Lean Meets Theoretical Computer Science:
Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Anonymous Authors'

Abstract

Formal theorem proving (FTP) stands at the fore-
front of LLM reasoning, yet existing datasets
are largely limited in scope due to their depen-
dence on manual curation. We identify theoret-
ical computer science (TCS) as a novel testbed
with promising potential, as many TCS problems
can be algorithmically modeled and automatically
verified, thereby enabling scalable formalization
with rigorous formal-informal alignment guaran-
tees. We showcase this approach via two TCS
problem modules: the Busy Beaver (BB) chal-
lenge and the Mixed BooleanArithmetic (MBA)
challenge. We evaluate leading reasoning mod-
els and finetuned theorem provers on our dataset,
where the best-performing DeepSeekProver-v2-
671B attains only 57.5% on our BB challenge and
no more than 12% on our MBA challenge. These
results reveal substantial reasoning gaps beyond
conventional static benchmarks. We call on the
Lean community to further study the potential of
TCS problems in the formal reasoning domain
where our approach enables fully automated syn-
thesis of arbitrarily many problems in their strictly
aligned formal-informal pairs that are universally
easy to verify yet systematically hard to prove.

1. Introduction

While Large Reasoning Models (LRMs) (Besta et al., 2025)
are evolving at an unprecedented speed, this promising
progress is increasingly shadowed by a critical asymme-
try: the advancing momentum of frontier models is quickly
outpacing our ability to accurately gauge the boundary of
their reasoning capability, as evidenced by the rapid satura-
tion of legacy benchmarks such as MATH (Hendrycks et al.,

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2021) and GPQA (Rein et al., 2023).

Beyond conventional static benchmarks that evaluate on
a final answer only, a natural next stage is to examine de-
tailed machine proof to see if models are genuinely capable
of making meaningful logical derivations. Formal Theo-
rem Proving (FTP) (Chen et al., 2025) is emerging as a
defining frontier for automating such proof validation by
harnessing the power of interactive theorem provers such
as Lean (de Moura & Ullrich, 2021) and Isabelle (Nipkow
et al., 2002).

As a result, there’s a critical need for large-scale, high-
quality datasets that bridge theorem proving problems be-
tween their formal-informal forms. Previous work such as
MiniF2F (Zheng et al., 2022), ProofNet (Azerbayev et al.,
2023), PutnamBench (Tsoukalas et al., 2024), and Com-
biBench (Liu et al., 2025) leveraged labor-intensive expert
curation to formalize problems from math competitions and
college courses, yet such public data sources may suffer
from inter-annotator inconsistency and data contamination
of the training corpora (Magar & Schwartz, 2022; Dong
et al., 2024), where even slight data leakage can inflate
model performance by up to 30% points (Dekoninck et al.,
2024).

In light of these concerns, Theoretical Computer Science
(TCS) emerges as a promising new testbed where many
problems can be algorithmically modeled and verified,
which enables scalable fully automated problem formaliza-
tion using a modularized TCS problem such as the Halting
Problem of Turing Machines. Furthermore, we can adjust
the difficulty of synthesized problems by tuning complexity
parameters such as the state count of a Turing Machine or
the variable count in an algebraic expression. This parame-
terized setting also enables us to synthesize fresh problems
from a infinitely vast problem space, which acts as a ro-
bust mitigation against data contamination. It’s particularly
worth noting that our synthesis does not rely on any LLM-
generated content in any steps, which would be unavoidably
impacted by language model hallucination and potential
regurgitation of training data.

In light of these concerns, our main contribution in this
paper is threefold:

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Mixed Boolean-Arithmetic (MBA) Expression

theoren mba_challenge
(x s B)tVec 32) : 2432 *
ek 111~

X=—y-1
(x@y)+2-(xAy)
(xvy)+(xay)
2:(xvy)-(x@y)

2-—y—11--z4+9--(zVy)
x+y_{ +13-a(zV-y)+2-(zAy)
:2(3;\/:1}) sorry

_3a02c549

) + zm (xmy) mz (xIII)

-
Let x,y be 32-bit bit-vectors. Prove the equivalence of
the following two expressions: $2\cdot \lnot y-11\cdot
\lnot x+9\cdot \lnot (x\lor y)+13\cdot \lnot (x\lor \lnot
y?~2\cdot (x\1and y)$, $2\cdot (x\lor y)$

(xHIv)

Problem Module ‘)
Busy-Beaver Machine (BB)

Parameter Instantiation

Formal Problem

Informal Description

HALT
081
808

HALT

zero

one left one

zero right one

one

e
<<E|7 by omega), (Turing.Dir.
e

3 n, (nth_cfg n).isNone := by

(@81, by omega), (Tur

Prove the fulln ng Tu
te|S te|

Ut cash g G L
|Write |
el
HALT | |
| | 1 o |

8 |
-/ thsmsm macmns halts : 3 n Gt cfg n).isNone := by sorry

right, T.one))

gD r.left, M.one)) {
\
| 8

m |

Figure 1. Complete Pipeline of our Synthesis Framework: We start with a problem module that can be instantiated by a rule-based system
to generate theorem proving problem description in Lean code shown in the blue block and the same description in Markdown shown in

the green blocks.

e We propose a contamination-resistant synthesis
framework with adjustable difficulty that generates
arbitrarily many theorem proving challenges in their
rigorously aligned formal-informal pairs by leveraging
TCS-inspired problem modules as shown in Figure 1.

* We evaluate a variety of frontier LRMs and LLM-based
theorem provers. The best-performing DeepSeek-
Prover-v2-671B attained best performance of 57.5% on
our BB challenge and only 12% on our MBA challenge
respectively, yet other theorem provers such as Kimina-
Prover-Preview (Wang et al., 2025) and Goedel-Prover-
SFT (Lin et al., 2025) struggle to resolve any of our
synthesized problems, which may hint at how base
model scaling could enhance capability of LLM-based
theorem provers.

* We design a novel step-level task decomposition
setting to gauge if models can effectively use a cus-
tomized Out-Of-Distribution library of Lean lemma
to resolve unseen problems, where best-performing
model, OpenAl-04-mini, showed 98.88% success rate.
This reveals the critical bottleneck of the proof task
lies in whole-proof level understanding and strategic
planning as opposed to step-level problem-solving.

2. Related Work

Formal Theorem Proving (FTP). LLM has demon-
strated promising potential in advancing the field of math-
ematics (Polu & Sutskever, 2020) with the help of interac-
tive theorem provers as endorsed by many world-leading
mathematicians such as Peter Scholze (Scholze, 2022) and
Terence Tao (Tao, 2025). By integrating FTP in various
contexts such as LLM-based Agents (Li et al., 2024a) and
Retrieval-Augmented Generation (RAG) (Zayyad & Adi,
2024), many downstream applications can be empowered
such as code copilot (Murphy et al., 2024) and operations
research (Yang et al., 2024).

Autoformalization. Autoformalization refers to the pro-
cess of translating natural language into formal language,
which is inherently challenging for human due to the com-
plex syntax of FTP languages. While the synthetic data
approach (Wu et al., 2021; Huang et al., 2024; Ying et al.,
2024) attempted to leverage LLMs for this process (Li et al.,
2024b; Wu et al., 2022; Lu et al., 2024), current progress is
largely limited by expert annotation to proofread and correct
LLM-generated formal contents, which is labor-intensive
and exposed to inter-annotator inconsistencies. Therefore,
we aim to automate the entire process of (in)formalization
via a template-based approach to ensure rigorous alignment,
rendering manual curation an optional quality check as op-
posed to an expensive necessity.

Benchmark Contamination. In light of rising concerns
about whether our benchmarks reflect genuine reasoning
capability of LLMs (Magar & Schwartz, 2022; Dong et al.,
2024), various attempts were made to detect and mitigate
data contamination (Dekoninck et al., 2024). For instance,
LiveBench (White et al., 2024) aims to mitigate contamina-
tion by refreshing benchmark questions every 6 months, and
MixEval (Ni et al., 2024) attempted to remove preference
bias by adopting a mixture of benchmarks. Nevertheless,
data contamination remains a persistent issue so long as
the questions are sourced from the public Internet at large,
including synthetic data reliant on LLM generation.

3. Methodology
3.1. The Busy Beaver (BB) Challenge

We showcase our approach based on the halting problem of
the famous Busy Beaver Machine. Busy Beaver machines
are simple yet powerful computation models as any Turing-
complete problems can be reduced to the Busy Beaver prob-
lem. Many research questions in modern mathematics, such

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

as the Collatz Conjecture (Michel, 1993) and the famous
Goldbach Conjecture (Aaronson, 2020) have been proven
to be reducible to BB(6) and BB(27) respectively.

The Problem Module. A busy beaver machine is an N-
state, 2-symbol Turing machine, where the Busy Beaver
function BB(N) (Harland, 2022) is defined as the maxi-
mum number of steps an N-state halting machine can exe-
cute before halt. In this challenge we instantiate with N < 5
as BB(5) is currently the limit of frontier mathematics re-
search (Aaronson, 2020), we note that this parameter N
can be any natural number in principle. By setting this pa-
rameter N we enable adjustable difficulty of synthesized
problems and the number of machines available grows expo-
nentially with the N as detailed in Table 1, thereby ensuring
the infinite scalability of our synthesis.

n Number of Machines
1 64
2 20,736
3 16,777,216
4 4,294,967,296

Table 1. Number of Busy Beaver (BB) Machines for Increasing
Values of V.

Challenge definition. We ask models to prove whether a
given BB machine described by a state transition table halts
or not.

Generate easy-to-verify ground-truth. In order to know
exactly whether a given Busy Beaver machine halts, we
execute the machine for BB(N) + 1 steps, where BB(NN)
is the Busy Beaver number for /V-state machines, defined as
the maximum steps for any N-state Turing Machine to run
without halting, The numerical value of BB(N) (N < 5)
are proven results in mathematics (Xu, 2024). BB Machines
that reaches halt state within BB(N) + 1 steps are halting,
otherwise non-halting by the definition of BB(N).

Synthesize hard-to-prove challenge. We instantiate a
Busy Beaver machine with a state transition table, which
is then used to generate both Lean and Markdown state-
ments using an expert-defined template. This synthetic
framework ensures scalable generation of arbitrarily many
proof questions in rigorously aligned formal-informal pairs
as illustrated in Figure 1. Specifically, each BB machine
is uniquely defined by a State Transition Table containing
tuples in the form State x Symbol x State x Move x Symbol,
where State € {0,1,...,N — 1, HALT}, Symbol €
{zero,one}, Move € {left, right}, indicating a BB
machine at a certain state with head pointing to certain sym-
bol needs to change to another state, write a symbol to the

original head position and move to left or right. To generate
a N state BB machine, we randomly sample the remaining
elements for all 2N transition tuples.

With the state transition table, we apply an expert-defined
template to generate the proof challenge in Lean. The tem-
plate contains all necessary definitions and two blanks to fill
in for the machine definition and the halting/non-halting the-
orem, a sorry at the end indicates where models should fill in
their proof. We also generate a Markdown description based
on a rigorously aligned template as detailed in Appendix D.
We provide a complete example of our BB Challenge with
problem descriptions in both Lean-Markdown and model
responses in Appendix C.

3.2. The Mixed Boolean-Arithmetic (MBA) Challenge

The Problem Module Mixed Boolean-Arithmetic (MBA)
expressions combine arithmetic operators (4, —, X) with
bitwise operations (A (AND), V (OR), & (XOR), = (NOT))
over integer variables, which form universal representations
of polynomial functions over bitvectors (Reichenwallner
& Meerwald-Stadler, 2022) used in cryptographic obfusca-
tion (Liu et al., 2021).

MBA equations can be categorized into two types according
to their construction:

Linear MBA equations. Equations of the form

Za""‘ x ep(z,y) = Zbk x ep(z,y),
k k

Linear MBA expression A Linear MBA expression B

where each coefficient ag, by € {+1,+2,...,+11}. and
each atomic boolean expression ey (z,y), e, (z,y) have 16
options as below .

T zVy VAN rdy

-z V-y tA-y (zdy)
y ~(@vy) zA-z oz Ay)
~y ~(@V-oy) o(eAoy) (@A)

Nonlinear MBA equations. Equations in which each side
may include products of MBA sub-expressions (ek1 (z,y) x
ek, (z,y)) and arbitrarily nested bitwise operations, e.g.

10 x ﬁ(1 x (@Ay) V ~((~1) x (a:\/ﬁy))).

Dataset Generation In the first stage, we generate
two-variable MBA equations following the MBA obfus-
cator protocol (Liu et al., 2021). Specifically, each equation
is constructed by first generating a linear MBA expression
that is identically zero, and then randomly moving a sub-
set of terms to the right-hand side with their signs flipped.
We then translate each equation into a Lean theorem paired
with an informal Markdown description as illustrated in

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Figure 1. Every variable and constant coefficient are de-
clared as BitVec 32 so that all arithmetic and bitwise
operations are on 32-bit bitvectors modulo 232. We ensure
infinite scalability by incrementing the number of variables
in the MBA expression, which guarantees a sufficiently large
problem space to mitigate contamination via combinatorial
explosion.

Challenge definition. We ask models to prove the equiva-
lence of two MBA expressions. Proofs must be constructed
step by step using lemmas for arithmetic, bitwise, and dis-
tributive identities to ensure genuine symbolic reasoning.
We explicitly discourage tactics such as bv_decide (which
invokes a SAT solver) and other automatic approaches.

SAT solver. Lean provides a built-in tactic called
bv_decide for automatically proving or disproving equalities
over fixed-width bitvectors (BitVec n). Internally, bv_decide
reduces the goal to a Boolean satisfiability problem (SAT)
by applying bit-blasting, a process that translates bitvec-
tor operations into equivalent propositional logic formulas
over individual bits. The resulting Boolean formula is then
handed to an external SAT solver to check satisfiability. By
default, bv_decide uses a 10-second timeout for the solver.

Generate easy-to-verify ground-truth. For any linear
MBA equation

E1(l‘,y) = Eg(l‘,y),

we normalize both sides into their Weighted 2-DNF
(W2DNF):
W2DNF(E) = Y c;;(E) (ti(x) A L(y)),

i,7€{0,1}

where y(z) = =z, £1(z) = z and each ¢;;(E) € Zsy Thus
the original equality F; = F» holds if and only if

Cij(El) = Cij(E2) foralls,j € {0, 1}
Normalization steps are directly translated into a sequence

of Lean tactics that Lean can verify as the ground-truth
solution for the MBA challenge.

Customized lemma library. We curated a custom library
containing all necessary lemmas to reduce any 2-variable
linear MBA expression into weighted 2-DNF form without
relying on any external theorem or lemma, which enabled us
to automatically generate and verify all ground-truth proofs
for our MBA challenge. The complete library is provided in
Appendix F.

Step-level task decomposition. In order to test if models
perform differently in handling step-level task comparing

to entire proof, we decompose each ground-truth proof into
a sequence of step-level tasks. After each tactic is applied,
Lean reports an unsolved goal. Whenever the left-hand side
(LHS) or right-hand side (RHS) of the goal changes, we
extract a step lemma according to the following rules:

* For LHS changes: The lemma’s left-hand side
matches the previous goal’s LHS, and its right-hand
side matches the current goal’s LHS.

* For RHS changes: The lemma’s left-hand side
matches the previous goal’s RHS, and its right-hand
side matches the current goal’s RHS.

For each problem, the final step (and only the final step)
is always simp. All non-final tactics are exclusively one
of three types: simp only, rw, or nth_rewrite, and
crucially, each must use a lemma from our custom library.
We provide a complete example of the step lemma challenge
with model responses in Appendix C and results for this
setting in 5.

4. Experimental

We report Pass@16 on various frontier models, which
counts a case as successful if and only if at least one of
the 16 attempts could pass Lean compiler verification, that
is, no errors are reported and no ’sorry’ is used in the proof.

While it’s possible to set other n for Pass@n, we note that
n = 16 is the common best practice for existing formal
theorem proving benchmarks (Zheng et al., 2022; Tsoukalas
et al., 2024; Liu et al., 2025), which strikes a balance of
reasonable budget and non-deterministic inference. For
unexpected failures such as Timeout, Out-Of-Memory and
API error, we re-run each trial without counting the failed
case into n = 16.

4.1. Evaluation Setup

Evaluated models. We evaluated both frontier general-
purpose reasoning models and LLM-based theorem provers.
Dedicated formal theorem provers are fine-tuned using FTP
data on base models such as DeepSeekMath (Shao et al.,
2024). For general-purpose LRMs, we chose a mixture of
advanced open-source and proprietary models: DeepSeek-
R1-671B (DeepSeek-Al et al., 2025), QwQ-32B (Qwen,
2025), OpenAl-03 and 04-mini (OpenAl, 2025). Both Ope-
nAl models carry default settings of 200K context win-
dow, 100K max output tokens, and a knowledge cut-off
date on June 1, 2024. For LLM-based theorem provers,
we evaluated various frontier models including Goedel-
Prover-SFT (Lin et al., 2025), Leanabelle-Prover (Zhang
et al., 2025), Kimina-Prover-Preview-7B (Wang et al.,
2025), DeepSeek-Prover-v2-7B, and DeepSeek-Prover-v2-
671B (Ren et al., 2025).

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Model BB(1) BB(2) BB(3) BB4) Total
General LRMs

DeepSeek-R1 21/50 12/50 10/50 12/50 55/200 (27.5%)
QwQ-32B-Preview 26/50 21/50 26/50 25/50 98/200 (49.0%)
OpenAl-03 15/50 17/50 19/50 17/50 68/200 (34.0%)
OpenAl-04-mini 19/50 10/50 12/50 13/50 54/200 (27.0%)
Theorem Provers

Goedel-Prover-SFT 0/50 0/50 0/50 0/50 0/200 (0.0%)
Leanabell-Prover-GD-RL 0/50 0/50 0/50 0/50 0/200 (0.0%)
Kimina-Prover-Preview-7B ~ 0/50 0/50 0/50 0/50 0/200 (0.0%)
DeepSeek-Prover-v2-7B 9/50 9/50 10/50 10/50 38/200 (19.0%)
DeepSeek-Prover-v2-671B 34/50 30/50 26/50 25/50 115/200 (57.5%)

Table 2. Pass@16 Results on BB Challenge, where each column represents an incremental setting for state count N as a complexity

parameter.

Inference setting. For open-source models, we use greedy
sampling to aid reproducibility, which is equivalent to fixing
the sampling temperature to 7' = 0.0 as recommended by
the model developers (DeepSeek-Al et al., 2025; Qwen,
2025) for math and coding tasks. Furthermore, We enable
thinking mode for all models whenever possible and follow
default settings on Reasoning Efforts, Context Length, Max
Tokens, and System Prompts in model metadata.

We implemented our code under a Linux environment
with Python 3.10. All open-source models are de-
ployed using transformer library and PyTorch on a
4xGH200 server, with open-source models downloaded via
huggingface-cli. The proprietary models are used
directly via the OpenAlI API. We prompted models to follow
detailed instruction as in Appendix C.

After generation, model outputs are parsed to extract Lean
proof, which is validated using a regular expression. The
proof is then verified using Kimina-Lean-Server (San-
tos et al., 2025) built with Lean and Mathlib
v4.19.0 via a RESTful APL

4.2. Results

BB challenge. We report Pass@16 in Table 2 and ana-
lyze detailed failure modes in Section 4.4. Frontier LRMs
OpenAl-03 and o4-mini have struggled to score past 35% on
our BB challenge, marking a critical gap in formal reason-
ing capability despite rapid saturation on static benchmarks
from public sources.

Among LLM-based theorem provers, best-performing
DeepSeek-Prover-v2-671B (Ren et al., 2025) scored 57.5%,
but we notice rapid performance degradation as models
scale down to 7B, where advanced theorem provers such as
Goedel-Prover-SFT (Lin et al., 2025), Leanabelle-Prover-

GD-RL (Zhang et al., 2025) and Kimina-Prover-Preview-
7B (Wang et al., 2025) struggled to solve even 1 instance of
our challenges.

Paradoxically, QwQ-32B (Qwen, 2025) attained best per-
formance among general LRMs with only 32B parameters,
which raises an intriguing question as to how scaling affects
the performance of general reasoning models vs. dedicated
theorem provers in a potentially different manner.

MBA challenge. We report Pass@16 in Table 5, revealing
even more pronounced difficulties than BB challenge. Fur-
ther, we decompose 10 randomly selected MBA challenge
into 365 steps according to Section 3.2 and report step-level
performance in Table 4.

Frontier LRMs including DeepSeek-R1 (DeepSeek-Al et al.,
2025) and QwQ-32B (Qwen, 2025), struggled to solve any
of our challenges, while OpenAlI-04-mini (OpenAl, 2025)
solved only 6 problems.

Specialized theorem provers exhibited extreme stratification:
DeepSeek-Prover-v2-671B (Ren et al., 2025) solved 12% of
linear problems with lemmas, but failed all problems with-
out lemmas and all non-linear problems. Smaller provers
showed near-universal failure, with only Kimina-Prover-
7B (Wang et al., 2025) solving a single instance. This
demonstrates that even state-of-the-art formal systems strug-
gle with fundamental algebraic reasoning when deprived of
lemma support or faced with non-linear complexity.

4.3. Success Cases

We present a successful case of a proof of non-halting
BB(4) machine and more cases in Appendix E. The model
DeepSeekProver-v2-671B leveraged proof by induction and
attempted to use various automated tactics, such as aesop

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Model Linear w/ Lemma Linear w/o Lemma Non-Linear
Reasoning LLMs

DeepSeek-R1 0/100 0/100 0/40
OpenAl-04-mini 2/100 4/100 0/40
QwQ-32B-Preview 0/100 0/100 0/40
Theorem Provers

DeepSeek-Prover-v2-7B 0/100 0/100 0/40
Goedel-Prover 0/100 0/100 0/40
Kimina-Prover-7B 1/100 0/100 0/40
Leanabelle-Prover 0/100 0/100 0/40
DeepSeek-Prover-v2-671B 12/100 0/100 0/40

Table 3. Pass@16 Performance on MBA challenge. We evaluated all models using 2 parallel settings where models are tested with vs.
without our customized lemma library as detailed in Section 3.2. This parallel setting aims to gauge their capability of in-context learning

unseen lemma to tackle novel problems out of their training corpora.

Model #Correct Steps
OpenAl-04-mini 352/356
DeepSeek-Prover-v2-671B 258/356

Table 4. Step-level task performance on linear MBA where models
are asked to choose an appropriate lemma from our customized
lemma library for each step of the proof.

and omega, showing that a considerable manipulation of
the automated tactic taxonomy.

DeepSeek-Prover-v2-671B:

theorem machine_never_halts : V n, (nth_cfg n).isSome
—:= by
intro n
have h : V n, (nth_cfg n).isSome := by
intro n

induction n with
| zero => simp [nth_cfg, init]
| suce n ih =>
cases h; : nth_cfg n with
| none => simp_all [nth_cfg, step, machine, Cfg,
—Stmt, I', Fin.forall_fin_succ, Fin.
«—forall_fin_succ’]
| some cfg =>
simp_all [nth_cfg, step, machine, Cfg, Stmt, I,
< Fin.forall_fin_succ, Fin.forall_ fin_succ
—"]
<;>
(try cases cfg <;> simp_all [nth_cfg, step,
<—machine, Cfg, Stmt, I', Fin.
«—forall_fin_succ, Fin.forall fin_succ’])
<;>
(try aesop)
<;>
(try omega)
<>
(try aesop)
exact h n

In this successful MBA case, the problem is simple enough
that bv_decide is able to solve it within its default 10-

second timeout by leveraging a SAT solver.

o4-mini:

theorem mba_challenge_88282d89 (x y : BitVec 32) 1#32
— % 777 (x &&& T77y) + 1#32 x T77(x "77 y) - 3#32
x| TTTy) 4+ 1432 % (x|] y) + 3432+ (x
&&& TTTy) o+ 1#32 % (x &&& y) = 1#32 x "7 (x |||
—""7y) := by

bv_decide

This case is more complex such that bv_decide alone
cannot solve. However, the combination of norm_num
and bv_decide is sufficient to complete the proof. No-
tably, the sequence of have statements introducing previ-
ously proven lemmas is entirely unused, and the tactics
following the first bv_decide are never executed, as the
goal is already solved at that point. This suggests that the
model remains heavily reliant on automated tactics and lacks
a clear understanding of what these tactics actually do.

DeepSeek-Prover-v2-671B:

theorem mba_challenge_3165c251 (x y : BitVec 32)
3432 x (x ||| "T7y) - 1#32 x x — 2#32 x y + 1#32
STk] y) 4 2432 % TTT(x || TTTy) o+ 2#32 x
—(x &&& “7Ty) + 6#32 x (x &&& y) = -2#32 x 77y
—:= by
have h; := bv32_not_xor_eq or x y
have hg; := bv32_sum_all y x

norm_num [Nat.add_assoc, Nat.add_comm, Nat.
«—radd_left_comm, Nat.mul_assoc, Nat.mul_comm, Nat
> .mul_left_comm] at =

<;> simp_all (config := {decide := true})
<;> bv_decide
<;> simp_all (config := {decide := true})

<;> bv_decide

4.4. Failure Cases

Our experiments reveal several key failure modes of frontier
models. These failure can be categorized into 4 major types
with signature patterns as shown in Table 5. More cases in

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Appendix E.

9 (#Errors)

67.27% (122404)
23.22% (42247)

Error Message Type

Irrelevant Hallucination
Tactic Misuse

Voluntary Give Up 4.88% (8871)
Type Mismatch 4.47% (8136)
Others 0.16% (300)

Table 5. Summary of error type distribution for both BB and MBA
Challenge.

Hallucination. Hallucination consistently appears within
7B theorem provers, where they often tried to use non-
existent theorems or tactics. DeepSeek-Prover-v2-671B
has exhibited much stronger anti-hallucination capability
thanks to its large base model.

Here we show 2 cases where Goedel-Prover-SFT attempted
to prove by induction on a completely unrelated problem.
Similarly, Kimina-Prover-Preview tried to rename the given
theorem head nth_cfgtonth_configuration, which
led to an unsolved goal at the end of the proof.

Goedel-Prover-SFT:
theorem sequence_formula {a : N—=N} (hl : a1 = 1)
(hrec : Vn : N, n>1—a (n+1) =2 xan+ 1)
>
Vn:N n>1—=an=2"n-1 :=by

Kimina-Prover-Preview:
theorem machine_never_halts : V n, (nth cfigurations n)
<~ .isSome := by
intro n
induction n with
| zero =>
simp [nth configurations]
| suce n ih =>
simp [nth configurations, ih]
<;> aesop

For the MBA challenge, we show another failure case of
OpenAl-04-mini where model hallucinates a non-existent
tactic bv_simp.

o4-mini:

theorem mba_challenge_14b066fa (x y : BitVec 32)
—=1#32 x TT7(x "7 y) + 2#32 x T77x 4+ 2432 x "7 (x
— &&& y) + 1432 x (x ||| y) - 3#32 x x + 3#32 x (x
S| TTTy) - 2#32 % (x "7 y) o+ 1#32 ¢ 777 (x sss
—777x) - 5#32 x y - 8#32 x T77(x |\| y) — 2#32 * (
X &&& TTTy) + 3#32 x (x &&& y) = -1#32 x T77(x
“—&&& ~77y) := by
bv_simp
ring

Tactic misuse. Models showed a dangerous tendency to
blindly apply automated proof tactics such as aesop (which
automatically looks for search tactics recursively in a proof

tree) without understanding the necessary conditions for
aesop to be applicable, resulting in the failure of exhaustive
search.

DeepSeek-Prover-v2-671B:

theorem machine_never_halts : V n, (nth configurations

<$n) .isSome := by
intro n

<;> aesop

In this MBA challenge example, this tendency is even more
pronounced. The model gathers many lemmas into one
simp_only call without checking their relevance and then
blindly invokes ring. The proof is bloated with useless
rewrites and heavy automation, yet still failsdemonstrating
a failure to reason about lemma and tactic applicability.

o4-mini with lemmas:
theorem mba_challenge_080db093 (x y : BitVec 32)

~5432 % "7y + 1432 % "7 (x &&& "77x) + 4#32 = (x |||
— y) — 6#32 x (x "77 y) - 6#32 x TT7(x &&& T77y)
— - 1#32 % T77(x &&& y) — 3#32 x y — 11#32 « 777
x4+ 24#32 « T (x ||| y) + 22432 « "7 (x |||
—T7Ty) + 13#32 x (x &&& T7Ty) + 6#32 x (x &&& ¥y
) = —4#32 % "7 (x "7 y) + 6432 % (x ||| "77y)
~—:= by

simp only [bv32_and_not_self, bv32_not_and_self,
—bv32_or_not_self, bv32_not_or_self] at =

simp only [bv32_x_distr, bv32_y_distr, ...] at =x

simp only [bv32_sum_all] at x

ring

This sample illustrates a tactic misuse wherebv_decide
fails to solve the goal within the 10-second timeout. The fail-
ure highlights the limitations of relying solely on automated
tactics for large or intricate goals.

o4-mini:

import Std.Tactic.BVDecide

/-

Let x,y be 32-bit bit-vectors. Prove the equivalence of
— the following two expressions: 7:x - 5y — 2 (xP
—y) — 6-7(x A mx) — 5-(xVy) — 2-2(xAy) — (xVy) +
—4d.my - T-o(xPy) + 13-0(xVy) + 21-0(xVvy) + 17 (xA
—vy) and -5 (xAy) + 1-—x

-/

theorem mba_challenge_6£99807f (x y : BitVec 32)

> ((T#32 » x) - (5#32 % y) — (2#32 » (x """ y)) -
(6432 x ("7 (x &&& (T77x)))) - (5#32 x (x ||| v))
— = (2#32 x (777 (x &&& y))) - (1#32 x (x \|| ("7 7y
<)) o+ (4#32 « (T7Ty)) - (TH#32 x (T7T(x 777 y))) o+
— (13#32 % (777 (x \|| v))) + (21#32 x (777 (x |\|
S (T7Ty)))) o+ (1T7#32 x (x &&& y))) = ((=5#32) x (x
—&&& (777y))) + (1#32 x (777x)) := by

bv_decide

Type mismatch. Type mismatch is a fundamental syn-
tactic error arising from the type-dependent nature of Lean
system, which directly reflects models’ failure to understand
and correctly apply respective Lean tactics in question. In
this case, the 7B theorem-proving models failed to interpret
and adapt to Leans inherent type rules, producing expres-
sions whose inferred types did not match the expected ones.

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

Fortunately, this type of error occurs rarely at 4.47% in the
big picture, which speaks to the promising progress that
frontier models have a considerably correct understanding
of the Lean tactic taxonomy.

Kimina-Prover-Preview:
theorem machine_never_halts : V n,
~—:= by
intro n
induction n with

(nth_cfg n) .isSome

| suce n ih =>
simp [nth_cfg, step, machine]
exact ih

Voluntary give-up. In this case, the model voluntarily
chose to give up by leaving sorry under the proof goal
without even attempting to solve the problem with any tac-
tics at all. This type of error makes up 4.88% of total errors,
which could be seen as a failure of instruction-following
often depicted by reasoning models comparing to general-
purpose LLMs.
Kimina-Prover-Preview:

theorem machine_never_halts : V n,

—:= by
sorry

(nth_cfg n) .isSome

5. Discussion

The Automation Trap in Theorem Proving Our empir-
ical analysis identifies a systematic overreliance on auto-
mated tactics as primary proof mechanisms across fron-
tier models. Models predominantly deploy tactics such as
aesop for recursive proof search and bv_decide for SAT-
based solving as black-box oracles, demonstrating minimal
comprehension of their formal operational boundaries. This
dependency manifests in two critical failure modalities: (1)
proofs that circumvent genuine deductive understanding
when tactics succeed coincidentally, and (2) complete proof
collapse when tactics fail without fallback mechanisms. No-
tably, models frequently generate elaborate lemma decla-
rations while defaulting to brute-force tactic sequencinga
pattern indicating a fundamental disconnect between syntac-
tic manipulation and strategic reasoning that fundamentally
undermines verification integrity.

The Reasoning Gap between Step-Level vs. Holistic
Proof Task Our step-level task decomposition setting re-
veals a significant discrepancy between step-level perfor-
mance and holistic proof synthesis with a simple overhead
proof goal. Models demonstrate near-perfect capability in
choosing unseen out-of-distribution lemma for atomic infer-
ence tasks yet exhibit catastrophic failure rates in composing
these operations into complete proofs. This divergence indi-
cates that the primary bottleneck resides not in local opera-
tions but in global proof planning and strategic integration.

The persistent inability to reconcile stepwise correctness
with end-to-end whole proof generation suggests reasoning
capabilities of frontier models remain constrained in long
contexts by insufficient strategic planning for orchestrating
atomic transformations into coherent proof strategies when
challenged with lengthy proofs containing multiple steps.

Contamination-Resistant Evaluation Framework Our
methodology establishes a novel evaluation paradigm
through the integration of Lean with Theoretical Computer
Science. Our framework achieves infinite scalability via
algorithmic problem generation from parameterized TCS
modules, with granular difficulty modulation through com-
putational parameters (e.g., Turing Machine state complex-
ity, MBA expression depth). Automated verifiability pro-
vides ground-truth validation without human intervention,
while dynamically generated problem spaces ensure intrin-
sic resistance to dataset contamination. By enabling rig-
orous formal-informal alignment absent expert curation,
this TCS-inspired synthesis creates a sustainable evalua-
tion ecosystem where benchmark freshness and complexity
scales along with the progress of frontier theoretical com-
puter science research.

6. Conclusion

We propose Theoretical Computer Science as a promising
testbed for formal theorem proving, which by design is
capable of utilizing modularized, fully automatic problem
generation to systematically overcome contamination and
scalability limitations in legacy benchmarks. Our TCS-
inspired modular synthesis paradigm enables the creation of
infinitely scalable, formally rigorous problem spaces with
adjustable complexity through computational parameters
such as Turing Machine state configurations and MBA ex-
pression depth. Our experimental results demonstrate a
profound reasoning gap: while models achieve near-perfect
scores of 98.88% on atomic step-level tasks involving out-of-
distribution lemma selection, they collapse to a mere 12%
success rate when synthesizing complete lengthy proofs.
This drastic performance degradation highlights the devas-
tating role of hallucination during long-context reasoning
sequences, which may act as a roadblock for models to form
any systematic strategies for tasks requiring lengthy whole
proofs. We also reveal the dangerous tendency of frontier
models’ over-reliance on automated tactics like aesop and
bv_decide without understanding their applicability with
limitations. To tackle these challenges, we call on the Lean
community to further explore the massive potential of theo-
retical computer science and its interplay with the realm of
formal theorem proving, thereby leveraging the joint effort
to advance both domains synergistically.

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

References

Aaronson, S. The busy beaver frontier. SIGACT
News, 51(3):32-54, 2020. doi: 10.1145/3427361.
3427369. URL https://doi.org/10.1145/
3427361.34273609.

Anthropic. Claude 3.7 sonnet system card.
https://assets.anthropic.com/m/
785e231869ea8b3b/original/claude-3-
7-sonnet-system—card.pdf, 2025. Accessed:
2025-05-10.

Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E. W,
Radev, D., and Avigad, J. Proofnet: Autoformalizing
and formally proving undergraduate-level mathematics.
CoRR, abs/2302.12433, 2023. doi: 10.48550/ARXIV.
2302.12433. URL https://doi.org/10.48550/
arXiv.2302.12433.

Besta, M., Barth, J., Schreiber, E., Kubicek, A., Catarino,
A., Gerstenberger, R., Nyczyk, P, Iff, P, Li, Y., Houliston,
S., et al. Reasoning language models: A blueprint. arXiv
preprint arXiv:2501.11223, 2025.

Chen, S., Yu, W,, Dou, G., and Zhang, Q. A review on
mechanical proving and formalization of mathematical
theorems. IEEE Access, 13:50672-50686, 2025. doi:
10.1109/ACCESS.2025.3552634. URL https://doi.
0org/10.1109/ACCESS.2025.3552634.

de Moura, L. and Ullrich, S. The lean 4 theorem prover
and programming language. In Platzer, A. and Sutcliffe,
G. (eds.), Automated Deduction - CADE 28 - 28th Inter-
national Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings, volume 12699
of Lecture Notes in Computer Science, pp. 625-635.
Springer, 2021. doi: 10.1007/978-3-030-79876-5_37.
URL https://doi.org/10.1007/978-3-030~-
79876-5_37.

DeepSeek-Al, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X,,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z.,Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D, Li, E., Lin, E,, Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J, Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang,
L., Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L.,
Xia, L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang,
M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q.,
Chen, Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R.,
Chen, R. J., Jin, R. L., Chen, R, Lu, S., Zhou, S., Chen,

S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., and Li,
S. S. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. CoRR, abs/2501.12948,
2025. doi: 10.48550/ARXIV.2501.12948. URL https:
//doi.org/10.48550/arXiv.2501.12948.

Dekoninck, J., Miiller, M. N., and Vechev, M. T. Constat:
Performance-based contamination detection in large
language models. In Globersons, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M.,
and Zhang, C. (eds.), Advances in Neural Informa-
tion Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
a7f89793b9%6f8c6568dbbb6ff727b9%b—
Abstract-Conference.html.

Dong, Y., Jiang, X., Liu, H., Jin, Z., Gu, B., Yang, M., and
Li, G. Generalization or memorization: Data contamina-
tion and trustworthy evaluation for large language models.
In Ku, L., Martins, A., and Srikumar, V. (eds.), Findings
of the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, August
11-16, 2024, pp. 12039-12050. Association for Com-
putational Linguistics, 2024. doi: 10.18653/V1/2024.
FINDINGS-ACL.716. URL https://doi.org/10.
18653/v1/2024.findings—acl.716.

Google DeepMind. Gemini 2.5: Our most intelligent

ai model. Google AI Blog, Mar 2025; https:
//blog.google/technology/google—
deepmind/gemini-model-thinking-
updates-march-2025/, 2025.

Harland, J. Generating candidate busy beaver machines

(or how to build the zany zoo). Theor. Comput.
Sci., 922:368-394, 2022. doi: 10.1016/J.TCS.2022.04.
040. URL https://doi.org/10.1016/7.tcs.
2022.04.040.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A.,

Basart, S., Tang, E., Song, D., and Steinhardt,
J. Measuring mathematical problem solving with
the MATH dataset. In Vanschoren, J. and Yeung,
S. (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual, 2021. URL https:
//datasets—-benchmarks—-proceedings.
neurips.cc/paper/2021/hash/
be83ab3ecd0db773eb2dclb0al7836al-
Abstract-round2.html.

Huang, Y., Lin, X., Liu, Z., Cao, Q., Xin, H., Wang, H., Li,

Z.,Song, L., and Liang, X. MUSTARD: mastering uni-

https://doi.org/10.1145/3427361.3427369
https://doi.org/10.1145/3427361.3427369
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.1109/ACCESS.2025.3552634
https://doi.org/10.1109/ACCESS.2025.3552634
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
http://papers.nips.cc/paper_files/paper/2024/hash/a7f89793b9e6f8c6568dbbb6ff727b9b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a7f89793b9e6f8c6568dbbb6ff727b9b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a7f89793b9e6f8c6568dbbb6ff727b9b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/a7f89793b9e6f8c6568dbbb6ff727b9b-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.findings-acl.716
https://doi.org/10.18653/v1/2024.findings-acl.716
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://doi.org/10.1016/j.tcs.2022.04.040
https://doi.org/10.1016/j.tcs.2022.04.040
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

form synthesis of theorem and proof data. In The Tivelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/
forum?id=8x11i0Ug9EW.

Li, Z., Hua, W., Wang, H., Zhu, H., and Zhang, Y. Formal-
Ilm: Integrating formal language and natural language
for controllable llm-based agents, 2024a. URL https:
//arxiv.org/abs/2402.00798.

Li, Z., Wu, Y., Li, Z., Wei, X., Zhang, X., Yang, F., and Ma,
X. Autoformalize mathematical statements by symbolic
equivalence and semantic consistency. In Globersons,
A., Mackey, L., Belgrave, D., Fan, A., Paquet, U,
Tomczak, J. M., and Zhang, C. (eds.), Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems
2024, NeurlIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024b. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
6034a661584af6c28£fd97a6f23e56c0a-
Abstract-Conference.html.

Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li,
J., Xia, M., Chen, D., Arora, S., and Jin, C. Goedel-
prover: A frontier model for open-source automated the-
orem proving, 2025. URL https://arxiv.org/
abs/2502.07640.

Liu, B., Feng, W., Zheng, Q., Li, J., and Xu, D. Software
obfuscation with non-linear mixed boolean-arithmetic
expressions. In Gao, D., Li, Q., Guan, X., and Liao,
X. (eds.), Information and Communications Security -
23rd International Conference, ICICS 2021, Chonggqing,
China, November 19-21, 2021, Proceedings, Part I, vol-
ume 12918 of Lecture Notes in Computer Science, pp.
276-292. Springer, 2021. doi: 10.1007/978-3-030-
86890-1_16. URL https://doi.org/10.1007/
978-3-030-86890-1_16.

Liu, J., Lin, X., Bayer, J., Dillies, Y., Jiang, W., Liang,
X., Soletskyi, R., Wang, H., Xie, Y., Xiong, B., Yang,
Z., Zhang, J., Zhi, L., Li, J., and Liu, Z. Combibench:
Benchmarking 1lm capability for combinatorial math-
ematics, 2025. URL https://arxiv.org/abs/
2505.03171.

Lu, J., Liu, Z., Wan, Y., Huang, Y., Wang, H., Yang, Z.,
Tang, J., and Guo, Z. Process-driven autoformalization
in lean 4. CoRR, abs/2406.01940, 2024. doi: 10.48550/
ARXIV.2406.01940. URL https://doi.org/10.
48550/arXiv.2406.01940.

Magar, 1. and Schwartz, R. Data contamination: From
memorization to exploitation. In Muresan, S., Nakov,
P., and Villavicencio, A. (eds.), Proceedings of the 60th

10

Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pp. 157-165. Association for
Computational Linguistics, 2022. doi: 10.18653/V1/
2022.ACL-SHORT.18. URL https://doi.org/10.
18653/v1/2022.acl-short.18.

Michel, P. Busy beaver competition and collatz-like prob-
lems. Arch. Math. Log., 32(5):351-367, 1993. doi:
10.1007/BF01409968. URL https://doi.org/10.
1007/BF01409968.

Murphy, W., Holzer, N., Qiao, F., Cui, L., Rothkopf, R.,
Koenig, N., and Santolucito, M. Combining LLM code
generation with formal specifications and reactive pro-
gram synthesis. CoRR, abs/2410.19736, 2024. doi:
10.48550/ARX1V.2410.19736. URL https://doi.
org/10.48550/arXiv.2410.19736.

Ni, J., Xue, F., Yue, X., Deng, Y., Shah, M., Jain, K.,
Neubig, G., and You, Y. Mixeval: Deriving wisdom
of the crowd from LLM benchmark mixtures. In
Globersons, A., Mackey, L., Belgrave, D., Fan, A.,
Paquet, U., Tomczak, J. M., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing
Systems 2024, NeurlPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024,2024. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
b1£34d704a03a3d80be8e72eb430dd81~
Abstract-Conference.html.

Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer,
2002. ISBN 3-540-43376-7. doi: 10.1007/3-540-
45949-9. URL https://doi.org/10.1007/3~-
540-45949-9.

OpenAlL Openai 03 and o4-mini system card.
https://cdn.openai.com/pdf/2221c875-
02dc—-4789-800b-e7758f3722cl/03-and-
o4-mini-system-card.pdf, 2025.

Polu, S. and Sutskever, I. Generative language modeling
for automated theorem proving. CoRR, abs/2009.03393,
2020. URL https://arxiv.org/abs/2009.
03393.

Qwen. Qwq - 32b: The power of scaling rl, March 2025.
URL https://gwenlm.github.io/blog/qwg-
32b/. Accessed: 2025 - 05 - 14.

Reichenwallner, B. and Meerwald-Stadler, P. Efficient de-
obfuscation of linear mixed boolean-arithmetic expres-
sions. In I, G. G. R. and Blazytko, T. (eds.), Pro-
ceedings of the 2022 ACM Workshop on Research on

https://openreview.net/forum?id=8xliOUg9EW
https://openreview.net/forum?id=8xliOUg9EW
https://arxiv.org/abs/2402.00798
https://arxiv.org/abs/2402.00798
http://papers.nips.cc/paper_files/paper/2024/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://doi.org/10.1007/978-3-030-86890-1_16
https://doi.org/10.1007/978-3-030-86890-1_16
https://arxiv.org/abs/2505.03171
https://arxiv.org/abs/2505.03171
https://doi.org/10.48550/arXiv.2406.01940
https://doi.org/10.48550/arXiv.2406.01940
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.1007/BF01409968
https://doi.org/10.1007/BF01409968
https://doi.org/10.48550/arXiv.2410.19736
https://doi.org/10.48550/arXiv.2410.19736
http://papers.nips.cc/paper_files/paper/2024/hash/b1f34d7b4a03a3d80be8e72eb430dd81-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/b1f34d7b4a03a3d80be8e72eb430dd81-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/b1f34d7b4a03a3d80be8e72eb430dd81-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/b1f34d7b4a03a3d80be8e72eb430dd81-Abstract-Conference.html
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://qwenlm.github.io/blog/qwq - 32b/
https://qwenlm.github.io/blog/qwq - 32b/

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

offensive and defensive techniques in the context of Man
At The End (MATE) attacks, Los Angeles, CA, USA,
11 November 2022, pp. 19-28. ACM, 2022. doi: 10.
1145/3560831.3564256. URL https://doi.org/
10.1145/3560831.3564256.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang,
R. Y., Dirani, J., Michael, J., and Bowman, S. R.
GPQA: A graduate-level google-proof q&a benchmark.
CoRR, abs/2311.12022, 2023. doi: 10.48550/ARXIV.
2311.12022. URL https://doi.org/10.48550/
arXiv.2311.12022.

Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao,
W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z. F,,
Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D.,
and Ruan, C. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for
subgoal decomposition, 2025. URL https://arxiv.
org/abs/2504.21801.

Santos, M. D., Wang, H., de Saxcé, H., Wang, R,
Baksys, M., Unsal, M., Liu, J., Liu, Z., and Li, J.
Kimina lean server: Technical report. arXiv preprint
arXiv:2504.21230, 2025.

Scholze, P. Liquid tensor experiment. Exp. Math.,
31(2):349-354, 2022. doi: 10.1080/10586458.2021.
1926016. URL https://doi.org/10.1080/
10586458.2021.1926016.

Shao, Z., Wang, P, Zhu, Q., Xu, R, Song, J., Bi, X,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

Tao, T. ams.org. https://www.ams.org/notices/
202501 /rnoti-p6.pdf, 2025. [Accessed 10-05-
2025].

Tsoukalas, G., Lee, J., Jennings, J., Xin, J., Ding, M.,
Jennings, M., Thakur, A., and Chaudhuri, S. Put-
nambench: Evaluating neural theorem-provers on the
putnam mathematical competition. In Globersons,
A., Mackey, L., Belgrave, D., Fan, A., Paquet, U.,
Tomczak, J. M., and Zhang, C. (eds.), Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
1582eaf9%e0cf349elebabeed53100aal-
Abstract-Datasets_and_Benchmarks_
Track.html.

11

Wang, H., Unsal, M., Lin, X., Baksys, M., Liu, J., San-

tos, M. D., Sung, F., Vinyes, M., Ying, Z., Zhu, Z.,
Lu, J., de Saxc, H., Bailey, B., Song, C., Xiao, C.,
Zhang, D., Zhang, E., Pu, F., Zhu, H., Liu, J., Bayer,
J., Michel, J., Yu, L., Dreyfus-Schmidt, L., Tunstall,
L., Pagani, L., Machado, M., Bourigault, P., Wang, R.,
Polu, S., Barroyer, T., Li, W.-D., Niu, Y., Fleureau, Y.,
Hu, Y., Yu, Z., Wang, Z., Yang, Z., Liu, Z., and Li, J.
Kimina-prover preview: Towards large formal reason-
ing models with reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.11354.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,

S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
Hegde, C., LeCun, Y., Goldstein, T., Neiswanger, W., and
Goldblum, M. Livebench: A challenging, contamination-
free LLM benchmark. CoRR, abs/2406.19314, 2024. doi:
10.48550/ARX1V.2406.19314. URL https://doi.
0org/10.48550/arXiv.2406.19314.

Wu, Y., Jiang, A., Ba, J., and Grosse, R. B. {INT}: An

inequality benchmark for evaluating generalization in the-
orem proving. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=06LPudowNQm.

Wu, Y, Jiang, A. Q., Li, W, Rabe, M. N., Staats, C., Jamnik,

M., and Szegedy, C. Autoformalization with large
language models. In Koyejo, S., Mohamed, S., Agarwal,
A., Belgrave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems
2022, NeurlPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
dOc6bbc641a56bebee9d9850937307367~
Abstract-Conference.html.

Xu, C. Skelet 17 and the fifth busy beaver number, 2024.

URL https://arxiv.org/abs/2407.02426.

Yang, Z., Wang, Y., Huang, Y., Guo, Z., Shi, W., Han, X.,

Feng, L., Song, L., Liang, X., and Tang, J. Optibench
meets resocratic: Measure and improve llms for optimiza-
tion modeling, 2024. URL https://arxiv.org/
abs/2407.09887.

Ying, H., Wu, Z., Geng, Y., Wang, J., Lin, D., and Chen,

K. Lean workbook: A large-scale lean problem set
formalized from natural language math problems. In
Globersons, A., Mackey, L., Belgrave, D., Fan, A.,
Paquet, U., Tomczak, J. M., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024,2024. URL http://papers.

https://doi.org/10.1145/3560831.3564256
https://doi.org/10.1145/3560831.3564256
https://doi.org/10.48550/arXiv.2311.12022
https://doi.org/10.48550/arXiv.2311.12022
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://doi.org/10.1080/10586458.2021.1926016
https://doi.org/10.1080/10586458.2021.1926016
https://arxiv.org/abs/2402.03300
https://www.ams.org/notices/202501/rnoti-p6.pdf
https://www.ams.org/notices/202501/rnoti-p6.pdf
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2504.11354
https://doi.org/10.48550/arXiv.2406.19314
https://doi.org/10.48550/arXiv.2406.19314
https://openreview.net/forum?id=O6LPudowNQm
https://openreview.net/forum?id=O6LPudowNQm
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://arxiv.org/abs/2407.02426
https://arxiv.org/abs/2407.09887
https://arxiv.org/abs/2407.09887
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

nips.cc/paper_files/paper/2024/hash/
bf236666a2cc5f3ae05d2e08485efcdc-
Abstract-Datasets_and_Benchmarks_
Track.html.

Zayyad, M. and Adi, Y. Formal language knowledge corpus
for retrieval augmented generation, 2024. URL https:
//arxiv.org/abs/2412.16689.

Zhang, J., Wang, Q., Ji, X., Liu, Y., Yue, Y., Zhang, F.,
Zhang, D., Zhou, G., and Gai, K. Leanabell-prover:
Posttraining scaling in formal reasoning, 2025. URL
https://arxiv.org/abs/2504.06122.

Zheng, K., Han, J. M., and Polu, S. minif2f: a cross-
system benchmark for formal olympiad-level mathemat-
ics. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=9ZPegFuFTFv.

12

http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/bf236666a2cc5f3ae05d2e08485efc4c-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2412.16689
https://arxiv.org/abs/2412.16689
https://arxiv.org/abs/2504.06122
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

A. Limitations

While this work has been conducted according to best practices of previous work on formal theorem proving, there are
several potential limitations:

Firstly, our evaluation for proprietary OpenAl models are conducted with their default configuration, combined with our
zero-temperature setting for open-sourced models to enhance reproducibility, all evaluated models may not have shared
completely identical settings due to the undisclosed parameter settings of proprietary models.

Meanwhile, in order to strike a balance between budgetary restraints and performance representativeness, we only selected
best-performing models on mainstream formal theorem proving benchmarks such as PutnamBench (Tsoukalas et al., 2024)
and miniF2F (Zheng et al., 2022) for evaluation. There may be merit in exploring how other frontier proprietary models
such as Gemini-2.5 (Google DeepMind, 2025) and Claude-3.7-Sonnet (Anthropic, 2025) would perform on our dataset.
Therefore, we plan to open-source our codebase and dataset to the community for researchers with ample resources to
explore more models.

Lastly, while we leverage Lean compiler to automate proof validation, the proof is graded on a pass/fail basis as a whole.
However, we note it’s possible to implement a stepwise grading metric by dynamically masking each step in a whole proof
and ask the model to fill in each step respectively, thereby gauging models’ capability to implement key intermediate steps.

B. Automated Proof Validation

In our validation pipeline, we adopt the open-source Lean 4 server implementation from Kimina Lean Server (Santos et al.,
2025). The Kimina Lean Server provides a Python interface allowing real-time feedback for generated proofs. With a
Python function call veriry, the server receives a list of Lean proofs and returns validation results for each proof. The server
itself handles multiple requests efficiently by spreading verification across multiple Lean REPL processes.

C. Complete Example with Our Prompting Strategy

‘‘‘lean4
{lean_code}

You can make your own auxiliary corollaries and theorems to support the proof, instead of only completing the part
<—with the sorry. Please output the entire program and not just the last part. Please output only the program
<—+and add no other comment, such that your answer is a compilable lean code. Make sure to reason enough to make
— your code correct.

nun

System Prompt We used default system prompts as in the evaluated models’ metadata.

A complete BB example. Below we demonstrate a complete record of evaluation, including the problem statement in
Lean 4 and Markdown, our evaluation prompt and the model response:

import Mathlib.Computability.TuringMachine
inductive I

| zero

| one

deriving DecidableEqg
instance : Inhabited I' := (I'.zero)
structure Stmt where

move : Turing.Dir

write : T’
def Machine := Fin 2 — I — Option (Fin 2 stmt)
structure Cfg where

g : Fin 2
Tape : Turing.Tape I’

13

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

def init (1 : List I') : Cfg := ((0, by omega), Turing.Tape.mk; 1)
def step (M : Machine) : Cfg — Option Cfg :=
fun (g, T) (M g T.head) .map fun (q’, a) (q’, (T.write a.write).move a.move)

def machine : Machine

| (000, _), I'.zero => some ({000, by omega), (Turing.Dir.left, I'.zero))
| (000, _), I'.one => none

| (001, _), I'.zero => none

| (001, _), I'.one => some ((000, by omega), (Turing.Dir.left, I'.one))

| (_+2, _), _ => by omega

def nth_cfg : (n : Nat) -> Option Cfg

| 0 => init []
| Nat.suce n => match (nth_cfg n) with
| none => none
\ some cfg => step machine cfg

/,,
Prove the following Turing Machine with the transition table never halts.
| State | Symbol | Next State | Move | Write |

| | zero | 000 | left | zero |
| 000 | one | HALT | - | -
| \
| \

001 | zero | HALT | - | - |
001 | one | 000 | left | one |
/
theorem machine_never_halts : V n, (nth_cfg n).isSome := by
sorry

T

You can make your own auxiliary corollaries and theorems to support the proof, instead of only completing the part
—with the sorry. Please output the entire program and not just the last part. Please output only the program
<—rand add no other comment, such that your answer is a compilable lean code. Make sure to reason enough to make
< your code correct.

Response:

‘**‘leand
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Given a sequence { a } with a; = 1 and a L1 =2a + 1,
prove that a =2n -1 for all n>1 -/
theorem sequence_formula {a : N—N} (hl : a 1 = 1)
(hrec : Vn:N, n>1—a (n+1) =2 %an+1)
Vn:N n>1l—an=2n-1:=by
/,

We need to prove that for a sequence \(\{a_n\} \) defined by \(a_1 =1 \) and \(a_{n+l} = 2a_n + 1 \), the
—general term \(a_n \) is given by \(a_n = 2"n - 1 \) for all \(n \geg 1 \).
1. »xBase Casex*: For \(n =1 \), we have \(a_1 = 1 \). This matches \(2°1 - 1 =1 \), so the base case holds.
)

2. xxInductive Step**: Assume \(a_n = 2°n - 1 \) holds for some \(n \geg 1 \). We need to show it holds for \(n
— + 1 \).
- By the recurrence relation, \(a_{n+l} = 2a_n + 1 \).
- Using the inductive hypothesis \(a_n = 2°n - 1 \), we get:
\ [
a_{n+l} = 2(2°n - 1) + 1 =2"{n+l} - 2 + 1 = 2"{n+l} - 1
\1

— Thus, \(a_{n+1} = 2" {n+1l} - 1 \), completing the inductive step.
By induction, \(a_n = 2°n - 1 \) holds for all \(n \geg 1 \).
-/
intro n hn
induction’ hn with n hn
—— Base case: n =1
—-— We know a 1 = 1, which matches 271 - 1 =1
simp_all
—- Inductive step: Assume a n = 2°n - 1, prove a (n + 1) = 2" (n + 1) - 1
cases n with
| zero =>

14

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

—-— When n = 0, the induction hypothesis does not apply, so we directly use the initial condition
simp_all
| suece n =>
-— For n = sucec n, use the recurrence relation and the inductive hypothesis
simp_all [Nat.succ_eq_add_one, Nat.pow_succ, Nat.mul_succ]
—-— Simplify the expression to match the form 2" (n + 1) - 1
ring

<;> omega

A complete step lemma challenge example. Below we demonstrate a complete record of evaluation, including the
problem statement in Lean 4 and Markdown, our evaluation prompt and the model response:

Theorem library:
‘‘‘leand

import Mathlib.Tactic.Lemma
import Mathlib.Tactic.NthRewrite

@[simp]

theorem bv32_and_not_self(x : BitVec 32)
X &&& “""x = 0 := by
simp

@[simp]

theorem bv32_not_not (x : BitVec 32)
~~~~~~ X = x := by

simp

@[simp]

theorem bv32_or_not_self(x : BitVec 32)
x ||| "7"x = BitVec.allOnes 32 := by
simp

Q[simp]

theorem bv32_not_or_self(x : BitVec 32)
“""x ||| x = BitVec.allOnes 32 := by
simp

@[simp]

theorem bv32_neg_mul (x y : BitVec 32)
-Xx *y = -(x xy) := by
simp

theorem bv32_not_and (x y : BitVec 32)

TTU(x &&& y) = x ||| y := by
rw [BitVec.not_and]

theorem bv32_not_or (x y : BitVec 32)

(x |\| y) = X &&& y := by
rw [BitVec.not_or]

theorem bv32_not_xor_eq or (x y : (BitVec 32))
Tthy) = (777 &ss y) || (x &s& y) := by

- (x
ext i
simp
cases h; : x[1] <;> cases hy : yl[i]
simp
simp
simp
simp

theorem bv32_xor_eq or (x y : (BitVec 32)
Sthy) = (T7Tx osss y) || (x &ss y) := by

(x
ext i
simp
cases h; : x[i] <;> cases hy : y[i]
simp
simp
simp
simp

15



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

theorem bv32_x_distr (x y: BitVec 32)

X = (x &&& y) ||| (x &&& "77y) := by
ext 1

simp

simp [ Bool.and_or_distrib_left]

theorem bv32_y_distr (x y: BitVec 32)

y = (x &&& y ||| "77x s&& y) := by

ext i

simp

simp | Bool.and_or_distrib_right]
theorem bv32_add_assoc (x y : BitVec 32)

X +y +z=x+ (y +2z) := Dby

rw [BitVec.add_assoc]

theorem bv32_add_comm(x y : BitVec 32)
X +y =y + x := by
rw [BitVec.add_comm]

theorem bv32_add_neg_eq sub {x y : BitVec 32}
X + -y = x -y := by
rw [BitVec.add_neg_eq sub]

theorem bv32_mul_comm (x y : BitVec 32)
X *y =y *x x := by
rw [BitVec.mul_comm]

theorem bv32_var_mul_comm (x y z: BitVec 32)
(x &&& y) * z = z * (X &&& y) := by
rw [BitVec.mul_comm]

theorem bv32_mul_add (x y z : BitVec 32)
x % (y+2z) =x %y +x *xz :=by
rw [BitVec.mul_add]

theorem bv32_neg_eq mul (x : BitVec 32)
-X = X * (BitVec.allOnes 32) := by
rw [ BitVec.neg_one_eq_allOnes]
rw [BitVec.mul_neg]
rw [BitVec.mul_one]

theorem bv32_add _mul_one (x y : BitVec 32)
X + x xy=xx (1#32 + y) := by
rw [BitVec.mul_add]
rw [BitVec.mul_one]

/,,
1: x &&& vy
2: T77Tx &&& Y
3: x &&& "7y
4: "TT7x &&& 77y
-/
theorem bv32_or_eqg_addl2 (x y : BitVec 32)
(x &&& y) ||] (777x &&& y) = (x &&& y) + (777x &&& y) := by
apply Eg.symm
apply BitVec.add_eqg or_of_and_eq zero
simp [ BitVec.and_assoc]
simp [BitVec.and_comm _ (77 7x)
simp | BitVec.and_assoc]
theorem bv32_or_eq addl3 (x y : BitVec 32)
(x &&& y) ||| (x &&& "7"7y) = (x &&& y) + (x &&& ~77y) := by

apply Eg.symm

apply BitVec.add_eqg or_of_and_eq zero
simp | BitVec.and_assoc]

simp [BitVec.and_comm _ x]

simp [BitVec.and_assoc]

theorem bv32_or_eq addl4 (x y : BitVec 32)

16



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

(x &&& y) ||| (777"x &&s&
apply Eg.symm
apply BitVec.add_eq or_of_and_eq zero

TTy) = (x &&& y) + (T77x &&& T77y) := by

simp | BitVec.and_assoc]
simp [BitVec.and_comm _ (777x)]
simp [ BitVec.and_assoc]

theorem bv32_or_eq add2l (x y : BitVec 32)
("7"x &&& y) ||| (x &&& y) = ("777x &&& y) + (x &&& y) := by
apply Eg.symm
apply BitVec.add_eq or_of_and_eq zero

simp | BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [ BitVec.and_assoc]

theorem bv32_or_eq add23 (x y : BitVec 32)
(T77x ss& y) ||| (x s&& TTTy) = (T77x &&& y) + (x &&&
apply Eg.symm
apply BitVec.add_eq or_of_and_eq_zero

y) := by

simp [ BitVec.and_assoc]
simp [BitVec.and_comm _
simp [ BitVec.and_assoc]

x]

theorem bv32_or_eq add3l (x y : BitVec 32)
(x &8& "77y) ||| (x &&& y) = (x &&& y) + (x &&& y) := by
apply Eg.symm
apply BitVec.add_eq _or_of_and_eq_zero
simp [ BitVec.and_assoc]
simp [BitVec.and_comm _ x]
[
[

simp BitVec.and_assoc]

simp [BitVec.and_assoc]

theorem bv32_or_eq add32 (x y : BitVec 32)
(x s&& “77y) ||| (T77x s&s y) = (x &&&
apply Eg.symm
apply BitVec.add_eq or_of_and_eq zero
simp | BitVec.and_assoc]
simp [BitVec.and_comm _ (77 7x)]
simp [ BitVec.and_assoc]

y) + (777x &&& y) := by

theorem bv32_or_eq add4l (x y : BitVec 32)
("77x &&& T77y) ||| (x &&& y) = (T77x &&&
apply Eg.symm
apply BitVec.add_eq or_of_and_eq zero

y) + (x &&& y) := by

simp | BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [ BitVec.and_assoc]

theorem bv32_or_eq add_three (x y : BitVec 32)
(x ||| v) = (x s&& ""7y) + (x &&& y) + ("7"x &&& y) := by
nth_rw 1 [bv32_y_distr x y]
nth_rw 1 [bv32_x_distr x y]
simp [ BitVec.or_assoc]
simp [BitVec.or_comm _ (x &&& y)]
simp [ BitVec.or_assoc]
rw [BitVec.or_comm (x &&& V)
apply Eg.symm
rw [BitVec.add_eq or_of_and_eq zero]
rw [BitVec.add_eqg or_of_and_eq zero]
simp [ BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [BitVec.and_assoc]
rw [BitVec.add_comm]
rw [ bv32_or_eq_addl3]
rw [ bv32_x_distr x y]
simp [ BitVec.and_assoc]

theorem bv32_sum_all (x y : BitVec 32)
(T77x &&& T7Ty) + (T77x &&& y) +t (X &&& Y) + (X &&& “77y) = BitVec.allOnes 32 := by
simp [BitVec.add_comm _ (777"x &&& y)]
simp [BitVec.add_comm _ (x &&& _)]

simp [ BitVec.add_assoc]

17



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

rw [BitVec.add_eqg or_of_and_eq zero]
rw [ bv32_or_eq_add_three x y]
nth_rw 1 [bv32_x_distr x y]

simp [BitVec.or_comm _ y]

nth_rw 1 [bv32_y_distr x yl

simp [ BitVec.or_assoc]

simp [BitVec.or_comm _ (x &&& y)]
simp [ BitVec.or_assoc]

simp [BitVec.or_comm _ (77 "x &&& _)]
simp [ BitVec.or_assoc]

simp [BitVec.or_comm _ (77 7"x &&& y)
rw [ bv32_x_distr (777x) vyl

rw [BitVec.or_assoc]

rw [ bv32_x_distr x yl]

simp

rw [ bv32_or_eq_add_three x y]
simp [ BitVec.not_or]

theorem bv32_self eq neg mul (x: BitVec 32):
x = —-x * (BitVec.allOnes 32) := by
rw [BitVec.neg_mul]
rw [BitVec.mul_comm]
rw [ BitVec.neg_mul]
simp [ BitVec.neg_one_eqg_allOnes]

theorem bv32_not_self_and_not (x y : BitVec 32)
TTT(x &&& TTTXR) = (T77x &&& TTTy) £ (777X &&& Y) +t (X &&& Y) t+ (X &&&
rw [bv32_not_and]
rw [BitVec.not_not]
rw [bv32_not_or_self]
rw [bv32_sum_all]

y) by

/,,

Let x,y be 32-bit bit-vectors. Prove the equivalence of the following two expressions: $2\cdot \lnot (x\land \lnot y
) -1\cdot (x\lor \lnot y)-7\cdot \lnot (x\oplus y)+1l\cdot \lnot (x\land y)-5\cdot \lnot (x\lor y)-13\cdot \
< 1lnot (x\lor \lnot y)+6\cdot (x\land y)$, $10\cdot (x\land \lnot y)$

-/
theorem mba_challenge_02a2f35e (x y : BitVec 32) : 2#32 » 77 (x &&& "7 7y) - 1#32 * (x \|\ TTTy) - 7432 x 77T (x 77
y) o+ 11#32 x "7 (x &&& y) — S5#32 x TT7(x ||| y) - 13#32 * T77(x ||| T77y) + 6#32 x (x &s&& y) = 10#32 » (x &&&
— "77y) := by
simp only [ bv32_add_neg_eq_sub] /- step 1 -/
simp only [ bv32_neg_mul] /- step 2 -/

simp only [bv32_not_and] /- step 3 -/
simp only [bv32_not_or] /- step 4 -/

sorry
lemma mba_challenge_02a2f35e_lhs_step_1 (x y : BitVec 32) : 2#32 » """ (x &&& ~"7y) — 1#32 * (x ||| ""7y) - 7#32 «
STk ST y) o+ L1432 « TT7(x &&& y) - 5#32 x TT7(x ||| y) - 13#32 x T77(x ||| T77y) + 6#32 x (x &&& y) = 2#32
ok TTT(x &&& TTTy) 4+ = (1432 « (x ||| T7Ty)) 4 —(T#32 x TT7(x "7 y)) o+ 11#32 x TT7(x &&& y) + —(5#32 x 777 (x
=[] y)) + = (13432 « """ (x ||| "77y)) + 6#32 x (x &&& y) := by
simp only [ bv32_add_neg_eqg_sub]
lemma mba_challenge_02a2f35e_lhs_step_2 (x y : BitVec 32) : 2#32 * ~7"7(x &&& ~"7y) + —(1#32 % (x ||| "77y)) + —(7#32
ok TTT(x CCT y)) o+ 11432 x TTT(x &&& y) £ —(5#32 % TT7(x ||| y)) 4+ —(13#32 x "7 (x ||| TTTy)) o+ 6#32 x (x &&&
—y) = 2#32 % TT7(x &&& T7Ty) o+ —1#32 x (x ||| T7Ty) 4 -T#32 « T77(x 77 y) o+ 11432 x T77(x &&& y) + —5#32
STTT(x || y) 4 -13#32 « TT7(x ||| TTTy) o+ 6#32 % (x &&& y) := by
simp only [ bv32_neg_mul]
lemma mba_challenge_02a2f35e_lhs_step_3 (x y : BitVec 32) : 2#32 » ~"7(x &&& ~~7y) + -1#32 » (x ||| ~""y) + -7#32 *
ST TN y) 4 11432 x 77T (x &&& y) o+ -5#32 « T (x ||| y) o+ 13432 x T77(x ||| T7Ty) o+ 6#32 x (x &&& y) =
2432 % (T77x ||| T y) o+ -1#32 « (x ||| TTCy) o+ -TH32 x TTU(x "7 y) o+ 11432 % (T77x ||| T7Cy) o+ -5#32
777 (x ||| y) + -13#32 « "7 (x ||| T77y) + 6#32 x (x &&& y) := by

simp only [bv32_not_and]

lemma mba_challenge_02a2f35e_lhs_step_4 (x y : BitVec 32) : 2#32 » ("""x ||| =~~~ y) o+ -1#32 « (x ||| "T7y) + -7#32
ox TTT(x 0 y) o+ 11432 « (C77x ||| TTTy) b -5#32 x TT7(x ||| y) 4+ -13#32 « TT7(x ||| TTTy) + 6432 x (x &&& y
<) = 2432 « ("7Ux ||| U7 Y) o+ -1#32 « (x ||| TTTY) o+ -T#32 x TTT(x 0t y) o+ 11432 « (C77x ||| T77y) + -5#32
— x (T77x &&& T77y) + -13#32 x (T77x &&& 77777 y) + 6#32 x (x &&& y) := by

simp only [bv32_not_or]

lemma mba_challenge_02a2f35e_lhs_step_5 (x y : BitVec 32) : 2#32 » (" "x ||| =~~~ y) + —1#32 * (x ||| “7Ty) + -7#32
Crow TTT(x CCTy) 4 11#32 % (T77x ||| TTUy) 4 -5#32 x (T7Tx ss& TTTy) + -13#32 % (T7Tx ss& TToUTC y) + 6#32 x (x

18



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

— &&& y) = 2#32 « ("77x ||| "7 y) + -1#32 x (x ||| "T77y) 4+ -T7#32 x (T77x s&& 77y ||| x s&& y) + 11#32 x
= (C7Tx [ TTTy) 4 -5#32 « (T77x sss y) + -13#32 % (""7x s&& "7 y) + 6#32 x (x &&& y) := by
simp only [<Theorem here>]

You are proving a single step of theorem 'mba_challenge_02a2f35e’. Based on the previous steps, select exactly one
—rappropriate theorem from the Theorem library above and insert it in place of <Theorem here> to complete the
—proof of lemma ’'mba_challenge_02a2f35e_lhs_step_5’. Do not modify any code from previous theorems or lemmas.
<—You are also not allowed to add any other tactics to the proof body.

##4# Response:

You need the lemma that rewrites "7 (x """ y) into ("7 "x &&& “"7y) ||| (x &&s& y). That is

bv32_not_xor_eq_or

So your step 5 becomes:

lemma mba_challenge_02a2f35e_lhs_step_5 (x y : BitVec 32)

2#32 « ("77x ||| "o y) + -1#32 x (x ||| T77y) 4+ -T#32 x "7 (x 0" y) 4+ 11#32 x (T77x || T77y) 4+ -5#32 x (T77x

—&&& TTTy) 4+ —13#32 x (T77x &&& TTT777 y) + 6#32 x (x &&& y) = 2#32 « ("77x ||| 77777 y) + -1#32 « (x ||| ~°°
y) + -T#32 x (T77x &&& "7y ||| x &&& y) + 11432 « (T77x ||| T77y) + 5432 « (T77x &&& T77y) + —-13#32 «
—(T77x &&& TTT777 y) + 6#32 % (x &&& y) := by

simp only [bv32_not_xor_eq or]
This completes the requested rewrite.

D. Template-Based Formal-Informal Translation

We use the following Python program to produce problem descriptions in rigorously aligned Lean-Markdown pair.

import srsly
from tgdm import tgdm

output_dir = "busy_beaver/prompts_to_run"
tables = list(srsly.read_jsonl ("busy_beaver/bb_with_table.jsonl"))
template = """Complete the following Lean 4 code:

‘‘‘lean4

{lean_code}

Y

You can make your own auxiliary corollaries and theorems to support the proof, instead of only completing the part
<+with the sorry. Please output the entire program and not just the last part. Please output only the program
~rand add no other comment, such that your answer is a compilable lean code. Make sure to reason enough to make
< your code correct.

nun

informal_tmplate = """
/=

{informal}

-/

nun

for problem in tables:

lean_path = problem["file_name"]

file_name = lean_path.split("/")[-1]

out_path = f"{output_dir}/{file_name.removesuffix(’.lean’)}.txt"

is_halting = True

if "nonhalting" in file_name:
is_halting = False

informal_head = "Prove the following Turing Machine with the transition table " + (
"halts." if is_halting else "never halts."

)

# print (out_path)

lean_code = None

with open(lean_path, "r") as f:

lean_code = f.read() .removeprefix ("\n")
assert lean_code != None
informal = "/-- \n" + informal_head + "\n" + problem["table"] + "-/\n"

with open (out_path, "w") as f:
f.write(
template.format (
lean_code=lean_code.replace (

19



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

"theorem machine_", informal + "theorem machine_"

) .replace ("\n\ndef nth_cfg", "\ndef nth_cfg")
.replace ("\n\n/--", "\n/--"
.replace ("sorry\n", "sorry")

pass

E. More Success and Failure Cases

We demonstrate additional full record of evaluation, including problem statements in their Lean-Markdown pair and model
responses for both successful and failed evaluation cases. The comprehensive record of model responses for cases can be
found in the results folder of our dataset.

E.1. Success Case
E.1.1. DEEPSEEK-PROVER-V2-671B/BB-4STATE-CASE107-NONHALTING

This is a trivial non-halting case, meaning there is no "HALT” entry in the transition table. It can therefore be resolved via a
single structural induction. Although the proof completes, warning messages appear, such as ’aesop: failed to prove the
goal after exhaustive search”, ”(try aesop) tactic does nothing”, and “this tactic is never executed”. These suggest the model
does not fully reason about the proof and instead relies on automated tactics, hoping some may resolve the goal.

import Mathlib.Computability.TuringMachine

inductive I
| zero
| one
deriving DecidableEqg

instance : Inhabited I' := ( I'.zero )
structure Stmt where
move : Turing.Dir
write : T’
def Machine := Fin 4 - I — Option (Fin 4 stmt)
structure Cfg where

g : Fin 4
Tape : Turing.Tape I’

def init (1 : List I') : Cfg := ((0, by omega), Turing.Tape.mk; 1)
def step (M : Machine) : Cfg — Option Cfg :=
fun (q, T) (M g T.head) .map fun (q’, a) (q’, (T.write a.write).move a.move)

def machine : Machine

| (000, _), I'.zero => some ((001, by omega), (Turing.Dir.left, I'.one))

| (000, _), I'.one => some ((001, by omega), (Turing.Dir.right, I'.one))

| (001, _), I'.zero => some ((000, by omega), (Turing.Dir.right, I'.one))

| (001, _), I''one => some ((003, by omega), (Turing.Dir.left, I'.one))

| (002, _), I'.zero => some ((001, by omega), (Turing.Dir.right, I'.zero))
| (002, _), I"'.one => some ((000, by omega), (Turing.Dir.right, I'.zero))

| (003, _), I'.zero => some ({000, by omega), (Turing.Dir.left, I'.zero))
| (003, _), I'.one => some ((001, by omega), (Turing.Dir.left, I'.zero))

| (_+4, _), _ => by omega

def nth_cfg : (n : Nat) -> Option Cfg

| 0 => init []
| Nat.suee n => match (nth_cfg n) with
| none => none
\ some cfg => step machine cfg

/,,

Prove the following Turing Machine with the transition table never halts.
| State | Symbol | Next State | Move | Write |

20



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

000 | zero | 001 | left | one |
000 | one | 001 | right | one |
001 | zero | 000 | right | one |

\
\ \
\ \
\ |
| 001 | one | 003 | left | one |
‘ 002 ‘
\ |
\ |
\ \

zero | 001 | right | zero |
002 | one | 000 | right | zero |
003 zero | 000 | left | zero |
003 | one | 001 | left | zero |
/
theorem machine_never_halts : V n, (nth_cfg n).isSome := by
intro n
have h : V n, (nth_cfg n).isSome := by
intro n

induction n with
| zero => simp [nth_cfg, init]
| suce n ih =>
cases h; : nth_cfg n with
\ none => simp_all [nth_cfg, step, machine, Cfg, Stmt, I', Fin.forall fin_succ, Fin.forall fin_succ’]
| some cfg =>
simp_all [nth_cfg, step, machine, Cfg, Stmt, I, Fin.forall fin_succ, Fin.forall_ fin_succ’]
<>
(try cases cfg <;> simp_all [nth_cfg, step, machine, Cfg, Stmt, I', Fin.forall fin_succ, Fin.forall fin_succ
—'1)
<>
(try aesop)
<;>
(try omega)
<;>
(try aesop)
exact h n

E.2. Failure Case
E.2.1. DEEPSEEK-PROVER-V2-671B/BB-2STATE-CASE102-NONHALTING

This is a case where the Turing machines state remains fixed at 000. A correct proof requires showing that the machine
consistently executes the first rule of the transition table. The model attempts a single structural induction; however, in
the inductive case succ n th, it leaves two unsolved goals F'alse. These cannot be resolved via the induction hypothesis,
suggesting that the model fails to generalize inductive reasoning in this setting.

import Mathlib.Computability.TuringMachine

inductive I’
| zero
| one
deriving DecidableEq

instance : Inhabited I' := ( I'.zero )
structure Stmt where
move : Turing.Dir
write : T’
def Machine := Fin 2 —I' — Option (Fin 2 Stmt)
structure Cfg where

q : Fin 2
Tape : Turing.Tape I’

def init (1 : List I') : Cfg := ((0, by omega), Turing.Tape.mk; 1)
def step (M : Machine) : Cfg — Option Cfg :=
fun (q, T) (M g T.head).map fun (q’, a) (q’, (T.write a.write).move a.move)

def machine : Machine

| (000, _), I'.zero => some ((000, by omega), (Turing.Dir.left, I'.zero))
| (000, _), I'.one => none

| (001, _), I'.zero => none

21



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

| (001, _), I'.one => some ((000, by omega), (Turing.Dir.left, I'.one))
| (_+2, _), _ => by omega

def nth_cfg : (n : Nat) -> Option Cfg
| 0 => init []
| Nat.suce n => match (nth_cfg n) with
| none => none
\ some cfg => step machine cfg

/__
Prove the following Turing Machine with the transition table never halts.
| State | Symbol | Next State | Move | Write |

| | zero | 000 | left | zero |
| 000 | one | HALT | - | - |
| \
| \

001 | zero | HALT | - | - |
001 | one | 000 | left | one |
/
theorem machine_never_halts : V n, (nth_cfg n).isSome := by
intro n
have h : V n, (nth_cfg n).isSome := by
intro n

induction n with
| zero =>
simp [nth_cfg, init]
| suce n ih =>
simp_all [nth_cfg, step, machine, Cfg.q, Cfg.Tape, Turing.Tape.move, Option.isSome]
<;> aesop
exact h n

E.2.2. GOEDEL-PROVER/BB-2STATE-CASE102-NONHALTING

The model produced proof of a completely unrelated theorem about sequences. This seems to be a hallucination, where
the model matched a common pattern like theorem...by sorry and filled in a generic proof without understanding the
actual task. This shows a key limitation of small provers: Without symbolic grounding or verification, they can only match
surface-level patterns rather than truly reasoning.

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Given a sequence { a } with a; = 1 and a L1 =2a + 1,
prove that a =2n -1 for all n>1 -/

theorem sequence_formula {a : N—N} (hl : a 1 = 1)
(hrec : Vn:N, n>1—a (n+1) =2 %an+1)
Vn:N n>1—an=2"n-1 :=by

/_
We need to prove that for a sequence \( \{a_n\} \) defined by \( a_1 = 1 \) and \( a_{n+1} = 2a_n + 1 \), the
<rgeneral term \( a_n \) is given by \( a_n = 2"n - 1 \) for all \( n \geg 1 \).
1. x*Base Casexx: For \(n =1 \), we have \( a_1l = 1 \). This matches \( 2°1 - 1 =1 \), so the base case holds.
)

2. xxInductive Step**: Assume \( a_n = 2°n — 1 \) holds for some \( n \geq 1 \). We need to show it holds for \( n
— + 1 \).
- By the recurrence relation, \( a_{n+l} = 2a_n + 1 \).
- Using the inductive hypothesis \( a_n = 2°n - 1 \), we get:
\ [
a_{n+l} = 2(2°n - 1) + 1 = 2"{n+l} - 2 + 1 = 27 {n+l} - 1
\1
- Thus, \( a_{n+l} = 27 {n+1} - 1 \), completing the inductive step.
By induction, \( a_n = 2°n - 1 \) holds for all \( n \geg 1 \).
-/

intro n hn
induction’ hn with n hn

—-—- Base case: n = 1

—-— We know a 1 = 1, which matches 2°1 - 1 =1

simp_all

—- Inductive step: Assume a n = 2'n - 1, prove a (n + 1) = 2"(n + 1) -1

cases n with

22



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

| zero =>
—-— When n = 0, the induction hypothesis does not apply, so we directly use the initial condition
simp_all
| suece n =>
-- For n = succ n, use the recurrence relation and the inductive hypothesis
simp_all [Nat.succ_eq_add_one, Nat.pow_succ, Nat.mul_succ]
—— Simplify the expression to match the form 2" (n + 1) - 1
ring

<;> omega

E.2.3. KIMINI-PROVER-7B/BB-4STATE-CASE122-NONHALTING

The model just outputs sorry, which means it didnt complete the proof. This might be because it couldnt figure out how to
reason about the problem, or because it has seen sorry used as a placeholder in Lean and assumed that was enough to count
as a valid answer.

import Mathlib.Computability.TuringMachine

inductive T’
| zero
| one
deriving DecidableEq

instance : Inhabited I' := ( I'.zero )
structure Statement where
move : Turing Dir
write : I’
def Machine := Fin 4 — I' — Option (Fin 4 Statement)
structure Cfg where

g : Fin 4
Tape : Turing Tape I’

def init (1 : List I') : Cfg := ((0, by omega), (Turing Dir.right, I'.zero))
def step (M : Machine) : Cfg — Option Cfg :=
fun (g, T) (M g T.head) .map fun (q’, a) (g, (T.map a).move a)

def machine : Machine

| (000, _), I'.zero => some ((001, by omega), (Turing Dir.right, I'.zero))
| (000, _), I'.one => some ((003, by omega), (Turing Dir.left, I'.zero))

| (001, _), I'.zero => some ((003, by omega), (Turing Dir.left, I'.one))

| (001, _), I"'.one => some ((002, by omega), (Turing Dir.right, I'.zero))
| (002, _), I'.zero => some ((003, by omega), (Turing Dir.left, I'.zero))
| (002, _), I'.one => some ((001, by omega), (Turing Dir.left, I'.one))

| (003, _), I'.zero => some ((001, by omega), (Turing Dir.left, I'.one))

| (003, _), I'.one => some ((000, by omega), (Turing Dir.right, I'.zero))
| (_+4, _), _ => by omega

def nth configurations (n : Nat) : Option Cfg :=

| 0 => init []

\ Nat.suce n => match (nth configurations n) with
| none => none
| some cfg => step machine cfg

/__
Prove the following Turing Machine with the transition table never halts.
| State | Symbol | Next State | Move | Write |

000 | zero | 001 | right | zero |
000 | one | 003 | left | zero |
001 | zero | 003 | left | one |
001 | one | 002 | right | zero |

002 | one | 001 | left | one |
003 | zero | 001 | left | one |
003 | one | 000 | right | zero |

| \
| |
| |
| \
| 002 | zero | 003 | left | zero |
| \
| \
| \

23



Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

theorem machine_never_halts : V n, (nth configurations n).isSome := by
sorry

F. Customized Lemma Library.

import Mathlib.Tactic.NthRewrite

@[simp]

theorem bv32_and_not_self(x : BitVec 32)
X &&& """x = 0 := by
simp

@[simp]

theorem bv32_not_not (x : BitVec 32)
~~~~~~ X = x := by

simp

@ [simp]

theorem bv32_or_not_self(x : BitVec 32)
x ||| "7"x = BitVec.allOnes 32 := by
simp

@ [simp]

theorem bv32_not_or_self(x : BitVec 32)
“""x ||| x = BitVec.allOnes 32 := by
simp

@[simp]

theorem bv32_neg mul (x y : BitVec 32)
-X * y = -(x xy) := by
simp

theorem bv32_not_and (x y : BitVec 32)

TTU(x &&& y) = x ||| 777y := by
rw [BitVec.not_and]

theorem bv32_not_or (x y : BitVec 32)

(x [y = X &&& y := by
rw [BitVec.not_or]

theorem bv32_not_xor_eq or (x y : (BitVec 32))
“hhy) = (T77x &&s y) ||| (x &&s& y) := by

- (x
ext i
simp
cases h; : x[1] <;> cases hy : yl[i]
simp
simp
simp
simp

theorem bv32_xor_eq or (x y : (BitVec 32)
Stry) = (T7Tx osss y) || (x &ss v)

(x by
ext i

simp

cases hy : x[i] <;> cases hy : y[i]

simp

simp

simp

simp

theorem bv32_x_distr (x y: BitVec 32)

X = (x &&& y) ||| (x &&& "77y) := by
ext i

simp

simp [Bool.and_or_distrib_left]

theorem bv32_y_distr (x y: BitVec 32)
y = (x &&& y ||| "7"x &&& y) := by
ext 1
simp

24

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

simp | Bool.and_or_distrib_right]

theorem bv32_add_assoc (x y z : BitVec 32)
Xx+y +z=x+ (y +z) :=Dby
rw [BitVec.add_assoc]

theorem bv32_add_comm(x y : BitVec 32)
X +y =y + x := by
rw [BitVec.add_comm]

theorem bv32_add_neg_eq sub {x y : BitVec 32}
X + -y = x -y := by
rw [BitVec.add_neg_eq sub]

theorem bv32_mul_comm (x y : BitVec 32)
X *y =y *x x := by
rw [BitVec.mul_comm]

theorem bv32_var_mul_comm (x y z: BitVec 32)
(x &&& y) * z = z * (X &&& y) := by
rw [BitVec.mul_comm]

theorem bv32_mul_add (x y z : BitVec 32)
x * (y+2z) =x %y +x *x 2z :=by
rw [BitVec.mul_add]

theorem bv32_neg_eq mul (x : BitVec 32)
-X = x x (BitVec.allOnes 32) := by
rw [BitVec.neg_one_eq_allOnes]
rw [BitVec.mul_neg]
rw [BitVec.mul_one]

theorem bv32_add_mul_one (x y : BitVec 32)
X + x xy=xx (1#32 + y) := by
rw [BitVec.mul_add]
rw [BitVec.mul_one]

/-
1: x &&& vy

2: T77x &&& Yy

3: x &&& "7y

4: "7Tx ss&s "7y

-/

theorem bv32_or_eqg addl2 (x y : BitVec 32)

(x &6& y) ||] ("77"x ss& y) = (x &&& y) + (7% &&& y) := by
apply Eg.symm
apply BitVec.add_eqg or_of_and_eq zero

simp [BitVec.and_assoc]
simp [BitVec.and_comm _ (77 7x)
simp [BitVec.and_assoc]

theorem bv32_or_eq addl3 (x y : BitVec 32)

(x &8& y) ||| (x &&& "77y) = (x &&& y) + (x &&& ~"7y) := by
apply Eg.symm
apply BitVec.add_eqg or_of_and_eq zero
simp [BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [BitVec.and_assoc]
theorem bv32_or_eq addl4 (x y : BitVec 32)
(x s&8& v) ||] ("7"x ss& "77y) = (x &&& y) + (777x s&&& "77y) := by
apply Eg.symm
apply BitVec.add_eq or_of_and_eq_zero
simp [BitVec.and_assoc]
simp [BitVec.and_comm _ (77 7x)
simp [BitVec.and_assoc]
theorem bv32_or_eq add2l (x y : BitVec 32)
("% ss& y) ||| (x &s& y) (""7x &&& y) + (x &&& y) := by

apply Eqg.symm
apply BitVec.add_eq_or_of_and_eq_zero

25

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

simp | BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [BitVec.and_assoc]

theorem bv32_or_eq add23 (x y : BitVec 32)
(T77x ss& y) ||| (x s&& TTTy) = (T77x &&& y) + (x &&&
apply Eg.symm
apply BitVec.add_eq _or_of_and_eq_zero
simp [BitVec.and_assoc]
simp [BitVec.and_comm _
simp [BitVec.and_assoc]

"y) := by

x]

theorem bv32_or_eq add3l (x y : BitVec 32)
(x &8& "77y) ||| (x &&& y) = (x &&& y) + (x &&& y) := by
apply Eg.symm
apply BitVec.add_eq _or_of_and_eq_zero
simp [BitVec.and_assoc]
simp [BitVec.and_comm _ x]
[
[

simp BitVec.and_assoc]

simp [BitVec.and_assoc]

theorem bv32_or_eq add32 (x y : BitVec 32)
(x s&& “77y) ||| (T77x ss& y) = (x &&&
apply Eg.symm
apply BitVec.add_eq or_of_and_eq_zero
simp | BitVec.and_assoc]
simp [BitVec.and_comm _ (777x)]
simp [BitVec.and_assoc]

y) + (777x &&& y) := by

theorem bv32_or_eq add4l (x y : BitVec 32)
("77x &8s TTTy) ||| (x s&& y) = (777X &8&&
apply Eg.symm
apply BitVec.add_eq _or_of_and_eq_zero
simp [BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [BitVec.and_assoc]

y) + (x &&& y) := by

theorem bv32_or_eq add_three (x y : BitVec 32)
(x ||l v) = (x s&& ""7y) + (x &&& y) + ("7"x &&& y) := by
nth_rw 1 [bv32_y_distr x yl
nth_rw 1 [bv32_x_distr x y]
simp [BitVec.or_assoc]
simp [BitVec.or_comm _ (x &&& y)]
simp [BitVec.or_assoc]
rw [BitVec.or_comm (x &&& y)]
apply Eg.symm
rw [BitVec.add_eq or_of_and_eq zero]
rw [BitVec.add_eqg or_of_and_eq zero]
simp [BitVec.and_assoc]
simp [BitVec.and_comm _ x]
simp [BitVec.and_assoc]
rw [BitVec.add_comm]
rw [bv32_or_eq_addl3]
rw [bv32_x_distr x y]
simp [BitVec.and_assoc]

theorem bv32_sum_all (x y : BitVec 32)
(T77x &&& T7Ty) + (T77Tx &&& y) +t (X &&& Y) + (X &&& “77y) = BitVec.allOnes 32
simp [BitVec.add_comm _ (777"x &&& y)]
simp [BitVec.add_comm _ (x &&& _)]
simp [BitVec.add_assoc]
rw [BitVec.add_eqg or_of_and_eq zero]
rw [bv32_or_eq_add_three x y]
nth_rw 1 [bv32_x_distr x y]
simp [BitVec.or_comm _ y]
nth_rw 1 [bv32_y_distr x yl

by

simp [BitVec.or_assoc]

simp [BitVec.or_comm _ (x &&& y)]
simp [BitVec.or_assoc]

simp [BitVec.or_comm _ (77"x &&& _)]
simp [BitVec.or_assoc]

simp [BitVec.or_comm _ (777x &&& y)]

26

Lean Meets Theoretical Computer Science: Scalable Synthesis of Theorem Proving Challenges in Formal-Informal Pairs

rw [bv32_x_distr (777x) vyl

rw [BitVec.or_assoc]

rw [bv32_x_distr x vyl

simp

rw [bv32_or_eq_add_three x y]
simp [BitVec.not_or]

theorem bv32_self_ _eq neg _mul (x: BitVec 32):
x = —-x * (BitVec.allOnes 32) := by
rw [BitVec.neg_mul]
rw [BitVec.mul_comm]
rw [BitVec.neg_mul]
simp [BitVec.neg_one_eqg_allOnes]

theorem bv32_not_self_and_not (x y : BitVec 32) :
TTT(x &&& TTTXR) = (T7T7x &&& TTTy) £ (T77Tx &&& y) +t (X &&& Y) t+ (X &&&
rw [bv32_not_and]
rw [BitVec.not_not]
rw [bv32_not_or_self]
rw [bv32_sum_all]

y) by

27

