradient tracking
technology. Despite these advancements, existing methods rely on fixed or uniformly decaying
stepsizes. Further, they require prior knowledge of problem parameters for stepsize selection.
This dependency imposes additional challenges, particularly in decentralized settings where such
information is often unavailable or difficult to estimate. Further details on bilevel optimization,
adaptive methods, and their applications are provided in Section[A]

1.3 Comparisons with Prior Approaches

We compare AdaSDBO with representative bilevel optimization methods, as summarized in Table
Notably, AdaSDBO adopts a loopless framework while achieving a convergence rate that matches
the state-of-the-art results, up to a polylogarithmic factor of log4(T). Since logarithmic factors
grow significantly slower than polynomial terms, this factor is negligible relative to 7', a common
consideration in optimization research [[Yang et al., 2022, |[Li et al.,2024]]. By carefully controlling
network-induced errors, AdaSDBO matches both the convergence rate and gradient complexity of its
centralized counterpart AID [Ji et al., [2022], while outperforming the centralized method FSLA [Li
et al., 2022al] in both metrics. Compared to decentralized approaches such as DBO [Chen et al.,
2024b], MDBO [Gao et al.,[2023]], and SLDBO [Dong et al.,|2023|], AdaSDBO achieves the best-
known convergence rate of O () and gradient complexity of O (= ), while surpassing double-loop
methods in gradient complexity—underscoring the efficiency of its single-loop framework. Most
importantly, AdaSDBO is a completely tuning-free algorithm independent of problem parameters,
which is in sharp contrast to other methods that require extensive hyperparameter tuning. This
advantage significantly simplifies algorithm deployment, facilitating the implementation of bilevel
optimization in diverse environments.

2 Algorithm Development

2.1 Problem Model

In this paper, we consider a networked system consisting of n nodes (agents) that collectively solve
the following nonconvex-strongly-convex bilevel optimization problem:



min®(z) = f(z,y*(z)) :=
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n
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where f(-) represents the upper-level objective function, which is minimized with respect to z,
subject to the constraint that y*(«) is a minimizer of the lower-level function I(-). Each agent i has a
possibly nonconvex objective function f;(+) : RP x R? — R and a strongly convex objective function
I;(+) : R? x R? — R with respect to y. The agents are interconnected through a communication
network modeled as a graph G = (N, &), where N’ = {1,2,...,n} is the set of nodes (agents),
and £ C N x N is the set of edges representing communication links. An edge (i,7) € &
indicates a communication link between nodes j and node i. We represent the weight matrix of the
communication network G as W = (w;;) € R™*"™, where w;; = 0 if (i,5) ¢ £. The following
assumption is made on W.

Assumption 2.1. The matrix W is doubly stochastic, i.e., W1 =1, 1TW = 1T, and py :=
|W—J||3<1, where J = 11" /n is the averaging matrix with n dimension.

A key challenge in solving the Problem () is the computation of the hypergradient V&(x), which is
expressed as:

V&(z) = Vo f(a,y"(2)) = VaVyl(a,y" (@) [Vy Vyl(,y" (@) 7'V, f(2,57(2), @
derived using the implicit function theorem [Ghadimi and Wang| 2018]]. First, the lower-level
minimizer y* () is typically not directly accessible, requiring iterative algorithms to approximate it
with an estimate ¢. Second, the expression in Eq. @ involves the inversion of the Hessian matrix
V,Vyl(z,y*(z)), which is computationally expensive, with the complexity of O(¢*). Additionally,
in decentralized settings, the difficulty is further exacerbated because each agent has access only to
its local problem and lacks information about the global lower-level objective [(-). To overcome this
challenge, we introduce the following linear system:

1
m&nr(a:,g),v) = §vTVyVyl(a;, g))v—vTVyf(a:, Q)v (3)

S|

Ti
:\H =

€]
s.t. y*(z) = arg mlnl
y€R

which seeks to approximate the inversion of the Hessian matrix by v*(z) =
[V, Vyl(z,y* ()] 'V, f(z,y*(z)) when § approaching y*(z), where v € V. An iterative
algorithm is then employed to compute an approximate solution ¢ to the Problem (3). Using the
approximations ¢ and v, the x is subsequently updated based on a hypergradient estimate as:

Building on this framework, solving the decentralized bilevel optimization problem (I can be
reformulated into three interconnected subproblems:

- f§ A ) 5 “(z) = f§ L 5b
z”* arg;renRr;n filz,y"(x (5a) y*(x) = arglgreuﬂgn (z,y), (5b)
* 1 = *
v (x) argqurIEnRré = E ri(z,y*(z),v). (5¢)

i=1
In (3)), the subproblems (5a) and (5¢) depend on the optimal solution of (5b). This naturally motivates
many existing works [[Chen et al., 2023} 2024a] to adopt a nested structure, where (5b) is solved up to
a certain accuracy before sequentially computing (5¢) and (5a). However, these nested loops result in
substantial computational overhead and implementation difficulties. To address this, a single-loop
framework [Dong et al.,|2023|, [Zhu et al.| 2024]] has been proposed to solve the three subproblems
in parallel, thereby improving computational efficiency in bilevel optimization. Nevertheless, the
single-loop structure introduces significant challenges in algorithm design and convergence analysis.

Furthermore, existing decentralized bilevel optimization solutions predominantly rely on problem-
specific parameters for algorithm tuning, such as smoothness and strong convexity constants, the
spectral gap of the graph adjacency matrix, or other topological characteristics. Obtaining such
information is often impractical due to physical or privacy constraints, as well as computational
limitations—particularly in large-scale machine learning applications involving massive datasets.

In light of these challenges, this paper aims to develop a single-loop algorithm for solving Problem
(3) while achieving comparable convergence guarantees without the need for hyperparameter tuning.



2.2 Algorithm Development

In this subsection, we propose an Adaptive Single-loop Decentralized Bilevel Optimization
Algorithm (AdaSDBO) based on iterative gradient updates, as presented in Algorithm Let
z;: € RP,y; , € RY, and v; , € RY denote the iterates at agent ¢ for variables x, y, and v, respectively.
According to Problem (3)), the local gradients at each agent ¢ can be expressed as:

vfi(xi,hyi,hvi,t) = V:cfi(xi,hyi,t) - vxvyli(zi,tayi,t)vi,t;
Vuﬁ(wi,t,yi,t,vi,t) = vyvyli(xi,ta yi,t)vi,t - Vyfi(xi,ta yzt)
For brevity, let g7, := V fi(@it, Yit, vit)s 97 := Vyli(@it, Yir), and gy := Vori(Ti g, Yies Vie)-

Adaptive Stepsizes Design. To eliminate the dependency on problem-specific parameters, we design

the adaptive stepsizes strategy based on accumulated gradient norms. Specifically, we introduce an

accumulator my, ; as [my, H]Q = [mft]Q + lg/;|I?. Using this accumulator, the dual variable y; ;

is updated by y; 141 = yi ¢ — where 7, > 0 1is a control coefficient that is independent

of the problem parameters. Slmllarly, the accumulators my’, and m;, are defined by the updates

[m?, 1]? = [m?)* + [lgF,||” and [mf, ,,]* = [m7,]* +[|g7,||?, respectively. However, the adaptive
update rule for dual variable Yit cannot be directly extended to primal variable 2, and auxiliary
variable v; ; due to their intricate interdependencies with other variables. The primary challenges are:

 Auxiliary-Level Update: The update of the auxiliary variable v; ; requires the optimal solution
y* of the lower-level subproblem. Since single-loop algorithms perform only one-step updates of
the variable y; ;, the suboptimality gap ||y; :+1 — y*||> must be carefully managed to prevent error
accumulation. Thus, v; ; must progress no faster than y; , to maintain approximation accuracy.

* Upper-Level Update: The primal variable x; , depends on both the optimal variables y* and v*,
introducing additional complexity. Errors from both the lower-level and auxiliary-level updates
must be considered, necessitating more conservative updates of the variable z; ; to align with the
slower dynamics of these levels.

To overcome these challenges, we propose the following hierarchical stepsizes:

* Auxiliary variable update (v;;): We employ a stepsize 1nversely proport10nal to

max(mftﬂ, mgt_H) resulting in the update rule v; ;11 = v 4 — — oy 9it
( i t+1)

i,t+1 e
. Prlmal Varlable update (zi+): We use a more conservative stepsize, inversely proportlonal to
mf, q max(my, ., m{, ), yields the update z; ¢ +1 = ;¢ — ot y9it:

; max(my mY

'L.t+ i,t+17 i,t+1

Here, 7, > 0 and ., > 0 are control coefficients.

This hierarchical stepsize design plays a critical role in balancing the progress speeds at different
levels, ensuring stability and convergence in single-loop optimization. Additionally, the adaptive
stepsizes based on accumulated gradient norms dynamically adjust to the local optimization geometry,
enhancing the efficiency and accuracy of the algorithm without requiring problem-specific parameters.

For notational convenience, we define the stepsize variables g; 411 := m{,, ; max {mft cml },
i1 7= mY, . and 2z pqq o= max {m{,, ,m?,  }. Correspondingly, we define the following
diagonal stepsize matrices as:

Qi1 = diag{‘]i,t—‘rl}?:l» U1 = diag{ui,t—‘rl}?:l; Ziy1 = diag{zi,t-&-l}?:r

Additionally, define the concatenated variable matrices as: x;:=|... s Tity e ]TE R"*P |y, :=
[o Uity | TER™ 9 and vii=]...,v; 4, ...] TER™ . We also concatenate the gradient vectors as:
= = T T
VF(x4,yt,Ve) i= [ o »vfi(xi,tvyi,tvvi,t)a e ] ) VyL(Xt».Yt) =l 7vyli(xi,t7yi,t)v ] I
T
VoR(xe,ye,vie) = [+, Vori(@ig, Vi, Vise), - - -]

Based on these definitions, the update rules for the primal, dual, and auxiliary variables are given by:
X1 = W(Xt - ’Vth_-i-llvF(xtvytth)>a Yirr = W(ye — % U VyL(xe, 1)),

vit1 =Py (W(Vt — Y0 Zi 1 Vo R(Xe, ¥, Vt))),

where Py, (+) denotes the projection operation onto the set V.



Algorithm 1 Adaptive Single-Loop Decentralized Bilevel Optimization: Procedures at Each Agent
i € [n]
1: Initialization: ; o, yi 0, vi,0, m7 g = mi o =m{y > 0,7, =7, =7 > 0.
2: fort=0,1,--- ,T—1do
3:  Compute the gradients:
ot - vyli(xi,tvyi,t)s
97 = VyVyli(@ie, yit)vie — Vy fi(Tie, Yit),
9t = Vafi(@it, yit) — VaViyli(Tit, Yit) Vi
4:  Accumulate the gradient norms:
[mﬁt+1]2 = [mft]Q % [”ﬁ,tﬂ]z = [mzt}z
5. Update the primal, dual, and auxiliary variables by:
Yijt+1 = Yi, Y

Vit+1 = Uit —

2, [m;],t+1]2 = [mﬁt]z + ||gf,t||2-

'Yu g
max(m t+l’mz tp1) 0

Tit+1 = Tijg — mi, max(mf t+1,mi t+1)gi7t'

6: Information exchange with neighbors:

{z,y,v}i < Zj w; {2, Y, v}

{m®,mY m%,; 1 = 305w i {m® mY, m% .
7:  Projection of auxiliary variable on the set V: v; 441 < Py (vi141)-
8: end for

Addressing Stepsize Inconsistencies. In decentralized bilevel settings, agents compute their adaptive
stepsizes independently based on local private objective functions, and the coupling of multiple
optimization variables within adaptive stepsizes amplifies their network-wide inconsistencies. These
discrepancies can hinder convergence if not properly controlled. To formalize this, let z; :=
% Z?zl x;,¢+ denote the average of all primal variables at the ¢-th iteration, and ¢; := % Z?:l it
represent the average of their respective stepsizes. We then define the stepsize discrepancy vector as

q = [ o ,q;tl —q ' ~]T. Using this definition, the update rule for z; can be expressed as:

a1’ (@)
- - t+1 t+1 S
Ti41 = Tt ’Yz( + + )VF(Xt;Ytth)~ (©)

H/—/ Hf—/

(a) (b)

In Eq. @ term (a) resembles centralized gradient descent, while term (b) introduces an undesired
perturbation caused by stepsize inconsistencies among agents. This perturbation can disrupt network
consensus due to varying update rates and may lead to uncontrollable error growth, as term (b)
represents accumulated gradient-norm discrepancies over iterations. Such stepsize inconsistencies
similarly affect the updates of the dual and auxiliary variables.

To address this challenge, we incorporate a stepsize tracking mechanism in Algorithm|[I] At each

iteration, the gradient-norm accumulators m{,, m; ,, and m} , are tracked by:

zt+1 Zwu j,t—i-l Zw” , >+ ||9J ell )

where b € {z,y,v} and i € [n]. Letk} := [--- ,[ml ]?, -] " and h? = [ llgl a2,
denote the concatenated gradient accumulators and corresponding norms, respectively. The above
equation can then be compactly expressed as k7, ; = W (k{ +h}). This tracking mechanism enforces
consensus on the gradient-norm accumulators before computing the adaptive stepsizes (g; ¢, Ui ¢, Zi,¢)-
By synchronizing these accumulators, it effectively bounds stepsize discrepancies among agents,
preventing error accumulation while preserving the adaptive nature of the updates.

]T

It is worth noting that the additional communication overhead of our method is modest—only scalar
values (the stepsize accumulators) are exchanged—especially compared with transmitting the primal,
dual, and auxiliary variables commonly communicated in decentralized bilevel methods. Some
approaches [Gao et al.| 2023 |Chen et al., 2023} [Zhu et al.| 2024] also employ a gradient tracking
mechanism, which involves exchanging extra tracker states with the same dimensionality as the



optimization variables. In contrast, our method adds only lightweight scalars for transmission, while
offering a robust, problem-parameter-free solution for decentralized bilevel optimization.

3 Theoretical Analysis
3.1 Technical Challenges

The analysis of problem-parameter-free decentralized bilevel optimization with a single-loop structure
involves several fundamental challenges:

* Interdependent Variable Updates: The coupling of bilevel objectives creates intricate interde-
pendencies among the variables (z,y, v), making the convergence analysis significantly more
challenging compared to single-level optimization.

* Coupled Stepsize Dynamics: The adaptive stepsizes exhibit highly intertwined dynamics, forming
a multi-stage system in which the progress of each variable directly affects the others, requiring
meticulous coordination to manage these interactions effectively.

* Accumulated Stepsize Inconsistencies: Inconsistencies in adaptive stepsizes across agents disrupt
network consensus, while their cumulative effect over iterations further exacerbates the challenge.

¢ Interplay Between Optimization and Consensus Errors: The interaction between hierarchical
optimization errors and network-induced discrepancies necessitates rigorous theoretical bounds to
guarantee convergence while maintaining the problem-parameter-free property.

3.2 Assumptions and Definitions

In this subsection, we present the standard assumptions and definitions used in our analysis.

Assumption 3.1. For any ¢ € [n], the objective functions f;(z,y) and [;(x, y) are twice continuously
differentiable, and [; (x, y) is u-strongly convex with respect to y.

Assumption 3.2. For any i € [n], the function f;(x,y) is L o-Lipschitz continuous; the gradients
V fi(z,y) and Vi;(z,y) are Ly 1- and L; ;-Lipschitz continuous, respectively; the second-order
gradients V,V,l;(x,y) and V, V,l;(z,y) are L; o-Lipschitz continuous.

The above assumptions are commonly adopted in prior works, including [Zhu et al., 2024} |Chen et al.|
20244, 12023| Dong et al., [2023| Ji et al.| 2022].

Remark 3.3. Assumption indicates that there exist constants C'¢_, ny, C’lmy, and ngy such that
IVafilz,y)ll < Cp,. IVyfilz,y)ll < Cr,, [[VaVyli(z,y)| < C,,» and [V Vyli(z,y)|| < C,,.

Define t;:=1 3" gy, Z:=13"" | 2, and recall that g;:=2 37" | g; ;. We then introduce the

following metrics to quantify the level of stepsize inconsistency among agents:

xy?

-1 ——1\2 -1 _ =—1)2 -1 _ z—1)2
(3 (= sup M, (2= sup M, 2= sup M’
iemle>0  (g") iemle>0 (") ielt>0 (%)
-1 ——1)2 -1 _ Z—1)2 -1 _ 5-1)2
03 _16[111]1£>0 (qz‘,t(_lqtz ) o2 = inf (Uz,trlutz ) o2 = i (Zz,t _712,52 )
), @ ) i€[n],t>0 (Ut ) i€n],t>0 (Zt )

These metrics are guaranteed to remain bounded under Assumption [3.2]and Remark 3.3]

Definition 3.4. An output Z of an algorithm is the e-accurate stationary point of the objective function
®(z) if it satisfies || V®(Z)||? < ¢, where € € (0,1).

3.3 Theoretical Results

In this subsection, we present the main theoretical results for the proposed Algorithm [T} with the
proof sketch provided in Section[B] As outlined in Section[D.2] the descent behavior of the objective
function ®(-) is governed by three key factors: approximation errors, consensus errors, and stepsize
inconsistencies. These components are bounded in the following lemmas.

To facilitate the analysis, we first define z, = 13" 24, 5 == 13" 4, and 0, =
L3 vig. Then, let mf = 23" m7, and m{ := + 37", m!, represent the average of
the gradient accumulators. Additionally, denote f(Zy, §¢, U¢) := %L St fi(®@e, U, 0n), U@, ) =



% S L@ ), (T, Ge, V) = % iy ri(@e, Yr, Ue) as the corresponding aggregated functions
when the variables (x,y, v) achieve consensus to (Z, ¥, 7).

From the descent lemma in Section we obtain that the approximation error ||V®(Z;) —
V f (@4, G, 1) ||? is attributed in terms of O(||V,I(Z4,3:)||?) and O(||Vyr(Ze, §t, 0e)||?). Hence,
we establish the following lemma to provide bounds for these terms associated with approximation
errors during the optimization process.

Lemma 3.5 (Approximation Errors). Under Assumptions[3.1jand[3.2} for any integer k¢ € [0, 1),
we have ZZ_ w < as log(t+1)+bs andz M < aglog(t+1)+bs,
he1

Zk+1

where the constants as, bs, ag, and bg are defined in Eq. (108] of Section|[D.8§]

Lemma 3.6 (Accumulated Gradients). Under Assumpnons [3.1)and[3.2] the gradient accumulators
satisfy the bounds mi < O (log(t)) and z; < O (log(t)) .

Lemma shows that the accumulated gradient norms for all variables (x,y,v) grow at most
logarithmically with respect to the iteration index ¢.

Lemma 3.7 (Consensus Errors) Suppose that Assumptions 2.1} B.1} and [3.2] hold. Let A, :=
llx: — 12]1% + ||yt — 19:||? + ||ve — 19;||? represent the consensus errors for all variables at the

t-th iteration. Then, the time-averaged consensus error satisfies thfol Ay <O (log(T)/T).

Next, we provide the bounds for the terms associated with the stepsize inconsistencies in our analysis.

Lemma 3.8 (Stepsize Inconsistencies). Suppose Assumptions[2.1] 3.1} and[3.2hold. Define discrep-
~—1 -1 1 T ~—1 -1 771 -1

ancy vectors as q; .—[ iy ] , O, —[-n,ult ,] , and Z; .—[u-,zit—

zZ L. ~]T. Then, under Algortthm we have that 7 t " H(q;jl VE( xt,yf,vt)/nqt+1

>

2 2
T t 0 H ﬁ;rll VyL(xt, yt)/nut_H . and % f 01 ‘ (Zt+1> VoR(xt,yt, Vt)/nth’ are
each upper-bounded by O (log(T')/T).

Combining the above results, we establish the convergence of Algorithm|[I]as follows.

Theorem 3.9. Under Assumptions n and for any positive Constants Yz, Yy, Yo, My o mﬁo,

and ml o the iterates generated by gorithm ﬂ satzsfy

Z|\v<1> NE<= <4<W)+a7log( )+b7>(a110g(T)+b1)2

o)

where ®* := inf,crr ®(x) > —o0, and the constants Cy,=, a1, b1, ay, and by are defined in

Egs. (30), (70), and in the Appendix.

Remark 3.10. Theorem [3.9|implies that for any positive coefficients (v, Yy, Y, ) and positive initial

+cm$<4 (W>+a7log(T)+ b7) (arlog(T)+b1)

x

4
stepsizes (mf 0, MY 0 mf’o), Algorithm |1{guarantees convergence with a rate of O (%) . This

convergence rate matches the state-of-the-art results, up to a polylogarithmic factor of log4 (T), which
is regarded negligible relative to 7" in the optimization literature [Yang et al.,[2022} |Li et al., [2024].
Corollary 3.11. From Theorem[3.9] to achieve an e-accurate stationary point, Algorithm|I| requires
T=0 (% log® (%)) iterations, resulting in a gradient complexity of Ge(e) = O (% log* (%))

In sharp contrast, the theoretical convergence of existing decentralized bilevel methods heavily
relies on the correct selection of hyperparameters based on problem-specific constants, such as u, L,
and pyy. This reliance restricts their applicability, as these parameters are unknown or difficult to
determine. In comparison, our approach significantly simplifies the implementation of decentralized
bilevel optimization by operating in a completely problem-parameter-free manner.

4 Numerical Experiments

In this section, we evaluate the performance of Algorithm [T]on the hyperparameter optimization
problem, as illustrated in Section[E.I} Our algorithm is compared with several decentralized bilevel
optimization methods, including SLDBO [Dong et al.,[2023|], MA-DSBO [Chen et al.;2023], MDBO
[Gao et al.,[2023[], and DBO [[Chen et al.,|2024al]. Experiments are conducted on both synthetic and
real-world datasets, with detailed configurations and additional results provided in Section [E]
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4.1 Synthetic Data Experiments

For synthetic data, the data distribution at node i follows A/ (0,2 - 72), where the parameter  controls
the level of data heterogeneity. To evaluate the advantages of AdaSDBO, we first compare different
methods under low data heterogeneity conditions with » = 1 (Experiments under higher heterogeneity
conditions are presented in Figure [ of Section [E-6). Both algorithms compute full gradients and
utilize a training dataset and a testing dataset, each containing 20,000 samples. As illustrated in
Figure[T](a) and Figure[T](b), AdaSDBO achieves faster convergence than baseline methods across
different data dimensions (i.e., p = 50 and p = 200). Notably, our method consistently outperforms
the double-loop frameworks DBO and MA-DSBO. These results validate both the superiority of the
adaptive stepsizes design and the single-loop structure of AdaSDBO.

4.2 Real-World Data Experiments

We evaluate our method on the hyperparameter optimization task using the MNIST [LeCun et al.,
1998] and FMNIST [Xiao et al.,[2017] datasets. In Figure |Ikc) and Figure |IKd), we vary the number
of agents to assess scalability. The results illustrate that AdaSDBO consistently maintains a robust
convergence rate across different network sizes, highlighting its scalability and robustness to variations
in the number of agents. Furthermore, AdaSDBO achieves a competitive convergence rate compared
to state-of-the-art methods, further corroborating its effectiveness. Additional scalability evaluations
under broader network configurations are presented in Figure[8]and Figure 0] of Section [E-§

Figure 2] compares the test accuracy of various algorithms versus stepsizes on the synthetic, MNIST,
and FMNIST datasets. All algorithms were evaluated over 1,000 rounds to ensure a fair comparison.
To comprehensively assess robustness, the stepsizes were varied over a wide range (i.e., from 1073 to
10?). It can be observed that the AdaSDBO algorithm demonstrates remarkable resilience to stepsize
selection, maintaining stable performance over a substantially broader range of stepsizes compared to
baseline methods. In contrast, the baseline algorithms exhibit relatively narrower regions of stable
performance, underscoring the enhanced stepsize robustness of our proposed parameter-free method.

4.3 Decentralized Meta-Learning

We evaluate our method on decentralized meta-learning using the CIFAR-10 dataset [McMahan
et al.,. 2017]), where multiple tasks are constructed following the protocol in [Finn et al.,[2017]. This
approach minimizes the test loss with respect to shared parameters as the upper-level loss, while the
training loss is managed by task-specific parameters at the lower level. The detailed configuration
of this experiment can be found in Section [E.4] To highlight the effectiveness of our approach, we
compare against the state-of-the-art SLDBO method [Dong et al., 2023]]. As shown in Figure [I0]
of Section our method achieves notably better training accuracy. This improvement stems
from its problem-parameter-free design, which allows the algorithm to automatically adapt stepsizes,
consistently reaching optimal convergence rates without manual tuning.



5 Conclusions and Limitations

In this paper, we proposed AdaSDBO, a parameter-free algorithm for decentralized bilevel opti-
mization with a single-loop framework, supported by a rigorous finite-time convergence analysis.
AdaSDBO adaptively adjusted stepsizes without relying on prior knowledge of problem parame-
ters, achieving a convergence rate comparable to well-tuned counterparts. Extensive experiments
showed that AdaSDBO delivered strong generalization performance and eliminated the need for
tedious hyperparameter tuning, showcasing its potential for large-scale machine learning applications.
Nevertheless, our analysis targets deterministic settings with full-gradient information and assumes a
strongly convex lower-level problem. Extending the results to stochastic regimes and to generally
convex lower-level objectives remains an open direction. We aim to address these limitations in future
work to broaden the scope of applicability of AdaSDBO.
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A Additional Discussion on Related Works

Bilevel Optimization. Bilevel optimization originated with [Bracken and McGill,|1973] and has seen
significant advances in both theory and algorithms. Early methodological approaches [Hansen et al.,
1992} |Shi et al., 2005]] predominantly addressed these problems through constrained optimization
formulations, treating the inner-level problem as a parametric constraint. Contemporary research
has increasingly focused on efficient gradient-based methods, which fall into three main categories:
1) approximate implicit differentiation (AID) methods [Domke} 2012} [Liao et al., 2018} Ji et al.
2021} Dagréou et al.,2022f], which use the implicit function theorem to approximate hypergradients;
2) iterative differentiation (ITD) methods [Maclaurin et al., 2015| [Franceschi et al., 2018|, |Grazzi
et al.,|2020], which leverage automatic differentiation; 3) Neumann series-based methods [J1 et al.,
2021} |Yang et al.,|2021]], which approximate the inverse Hessian using truncated series. However,
implicit differentiation in bilevel optimization requires accurate inner problem solutions for each outer
variable update, leading to high computational costs in large-scale problems. To address this, the
researchers proposed solving the inner problem with a fixed number of steps and computing gradients
with the "backpropagation through time" technique [Shaban et al., 2019, [Franceschi et al., [2017].
Nevertheless, this approach remains computationally expensive for modern machine learning models
with hundreds of millions of parameters. Recently, there has been a surge of interest in using implicit
differentiation to derive single-loop algorithms. |Ghadimi and Wang| [2018]] introduced an accelerated
AID method with the Neumann series. |Yang et al.| [[2021]] proposed a warm-start strategy to reduce
the number of inner steps required at each iteration. Additionally, Li et al.|[2022a]] introduced FSLA,
a fully single-loop algorithm for bilevel optimization that eliminates the need for Hessian inversion.

Adaptive Methods. The introduction of AdaGrad [McMahan and Streeter;, 2010, [Duchi et al.,
2011]] marked a milestone in adaptive gradient-based methods. Originally designed for online
convex optimization, AdaGrad quickly evolved into a foundation for deep learning algorithms,
spawning numerous variants such as Adadelta [Zeiler, [2012]], RMSprop [Tieleman and Hinton,
2017, and Adam [Luo et al., 2019} Xie et al.,|2024]]. In particular, AdaGrad variants with normalized
gradients, including AdaNGD [Levy}|[2017], AcceleGrad [Levy et al.,2018]], and AdaGrad-Norm [Xie
et al.l 2020], introduced adaptive stepsizes that eliminate the need for problem-specific parameters,
establishing themselves as effective parameter-free methods. More recent refinements, such as the
Lipschitzness parameter approximation [[Malitsky and Mishchenko,|2019] and the restart mechanisms
[Marumo and Takeda, [2024]], have further enhanced both performance and robustness. Additionally,
Yang et al.| [2023]] provided foundational insights into mainstream adaptive methods, laying the
groundwork for their applications in distributed optimization [Li et al.|[2024] |Yan et al.| 2025].

Adaptive Minimax and Bilevel Methods. Currently, some research has begun addressing adaptive
stepsize design specifically within the minimax optimization context [[Li et al.,[2022b, Huang et al.,
2024alb]. However, minimax problems inherently possess simpler structural properties compared to
bilevel optimization problems. The nested structure inherent in bilevel optimization introduces addi-
tional complexities due to the coupling of variables between the upper and lower levels, significantly
complicating the design of adaptive stepsizes. In centralized bilevel optimization, a few adaptive
methods have been proposed. For instance, |Antonakopoulos et al.|[2025]] proposed a double-loop
adaptive algorithm utilizing mirror descent, which still relies on the unknown strong convexity param-
eter of the lower-level function. Similarly, Yang et al.|[[2025]] introduced a centralized adaptive method
based on AdaGrad-Norm, achieving convergence rates comparable to well-tuned methods. However,
tuning hyperparameters in practice is often prohibitively expensive and becomes considerably more
difficult in decentralized scenarios, thus making the ability to automatically adjust the update dynam-
ics particularly crucial [Li et al.,|2024]]. Nevertheless, achieving such adaptability in decentralized
bilevel optimization remains profoundly challenging. Specifically, decentralized bilevel optimization
necessitates carefully orchestrated updates across primal, dual, and auxiliary variables to manage
the nested structure effectively. Additionally, the hierarchical structure of decentralized bilevel
optimization introduces multiple coupled adaptive stepsizes, significantly amplifying heterogeneity
across agents. Without meticulous coordination, the resulting variability can degrade convergence
performance. Moreover, the decentralized setting requires simultaneously managing network-induced
communication errors and hierarchical bilevel approximation errors. To achieve convergence rates
matching those of optimally tuned methods, adaptive decentralized bilevel algorithms require an
even more precise theoretical analysis, as these error sources interact intricately. To the best of our
knowledge, it remains an open and challenging question on how to leverage adaptive methods to
design a completely problem-parameter-free algorithm for decentralized bilevel optimization.

15



B Proof Sketch

Lemma [D.6l

( Lemma Lemma LemmalD.§] Lemma

Lemma

( LemmalD.1]

Figure 3: Structure of the proof

Figure [3]illustrates the structure of the proof. Next, we present the proof sketch for Theorem [3.9]
Proof Sketch of Theorem

Step 1: We start by introducing the two- stage framework outlined in Lemma [C.5]to examine the
progression of the gradient accumulators m¥, mY, and m?. This framework divides the iterations
into two cases: when the gradient accumulators are below or exceed a predefined threshold. Using
this structure, we derive two descent lemmas in Lemma [D.T] for the objective function, corresponding
to these two stages of my.

Step 2: Next, we derive tail bounds for two key components in the descent Lemma

t I VyL(xk,y6)ll? Vo R,y i, Vi) 2 s
Zk:kz T (in Lemma |D.2)) and Zk ks g (in Lemma [D.3)), where ko

and k3 represent the cutoff points corresponding to the second stage in the two-stage framework of
Lemma

Step 3: Using the bounds derived in Step 2, we establish upper bounds for m 11 and Zgq in
Lemma [D.4] and Lemma@ respectively. Based on these results, we derive general bounds for

VF t VyL(x, Vo Rk, ¥k, vie)ll? -
Zk . I (;(nkki’f];'k)‘l Ek:ko I n(:;k yi)ll? . and Z H (’;l;f’lk vie)l with kg € [0715)’ as
shown in Lemma [D.6l

Step 4: We then analyze the consensus errors for the primal, dual, and auxiliary variables
in Lemma [D.7] By combining these results with Lemma we derive the upper bounds:

t IV f(Zx, T, Uk)H HVul(”ﬂk a)l? HVM(Tk-,ﬂk-ﬁk)Hz : _
D k—ko G DY ooy, and S T with respect to the con

sensus variables Z, ¥, and vy, in Lemma where k:o € [0,1).

Step 5: Additionally, in Lemma we derive an upper bound for the term associated with the
stepsize-inconsistency errors in Lemma [D.I] By substituting the results from Lemma [D.§] and
Lemma [D.9]into the Descent Lemma[D.T} we obtain the bound for m{, as presented in Lemma [D.10]

Step 6: Finally, by combining the results from Steps 3, 4, and 5, we establish the convergence of
Algorithm|[I|based on the descent analysis in Lemma[D.]
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C Proofs of Supporting Lemmas

Lemma C.1 (Lemma 3.2 in [Ward et al.,[2020]]). For any non-negative a1, ... ,ar, and a1 > 1, we
have:

T u T
!
> ——— <log <Zal> +1. @)
=1 Zi:l i =1
Lemma C.2. Under Assumption3.1]and Assumption we have the following basic properties:
N . _ L; 2Cy Ci, 2
1). ®(Z) is Lgo-smooth with respect to T, where Lg := (Lf,l + Ty) (1 + y) :

Clay |
/"'\ B

2). y*(&) is L,-Lipschitz continuous with respect to &, where L, :=

3). The gradient estimator ¥V f(z,4,v) is (Li 2||0|| + Ly 1)-Lipschitz continuous with respect
to (Z,y) and L 1-Lipschitz continuous with respect to v;

4). Vf(z,y,0) can be bounded as ||V f(z,7,v)|| < Cy,, [|0]] + Cy, .

Proof. The proofs of 1) and 2) can refer to [Ghadimi and Wang] [2018].. For 3), under Assumption [3.2]
we have:

IV f(Z1,51,0) — Vf(Z2,52,0)||
<NV Vyl(Z1,91) = Vo Vyl(@2, 52) || - [|0]| + Ve f(Z1,51) — Vaf (T2, 52) ||

< (Lizlloll + Lya)((1Zy — 22/l + 172 — 22l)), ®
and
IVf(2,5,01) = VI(@,5,0) <IVaVyl(@ g)] - |01 — 2] < Lia||o1 — 02 ()
By Assumption[3.2} we can easily prove 4) as:
IVf(@,5,9) < IVaVyl@ o)l - 1] + IVaf (@ 5)] < Cu, 18] + Cy,. (10)
Then the proof is complete. O

Lemma C.3. Under Assumption [3.1|and Assumption[3.2) we have basic properties of the linear
system function r in Eq. (3) as follows:

1). r(z,y,0) is p-strongly convex and Cy,,-smooth with respect to v;
2). Vur(z,g,0) is (L1.2||0]| + Ly )-Lipschitz continuous with respect to (Z,q);
3). Vor(z,y,v) can be bounded as ||V, (z,7,0)| < Cy,, ||0]| + Cy, ;

4). v*(z) in Eq. (3) can be bounded as ||v*(Z)| < ij’ and v*(Z,y) := argming r(Z, §,0)

can also be bounded as ||v*(Z, )

W ;
5). Vf(z,y,0) is Lg-Lipschitz continuous with respect to (Z,y,0), where Ly =

ma’X{CfuLl 2 +Lf17Ll 1}’

6). Vor(Z,y,0) is L,-Lipschitz continuous with respect to (Z,%,v), where L, =
rnaLX{L”ML“2 +Ly1 G

v (7
7). v*(Z) is L,-Lipschitz continuous with respect to T and v* (%, %) is L.,-Lipschitz continuous

. _ Cy¢, L = Cy¢, L
with respect to 1y, where L, := (—L;'l + 7@%“) (1+Ly)and L, := —Lﬁ*l + 7&; L2

Proof. First of all, since V,V,r(Z,9,0) = V,V,I(Z,7), we know pul = V,V,I(Z,7). Thus,
according to Assumption[3.]and Assumption we have:

IVoVor(@,9,01) = Vo Vor (2,5, 02) [ < [Vy Vyl(@,9)|[[0r = vaf| < o, [lor = 02| (A1)
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Then 1) is proved.
Next, by using Lipschitz continuity in Assumption 3.2} we have:

[Vor(Z1,91,0) = Vor(Za, 52, 0) ||

< IVyVyl(@1,51) — Vy Vil (@2, i) [0l + 1V f(Z1,51) — Vi f(Z2, 52) ]

< (Lialloll + Ly ) (121 = 22 + (|91 — 721)- (12)
Then 2) is proved.
By Assumption[3.2} we can easily prove 3) as:

IVor(z,9,0)|| < [V Vyl(Z, 910l + IV f (7, 9)]| < Cu,, [[0] + Cf, - (13)

Next, for v*(Z, ), we have:
Vor(Z, 9, 0"(Z, 7)) = Vy Vyl(Z, )07 (2,5) — Vy f(2,7) = 0, (14)
which indicates that
15* @, 9| = | (VyVl(@,9) "' Vo f (2 9)l| < | (Vo Vyl(2,9) " IV, f(@9)] < CZ’ (15)
Since v*(Z) is a special case where v*(Z) = 9*(Z, y*(Z)), 4) is proved.
By Lemma|[C.2} we have:
IVf(Z1,51,01) = V (2,52, 02) |
SIVF(@1 1, 01) = Vi (@2, G2, 00) | + IV (@2, G2, 01) = V (T2, G2, 0o)
< (Liglodll + L)z — 22l + 191 — g21)
< Lp(l21 = Z2ll + 191 = Gall + (|71 = B2])), (16)
where L; = max{% + Lg 1, L1} Thus, 5) is proved.

U1 — Vo

For the proof of 6), we have:
[Vor(Z1,91,01) — Vor(Za, g2, v2) ||
=V Vyl(Z1,91)01 — Vy f(Z1,51) — (Vy Vyl(Z2,92)02 — Vy f(Z2,52))]|
=[(VyVyl(Z1, 51) =V Vyl(Z2, §2)) 01+ Vy V[ (T2, §2) (01— 02) = (Vy f(Z1, §1) =V [ (22, 52) )|
<IVyVyl(Z1,91) — Vy Vyl(Z2, g2) [ |01]] + IV Vi (22, 52) ||[|o1 — 02|

+IVyf(Z1,91) — Vy f(Z2, 2) ||

(a)

< Lia(1Z71 — Z2l| + 191 — g2lD |01l + Cuy, |91 — D2l + L a (121 — Zall + (|91 — 32
®) (Cy Lis L o

< (B 4 £y ) o = 3l + = el + 01—

<Lo(|Z1 — Zaol| + |51 — G2l + |91 — B2])), (17)

where (a) uses Assumption , (b) uses Eq. l) and L, = max{% + Ly1,Cy,, }. Then the
proof of 6) is finished.

The proof of the first part of 7) can refer to Lemma 4 in [[Yang et al., | 2024]); for the second part, we
have:

HW@m%Wﬁym
= || [VyVyl(@, 5] Vo f(@,51) — [Vy Vyl(7,52)] ' Vy f(Z,52)|]
S INAMER7Y ( yf(x 1) = Vyf(2,)) ||

+ ([ ([Vy Vyl(@,50)] 7! = [V Vyl(,52)] )V, f (2. 52)

L _ _
fl g — || + Cr, || [Vy V(2 00)]F (Vy Vyl(2,52) — Vy, Vyl(2,31)) [V Vol (2, 52)] |
L Cr L,
s(f’+fy2wm—mu (18)
w u?
Thus, the second part of 7) is proved, and the proof of Lemma@ is complete. O
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Lemma C.4 (The Upper Bound of 3" o Ik — 1Z5|?). Suppose Assumptlon Assumpnon

and Assumption[3.2| hold. Then, the consensus error for the primal variable satisfies:

200 8vZpw(1+(2)
E lIxk — 124> < “— + 2 G IV F )k, v vi) I, (19)
1= pw (1—pw)* =

where A% = ||xq — 1%¢||? is the initial consensus error for the primary variable x, which can be set
to 0 with proper initialization.

Proof. By the updating rule of the primal variable, we have:

Ixe11 — 12444
= ||W (Xt — 'YmQt_JrllvF(XhYtavt)) —J (Xt — ’YmQt_j1vF(XtaYt,Vt)) H2

(a) 1 P
< e~ 1P +2 (145 ) a2 2 9y vl

1 _

®) 1+ _ 272(1 + -
< pr th — 1xt||2 W tleVF(Xt;Yt,Vt)HQ
2V2(1L+ pw)PW (|11 1o e 2
. (1—pw) H(Qt+11 qt+111) VF(Xtayt;Vt)H ) (20)

where (a) uses Young’s inequality and we take \ = 1_"’;" in (b).

2p
By the definition of Cg in Section we have:
_ _ = 2 -
Qs — @) VE (ke ye, vo) | < Ga A IVE (e, ye, vi) I e2))

Thus, summing over k£ =0, ...,¢ — 1, we have:

t—1
Z [1Xkt1 — 14|
k=0

t—1 A
L+ pw Avzpw (1 +C7) 1+ pw
< Z < 9 > llxo — 1Zo||* + xl_pw Z 5 k+1\|VF(Xk,yk,Vk)H
=0 k=0

8v2pw (1 +¢2) « ,
W};} TG IVF (ks i vie) 1 (22)

Thus, we can get the result in Eq. (T9). O

< %0 — 120

1—

Lemma C.5. Let variables x, y, and v be updated over Ty, Ts, and Tj iterations, respectively.
Suppose that the sequences {m#}, {m}, and {my} are generated by Algorithml[I| For any constants
Crnz > M, Crw > My, and Cpo > ), the following statements hold:

(1) Either mi < Cp= for any t < T4, or 3ky < Ty such that my, < Cie, My, 41 > Crpe.

(2) Either m{ < Cy for any t < Ty, or 3k < Ty such that mj, < Cppw, 1y, > Crou.

(3) Either my < Cyyo for any t < T3, or 3k < T3 such that my,, < Cipo, My > Cipo.
Proof. The proof is analogous to that of Lemma 4.1 in [Ward et al., 2020]. We will demonstrate the
argument for part (1) concerning m7; the proofs for parts (2) and (3) follow similarly.

Assume that m% > Cppe. Since Cpe > ¥ and the sequence {m7 } is monotonically increasing,
there must exist an iteration k; < 7} where my, < Cpe and My 1 > C)ne. If no such kq exists,
then it must be that m7 < Cy,» for all ¢ < T7. This completes the proof for part (1). O
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D Proofs of Theorem 3.9)and Corollary 3.11]

D.1 Notation

We stack the gradient accumulators as:

x . x x x 1T nxp Yy . Yy Y Y nxq
my = [mu, m3y 4, 7mmt] eR™P mi = [mu, ms g, 7mmt] c R"*9,
v v v v 1T nxq
my = [my,,myy, ..., my ] € RML (23)

Similarly, the gradient vectors are stacked as:
VE(xt,yt,ve) = [V (16, Y1, v14), Vo (T, Yo, vae), - 7vfn(1'n,t7yn,tyvn,t)]—rv

VyL(x¢,y¢) == [Vyli(z1,6,91,0), Vylo(T2,, y2,4), - 7vyln(xn,t7yn,t)]—ry

VoR(Xt,yt, Vi) = [Vori(@1s, Y16, 01,), Vora (T2, Y2,6,024), s Vorn(Tnts Un,t, Unﬂt)]T,

) = [Vy /il

\Y F(Xt,}’t vyfl T1,t, yl,t)a Vny(xzt,yz,t)y te 7vyfn(xn,tayn,t)]T-
(24)

For notational simplicity, we also use g7, g{, and g to denote VF(x,y¢, v¢), VyL(x,y¢), and
VoR(X¢,y¢, Vi), respectively.

The stepsize discrepancy vectors can be defined as:

~—1 -1 -1 -1 -1 -1 11T

q [Q1f_Qt ydat =4t 5 lnt — @t ] )

-1 1 =1, -1 -1 -1 ——177

u = [ul,t T Uy G Ugy T Uy Uy T Uy ] ) (25)
~—1._7.-1 =1 _—1 =—1 -1 -1

Zy = [Zl,t TR sRat TR 5T Rnt T A ]

Additionally, for ease of presentation, we define the following notations:
7, o— 1 n g, o— 1 n 5, e— 1 n
{l‘t = ZZ‘:1 Tit, Yt =, Zi:l Yit, U= Zizl Uity (26)
— 1 n - . 1 n = . 1 n
gt ‘= n Zi:l it Ut = n Ziil Uit Zt = " Zi:l Zit-

We define the following metrics to represent the level of stepsize inconsistency for the primal, dual,
and auxiliary variables:

1 __1\2 -1 ——1\2 1 1
q.; — @ u;,, —1U 2., —Z
Gom oy B D, G 2ED)
1€[n],t>0 (qt ) 1€[n],t>0 (ut ) i€[n],t>0 (zt )
_—1)\2 -1 _ Z—1)2 -1 _ z—1)2
SRS Co¥ ek 00 RSN COY ok 700 M BN S ¥ /20 PP
1" gm0 (6;1)2 i€[n],t>0 (ﬂ;1)2 i€[n],t>0 (5;1)2

Below, we define several preset constants for notational convenience at their first use. We first define
some Lipschitzness parameters for ®(z) as

Li»C L\
Ly = (Lm + 22 fy) <1+ lzy) : (28)
I I
1
- C? L7, 2
L := max 2< L > V20, ¢ (29)
w2
Next, we define the following constants as thresholds for parameters m¥, m?, and m} as:
8nye Lo (1 + (2
Cype 1= max {M,mg} , (30)
20
27, (1 + ¢2 L L
o 1= max § 2o )W F Lu) Wynlin oy g2 4 31)
V1402 p+ L’
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2% (1+ )+ Cr,,) 20Cr,, v
Cpv = max vy by me 64a ,1,C 32
{ V1402 T+ Gy, 0 o 32

C’z = Omy + Cm”~ (33)

The constant ag is defined as:

1 4+ Cp )2\ [ nL2C 2
a = | —3 (8 + bt C,) ) ( L2ty +Lf,1) +1
% uCi,, 7

_ <3zw§pw<1+<3> <<u+Ll,1)3 N 2Lm<u+Lz,1)> L 8Ly 1L+ G) <u+Ll,1>2>

n(l—pw)? Yyt Yyht ny2uLyiy/1+ 02
16(p + Clw) nLl,Qny 2
+Lsa
n'YUPJ2 1+ 0'7% H

, <4v§pw<1+<§> ((M+Lz,1)2\/1+05 . 2Lz,m/1+ag>

2 (1 — pw)? np? ny
L1+ )+ Lin)\ | 64ipwli(u+Cr,, )1 +() 2v L1+ ) (u+C,,)°
nZoYytLli 1 nuCy,, v (1 — pw)? nuCy,, myyiy/1+ o2 .
(34)

D.2 Descent in Objective Function

Lemma D.1 (Descent Lemma). Suppose Assumption[2.1) Assumption[3.1] and Assumption[3.2) hold.
Then, no matter k1 in Lemma exists or not, we always have:
Q(T141)
’Vzr(jz;—ll (2’71[/?1/@@;}1 (1 + Cg) + L?)
n

Vol (@, G, 0|12 L2va (|Vor(Ze, T, 00) ||
(l M2 Ladry (1+ ¢ )) [Va (_t t, )| M 1V (_t al
2 Ji+1 Iz Ji+1

_ _ 2 _

(B (B, V) TP g
22 4 ! = Vi1
w K K Gt+1

Ay

Y 67711
< O(Ty) — %HV‘I’(@)”Z +

2

(@)
LVF(XM Yt, vt)
”qt+1

(35)
Additionally, if ki in LemmalC.53|exists, we have:

P(Zr41)
Volrir (27 L3 Loy (1+¢2) + LF)
n

Ay

< B(z) - Mt“uw( D7+
2

= T
_ 2 L2 _ —1
_ Vl ||vxf(git7ytvvt)” + ;Yac var(vaytavt)” + 2 Yo t.i,_ll (qtj-l) VF(Xt’yt,Vt)
4 qt+1 2 qt+1 ”Qt+1
oL? | 7 L? (LixC NIVl (&, 7)1
_|_ ,Y . _|_ ,Y . ( 1,2 fy +Lf71) || Yy (_ t yt)H , (36)
2 iz w qt+1
- Cﬁ Ll 2 3
where L := max < 2 4 + L , \@Clwy .
Proof. By the smoothness of ®, we have:
L
B(Te41) = (1) < (VO(Er), Trr — Te) + - [Tepr — Z]* (37)
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Noticing that the scalars g, iy, and z, are random variables, we then have:

) B - T
2@er) — (@) —<vq>(:zt>, lnTVF(Xt,yt,w)> - <v<1><zt> WVF<xt,yt7vt>>

VYzldi41 N1
YzLa ( (7;3 17 2
20,4 n

Then, we bound the inner-product terms on the right-hand side (RHS). Firstly,

17
— V@(IZ’O,XVF(ththt)

~—1\ T
+ (qtjj) )?F(xt,yt,vt) (38)

17 - 17 - 17 -
- V@(ft), WVF(thtvvt) — WVF(]_th, l’yt, 11_)t) + 7VF(]_SEt7 ].yt, lﬂt)
T 2

1 1
1o (@) + vaxt,yt,w—VF<1xt,1yt,1vt>

S

= (lvq><xt> - VS g = (V2P — 9 @)

T 2

1 _ 17 _ 17 _ o
< —ZHV‘D(%)W + HnVF(Xt,Yth) - ?VF(lil?t’ 1y,,1v,)

+ IV VGBI — LIV i )2 (9)
Additionally, the gradient approximation error satisfies:
IV®(z) = V f (20, 50, 00) |12
= V(@0 y™ (@), 0" (30)) = V (@1, 5o, 0|1
<2V (@0, y" (20), 0" (20)) = V(@0 oo 0" (@) 12+ 20V (@05 G 0™ (20) = V(0 5, 0) ||
< AVaVyl(@e, y* (@) (30) = VaVyl (T4, Ge)v™ (7))
+A| Vo f(@e,y" (30) = Vaf (@6, 5012 + 2 Vo Vil (T4, 50) (v (7e) = 0) |

(@) C?yLlQ,Q 2 _ ¥ = |12 2 |- = |12
<4 2 + Ly | [19e — y" (@)II” +2C7, [|oe — o™ (@) |

(Hyt y*(@)IIP + o —v* (@)%

= IN
bu

EQ
||vyl(l"hyt) vyl(fh y*(i‘t))H2 + E ||v71,r('ft7yta 171‘) - vUT(jt?gta v*(jt))HQ

= A
Mt‘bﬂ
[\v] [ V]

[

S

N

IVyl(@e, 5e) |1* + THVUT(wuyt,vt)HZ

wm\
h

T2
iz IVor(@e e v'(@ D) = Vor(@e,y* (@), 0" (2,)) ||

(&) L2 Li»2Cy, S
2 DVl + 2t o0l + 2 (F22 4 1y, ) - @l

(2) <L2 22 (Ll’Qny 272
U

2
=2 + A +Lf,1> ) IV, U(Ze, 5e)|1* + THV o (T, Uty 01) |2, (40)

] 3
where (a) is using 4) in Lemmaand L := max { ( ;L 2 4+ L > , \/ﬁolmy }; (b) and (e)

use the strong convexity; (¢) and (e) result from V,I(Z, y*(Z)) = 0 and V,r(Z,y*(Z),v*(Z)) = 0;
(d) uses Lemma|[C.3] Then substituting Eq. 0) to Eq @), we have:

17
— V(I)(ft), ?VF(Xt;thvt)
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(@) 1 B E?ﬁ L? L2 Ll720f1 2 o

< —IvVe@)I* + A+ 52 T (u + Lf,1> IV l(ze, o)
EQ _ _ _ 2 1 — — — 2

+ Ellvvr(mhytvvt)” - §||wa(33t,yt7vt)|| ) 41)

where (a) uses Lemma|C.3|and A, := |[x; — 134||2 + |ly: — 13¢]|? + ||v¢ — 15¢]|? is the consensus
error for primal, dual, and auxiliary variables.

For the second inner-product in Eq. (38), using Young’s inequality, we get:

1T 2
7(0‘%1}1) VF
NGyt

~—11\ T
- 1
— <V(I)(xt), (qt+11)VF(Xt,yt,Vt)> S g”V(I)(i't)”Q + 2 (Xt7yt,vt) . (42)

NGy

For the last term on the RHS of Eq. (38)), recalling the definition of stepsize inconsistency in Eq. (27),
we have:

2

’YacL<I>
1

2q,4

< YeLoGry (1+ ¢?)
- n

(QH-lllT n (Q;-&1)T
n n

>VF(Xt7Ytavt)

IVE(x¢, 51, ve)|)?

(a) o - 2%51_;2-[@(]_11 (1+C2)
& o, Loy (14 ) F (@, )|+ I 4

A, (43)

where (a) uses |[VF(x¢,y:,vi)|I> < 2(VF(1Z, 15, 101> + 2L3([Ixe — 1% + [lye —
1512 + [lve = 10:1%), (IVF (12, 15, 100)[> < [VEF(124, 15, 10:) |E_= [0V f(@¢, G, 0|,
and Lemma [C.3] By plugging Eq. @I), Eq. (#2), and Eq. (3) into Eq. (38), we obtain Eq. )
NYa 2
Moreover, if ki in LemmaE exists, then for ¢ > kq, we have m* > Cp= > %

Therefore, from Eq. (35) we can get Eq. (36). O

D.3  The Upper Bound of 3, _, I¥, LGerye)|*

Uk+1

Lemma D.2. Under Assumption[3.1|and Assumption[3.2} for Algorithm[} suppose the total iteration
rounds is T. If ks in Lemmaexists within T iterations, for all integers t € [ka, T), we have:

i 1V L(xk, yi) |12

=k Uk+1
V—=R2
< 2nC2, (1 + Lyy) 8AF 3292 pwCre (14 (7) <(N + Liy)? n 2L (p+ Lz,1))
12y, /1+ 02 1—pw (1 —pw)? Vyh? Ty
3292pw (1 + ¢2) ((u + Lp,)3 N 201 (1 + Ll,l)) N 8v2LE (1+¢2) (n+ Lia)?
Zo(1 — pw)? Yy t? Vylt V2puLy 1%/ + o2
32y pw (1 +¢2) ((/i +L1)3 n 2L 1 (p+ Ll,l))
(1—pw)? YVyh? Yyh
8Ly (146 (n+ Liy)? Zt: IV F (ks s vio) |2 "
’Y;/,(,Ll,]_ V 1 + 0-121, k:min{kl,kz} [mi+l]2 max {mz-‘rl’ mz+1}

Proof. For ko <t < T, we have mzz < Cppv and M| > Cpyv. For any positive scalar Ai41, using
Young’s inequality, we have:

1 * (= (1+5‘ 1) * ([ = 1 * [ = * (=
ﬁ||}’t+1 — 1y (T | < THH%H — @) IIP+ (14 < ly* (Ze) — y* (Zeg1) |-

At41
(45)

A
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For the first term on the RHS of Eq. (@3)), we have:

1 .
~yes — 1y (@)

1 B 2
= n Hyt - 'VyUtJrllv L(Xtayt) -1y (ﬂCt)H
1 2, 7@; .
ﬁ”yt = Ly"(@))lI” + ”UtHV Lxe, y4)| ZQUtH% Li(xie, Yie) Yie — ¥ (%))
-1 __1
Uitt1 — U1 .l
ZZut+17y< <t+1> vyli(xi,tayi,t)7yi,t -y (xt)>
Upyq

2
%/ v, _
< *HYt — 1y*(z))|* + 7y||Ut+11VyL(Xt7Yt)”2

-= Z%t‘ﬁﬁy (i, yie) — Vyli(@in, y* (Te)), yie — y* (Te))

- *ZQUHﬂy (@i, y" (1) — Vyli(Te, v (20)), it — Y (Te))

1 -1

U, —Uu _ .
- ZQut+1'yy< <t+11t+1> (Vyli(@it, yit) — Vyli(@i, y* (T4))), Yir — Y (xt)>

Usyq

ut U, !
) %Z 2ﬂ;ﬁny< (**) (Voli(@iary* (20)) = Vili(@e,y" (@) i = y*(ft>>

t+1

@ (1 VyatjhﬂLl 1 9 72at_+21( +¢2)
P L i o L —1y*(z Ly e us L
< (n BBEL )y, — 1y )P+ 29, Ly

2yl /1 + o2 .
/e |V L(xe,ye) £ Vy L1240, 1y* (24)) — Vi L(xe, 1y*(24)) ||

n(p+ L)
__q
Yylygr (1 + Lia)/1+ 03 .o e
i G5 19,20, 1y (@0)) — VL (L, 1y ()
nply
® (1 yuipli 2
< | = - Bl il — 1y (z
= (TL TL(,LL—‘rLl’l) HYt Yy ( t))”
_ 1 5
TYyUet 2 Vv31+o; 2
+ n <7yut+1(1 +Cu ) — N HvyL<XtaYt)H

N (vyutjl (4 + L) VT+ 03 2pich /1402

+ Vo L(x¢, 1y* (%)) =V, L(1Z4, 1y* (Z,)) ||
nply n(u+ Liy) )” yL (e, 1y*(20)) =V, L(12, 1y*(2))

© (1 vyt L .
< (n — B ) |y — 1yt (@)1

n(p+ Li)
——1
+ yTtH <7y“t+1(1 +¢o) - g) ¥ty

n Vyﬂ;j1Ll,1(H+Ll,1)\/1+Uﬁ+2’Yyat+1Ll1 1+o3 I — 14|
n n(p+ L) ' '

o (LT VUL W S KAt Y T
B 2n(p+ Li1) ’

n o n(p+ L)
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4 Z—1 12 2
a L L y 1+02 2y, L 1+o
+(%;H1uﬂu wVIHoE | 2l VIT o) e (46)

n n(p+ Li1)

where (a) emys Lemma 3.11 in [Bubeck et al., 2015]], (b) uses Young’s inequality, (c) refers to
2

Assumption 3.2, and (d) follows from my, ; > Cp,v > %\/%L“) By plugging equation
Eq. {@0) into equation Eq. @#3)), we have: ’
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By rearranging the terms in Eq. (7)), we have:

< Yyl 1+ 02
(1+)\t+1)L

(M+Ll ) HV L(Xtv}’t)H2
1
Yyl L /= o 1 (= 2
1+ |- e Pl -1 — -1
<1+ A1) - < 1+ Lia ) lye — 1y* (z)) |l n\|}’t+1 Y (Zer)||

Thia 2 2y LE 1+ 02
T Yylyyy Lo (p+ Lija)y/1+ o7 VyUer1li g Ou _ 2
1+ A x; — 1%
+ (1 + Aeg1) ( - n(p+ Lit) [|x¢ l

1
+ (1-+ : > ly* (2¢) — y* (Zes1) || (48)
t+1

——1
< u L; . _ L <
We take \;y1 := % Since my,; > Cpy > ZLnyl ! in Eq. ,we have \;;; < 1. Then,
we have:

——1 /

m Xty Yt)

_ Uy /14 02
SQ+AH)ELﬁL4447

I?

m HV L(Xth)H

:u’ +L = % (= (IU’ + Ll 1) *

L (lye = 1y @) = lyesr — 19" (@) 1) + e Iy (20) — v (Zeq) |2

2'Yyat_+1Ll,1(M + Li1)*\/1+ 02 47yﬂt_+11L12,1 1+o3 _ 2
+ + l[x: — 12|
nu n

/U‘+L = %= 2(M+Ll71)2 %= * (=

(||Yt ly (ﬂft))HQ = [lyt+1 — 1y ($t+1)H2) + THZJ (T¢) —y (th+1)||2

YyUppr il
2,1, L + L)1+ 02 Aya L1+ o2
+< VyUi41 1,1(M l,l) u g yUr1ty u ||Xt*1=fz't||2

nu n

(a)
& w4+ Ls

< T (lye = 1" @) = lyesr — 1" (@) IP) +

2(# + Ll 1)2L§
————2 T — T |?
’Yy“t-i-l.ULl 1

+< (w+Li1)3 \/l+f‘2 4Ll*1(“+Ll’1)m> %, — 1z,
t — t )

2 (49)

nu nu

25



where (a) uses the Lipschitzness of y*(Z). Summing the above inequality over k = ks,
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where (a) uses Assumption @; (b) refers to Lemma [C4 (c) results from
IV yli(Zi ks 15 Yik—1)|* < MY}, 17 < Chy and |V fi (@i, 15 Uik — 15 Visky —1) [ < [mf, 17 <
C?2,.. Then, the proof is complete. O
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D.4 The Upper Bound of ZZ: ks

Lemma D.3. Under Assumption[3.1|and Assumption[3.2} for Algorithm[l} suppose the total iteration
rounds is T. If ks in Lemmaexists within T iterations, for all integers t € [k3, T), we have:
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f’mof. For k3 <t < T, we have my,; > Cy,». For any positive scalar 5\t+1, using Young’s
inequality, we have:
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For the first term on the RHS of Eq. (52)), we have:
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where (a) uses the non-expansiveness of the projection operator, as established in Lemma 1 of [Nedic
et al.,[2010f]. Then, for the last two terms on the RHS of Eq. @, we have:
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where (a) follows from Lemma 3.11 in [Bubeck et al., 2015]; (b) uses —||a — b||?
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obtain a general upper bound for ||yk3_1 — 1y (Zg,—1)|)? as:

ka1 = 1" Ty 1) II?

NGy ( 485 1672w Cha(1 +<§)> ((/HLH)?\A Toi, 2L/l +ag>

- ou? 1 —pw 31— pw)? ny? ny
16v2pw (14 ¢2) [ (u+ Lip)?/1+ 02 N 2L11+/1+ 02
z(1 = pw)? np? ny
AL+ Gt L) ’“f IVE (e v, v I 64)
nZo vyl k=min{ki—1,ko—1} [ 4]?
where we define Zt, p¢ = 0 for any m > n and non- negatlve sequence {pt} By plugging Eq. .
into Eq. (59) and using ||V, 7 (Zi ks —15 Yi ks —1, Vi ks —1)||? < [my., ]2 < C2., we have:
t 2
YoZri1\V 1+ 02
Z HITHV R(Xkaykvvk)HQ
k=ks
4c?, C L;-C
S mt (lu’:— l’y'y) <7’l L2 fy Lf1>
7
2
8(M+Clzyy)03nv + ,u—|-01 <7”LL[ 207, LI )
i
A§ +4’Y£PWCQT1+C2 ,U—I—Lll \/1-1-02 2Ll1\/1+02
1 —pw (1~ pw) np
16(N+Clyy)<”Ll2Cfu ny > 4%/’W(1+C3) (M+Ll,1)2\/1+05+2Ll,1\/1+03
np? po 23 (1—pw)? np? np
k3—2 -
VaLy(L+ ) (u+ L) 32: IVE(xk, ¥k, vi)lI?
nZO’yyMLlJ k:min{kl—l,kg—l} [mz+1]
6472 ow L (1 + Cr,, ) (1L + )1+ 02 292L3(1+ ) (n+Cy,,)°
+ v = +
nuCy,, (1 — pw) npCi,, Crv Yo
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t

||vF(Xk7ykavk)”2 1 2 4’71’ \% 1+U§(M+Clyy)2
Z e +o | 8nwVitor+ C
k=min{k; —1,ks—1} My n nly,,
2 t

(MG, L 3 IVy Lk, yi)|?

H ¢ ? M

k=ks—1
(1985, B CR O+ Q) (Bt CLVITAE | Bt
1—pw a5 (1 — pw)? nuCi,, nu? '
Then, the proof is complete. O

D.5 The Upper Bounds of m} and z;

Supported by Lemma D.2|and Lemma|D.3] we derive upper bounds of m} and z.

Lemma D.4. Suppose the total iteration rounds of Algorithm([I]is T. Under Assumption[3.1]and
Assumption[3.2} if ko in Lemma|C.3|exists within T iterations, we have:

Cmy, t < kg,
S 2
Cmy +co + dO Z;:min{kl,/m} R ; t> k2~ (66)

= = - Y
[m§ 1 1]% max {mZJrl M1

~y
My <

where cg, dy are defined as:

2072,L1:(/1-F131,1)L 8A] i327§PWcr2nw(1 +¢2) <(M+Ll,1)3i2Ll,1(M+Ll,l))
12yy/1+02  \ n(l —pw) ngs (1 — pw)? Yyt Tyht
3292w (14 ¢2) ((u +111)3 N 2L 1 (p + Ll,1)> N 8v2LE (1+¢2) (n+ Lin)?
nzo(1 — pw)? Yy 12 Yy bt ny2uliizoy/1+02
322w (1 +C2) ((w+ Lia)®  2Lpa(p+ Lig) 8YZLZ (14 ¢2) (n+ Lin)?
do = 2 2 + + 5 5
n(l—pw) Yyl Yyl ny2uLigy/1+ 02

Co ‘—

(67)
When such ko does not exist, mi’ 1 < Cony holds for any t < T.

Proof. According to Lemma|C.3] the proof can be split into the following three cases:

Case 1: k5 does not exist. In this case, based on Lemma we have m¥ < C,u, and hence
my,, < Chyy for any t < T because mj is non-decreasing with ¢.

Case 2: ko exists and ¢t < ko: In this case, based on Lemma we have m}i 11 < Coy.

Case 3: ky exists and ¢ > ko: Using telescoping, we have:

_y (a) _y ||V L(Xt’}’t)\|2

Y = my 4 L

i i n(mt+1 +my)

VyL(x¢, 2

<y 4 DLy
nth

Z HvyL ka}’k)”Q + ||vyL(xt7yt)||2
mt+1 +my) nmi’ﬂ

VyL 2
§W+ZH (0l
k=ko nkarl

(2) C QCT%HI(NJ"_LZJ)

v +
m ;ﬂyy ,71 T 05
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n(1l - pw) ngs (1 — pw)? Yyh? Yyl
3292w (14 ¢3) ((u +Li1)3 N 2L11 (0 + Lz,1)) n 8v2LZ (1+¢2) (n+ Lin)?

< 8AZ 32’Y§PWC?nz(1+C3)> ((M+Ll,1)3 +2Ll,1(u+L1,1)>

2

nzo(1 — pw)? Yy b Yy b ny2uliZoy/1+ o2
32v2pw (1 + (2) <(u +L1)? N 2Ly (p+ Ll,1)>
n(1— pw)? Yyl Yy bt

t

Z ||?F(Xk;7y1€7Vk)”2

— — — )
k=min{k1,ko} [ |2 max {my_,, mj,, }

+8V§-L§ (1+¢7) (u+ Lin)?

nygulia/1+ 02

where (a) employs (m{, | + m{)(m{,, —m{) = [m{,]*> — [m{]* and (b) uses Lemma Thus,
the proof is complete. O

(68)

Lemma D.5. Under Assumption [3.1) and Assumption suppose the total iteration rounds of
Algorithmis T. If at least one of ko and k3 in Lemma exists, we denote ky, := min{ks, k3 }.
Then we have the upper bound of z; as:

CZ, t S kmina
aq log(t) + b17 t> kmin;

Zy <

(69)

where a1, by are defined as:

nCy, b+ nCy, +m
nCy_a

Ty

a1 = 6ag, by :=4aglog (1 + ) + 4ag log (nC’gwc’z) + 4ag + 2bg,
(70)

in which we define constants

V2n b Vv2nCy,

= —, N s

1 1

1 4p+Cp )3 L 2C 2
ap 1= 2(8+ et Ci,) )(n Sl +Lf,1) +1
Iz pCi,, %

_ (327§PW(1 +67) <(u +Lia)? | 2La(ut Ll,1)> L 80aLy (L4 G) (et Ll,1)2>
n(1— pw)? Yy 12 Yy b ny2uliy/1+ 02
16(u+Cy,,) (nLLQny L, 1>2 <4’y§pw(l +¢2)
nypp?y/1+ o2 M 7 Z5(1 = pw)?
' ((u +Li)*VIToE | 2Liy/TT ag) ROt Lz,1)>
npy? ni nZovypli
642w Li(p+ Cr, )1+ 7)) 292021+ )+ Cu,,, )?
nuCy,, v (1 — pw)? nuCy,, m§y2\/1+ o2
402, (n+ Cy,,) (nLi2Cy, 2
4ysy/1+ 02 ( R Lf’1>
8(u+Ci,,)C2. N 16(n+Cy,,) (nngC’fy i 1>2
p2y/1+ 02 nyop? p ’
, ( Ay 4v£pwq%nm(1+c§)> ((u+Ll,1>2 +2Lz,1)

b() = Cmy + Cmv +

1—pw g1 —pw)? nu? ny
N 16AG 64v2pwCr.(1+C2)\ [ Li(n+Ci,,) N L(p+Cy,,)
n(l—pw) ngs (1 — pw)? uCu,, Yo 12y,/1+ 02
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1 A+ Oy )2 L 2C 2 C?2

+|— <8+ e+ Chy,) ><n L2 +Lf,1> +1 ( e —m%)
% pCi,, J my
1 4 Cp )2 L;»C 2 202, L

+ = <8+ (/.L—f— lyy) > <n 1,2V f, +Lf,1> +1 Cmy(:u+ 171)
H nC,, H w2y 1+ 02

N 8AF 3292pwC2. (1+ (2 <(M+Ll,1)3 . QLM(;HLM))
n(1— pw) ngs(1 — pw)? Ty Tyht

3272 pw (1 +¢7) ((u + Lig)?

L 2Lia(ut Ll,l)) N 8v2LZ (1+¢2) (n+ Lin)? _
nZo(l — pw)? Yyt Yy

nyapli1Zon/1+ 02
(71)

When neither ko nor ks exists, we have zy < C, forallt < T.

Proof. To begin with, we first show the following result as the first two lines of Eq. : since mY
and m; are positive and increasing monotonically with ¢, we can easily have:

0 < min{[my %, [m}y1]*} — min{[m]], [m;]*}
= ([} + [mia]? — max{[m{ ), [m1]7}) = ((mf)° + [m7]? — max{[m{]?, [m{]*})
@ = v = = v > >
= ([mf1)* + [ ]?) = (01 + [m7]%) — (324 — 20), (72)
where (a) uses the definition z; := max{m?, m?}. Similar to Eq. , we have:

_ IV LG,y n IV R(xt, e, ve)|I?

Zip — 7 < (i) = [mf]?) + (mia]” - [my]?)

)

n
(73)
which indicates that
V., L(xy, 2 VoR(Xt,vt, vi)||?
s ey INLCa YOI | IV Ryl
n(Zey1 + Zt) n(Zey1 + Zt)
<54 IVyL(xe, yOI* | IVeR(Xe, yu, ve)|I?
S At G, + mY) nEean
V., L(x¢, 2 VoR(x,ye, Vo)
My NZt4+1

Note that, to simplify the proof, we define > ;- p; = 0 for any m > n and non-negative sequence
{p+}. According to the definitions of k5 and k3 in Lemma the proof can be split into the following

four cases.

Case 1: Neither k- nor k3 exists. For any ¢ € (0,7), we can easily have z; = max{m},m{} <

max{Cpy, Cmv} < C,.

Case 2: k; exists but k3 does not. By using the fourth line of Eq. (68), for any ¢ € (0, 7)), we have:

I\VyL(ik’yk)Hz

¢
where we take ), =
k+1

t
_ _ _ Vi L(Xk, Yk
Zir1 < m%—i—l + mzlf)-i—l < Coy + E M

k=k2

2
XYl o (75)
nmkH

= 0forany ¢ < ks.

Case 3: k3 exists but &k does not. From the second line of Eq. , forany ¢t € (0,7T), we have:

”VyL(Xtv Yt) ||2

IVoR(xt,ye, Vo) 12

Zer1 S Zp+ ——= —~
- n(mi/-&-l + m?)

NZiy1

t t
L 2 +R 2
TR [VyL(xk, yi)ll S Vo R(Xk, yie, vie) |
k=k

ks ”(mZH +my)
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2 2
<ml 4w+ Z IV L(xx,yr)l Z IVoR(Xk, Yk, Vi)l

k=k; n(myq +my) - NZk+1
(a) _y Hv R(Xkuykavk)HQ
= My + My, +
VoR(Xk, Vi,
k—ks NZk+1

where we take Zzzks IV Reseyievi)l2 — ) for any t < ks; (a) uses the first line of Eq. .

Zk+1

Case 4: Both k; and k; exist. From the third line of Eq. (76), for any ¢ € (0, T’), we have:

2
B <L+, + Z IVy L(_X;caYk)H Z Vo R(Xp, Y, Vi) |2
hard nmy hard NZki1
ka—1
ml -+ SZ |V L(xk, yi)?
k=ko nkarl
t
F Ot Y IVyL(xk, i)l N Z Vo R(Xk, Y1, Vi) |12
mv —y
k=ks M1 k=ks M2k-+1
—Cr - Co 1+ Z 1Vy L(Xka}’k)HQ Z VoR(Xk, yie, vie)||? a7
= 1, m’U b
hard nimg = NZk41
where (a) uses the fourth line of E we take kS ! w = 0 when ko > k3,
q- =k2 mk+1
PO W = 0 forany ¢ < k‘g, and Y7; W = 0 forany ¢t < k3. It

is easy to see that the upper bound of z;1; in Eq. is the largest among all cases. Thus, in the
remaining proof, we only explore the upper bound of z, in Case 4.

To further explore the bound of z;, we need to use some auxiliary results and bounds. So we split
them into three parts as follows:

Part I: An Auxiliary Bound of w To further explore Case 4, we begin with a

IV F(xk,y,

common term ZZ: ko . 2 vill” for any ko < t. By the strong convexity of [ in Assumption/3.
k41

we have:

t 2 t 2
1% |VyVyL(Xk, yi) Vil

E ;||Vk||2§§ -

k=1

n
k=1

t
< z 2||VyVyL(Xk7}’k)Vk

n n
k=1 k=1

t
— Vy PGk, yi) |12 Y 2| Vy F (i, yi)II?

t t
2 Ve R(xp, Y, Vi) 2|V F(xx, yi)|I?
= +>
k=1 n k=1 n

< 2[mg4]? + 2tCF (78)

which indicates that for any ¢ > 0, ||v;|| can be bounded as:

\/Qn[mf_HP + 2ntCJ%y . \/2n[2t+1]2 + 2ntC’]%y . /on (2101 + VIC,)

I - I I

2 2nC
Vo LY ny = az 1 + 0V, (80)

[[vell < (79)

Then we have:

[vel <
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where @ and b refer to Eq. . According to Lemma since m§ > 1, for any integer ¢t > 0, we
have:

Z ||VF Xk»Yk,Vk)||2
k=Fo (M4 ]?

t
< Z |VF(Xk7Yk7Vk)||2
k=0 mk+1]2

t
<10 (Z I F (e v vi) 2 + [ >+1

o i 2
< lo < nC’l a2k+1 +nClzyb\/E+anz) +[mg]2>+1
<lo

. 2
Z nCl,,aZk4+1 + nClLyb\f +nCy, + m0> +1

t
(Z nC,, @z 41 —&—nClwb\f—l—anm +m0> +1

< 2log ((t +1) (nClIyC_lftH +nCy,, bVt +nCy, + mﬁ)) +1

< 2log(t+ 1)+ 2log ((nC’l azi41 + nCy, b—i—nC’h +mg) \/Z) +1

< 3log(t+ 1)+ 2log (nC’l aZiy1 +nCy, b+ nCy, + mg) +1, 81)

zy zy

here we obtain the upper bound of Z};: ko M for any kg < t in Eq. . Part I is

[mf 41
completed.

Part II: A More General Bound of 1VuLGeeyo)ll”,

mt+1

In Lemma m we show the bound of ZZ w when ko exists. In Part II, we further

mk+1
provide a rough bound of Z HVLHSM for any potential E<T. Firstly, if k> ko, itis easy
k41
to have:
Z IV L(xk, i) ||2 Z [V L(xk, yx)|? 82)
mk+1 k=ko mk—l—l
Secondly, if k< ko, we have:
ko—1
Z |V L(xk, y&)|? Qz: IVyL(xk, yi) ||2 Z IV L(xk, y0) I
Mg B M4y h—Fs M4
ka—1
3 T 9y L I | 5 9Lyl
- mg k=ko mk+1
< n([my,]* - m% N Z IVyL(xxk, yu)ll® (xk, y5) [
=~ 7.1/ = mk+1
Py n(% A S LA
< mk
k=ko +1
Cc2, VyL(xp, 2
:n—y 70"‘2 H (<, vl . (83)
my k—Fs M
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Combining these two situations, since C\,y > mg, for any k < t, we have:

{2 IV, L(xp, i) |2
k=k

—Y
Mi41

2 t 2
< MCh g 3 IIVy L(xk, yi)II°
m

Yy 7 Y
0 h—Fs M1
nCQ 2n072ny (ﬂ' + Ll,l)

IA
3

|

<

y — g+

myg p2yy\/ 1402

n < A 3292pwCa. (1 +§3)) ((M+Lz,1)3 n 2Ll,1(M+Lz,1)>

1—pw (1 —pw)? Yy 12 Yy bt
3272 pw (1+ ¢2) ( (ot Lua)® | 2Lea(p+ Ll,1)> L 8Ly (1+¢2) (1 + Liy)?
Zo(1 — pw)? Yy 2 Yyht YauLi1Zoy/1+ o3
3272 pw(1+¢3) ((u + Li1)? L 2Lt Ll,l))
(1—pw)? Yy 2 Yyh
8L (L6 (0t L)’ Xt: IV F (i, yi vi) |12 &)
Tgklaa/1+ 0} k=min{ki k2} [ 1 )? max {myy mi )

where the second inequality uses Lemma|D.2] Thus, Part II is completed.
Part III: The Bound of Z; in Case 4.

Here, we explore the upper bound of Z, in Case 4. Recalling Eq. (77), we have:

t t

V,L(x 5 2 \Y 1R Xk vV 2

s < O + e+ 3 LGOI | 5 190 R0 e v

= My, = NZg+1

2 3

= Cmy + Cm“ = CZ7

(85)
for t < kmin := min{ks, k3}. For t > kupin, we have:

1 < ot O 37 AT LGOI 5 VRO v vi
k—ks T4 k—ks NZk+1
4072ny(,u+C’lyy) (nLlQC’fy L >2
piyoy/1+ 02 fl
8(u+Ci,,)C2. n 16(p +Cy,,) (an,Qny +L )2
1270/1+ 02 nyup? I ”
. ( Ag +473pw03nw(1+43)> <(N+Lz,1)2+2Ll,1>
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1645 642ewCn-(L+ )\ (Lt Cy,)  Lin+ Gy
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16 C L, »C 2
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t = 2
© 3 IVE Xk, Yk, Vi)

=:ag ] + bo,
k=min{ks—1,ks—1,ks—1} k+1
‘ _
VF(x v)|?
<ag Z | ([ _k;yk}; £l + ap + bo
k=min{ky,k2,ks} M1

(d)

nCy, b+nCy, +m
< ag (3 1og(t + 1) + 2log <Zt+1 + lay fa 0

nCra > + 2log (nCy,,a) + 1)

+ ag + bo, (86)

where (a) uses Lemma and the first line in Eq. by replacing k with ks — 1; (b) results
from Lemma [D.2} (c) refers to Eq. , (d) uses Eq. (B1). Since min{ks,k3} < T, we have
Ziy1 > min{Cpy, Cppe } > max{64ag, 1}, which indicates that

(1) if 8ag < 1, we have:

log(Zi41) _ Zeta

4ap 10g(2t+1 ) < 5 )

< Zy1; 87

(ii) if 8ag > 1, we have:
Zey1 — 4aglog(Zey1) = Zip1 — 8aolog(yv/Zir1) > 8ao (vZir1 — log(v/Zi41)) > 0. (88)

Combining (i) and (ii), we have 4ag log(Z;+1) < Z;+1. Then we obtain:

) + 2log (nCy,,a) + 1)

nClmyB + Tlez +mg
nCy a

Ty

Zia1 < ag (3 log(t 4+ 1) + 21log <2t+1 +

+ ag + by
TLC T’l/b+ncf7‘ +m0
nC; a

Ty

< ag (3 log(t + 1)+2log (Z¢41)+2log <1+

) +2log (nCy,,a) + 1)

+ag + bo
nCy,,b+nCy, +m§
nCy_a

Ty

1
< §2t+1 + aog (3 log(t + 1) + 2log <1 +

> + 2log (nCy,,a) + 1)

+ ag + bo, (39)
which indicates that
nClzyB + anm + mg
nC; a

zy

@ 4 log(t +1) + by, (90)
where (a) refers to Eq. (70). Therefore, we complete the proof of this lemma. O

Ziy1 < 6aglog(t + 1) + 4ag log <1 + ) + 4ag log (nClM EL) + dag + 2bg

D.6 The Upper Bounds of 3° HVF(xt,yt],Vt 5 (Vy L(Xt,)’t)H ,and ¥ IV RGxesye,ve)ll?

,Jr Zt41

Lemma D.6. Under Assumption and Assumption for any integer ko € [0,t), we have the
upper bounds in terms of logarithmic functions as:

VF
Z H (Xk,ykavk)H < 510g(t —+ 1) + C2,

k—ko [mk+1]2
VyL(
Z || Xkayk)H < as 10g(t+1)+b2,
k=ko mk+1

Z Vo R(Xp, Y, Vi) ||?
Zr41

< aglog(t+1) + bs, oD
k=Fko
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where, referring to Eq. (T0) and Eq. (T1), c2, as, ba, as, and bs are defined as:
co :=2log (nC’lwdal +nCy,,aby + nC’lmyi) +nCy, + mg) +1,
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(1=pw)? Ty Tyht VpLiay/1+03 Z0
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as = 1+ Cy,) (n L2ty +Lf,1)
Yor?\/1+ 03 p
A Heew (G (it Lia)*V1+op 2Liay/1+03
z5(1 = pw)? ny? ny

Y Ly(L+ )+ Lia)\ | 32002 pw Li(p+ Gy, ) (1 4 C7)
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nzoYyplin 1Cu,, 1o (1 = pw)
N 102 L2 (1 + ) (e + i, )2 (8a2 dag(p + Czyy)2) (anny s )2
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pCi,, Crvy2y/1+ 02 p2 p3Cy, !
annv o 47103"# (n+ Clyy) 'I’LL[}Qny 2 871072,11; (n+ Clyy)
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mg M4’va H ,UQ”va
1608 642w Cr-(L+ )\ (Li(u+Cry,) | Liu+Cry,)
- - > -
1—pw a5(1 — pw) pCr,, Yo 12/ 1+ o2
L 160:+C,,) (anychy L ) A5 42w Che(1+ )
1 =
Yolt? [ d 1—pw B (1= pw)?
+L;1)% 2L 16¢o(u+ Cy, ) (nLioCy, 2
. ((M 21,1) + l,l) + 2('U’ l‘/.;) L,2% fy +Lf,1
ny np Yop?\/1+ 03 I
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28(1 - pW)2 2 nio'yy,uLU
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N 64cozpw Li(p+ Cr, )1 +C2)  2c0v2L3(1+ () (e + Ciy )
pC,, Yo (1 = pw)? uCi, Cooy2/1+ 02

8by  4by(u+Cp )2\ [ nL;2Cy, 2
+ (22+ 2(“3 L) > ( L2t +Lf,1) . 92)
% wCi,, J

Proof. Based on the results in Lemma[D.5] we have the following bounds.
Part I: Bounding ) IV EGeeyevoll”

(M. ]?

Firstly, we bound Zzzko W for arbitrary ko < t. Back to Eq. l) by plugging in
k+1
Eq. (90), we have:

Zti IV E(xk, i, vie) |12

2 il

< 3log(t + 1) + 2log (nCy,,aZ+1 + nCy, b+ nCy, +mf) + 1
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(%) 3log(t + 1) + 2log (nCy,, aay log(t + 1) + nCy, ,aby +nCy, b+ nCy, +m§) + 1
< 3log(t + 1) 4 2log (nCy,, aay (t + 1) + nCy,  aby + nCy, b+ nCy, +mf) +1

< 3log(t + 1) + 2log ((nCy,,aay + nCy, aby + nCi, b+ nCy, +mf) (t+1)) +1
< 5log(t + 1) + 2log (nCy,,aay + nCy,,aby + nCi,, b+ nCy, +m§) + 1

©, 5log(t + 1) + co, ©3)

where (a) results from Eq. (90); (b) refers to Eq. (92).
Part I1: Bounding W.

t+1

Secondly, we bound ZZ: ko w . We split this part into two cases using Lemma

mk+1

Case 1: If m}, ;| < Cyu, we have:

Z IVyL Xk’Yk)||2
k=ko mk-‘rl
Yy 12 =Y 12 2 Y2 2
Z ||v L X]myk)H S n([mt'ﬁ‘l}_y [mko] ) S n(CmU_y[mO] ) _ n?ZLU _nmg<b2
k—ko my mg mg
%94)

Case 2: If mf{ 1> C\nv, we have ko < t, where ko refers to Lemma Then based on Eq. ,
we have:
Z IV L(xk, y0) 12
k=ko mk+1
c?, 2nC2 , L
< "Omr oy 20O (14 Liy)
mg iy 1+ o2
T 2 2
+< 87, 3292w Ch, z(1+cq)> ((M+Ll,1)3 . 2Ll,1(u+Lz,1))

1—pw B (1 —pw)? Yyh? Yk
32vZpw (1 +¢7) ((u + Li1)® | 2Lia(pt LM)) N 892L2 (14 ¢2) (n+ Li1)?
Zo(1 — pw)? Yy 112 Yyl V2uLi1Z0/1+ 02
l32v£pw(1 +¢2) ((u L), 2Lt LM)) | BELE (14G) (it Lu)?
(1= pw)? W ot VauLiay/T+ 0%
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< —y —nmg +
mg 0 1*yy/1+ 03

< 8AE  32v2pwCh.(1+ C?)) ((M + Lp1)? N 2L (p + Lm))

1—pw (1 —pw)? Yy 11 Yyl
3292w (14 ¢2) ((u +Li)? N 2Ly (p+ Lm)) N 8L (1+¢2) (n+ Lin)?
Zo(1 — pw)? Yy 2 Yyh V2puLy1Z0/1+ o2
16072 pw (1 +¢2) ((u + Li,)? N 2L (1 + LM)>
(1—pw)? Yyt Yyl

A072L2 (14 ¢2) (n+ Lia)?

yauLia/1+ o3

] log(t + 1)
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32v2pw (1 +¢2) ((u + Lp1)? L2l Ll,1)> N 8v2LZ (1+¢2) (n+ Lin)?
(1—pw)? Yy 12 Yy b YpuLian/1+ 02
(2: aglog(t + 1) + ba, ©5)

where (a) uses Eq. (93)), and (b) refers to Eq. (93). Since the upper bound of Case 2 is larger, we take
Eq. (92) as our final result.

Part III: Bounding > IV RCerye vl

Zi41

2
Last, we bound Z’;Iko IV EGe-yi:v)l” e split this part into two cases using Lemma

Zk+1

Case 1: If my, | < C,v, we have:

Z Vo R(xk, Yi, Vi) ||

z
Pl k41

t 2 v 12 _ [50]2 2
< Z vaR(Xk: Y Vi) < n([mt+1]7 b [m5]°) < n?’ﬁ” — < b, 96)
hard Zo my ms

Case 2: If m},_, > C,,», we have ks < ¢, where kj refers to Lemma@
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k—Fo Zk+1
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W
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.<(M 11) z,1> n (n+C,,) < 1,2C%, +Lf71)

+
np? np Yolt?y/1+ 02
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k=min{ki—1,ka—1} [0} 41
L ((SEew L+ G, ) +6) | 2L+ 6)( + Oy, )?
/LCZW’Y@(I - pW)2 /JC[yy Cmu ’ygm

t

Z |VF(xk, Y, Vi) ||
— 3
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8 +C nL;2C 2 IV L (xe, i) |2
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m
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P REY; 6472pwCrs(L+C3) \ (Li (1 +Cl,,) N L} (p+Cy,)
1—pw @ (1= pw)? 1Cu, Yo 127,\/1 + 02
16(u+ Cy,,) (nLi2Cy, oAy dewCh.(14¢))
2 +Lpa —2 2
Yot ju 1 —pw a5 (1= pw)

16(u+Cy ) [nL2C 2
(L+0C,,) ( 12C7, JrLf’l)

+L;1)% 2L
‘<(M 21,1) N 1,1>Jr 2 )
np np Yo /IT+ 02\ u
. A ow (1 +CF) [ (u+ Lia)*/1+ 02 n 2L11/1+ 02 n YRLZ(1+C2) (4 Liy)
Z(1 = pw)? ny np nZoyypLia
64v2pw L2 (n+ Cr,, )1+ () 292021+ ) (u+ Oy, )2
+ 5 5 = (5log(t+ 1)+c2)
pCr,, Yo(1 — pw) 1Ci,, Croy2y/1+ 02
8 (M + Cluu) TLL[_]Qny °
+ (;ﬂ + B0 p +Ls1 | (azlog(t+ 1)+ bo)
d
9. aslog(t +1) + bs, 97)
where (a) allows ZkB U Ve RGekyivill® — () when ko > ks; (b) uses Cy,o > m§ and Lemma |D.3}

(c) follows from Eq. and EqJr ([©3); (d) refers to Eq. (92). Since the upper bound of Case 2 is
larger, we take Eq. as our final result.

Thus, the proof is complete. O
D.7 The Upper Bound of Consensus Errors

Lemma D.7. Suppose Assumption2.1| Assumption[3.1] and Assumption[3.2hold. Then, the consensus
error A satisfies:

! 2pw (1 + ¢2)(5log(t

- pw (1—pw)?
8yypw (1 +G2)(azlog(t) +b2)  8v2pw (1 + (2)(aslog(t) + bs)
+ . + . . (98)
(1= pw) (1—pw)
where A is the initial consensus error, which can be set to 0 with proper initialization.
Proof. According to Lemmal[C.4] we have:
t—1 2)
_ _ 8’)/sz 1 + C _
Y lIxern = 1@ |* < o — 10| + qufl\\VF (ks s Vi) %
k=0
99)
With the help of Lemma[D.6] we have:
t—1 -1
_ IVF (x5, y&, vi)||?
rillVEp, i, vi) |2 < Z ‘ : yk] ol < 5log(t) + ca. (100)
k=0 k=
Similarly, we can get the following inequality for the dual variable:
t—1 2 2
_ _ 87, pw (1 + () (az log(t) 4 b2)
D yker = e l® < lyo — 150> + —2 . .o
prs 1—pw (1= pw)
For the auxiliary variable, we have:
vipr = Py (W (v = % Z i VoR(e, ¥, 1)) = Wvi = 7,V,G, (102)
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where

~ 1 _
V.G = = (Pv (W (vi = WwZZ A VoR(Xe, yi,vie))) — Wvy) . (103)
Using Young’s inequality with parameter A\, we have:
[Vetr = 1041

e ewi-a (w0

< 1+ Npwllve — Ive|” + (1 + ) [Py (W (Vi = %25 Vo R(Xe, ¥1, V1)) — W"tH2

< 1w
- 2

1+PW
1-—

[ve — Ive||* + ||Pv( (Vi = W Zi A Vo R, 1, v0))) — Wve|[°. (104)

Noticing that Wv; = Py (IWv,) holds for the convex set V, we get:

[Vipr — 1044

1+ 1+ _ 2
< Wy, — v + - oW HPv( (Vi = 1w Zi i Ve R(xe, 51, v1))) — Pu(Wvy)||
(@) 1+ 1-|— _
< v -3 t||2+ﬁpwnwztjlvm(xt,yt,vt)||2, (105)

where (a) uses the non-expansiveness of the projection operator, as shown in Lemma 1 of [Nedic
et al.,[2010]. Then, we have:

t—1
> lvi = 1og]|* <
k=0

—1
2 3 OVPWAL T L) W 1+CQ _—
—flvo —1vol* + ” £ ) : 52 IV Rk, v vi)[12

k=
(106)
Similar to the primal and the dual variable, we can bound the last term above, which completes the
proof. O

D.8 The Upper Bounds sz va(l’tﬂ/t’ﬂt)uz Z Vy l(mt’yt)H , and Z IVor(@e,5e,70) 11
My

Zt41

Through Lemma @ Lemma [D.6] and Lemma m we can derive the upper bound for

IV £ (Zk Gk, Uk)H Hvul(rk yk)H HVUT(ik,ka,T)k)H? ; ;
Z =k GFWE Z k=ko ml, , and Z A in the following lemma.

Lemma D.8. Under Assumption - Assumptwn and Assumption for any integer ko € [0,1),
we have the upper bounds in terms of logarithmic functions as:

> IWHOI IR o+ 1) 4,

k=ko mk+1]2

V,l(
Z H NV y \rryIk/Il xk??J’C || <a510g(t—|—1)+b5,

k=ko M1
2
Z ||V R(mkvykvvk)n S ag 10g(t+ 1) +bﬁ, (107)
Py Zk41
0
where
pe o B oW LEGR( 4G + a1+ ) + i+ CE))
o [mg]2(1 = pw)? ’
pie 2y 2LiBo  Sewli(eni(L G+ by (14 G + b (14 ()
2n? Mgl (1 — pw) [mG12(1 = pw)? 7
o = 22 8PWL12,1(5'73(1 +¢) + az’Yz(l +¢2)
T om? my(1— pw)>2 ’
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by 2L7 (IIxo — 1Zo[* + llyo — 170l?) . 8pw Li1(cavz(1+C2) + b2y, (1 4+ ¢2))

by == — — )
T a2 mg (L= pw) my (1= pw)?
as | SpwLi(577(1+ () +axyy(1+CF) +asi(1+¢2))
ag = 5 + — 5 ;
2n my(1 — pw)
bs 2L%A 8pw L (cavz (1 + ) + bayy (14 C2) + b3y (1 +CZ))
b i= oo + — + . (108)
2n? - mg(1—pw) my(1 — pw)?

Proof. According to Lemmal[C.3] we have:
IVE(xe,ye,vi)|I” < 2| VF (12, 15, 10,)||* + 2E?(||Xt — 12| + [y — 151 + [|[ve — 10,]%),
(109)

IV L, yo)lI? < 20V L(1Z, 1501 + 2L7 1 (1% — 12]1% + |lye — 1), (110)
Vo R(xt, 1, Vi) |* < 2( Vo R(1Z, 152, 10)[|* + 2L7 (|| — 124 + [lye — 151> + || v —177t||2)~
111)

Based on Eq. ( we have ||V F (174, 1yt,1vt)||2 < HVF(lxt71yt,1vt)||F = ||an(xt,yt,vt)||
IV, Lz, 1) [2 < IV, L(LE 1) |3 = [nV,1(@.5)]P and |V, RAZ. i, 10,)]2
IV, R(lxt,lyt,lvt)HF = ||nVyr(Zs, §s, 9¢)||%, then according to Lemmaand Lemma
we have:

< ayqlog(t +1) + by,

Z IV f (Zk, e, D& 510g(t+1)+c2 Lid,
[

k=ko mk+1]2 2n2 [mg]Z

V,( 2 log(t +1)+by L#,d
S IVl )l aslos(t+ ) be | Liad gy,
2n2 my

k=ko mk+1

2 log(t+1 b L%d
Z ||v r wkaylmvk)H < as Og( + )+ 3 R 1 <a610g(t+1)+b6, (112)

z - 2n? md
k—ko k+1 0

where ay4, by, as, bs, ag, bg can refer to Eq. (108)) and
2(||x0 — 10| + [lyo — 150> + [[vo — 150]1*) N 8yzow (1+¢7)(5log(t + 1) + c2)

d1 =

L= pw (1—pw)? ’

N 8vgow (1 + (7)(azlog(t +1) + bo) L 8rwpw (L) (azlog(t +1) +bs)

(1—pw)? (1= pw)?
dy 2(Jlx0 — 120> + [lyo — 150ll*)
L —pw
8vzpw (1 +¢2)(5log(t + 1) +c2)  8vppw (L +¢3)(azlog(t + 1) + ba)

+ + . (113)

(1 — PW)2 (1 - pW)2
Thus, the proof is completed. O

D.9 The Upper Bound of Stepsize Inconsistencies

Lemma D.9. Suppose Assumption[2.1) Assumption[3.1| and Assumption[3.2] hold. For the proposed
Algorithm[l) we have:

2

o @)
~ LV F(Xp, Yk Vi)
k=0l "™k+1
14 ¢2)(5log(t) + ¢2)(2(1 + C,.. C 2 . C 2
_( G g() 72)( ( PW)PW)( 1., CF, +wa) Cz2y+( mers +ny) 7
zZ5(1 = pw)? iz W
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kyYk ~ — )
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t—1 ( -1 )T 2
LV oR(Xk, Yk, Vi)
nzk+1

k=0

< (L4 ) (aglog(t) +b3)(2(1 + pw)pw)
- nzo(1 — pw)?

(114)

C. C 2
Clzy + <lyL Iy —|—ny)

Proof. By the definition of g; 1 in Eq. (25)), we have:
2

(@)
1) =
%VF(XuYt,Vt)
N4y 41

IR 2 [VF(x¢,y:,ve)|?
<= Z (Ft+1 — Gi,t41) IVE( 5 )
n i=1 q’i,t+1

2 1 + Ct? ||@F(XtaYt;Vt)||2
TL2

i

lGe+1 — Giyetal

—
i=1 i1

2 L+ IVF(xe,ye,vo) |12

< Gt1 — giell — — . (115)
! n?z3 [my, ]?

-

1

According to Eq. (9T), we have:

N,l T
k+1

(2

t—1 2

k=0
L+¢ oo IVE (ke V)2
< 22 k41 — 1qr41]| Z CTE
0 k=0 k+1
(“) 14+ (Blog(t+ 1)+ ¢
SR nzgz(z Jre [CTRSTESS [/eY o (116)
0

VF(Xm}’k,Vk)

nqk_H

where (a) uses Lemma. Next, for the term of inconsistency of the step51ze lax — 1qu we
consider two cases due to the max operator used (1 e. mz 2 mk and mk < mjy). First of all,

we derive the bound for ||mk 1

ngl§+1 -

, and Hm,chl - 1mk+1H . For

2
, we have:

T — T 2
|mf, — 1mi, ||
< [(W = J)(mi — 1m)|* + [(W — D)gi|?

L+ pw _ (1+ pw)pw
< [mj; — mk”2+177” Il
(a) 1—|—pw)k ,  n(1+ pw)pw (Cl,cf >2 k <1+pw>’”
< m? — 1md|? + Che (NNl
() i =g M (SR e ) 3 (5
2n(1 C,,C ?
< +pw);ow< 1, O, +CI) 7 (117)
(1—pw)
where (a) uses Lemma For Hmz 41— ? we have:

_ 2
||mZ+1 - 1m%+1||
< W = I)(mf — 1m)[]* + (W — I)g}|?

1+ pw _ (1+ pw)pw
< \ImZ—lmZH“l_iII a7

@ 4w\, L, Cy(1+PW pw & 1+pw e
< () g - v+ >
t=
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QHCEy(l + pw)pw
(1= pw)?
where C;. = n?(Cpv + co + do(5log 2 + ¢3)). The inequality in (a) follows from Lemmaand

Lemma|D.6| Specifically, since ||hj]|? < [[m¥||? < |[[nmY||? < n?(Cpw +co +do(5log2 + 62))

follows that the magnitude of the gradient ||h{|| is upper bounded by Cy, . For Hm Rl —
we have:

(118)

2

>

v —~ U 2
[y — 1 ||
< [(W = 3)(m} — 1) [|* + |(W - I)gp|?
L+pw, W o (1+pw)pw |
< Jmj, — 1mp|* + ~———"—g}|?

@ 1+ pw\" o n(l+pw)ew (Cl,,Cr e (14w
< Y _1m vy —Jy C
= ( 9 Hmo m()H + (l—pw)2 U + Ty ; 2
2n(1+ pw)pw (Cl Cy )2
w4+ C , (119)
(1= pw)? "
where (a) uses Lemma|C.3]
At iteration k, for the case mY > my with |m¥m{ — 1m&m{|* = 0, we have:
= 2 T =T = 2
lQk+1 = 1qkgall” = | mf, m]_ , — 1mi, m], ||
< |(W = 3)(mim — 1mgm)|* + (W - Dgiei|
1+pw, o o (1+PW)PW
< TPt — g |7 + O g2
- Pw
k
1+ PW T =
< () Imimg  mgmg
nCt (1+pw)pw (Cy,,Cy, P& 14w\
+ 3 +Cy, Z
(L= pw) f — 2
2nCE (1+ pw)pw [ C) Cy 2
B} wCh o ) (120)
(1= pw)? ( !

For the case m) < m} with | m{my — 1mgmg||? = 0, we have:
2
[9k+1 = 1qk41 ]l

2 2
. _ _ 2 2n(1+ pw)pw (Cl,,Cy G, Cy
[l miy — 1 g < Chyop) (Ym0,

(L= pw)?
(121)
By summing Eq. (T20) and Eq. (T21)), we obtain the following inequality:
_ 2 2”(1 + pW)pW Clzycfy ? 2 Clyycfy ?
k1 — 1t [|” < (1= pw)? PR Cr. | |Ci, + 7 Cy,
(122)

Combining Eq. (122) and Eq.2 (IT6), _we can get the wupper bound for
H (8cty) "V Lk o) /miichy || in Ea. (114)
Similarly, we have:
2nCE (1 + pw)pw
(1—pw)?

g1 — Ligia || ; (123)
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and

2n(1 + pw)pw
2

. 124
(1 —PW) (129

_ .. C 2
21— 12> < C? + <Mf + cfy>

Then combine the results in Lemma [D.6f we can get the upper bound for
2
10 || (k) VR v vid /st || in Eq. (114). Thus, the Lemma [D.9) has been
proved.

D.10 The Upper Bound of m7

Lemma D.10. Under Assumption 3.1)and Assumption 3.2} suppose the number of total iteration
rounds in Algorithm|[I|is T If there exists k1 < T as described in Lemma|C.3] then we have:

ST sza tgklv 125
=N O+ (4 (‘I’”Wi) +arlog(t + 1) + b7> 1, >k, (125)
where a7 and by are defined as:
4L%ag  2IL%as 2 (L
ari= st e | IS |
H=my pemy 12
80(1+ ¢2)((1 + pw)pw) (Ci,,Cy, ?
- — 5 +Cy,
nz3qo(1 — pw)

C,. C 2
e (@ e,

0 Helfled” (14 G) +L3) (280 403w (1+G)
n 1—pw (1= pw)?

Bagyppw (1+C2)  8azy2pw (1 +¢2)
(1—pw)? (1= pw)?

4L2%bs 2L 2 (L 2C 2
by = —— + > <1+( l’zu Iy +Lf,1>

207 20 2
pEmG - pEmg Iz

Ly
nz3qo(1 — pw)? .

C,,Cf 2
Cl2y+< ly?;t fy +ny)

N A3, (4 L5Leqy ' (14 ) +L3) [ 240 8ca¥2pw(1+¢2)
n 1—pw (1—pw)?

8bavpw (1+C2)  8bay2pw (1 + CE)) N 8n7,C2. Lo (1+(2) 126)

(1= pw)? (1= pw)? 7
and the upper bound of z; :== max{m},m?} refers to Lemma When such ki1 does not exist, we
have m¢¥ < Cpye foranyt <T.

Proof. According to Lemma|C.3] the proof can be split into the following three cases:
Case 1: If m7 < Cpe, for any ¢ < T', we have the upper bound of m{, ; as my, | < Cpe.

Case 2: If m7, > Ci,,=, there exists k; < T described in Lemma@ Then we have the upper bound
of mf, ; asmf, | < Cpye forany ¢ < k.

Case 3: In the remaining proof, we only consider and explore the case k1 <t < T when m7 > Cype.
From Lemma[D:1] for k& > &y, we have:
(Z41)
Yolih (20 L3 Lagiys (14¢7) +L3)
n

Vally i
< a(@) - 05 va(z) | + A
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NYzx 2
In addition, if k1 in Lemmaexists, then for ¢t > &y, we have my, ; > Cope > % and
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which indicates that
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By taking summation, we have:
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For ®(Z, ), by telescoping Eq. (127), we get:
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By plugging Eq. (I31) into Eq. (I30), we have:

t
> GV @ T 00|

k=k1
(7)) — O* 435 M (272 L3 Laqy ' (1+¢2) + L3)
<o (Moot L UG ) 5,
Yz "
4L2 IV or (Zx, e, 0) |12, 8 (6t) 2
Z kay]m k _1_7 LVF(Xk,ykvvk)
M mg = max{mk+17mk+1} Y k=0 nqu
(2, Az (Llﬂcfy ) i 191w, 9)I* | 811aCine La (14 )
prmf - ptmy \ o max{ml M ) g
B(zo) — 0%\ 465 (27 L3Ledyt (14 C2) + L3)
g4( ) =) A el et (G )y,
Yo n k=0
2
V T T ay 71) 8 t q
Z | ko Uk, ) [ TZ k_tll VF (X, Yk, Vi)
,LL m maX{mk+17mk+1} do N1

27T 47T
pne=mg - pTmg

() 7o) — O 2
% 4(<I>(ac0) o )+ 4L2(aglog(t + 1
x

2L? 412 (LZQny Vol (Zk, Tr) HQ 8172 C2e Lo (1+¢2)
+ Z
M1 a

Ya u2m8
202 (aglog(t+1) +b 2 (L;2C 2
n (as gQ(_m ) + bs) 1+ 2 2%
L 0 Ju
w)

8(1 +¢7)(5log(t) + ¢2)(2(1 + pw)p (Ol“?/cf"’+0f,-)2

c,,C :
Cl2 =+ < vy Sy + ny)
nz3qo(1 — pw)? v %

N 43, ' (27 LiLeqy ' (14 C2) +L3) [ 24, 8’y§pw(1 +¢2)(5log(t +1) + c2)
n = pw (1= pw)?

(1—pw)? * (1—pw)?

8n~yICm,L<I> (1+¢)
@

=4 (W) + a7 log(t + 1) + by, (132)

8w (14 (a2 log(t +1) +b2) | 832w (1 + () (aglog(t +1) + b5>>

Yz
where (a) uses Lemma|D.8|and Lemma[D.9] This immediately implies that

2 = _ *
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Similarly, we can have the upper bound of m{, ; as:
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Then the upper bound of m{’, ; is proved. O
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D.11 Proof of Theorem [3.9]

Here we still assume the total iteration rounds of Algorithm(I]is 7. According to Lemma[D.I} the
proof can be split into the following two cases.

Case 1: If m%. < C,,,=, then we have:
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By taking the average, we have:
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T Y
where (a) uses Lemma[D-§] with ko = 0.

Case 2: If m%. > C,,=, by Lemma@ there exists ky < Tp such that my < Crpe, mf ) > Cppa.

Then for ¢ < k1 when m% > C,=, from Eq. , we have:
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For t > ki when m% > C,y,=, from Eq. @), we have:
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By taking the average, we can merge ¢t < k; and ¢ > k; as:
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where (a) uses Lemma[D.8| by plugging in ko = 0.
Note that Case 1 and Case 2 indicate the same result. Thus, we have
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where (a) uses Lemma[D.10]and (b) uses Lemma|[D.3] Thus, the proof is finished
D.12  Proof of Corollary[3.11|
Recall from Theorem[3.9] that there exists a constant M such that
M1
—ZHV(I) z)|? < Og Mlog'(T) (141)

By setting the total number of iterations 7" as T' = M L 1og* ( ) and assuming the constant L = 124,
we have:

)

Mlog"(T) M log* (AN log*

(
T Mlog ( )
< [log +10g( 6)—i—ﬁllog (log (%))]46
Nlog" (%)
S(log )+ 2log N(IM))

Ni+i log (&

)5 <e.

Here we have used two key inequalities:

1. log (log (%)) <

1 7 log ( ) for sufficiently small e,

2. log(L) +2log (&) < L4 log (2) when L = 12 and € is sufficiently small
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Then we can ensure that
number of iterations is:

< e. Thus, to achieve an e-accurate stationary point, the required

T= ML log* (M> =0 (1 log? (1>) ) (142)
€ € € €

Finally, the gradient complexity is given by:

Ge(e) =QT) =0 (1 log* (1)> . (143)

M log*(T)
T

Thus, the proof is finished.

E Additional Experiments

E.1 Hyperparameter Optimization Problem

Our experiments are conducted on the following hyperparameter optimization problem:

1 n
LW\ = in =S L\ w),
st W' () arg;gﬁgn; (A w)

where the goal is to find the optimal hyperparameter A, subject to the constraint that w* () represents
the optimal model given .

E.2 Synthetic Data Experiments

For the synthetic data experiments, we follow the experimental setups of prior works [Pedregosa,
2016/ |Grazzi et al., 2020, |Chen et al.,[2024a]]. For any agent i, the private objective functions f; and

l; are defined as:
i)=Y dlyer/w),

(ze,ye)ED]
12
Ldw) = Z Y(yer] w) + 3 Zekjwjz-,
(Te,ye)ED; Jj=1

where ¢ (z) = log(1 + e~®) and p represents the dimensionality of the data. A ground truth vector
w™ is generated and each x, € R? is sampled from a normal distribution. The data distribution for x,
at node 7 follows A/(0,i? - 2), where r quantifies the degree of heterogeneity across agents. The
corresponding labels y, are defined as y. = z] w* +0.1z, where z is sampled from a standard normal
distribution.

E.3 Real-World Data Experiments

For the real-world data experiment, we apply our method to hyperparameter optimization on the
MNIST dataset [LeCun et al.l [1998]] and Fashion-MNIST (FMNIST) [Xiao et al.l 2017]] dataset.
Following [Grazzi et al.,|2020]], the functions f; and [; are defined as:

1

filhw) = 7 Z Uzt w,ye),
g (a:e,ye)EDg
1 T 1 Gy Ak, 2
iAW) = 7 T, W, Ye — e W,
Li(hw) > Ualwye) + cw
D (Te,ye)ED; P k=1

where ¢ = 10 and p = 784 denote the number of classes and features, respectively, w € R°*P is
the model parameter, and ¢ denotes the cross-entropy loss. D, and D} represent the training and
validation sets, respectively. The batch size for each computing agent is set to 1,000.
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Figure 5: Test accuracy and upper-level loss for synthetic dataset with different pyy .

E.4 Decentralized Meta-Learning Experiments

In our decentralized meta-learning experiment, following the MAML framework [Finn et al., 2017],
we consider a setting involving M distinct tasks, denoted by {Tq}fl\i 1- Bach task Tj is associated
with a loss function L(x,y,), where = denotes a shared embedding parameter across tasks, and
1q Tepresents a task-specific parameter. The objective of meta-learning is to identify a universal
parameter x* that facilitates fast adaptation to new tasks by enabling efficient fine-tuning of 3, using
a limited number of data points and update steps.

This problem naturally fits within a bilevel optimization framework. At the lower level, given a
fixed z, each task seeks the corresponding optimal adaptation parameter y, by minimizing the loss

over its training data D. The upper-level optimization then aims to select a shared parameter
x such that the adapted models y; perform well on the corresponding validation data D;al. Let
y* = col{y},...,ys,} denote the collection of all task-specific solutions.

Unlike traditional centralized meta-learning, where all data is accessible at a single location, we
consider a decentralized setup in which training and validation data for each task T, are partitioned

across n agents. Specifically, each agent ¢ € [n] maintains its own local training dataset D;r 4 and

al

validation dataset D;", for task 7,. Given a shared parameter , the local base-learners collaboratively

solve for y; (2) using decentralized lower-level optimization. The upper-level meta-update of x is
then performed through cooperation among agents based on their local validation losses.

The decentralized bilevel optimization problem is formally expressed as:

x

1 n 1 M
min F(z):= - Z i Z fi,q($,y;(l’))7
=1 q=1

57



T T T T r T 2.5 T T I I
I MA-DSBO (?v=0.5393)
MA-DSBO (1=0.4860)
0.8r 1 20 |—— SLDBO (w=0.5393)
050 | [—— SLDBO (w=0.4860) ]
S |—— AdaSDBO (ow=0.5393)
206} oo {1z |—— AdaSDBO (pw=0.4860)
g >
8 350 400 450 500 ;'.IJ
Q —
204} MA-DSBO ("=05393){ &
MA-DSBO (P#=0.4860) ’
|— SLDBO (w=0.5393)
|— SLDBO (ow=0.4860)
0.2H AdaSDBO (w=0.5393)[]
AdaSDBO (=0.4860)
0 100 200 . 300 400 500 0 100 200 . 300 400 500
Iterations Iterations
(a) Test accuracy (b) Upper-level loss

Figure 6: Test accuracy and upper-level loss for MNIST dataset with different pyy .
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Figure 7: Test accuracy and upper-level loss for FMNIST dataset with different pyy .

Ion 1 &
s.t. y,(z) == arg myin - ; i ; lig(z,y),

where fi 4(z,y;) = ﬁ Z(x,y;)ep;rflq Lz, yz(x)) and l; (z,y) = Iqul Z(Jc,yq)ED‘i',q L(z,yq) +
R; »(yq), with R; ,(y) denoting a strongly-convex regularizer with respect to y. The experiment was
conducted over 32 batches of tasks across 1,000 iterations. Each task included a training dataset and
a validation dataset, both configured for 5-way classification with 50 shots per class. Specifically, the
training and validation data were distributed among different agents to enable cooperative learning.
For each task, 30% of the data from the ¢-th class was assigned to agent ¢, while the remaining 70%
was evenly distributed among the other agents.

E.5 Configurations

All experiments were performed with n = 5 using PyTorch [Paszke et al., |2019|]. The network
topology was configured as a ring topology, where the weight matrix W = (w;;) is defined as:

1—w
Wi = W, Wii41 = Wii—1 = 5

where w € (0,1), w10 = w1, and wy, p4+1 = Wy, 1. In this setup, each agent 7 is only connected to
its immediate neighbors ¢ — 1 and ¢ + 1 for s = 1, - - - , n, with the indices 0 and n + 1 representing
n and 1, respectively.
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Figure 8: Scalability analysis on the MNIST dataset under varying network sizes (n = 5, 8, 12).
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Figure 9: Scalability analysis on the FMNIST dataset under varying network sizes (n = 5,8, 12).

Table 2: Test accuracy on the MNIST and FMNIST datasets under different communication topologies
(n=8).

MNIST FMNIST
Ring Ladder Random Ring Ladder Random

Algorithms

AdaSDBO 0.908 +0.001 0.911 £0.001 0.913 £0.001 0.774 +£0.003 0.788 £ 0.003 0.790 £ 0.003
SLDBO 0.871 £0.002 0.871 £0.001 0.871 £ 0.001 0.758 £0.002 0.758 £ 0.002 0.758 £+ 0.001
MA-DSBO 0.850 +0.001 0.850 £0.001 0.850 & 0.002 0.709 £ 0.002 0.716 £ 0.001 0.719 £ 0.002
MDBO 0.753 £0.002 0.754 £0.001 0.754 £ 0.002 0.650 £ 0.001 0.650 £ 0.002 0.653 £+ 0.001

For all experiments, except for the test accuracy versus stepsize comparison, we use the following
parameter settings. For the baseline methods SLDBO and MA-DSBO, the stepsizes for updating x
and v are set to 0.01, while the stepsize for updating y is set to 0.02, following the optimal stepsize
order described in [Dong et al.l 2023, |Chen et al., 2023]]. For the baseline methods DBO and MDBO,
the stepsizes for updating both x and y are set to 0.01. For AdaSDBO, we set v,, = 7, = v, = 1 and
initialize m{, = m{, = m{, = 10, Vi € [n]. All experiments were conducted on a host machine
equipped with an Intel(R) Xeon(R) W9-3475X CPU running at 2.20 GHz (maximum turbo frequency:
4.80 GHz), featuring 36 physical cores and 72 threads. The system was configured with 256 GB of
DDRS5 ECC RAM and a single NVIDIA(R) RTX(TM) A6000 GPU with 48 GB of memory.

E.6 Additional Results

For the synthetic dataset, we increased the data heterogeneity parameter r to 5 and analyzed the
convergence performance of different methods under two data dimensions (p = 50 and p = 200).
It can be observed in Figure [4] that our proposed algorithm consistently outperforms the baseline
methods in both convergence and test accuracy, even as the level of data heterogeneity increases.
This superior performance can be attributed to the adaptive stepsizes design, which enables our
algorithm to dynamically adjust stepsizes to accommodate varying data distributions. Consequently,
our proposed method demonstrates robust performance across different data heterogeneity settings,
effectively adapting to changes in the data environment.
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Figure 10: Performance comparison between AdaSDBO and SLDBO under the MAML framework,
where each node employs an identical CNN for 5-way, 50-shot classification on the CIFAR-10
dataset.

Table 3: Performance comparison between AdaSDBO and SLDBO under varying network sizes in
the decentralized meta-learning task.

n =10 n = 20 n = 30
Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc

Algorithms

AdaSDBO 0.543 £0.002 0.534 £0.002 0.542 £ 0.002 0.534 £ 0.001 0.538 £ 0.001 0.533 £ 0.001
SLDBO  0.503 £ 0.004 0.488 £0.005 0.472 +0.006 0.461 4+ 0.006 0.486 4= 0.006 0.475 £ 0.007

Furthermore, we assessed the performance of different methods across varying network connectivity
levels (pw) on the synthetic, MNIST, and FMNIST datasets. As depicted in Figure [5] Figure [6]
and Figure |Z|, increasing the network connectivity (i.e., a decrease in pyy from 0.5393 to 0.4860),
leads to improved accuracy for all methods across the different datasets. Notably, our proposed
algorithm maintains superior convergence performance compared to all baseline methods on each
dataset, validating its effectiveness and reliability under different levels of network connectivity.

In Figure 8] and Figure 0] we evaluate the broader scalability of our proposed method by varying
the number of nodes n = 5,8, 12 on the MNIST and FMNIST datasets. We compare AdaSDBO
against several baseline algorithms, including SLDBO [Dong et al., [2023]], MA-DSBO [Chen et al.,
2023]], and MDBO [Gao et al., 2023]]. The results show that AdaSDBO achieves convergence
performance competitive with these state-of-the-art methods. Furthermore, AdaSDBO maintains
stable performance across different system configurations, underscoring its ease of deployment
and practical applicability. This stability can be attributed to the problem-parameter-free nature
of AdaSDBO, which eliminates the need for manually tuned stepsizes. In contrast, other methods
in decentralized settings often suffer from sensitivity to stepsize selection due to their reliance on
problem-specific parameters, which are typically unknown or difficult to estimate in practice. As
a result, the parameter-free property of AdaSDBO makes it particularly well-suited for real-world
decentralized applications.

To assess sensitivity to network structure, we conducted experiments under three commonly used
communication topologies—ring, ladder, and random—and compared the performance of AdaSDBO
with baseline methods. Structural details for these topologies are provided in the Appendix of [Li et al.|
2024]). The results summarized in Table2]indicate that stronger connectivity leads to faster and more
stable convergence: in particular, the random topology, which has the highest connectivity, yields
the fastest and most stable convergence for all methods. Across the three topologies, AdaSDBO
consistently outperforms the baselines, maintaining strong performance under variations in the
communication topology. This robustness is facilitated by the adaptive stepsize mechanism of
AdaSDBO, which accommodates topology-induced heterogeneity.

For the decentralized meta-learning experiment, we compared our proposed algorithm with the
single-loop decentralized bilevel optimization method SLDBO [Dong et al.| 2023]). Figure[I0]shows
that AdaSDBO consistently outperforms SLDBO in both average training accuracy across all nodes
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and test accuracy, demonstrating the effectiveness of our approach in decentralized meta-learning
tasks. We further increase the number of agents to 10, 20, and 30; the results in Table E]indicate that
AdaSDBO remains stable and competitive as the network scales, outperforming the baselines even in
more complex settings. The superior performance of AdaSDBO stems from its problem-parameter-
free design, which enables stepsize selection without requiring knowledge of problem-specific
parameters. Furthermore, the adaptive nature of our method allows AdaSDBO to dynamically adjust
its learning dynamics and consistently achieve optimal convergence rates—even in decentralized
settings where hyperparameter tuning is particularly difficult for other methods. This advantage
becomes even more evident in complex decentralized meta-learning tasks, further underscoring the
robustness and scalability of our proposed approach.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper has discussed its limitations in the Section on Conclusions and
Limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper has provided the full set of assumptions and a complete and correct
proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed all the information needed to reproduce the main experi-
mental results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The experimental results shown in the submitted manuscript do not depend on
private datasets and can be reproduced by following the provided instructions and settings.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed descriptions of the training and test setups, as well
as all experimental configurations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper has provided appropriate information about the statistical signifi-
cance of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided the description of the type of compute workers and memory.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the datasets used in our experiments are publicly available.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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