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Figure 1: No-Language-Hallucination Decoding (NoLan). Given an LVLM, an image v, and a
language question x, NoLan mitigates hallucinations in responses by comparing outputs generated
from multimodal and unimodal (text-only) inputs. Step 2 can also be simplified by setting α to a fixed
value of 1. In this example, the hallucinated object “whale" is suppressed by reducing the influence of
language priors during token generation, while the ground truth object “bear" is effectively enhanced.

ABSTRACT

Object hallucination is a critical issue in Large Vision-Language Models (LVLMs),
where outputs include objects that do not appear in the input image. A natural
question arises from this phenomenon: Which component of the LVLM pipeline
primarily contributes to object hallucinations? The vision encoder to perceive
visual information, or the language decoder to generate text responses? In this
work, we strive to answer this question through designing a systematic experiment
to analyze the roles of the vision encoder and the language decoder in hallucination
generation. Our observations reveal that object hallucinations are predominantly
associated with the strong priors from the language decoder. Based on this finding,
we propose a simple and training-free framework, No-Language-Hallucination
Decoding, NoLan, which refines the output distribution by dynamically suppressing
language priors, modulated based on the output distribution difference between
multimodal and text-only inputs. Experimental results demonstrate that NoLan
effectively reduces object hallucinations across various LVLMs on different tasks.
For instance, NoLan achieves substantial improvements on POPE, enhancing the
accuracy of LLaVA-1.5 7B and Qwen-VL 7B by up to 6.45 and 7.21, respectively.
The code will be made publicly available.
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1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Touvron et al., 2023; Chiang et al., 2023b;
Chen et al., 2023a; Zhao et al., 2023; Li et al., 2023e; Wei et al., 2023; Xiao et al., 2023) have
revolutionized the field of machine learning with the ability of language understanding and content
generation, offering unprecedented capabilities and potentials across a multitude of applications.
The integration of LLMs with computer vision systems has given rise to Large Vision-Language
Models (LVLMs) (Bubeck et al., 2023; Touvron et al., 2023; Zeng et al., 2022; Awadalla et al., 2023;
Yang et al., 2023; Liu et al., 2023e; Zhu et al., 2023a; Ye et al., 2023b; Liu et al., 2020; Li et al.,
2023c; Tran et al., 2020; Liang et al., 2023), facilitating various applications through their capacity to
produce contextually accurate textual outputs from visual data. These models excel in identifying
and converting intricate visual patterns into seamless linguistic expressions (Liu et al., 2023e; Zhu
et al., 2023b; Ye et al., 2023a; Li et al., 2023a; Dai et al., 2023; Gong et al., 2023; Maaz et al., 2023;
Zhang et al., 2023; Bai et al., 2023b). LVLMs with these advanced capabilities have demonstrated
their value across multiple domains, such as content generation, image and video annotation, and
interactive platforms that require comprehensive visual content interpretation. The development of
LVLMs is characterized by continuous enhancements in model structures, training strategies, and
data variety, resulting in improved performance and broader application adaptability. Nevertheless, a
significant challenge persists: object hallucinations (Li et al., 2023d; Gunjal et al., 2023; Liu et al.,
2023b; Lovenia et al., 2023), where the text generated by LVLMs does not accurately reflect the
objects in the provided image. Object hallucinations can lead to misinformation and misinterpretation,
posing significant risks for decision-making—particularly in high-stakes areas such as robotics (Mai
et al., 2023; Liu et al., 2023c), autonomous systems (Chen et al., 2023b; Wu et al., 2023), and
healthcare (Wang et al., 2023d; Hu et al., 2023).

In light of this, various strategies have been investigated to mitigate object hallucinations in LVLMs.
Initial efforts focused on small-scale VLMs, employing techniques like fine-grained modality align-
ment (Biten et al., 2022) and data augmentation to reduce statistical biases related to object co-
occurrence (Rohrbach et al., 2018; Kim et al., 2023). However, the distinct behaviors of LVLMs
render these methods difficult to generalize and scale (Kaplan et al., 2020; Wei et al., 2022). Recent
research has tackled this challenge by developing hallucination-specific datasets for fine-tuning (Liu
et al., 2023a; Gunjal et al., 2023), training post-hoc revisors to produce outputs with fewer hal-
lucinations (Zhou et al., 2023), and employing factually enhanced Reinforcement Learning from
Human Feedback (RLHF) (Sun et al., 2023). Despite their effectiveness, these interventions demand
significant human effort and computational resources, underscoring the urgent need for a simpler yet
efficient solution.

LVLMs generally comprise two main components: a vision encoder that perceives visual information
and a language decoder that generates text responses. This model composition motivates us to analyze
the contributions of the vision and language components within LVLMs to the occurrence of object
hallucinations. Through a series of analytical experiments, we find that object hallucinations primarily
stem from the language decoder’s priors rather than the vision encoder. Based on this insight, we
focus on overcoming language priors and introduce No-Language-Hallucination Decoding (NoLan),
a simple, effective, and training-free framework designed to mitigate hallucinations in LVLMs. As
illustrated in Figure 1, NoLan works by contrasting the output distributions of multimodal inputs with
those of text-only inputs, acting as a corrective mechanism to address the model’s over-reliance on
linguistic priors embedded in the LLM. The modulation of the output distribution increases when the
similarity between the token distributions of multimodal and text-only inputs is higher, as measured
by a Kullback-Leibler divergence-based function. Compared to previous methods (Liu et al., 2023a;
Gunjal et al., 2023; Zhou et al., 2023; Sun et al., 2023), NoLan eliminates the need for additional
training or external tools, such as other pre-trained models. Our experimental results validate the
effectiveness of NoLan, demonstrating consistent improvements across various object hallucination
benchmarks and LVLM families, including LLaVA-1.5 (Liu et al., 2023e;d), InstructBLIP (Dai et al.,
2023), and Qwen-VL (Bai et al., 2023b). Specifically, on the POPE benchmark (Li et al., 2023d),
NoLan achieves significant performance gains, with accuracy improvements of up to 8.38 and F1
score enhancements of up to 8.78, highlighting its robustness and scalability in addressing object
hallucinations across diverse LVLM architectures.

Overall, our main contributions are as follows:
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1. We conduct a series of analytical experiments to investigate the contributions of each
component in LVLMs to object hallucinations, finding that hallucinations mainly stem from
the language model’s priors rather than the vision model.

2. Building on this insight, we introduce NoLan, a plug-and-play approach designed to mitigate
object hallucinations by dynamically suppressing language priors. NoLan achieves this by
leveraging the differences in output distributions between multimodal and text-only inputs,
ensuring more consistent and contextually accurate content generation.

3. Extensive experiments demonstrate the effectiveness of NoLan in significantly reducing
object hallucinations. Notably, our methods do not require additional training or external
tools.

2 RELATED WORK

2.1 VISUAL-LANGUAGE MODELS

The evolution of Vision-Language Models (VLMs) has advanced significantly, shifting from language
models that incorporate BERT-like language encoder (Devlin et al., 2018; Liu et al., 2019; Koroteev,
2021) for the fusion of visual and textual information (Li et al., 2019; Sun et al., 2019; Wang et al.,
2022; Li et al., 2022a) to being driven by the integration of LLMs (Gilardi et al., 2023; Touvron et al.,
2023; Tay et al., 2022; Raffel et al., 2020; Brown et al., 2020; Chowdhery et al., 2022; Taori et al.,
2023; Chiang et al., 2023a; Bai et al., 2023a). By integrating a general vision encoder with a large
language model, LVLMs demonstrate a range of emergent capabilities, enabling them to process and
interpret complex visual and textual information more effectively. However, while grafted VLMs
inherit strong linguistic capabilities from their base LLM, they also carry over the propensity to
generate ungrounded or fabricated information (Huang et al., 2021; Bang et al., 2023).

2.2 HALLUCINATION IN VLMS

Hallucination typically refers to instances in which the generated responses include information that
is not present in the visual content (Rohrbach et al., 2018; Biten et al., 2022; Li et al., 2023d). Recent
initiatives have aimed to tackle these intricacies, with research focusing on detecting and evaluating
object hallucinations in the realm of LVLMs (Wang et al., 2023c; Liu et al., 2023a; Li et al., 2023d;
Lovenia et al., 2023; Yin et al., 2024), and methods to reduce them (Liu et al., 2023a; Yin et al., 2024;
Wang et al., 2023a). For instance, POPE (Li et al., 2023d) transforms hallucination into a binary
classification task to assess the model’s ability to recognize whether a particular object is present in the
image. Unlike approaches that simply integrate powerful LLMs with in-context or few-shot learning
capabilities (Alayrac et al., 2022; Li et al., 2023b), efforts to address hallucinations have primarily
focused on incorporating external tools for post-processing. For instance, Woodpecker (Yin et al.,
2024) utilizes a five-stage process, but many of these stages rely heavily on auxiliary models, such as
multiple LLMs and vision foundation models, making the approach resource-intensive. Additionally,
adapting factually augmented reinforcement learning from human feedback (RLHF) (Sun et al., 2023)
has emerged as an effective strategy to align model outputs with factual accuracy. However, current
strategies (Liu et al., 2024b;a) that involve acquiring additional datasets, performing detailed tuning
on initial or new models, or utilizing other pretrained models can be time-intensive, laborious, and
computationally demanding.

To address these limitations, several training-free methods have been developed. For instance, Visual
Contrastive Decoding (VCD) (Leng et al., 2024) calibrates visual uncertainty by contrasting output
distributions generated from original and distorted visual inputs. Similarly, Multi-Modal Mutual
Information Decoding (M3ID) (Favero et al., 2024) and Visual Debias Decoding (VDD) (Zhang et al.,
2024) enhance the influence of the reference image by comparing probability distributions produced
from conditioned and unconditioned inputs. These approaches aim to refine model predictions without
requiring additional training. Compared to these methods, our NoLan introduces a fundamentally
different, finer-grained assumption. While methods like VCD (Leng et al., 2024) and VDD (Zhang
et al., 2024) simplify the problem by assuming a uniform language prior for all tokens, and M3ID
assumes that the prior degree is conditioned only on sequence length (Favero et al., 2024), our
approach makes a more nuanced and realistic assumption. Specifically, our NoLan posits that each
token possesses a distinct language prior. We further propose a simple yet effective KL-based
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BERT

ViT

A photo of an elephant

Q: Is there a elephant in the image?

LLaVA's vision encoder 

cosine 
similarity

Yes

No

Figure 2: Experimental pipeline to test whether
LLaVA’s vision encoder can detect the presence of an
object in an image.

Table 1: The Vision encoder can robustly
detect object presence in samples. On
the MSCOCO dataset of POPE-random (Li
et al., 2023d), for samples where LLaVA-
1.5 experiences hallucinations, its vision en-
coder can indeed predict object presence
with high accuracy.

Samples on COCO of POPE-Random
where LLaVA experiences hallucinations

Metric Accuracy Precision Recall F1 Score

Score 83.01 83.71 98.33 90.43

method to measure the prior degree of each token. This token-specific and dynamic prior modeling
allows our method to more accurately suppress each token’s language prior, leading to performance
improvements. Thus, our work’s novelty lies in this novel assumption and the development of an
effective mechanism to model it, which fundamentally distinguishes it from prior work.

3 METHOD

3.1 PRELIMINARY EXPERIMENTS

LVLMs generally comprise two core components: a vision encoder to gain visual information and a
language decoder to generate textual responses. This design raises an important question: are these
two components responsible for object hallucinations? In this section, we present a comprehensive
analysis to investigate the contributions of both the vision encoder and the language decoder to these
hallucinations.

Vision Encoder. We aim to investigate whether the vision encoder accurately detects object presence
in the failing cases of object hallucinations. To this end, we design a pipeline as shown in Figure 2.
Specifically, LLaVA comprises a CLIP vision encoder and a LLaMA (Vicuna) language model, but
in this experiment, we use only the CLIP vision encoder. We extract image representation using the
CLIP encoder and evaluate whether the representation includes information about a specific object.
For this, we transform the text query into “A photo of a [object]” and pass it through CLIP’s BERT
encoder to obtain a text representation. We then calculate the cosine similarity between CLIP’s
image and text representations to assess object presence. As shown in Table 1, for samples where
LLaVA-1.5 experiences hallucinations on the MSCOCO dataset of POPE (random) (Li et al., 2023d),
its vision encoder can predict object presence with high accuracy of 83%. These results lead to
our Finding 1: the vision encoder can indeed detect object presence in samples exhibiting object
hallucinations.

Language Question: 
How many dwarfs are there near Snow

White in the image?

LLaVA with only text input: seven

LLaVA with image and text inputs: seven
five six seven eight no the in there

Token Outputs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
ke

n 
Pr

ob
ab

ili
ty

with image and text inputs
with only text input

Figure 3: An illustration of model prediction misdirected by the language priors. Given an image
depicting six dwarfs in front of Snow White, LLaVA-1.5-13b provides the same token “seven”
regardless of whether the image is provided as input or not.
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Table 2: Token probability distribution differ-
ence between multimodal and unimodal inputs.
We split MSCOCO with POPE-random (Li et al.,
2023d) into two subsets according to whether the
answers from LLaVA-1.5-7B (Liu et al., 2024a)
contain hallucinations or not. Here, pm and pu
represent the token probability distributions condi-
tioned on multimodal and unimodal (text-only) in-
puts, respectively. The lower KL Divergence and JS
Divergence values in the hallucination subset indi-
cate greater similarity between the two distributions,
suggesting that language priors heavily influence
the outputs.

Dataset DKL(pm∥pu)DKL(pu∥pm)DJS(pm, pu)
POPEno−hallucination 1.20 0.58 0.28
POPEhallucination 0.46 0.28 0.11

Algorithm 1: NoLan
Input: LVLM θ, textual prompt x, image

v, modulation rate α
Output: Generated string y conditioned

on x and v
Initialization: y0 = BOS, t = 1
while yt ̸= EOS do

lm ← logitθ(y|v, x, y<t)
lu ← logitθ(y|x, y<t)
α← f(lm, lu) ; // f(·) can be
constant or KL-based
l← lm + α(lm − lu)
yt ← Sampling(softmax(l))
t← t+ 1

end

Language Decoder. While vision encoders can accurately detect objects, LVLMs - which combine
vision encoders with LLaMA-like language decoders - still experience hallucinations. We hypothesize
that these hallucinations occur when the output distribution is dominated by language priors embedded
in LLMs, as illustrated in Figure 3. To test this hypothesis, we compare output distributions between
an LVLM processing image-text inputs and its used LLM processing text-only inputs. Specifically,
for LLaVA-1.5-7B (Liu et al., 2024a), we denote:

• pm: Output distribution from LLaVA with image-text inputs.

• pu: Output distribution from LLaVA’s language decoder LLaMA with text-only inputs.

We measure the difference between these distributions using KL Divergence and JS Divergence
metrics. Using the MSCOCO dataset from POPE-random (Li et al., 2023d), we create two subsets
based on whether LLaVA-1.5-7B produces hallucinations in its answers. As shown in Table 2, the
hallucination subset exhibits significantly smaller divergence between Pm and Pu compared to the
no-hallucination subset. This suggests that when hallucinations occur, the model’s outputs are more
heavily influenced by language priors embedded in LLMs. As shown in Table 2, the distribution
difference is prominent in the successful subset, whereas it is minimal in the subset of hallucinated
responses. This result confirms that the linguistic priors inherent in the language decoder play
a significant role in contributing to hallucinations. Indeed, this model’s behavior is not entirely
unexpected, as LLMs are fundamentally designed to predict the next word’s probability based on
extensive textual corpora. When confronted with ambiguous dominant language question stimuli,
LVLMs may default to these text-based predictions as a “safety net". While language priors are
generally beneficial for contextual understanding and efficient inference, they can introduce biases
or assumptions that conflict with the actual visual content. These results lead to our Finding 2: The
output distribution of an LVLM is more dominated by its underlying LLM’s priors when object
hallucinations occur.

3.2 NO-LANGUAGE-HALLUCINATION DECODING

While it is commonly believed that hallucinations arise from weak visual signals in the vision
module (Guan et al., 2024; Rohrbach et al., 2018; Wang et al., 2023b), our above findings indicate that
object hallucinations are primarily driven by language priors. Therefore, in this section, we propose
a very simple framework named No-Language-Hallucination Decoding (NoLan), to overcome the
influence of language priors on object hallucinations.

Specifically, consider an LVLM parameterized by θ, with visual inputs v and textual inputs x. The
output y is generated auto-regressively from a probability distribution conditioned on both v and x,
expressed as:

lm = logitθ (yt | v, x, y<t) ,

yt ∼ softmax(lm), subject to yt ∈ V,
(1)

where yt represents the token at time step t, y<t denotes the sequence of tokens generated up to time
(t− 1), and V stands for the vocabulary dictionary.
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To obtain the language priors, we feed text only into the model and compute its logits:

lu = logitθ (yt | x, y<t) (2)

Unlike (Leng et al., 2024), the computation of language priors does not rely on distorted visual inputs.

After obtaining regular multimodal logits lm and language priors lu, the next step is to design the
modulation values on output distribution. Inspired by the contrastive decoding in text (Liu et al.,
2021; Li et al., 2022b; O’Brien & Lewis, 2023; Shi et al., 2023) and multimodal (Leng et al., 2024;
Favero et al., 2024) generation, we compute the difference between lm and lu as modulation logits:

l∆ = α× (lm − lu), (3)

where α is a modulation rate that controls the influence of the modulation distribution. Thus, the
output probability distribution modulated by l∆ can be expressed as:

pnolan (y | v, x) = softmax [lm + l∆]

= softmax [logitθ (y | v, x, y<t)

+α(logitθ (y | v, x, y<t)− logitθ (y | x, y<t))] ,

(4)

with α = 0 corresponding to standard decoding. Using the adjusted output distribution pnolan, various
sampling methods, such as top-p sampling (Holtzman et al., 2019) and beam search (Freitag &
Al-Onaizan, 2017), can be applied to generate outputs,

yt ∼ pnolan, subject to yt ∈ V. (5)

Building on this structure, we propose two versions of NoLan, NoLan-Base and NoLan-Plus, based
on the different formulations of modulation term:

NoLan-Base: In this version, α is treated as a fixed hyperparameter, set to 1 by default. Surprisingly,
this simple choice already demonstrates impressive performance in our experiments. Then the
Equation 4 becomes:

yt ∼ softmax [2× logitθ (yt | v, x, y<t)

− logitθ (yt | x, y<t)] ,

subject to yt ∈ V,
(6)

NoLan-Plus: Motivated by Finding 2, as shown in Table 2, which highlights that smaller differences
between lm and lu are associated with a higher likelihood of hallucinations. To leverage this
association, we introduce a self-adjusting mechanism derived from the symmetric KL-divergence,
which is expressed as:

γ =
(DKL(lm∥lu) +DKL(lu∥lm))

2
, (7)

α = β ×
(
tanh

(
1

γ

)
+ 1

)
. (8)

The symmetric KL divergence is first inverted and then passed through a tanh function to constrain
its range. An additive shift of 1 is subsequently applied to ensure the resulting value lies within the
positive domain. To further refine the value range, we introduce a scaling factor β, which we set
to 0.8 based on our ablation experiments in the appendix. This mechanism automatically adjusts
the modulation term, effectively suppressing the LLM’s priors and enhancing its performance. We
refer to this improved version as NoLan-Plus, distinguishing it from the simpler NoLan-Base. A
comprehensive theoretical reasoning of this dynamic weighting method can be found in Appendix A.1.

In summary, the NoLan framework introduces two variants: NoLan-Base and NoLan-Plus. Unlike
NoLan-Base, which remains static modulation rate throughout generation, NoLan-Plus dynamically
adapts to the output distribution, improving both flexibility and effectiveness. We also show the
NoLan framework in algorithm 1.

4 EXPERIMENTS

In this section, we evaluate NoLan across different LVLMs and tasks to demonstrate its effectiveness.
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4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS & EVALUATION METRICS

POPE. The Polling-based Object Probing Evaluation (Li et al., 2023d) (POPE), introduces an efficient
method to evaluate object hallucinations. In this benchmark, LVLMs are asked to determine whether
a specific object exists in a given image. The POPE benchmark compiles data from three different
sources: MSCOCO (Lin et al., 2014), A-OKVQA (Schwenk et al., 2022), and GQA (Hudson &
Manning, 2019). The evaluation focuses on four primary metrics: Accuracy, Precision, Recall, and
the F1 score.

MME. It acts as a comprehensive benchmark for evaluating LVLMs across multiple dimensions (Fu
et al., 2023), which encompasses ten subtasks related to perception and four focused on cognition,
offering a holistic assessment of multimodal model capabilities. To evaluate hallucinations precisely,
we use targeted subsets: existence and count for object-level, and position and color for attribute-level
hallucinations. Performance is measured via the composite metric of accuracy and accuracy+ as
defined in the official implementation.1

LLaVA-Bench.2 This dataset is highly diverse, featuring 24 images paired with 60 questions. It
encompasses a wide range of scenarios, including indoor and outdoor scenes, memes, paintings, and
sketches, making it an excellent resource for evaluating the capability of LVLMs to handle complex
tasks and adapt to diverse domains.

Other datasets. Our evaluation also includes benchmarks such as MM-Vet (Yu et al., 2023),
MMHal-Bench (Sun et al., 2023), and HallusionBench (Guan et al., 2024), which are detailed in
Appendix A.6.

4.1.2 LVLM BASELINES

We evaluate the performance of NoLan across three state-of-the-art LVLMs. To ensure a fair and
consistent comparison, our experimental setup aligns with VCD (Leng et al., 2024). Specifically, we
integrate NoLan with LLaVA-1.5 (Liu et al., 2024a) and InstructBLIP, both of which use Vicuna 7B
as their language decoder (Liu et al., 2023d; Dai et al., 2023), as well as Qwen-VL, which is built on
the Qwen 7B backbone (Bai et al., 2023b). More LVLM baselines can be found in Appendix A.4,
and the Qwen-VL series is detailed in Appendix A.8.

4.2 DECODING BASELINES

One of the decoding methods we compared is direct sampling from the output probability distribution
of LVLMs using regular image and text inputs, which we denote as “Regular". A notable training-free
method is VCD (Leng et al., 2024), which generates outputs by contrasting distributions from clear
and distorted images. Other notable approaches include M3ID (Favero et al., 2024) and VDD (Zhang
et al., 2024), which enhance the influence of the reference image while reducing the dominance of
language priors. Further contrastive decoding baselines and other attention-based approaches are
detailed in appendix A.5 and A.7, respectively.

4.3 EXPERIMENTAL RESULTS

Results on POPE. Table 3 summarizes the experimental results for POPE under random, popular,
and adversarial sampling conditions. A notable highlight is the strong performance of our proposed
NoLan approach. NoLan consistently outperforms regular decoding baseline in every evaluated
scenario and achieves improvements of up to 8.38 in accuracy and 8.77 in F1 scores across all tested
LVLMs. Furthermore, NoLan-Base demonstrates superior performance over VCD (Leng et al., 2024),
with improvements of up to 4.56 in accuracy and 2.9 in F1 scores, outperforming VCD in 77.8% of the
evaluated cases. NoLan-Plus amplifies this advantage, achieving gains of up to 5.14 in accuracy and

1https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/
tree/Evaluation

2https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
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Table 3: Results on POPE (Li et al., 2023d). Regular decoding denotes direct sampling, VCD (Leng
et al., 2024) indicates sampling from visual contrastive distribution, while methods prefixed with
NoLan refers to sampling from our proposed contrastive distribution pnolan. The best performances
within each setting are bolded. The mean and the standard deviation over 5 runs of POPE.

Dataset Model Decoding Random Popular Adversarial
Accuracy↑ F1 Score↑ Accuracy↑ F1 Score↑ Accuracy↑ F1 Score↑

GQA

LLaVA1.5

Regular 83.73(±0.27) 82.95(±0.28) 78.17(±0.17) 78.37(±0.18) 75.08(±0.33) 76.06(±0.24)

VCD 86.65(±0.45) 86.99(±0.41) 80.73(±0.47) 82.24(±0.35) 76.09(±0.43) 78.78(±0.36)

NoLan-Base (Ours) 88.35(±0.16) 87.68(±0.17) 84.13(±0.30) 83.94(±0.26) 80.65(±0.19) 81.08(±0.21)

NoLan-Plus (Ours) 88.53(±0.10) 87.84(±0.12) 84.62(±0.33) 84.35(±0.21) 81.23(±0.17) 81.56(±0.19)

Qwen-VL

Regular 80.97(±0.32) 79.01(±0.40) 75.99(±0.33) 74.84(±0.34) 75.46(±0.63) 74.33(±0.71)

VCD 85.59(±0.38) 85.33(±0.38) 81.83(±0.27) 82.23(±0.22) 80.01(±0.27) 80.75(±0.27)

NoLan-Base (Ours) 86.55(±0.22) 86.13(±0.31) 82.37(±0.22) 82.61(±0.19) 80.23(±0.28) 80.85(±0.26)

NoLan-Plus (Ours) 87.27(±0.22) 87.04(±0.17) 83.20(±0.24) 83.61(±0.15) 80.25(±0.31) 81.06(±0.17)

InstructBLIP

Regular 79.65(±0.24) 80.56(±0.18) 73.87(±0.58) 76.42(±0.52) 70.56(±0.53) 74.12(±0.58)

VCD 83.69(±0.11) 84.16(±0.01) 78.57(±0.14) 80.17(±0.16) 75.08(±0.13) 77.53(±0.08)

NoLan-Base (Ours) 85.62(±0.28) 85.02(±0.18) 79.61(±0.22) 80.00(±0.21) 77.00(±0.15) 77.97(±0.13)

NoLan-Plus (Ours) 86.15(±0.11) 85.27(±0.19) 81.12(±0.21) 80.99(±0.17) 78.13(±0.12) 78.43(±0.10)

A-OKVQA

LLaVA1.5

Regular 83.45(±0.48) 82.56(±0.50) 79.90(±0.33) 79.59(±0.37) 74.04(±0.34) 75.15(±0.23)

VCD 86.15(±0.23) 86.34(±0.21) 81.85(±0.44) 82.82(±0.36) 74.97(±0.39) 77.73(±0.29)

NoLan-Base (Ours) 87.83(±0.16) 87.21(±0.19) 85.41(±0.42) 85.00(±0.42) 79.21(±0.20) 79.90(±0.17)

NoLan-Plus (Ours) 88.04(±0.14) 87.32(±0.14) 85.85(±0.20) 85.36(±0.19) 79.61(±0.17) 80.19(±0.16)

Qwen-VL

Regular 86.67(±0.48) 85.59(±0.53) 85.56(±0.35) 84.63(±0.42) 79.57(±0.31) 79.50(±0.38)

VCD 89.22(±0.14) 89.01(±0.16) 87.85(±0.30) 87.81(±0.31) 81.27(±0.09) 82.38(±0.10)

NoLan-Base (Ours) 89.17(±0.28) 88.80(±0.33) 87.42(±0.29) 87.10(±0.28) 81.10(±0.21) 81.91(±0.27)

NoLan-Plus (Ours) 89.40(±0.20) 89.02(±0.13) 88.00(±0.16) 87.83(±0.24) 81.20(±0.19) 82.06(±0.15)

InstructBLIP

Regular 80.91(±0.34) 81.86(±0.32) 76.19(±0.80) 78.17(±0.73) 70.71(±0.76) 75.56(±0.57)

VCD 84.11(±0.27) 84.56(±0.28) 79.78(±0.47) 81.15(±0.42) 74.33(±0.67) 77.19(±0.47)

NoLan-Base (Ours) 87.87(±0.37) 87.46(±0.32) 83.60(±0.43) 83.76(±0.31) 77.33(±0.45) 78.79(±0.47)

NoLan-Plus (Ours) 88.20(±0.33) 87.55(±0.21) 84.57(±0.42) 84.32(±0.36) 78.43(±0.22) 79.24(±0.27)

MSCOCO

LLaVA1.5

Regular 83.29(±0.35) 81.33(±0.41) 81.88(±0.48) 80.06(±0.05) 78.96(±0.52) 77.57(±0.57)

VCD 87.73(±0.40) 87.16(±0.41) 85.38(±0.38) 85.06(±0.37) 80.88(±0.33) 81.13(±0.34)

NoLan-Base (Ours) 86.73(±0.15) 85.15(±0.20) 85.63(±0.17) 84.12(±0.21) 83.22(±0.17) 81.93(±0.22)

NoLan-Plus (Ours) 87.11(±0.13) 86.60(±0.16) 85.81(±0.13) 85.17(±0.17) 83.83(±0.17) 82.58(±0.16)

Qwen-VL

Regular 84.73(±0.36) 82.67(±0.41) 84.13(±0.18) 82.06(±0.23) 82.26(±0.30) 80.37(±0.37)

VCD 88.63(±0.10) 87.81(±0.11) 87.12(±0.07) 86.40(±0.09) 84.26(±0.39) 83.90(±0.39)

NoLan-Base (Ours) 88.30(±0.19) 87.22(±0.21) 86.83(±0.27) 85.70(±0.25) 84.91(±0.31) 84.01(±0.33)

NoLan-Plus (Ours) 88.10(±0.11) 87.00(±0.10) 87.43(±0.29) 86.43(±0.22) 84.93(±0.18) 84.07(±0.17)

InstructBLIP

Regular 80.71(±0.73) 80.41(±0.80) 78.22(±0.84) 78.36(±0.76) 75.84(±0.45) 76.59(±0.40)

VCD 84.53(±0.38) 83.68(±0.40) 81.47(±0.42) 81.07(±0.39) 79.56(±0.41) 79.52(±0.38)

NoLan-Base (Ours) 86.07(±0.41) 84.45(±0.36) 83.97(±0.33) 82.43(±0.28) 81.97(±0.48) 80.75(±0.44)

NoLan-Plus (Ours) 85.67(±0.33) 83.81(±0.31) 84.00(±0.26) 82.49(±0.30) 82.37(±0.19) 80.81(±0.23)

Table 4: Results of accuracy on MSCOCO of
POPE using the setting in M3ID (Favero et al.,
2024). We follow M3ID using its template: “Is
a ⟨object⟩ present in the image?” for a fair com-
parison.

MSCOCO of POPE
Decoding Random ↑ Popular ↑ Adversarial ↑ All ↑

LLaVA-1.5-7B
Regular 74.8 61.8 58.1 64.9
M3ID 76.0 69.3 65.8 70.3
NoLan-Base (Ours) 87.8 86.3 82.7 85.6
NoLan-Plus (Ours) 88.8 87.5 83.7 86.7

LLaVA-1.5-13B
Regular 67.9 63.8 59.8 63.8
M3ID 84.3 77.0 71.3 77.5
NoLan-Base (Ours) 88.0 86.8 84.0 86.3
NoLan-Plus (Ours) 89.2 88.3 85.2 87.6

Table 5: Results of accuracy on MSCOCO of
POPE using the setting in VDD (Zhang et al.,
2024). We follow the decoding format and eval-
uation settings in VDD to ensure a fair compari-
son.

MSCOCO of POPE
Decoding Random ↑ Popular ↑ Adversarial ↑ All ↑

LLaVA-1.5-7B
Regular 83.29 81.88 78.96 81.37
VDD 87.07 85.87 83.52 85.49
NoLan-Base (Ours) 86.50 85.13 83.00 84.89
NoLan-Plus (Ours) 87.10 85.83 83.63 85.52

LLaVA-1.5-13B
Regular 83.31 82.47 80.00 81.92
VDD 86.88 86.08 84.34 85.77
NoLan-Base (Ours) 87.37 86.23 83.87 85.82
NoLan-Plus (Ours) 88.70 87.40 84.90 87.00

3.17 in F1 scores, surpassing VCD in 88.9% of the experiments. With the template in M3ID (Favero
et al., 2024), NoLan significantly suppresses M3ID in accuracy, achieving improvements of up to
18.2 and 13.9, with an average increase of 16.4 and 10.1 on the 7B and 13B models, respectively.
Additionally, to ensure a fair comparison, when using the same settings as VDD (Zhang et al., 2024),
NoLan-Plus still outperforms VDD on both the 7B and 13B models. This underscores NoLan’s
effectiveness in mitigating object hallucinations in LVLMs, emphasizing that object hallucinations
are predominantly driven by language priors in language models. By weakening these priors at a
more fine-grained level, the model’s performance can be significantly improved.

Results on MME hallucination subset. The evaluation on the MME subset extends beyond
POPE by addressing both object-level and attribute-level hallucinations. As presented in Table 6,
the implementation of NoLan consistently improves performance across all models in resolving
attribute-level hallucinations. Notably, NoLan-Plus outperforms both the regular baseline, VCD
and VDD on the majority of subsets, further underscoring its effectiveness. In terms of object-
level hallucinations, both variants of NoLan show a clear positive impact on the Existence metric,
significantly enhancing overall performance. These improvements emphasize NoLan’s strength in
mitigating object hallucinations across diverse scenarios.

Case study on LLaVA-Bench. Figure 4 illustrates two case studies that demonstrate the effectiveness
of NoLan-Plus in mitigating object hallucinations. In the cases presented, objects like “suitcase"
and “truck" which are commonly associated with the ground truth object “taxi", erroneously appear
as hallucinations in the generated output. In contrast, the application of NoLan-Plus significantly
reduces these hallucinations while preserving the consistency and richness of the generated text.
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Table 6: Results on the hallucination subset of MME (Fu et al., 2023). Regular decoding denotes
direct sampling, VCD (Leng et al., 2024) indicates sampling from visual contrastive distribution,
and VDD (Zhang et al., 2024) expresses visual debias decoding. In contrast, methods prefixed with
NoLan refer to sampling from our proposed contrastive distribution pnolan. The best performances
within each setting are bolded.

Model Decoding Object-level Attribute-level Total Scores↑Existence↑ Count↑ Position↑ Color↑

LLaVA1.5

Regular 175.67 124.67 114.00 151.00 565.33
VCD 184.66 138.33 128.67 153.00 604.66
VDD 190.00 143.30 145.00 165.00 643.29
NoLan-Base (Ours) 190.00 145.00 138.33 155.00 628.33
NoLan-Plus (Ours) 190.00 151.67 143.33 175.00 660.00

Qwen-VL

Regular 155.00 127.67 131.67 173.00 587.33
VCD 156.00 131.00 128.00 181.67 596.67
VDD 165.00 145.00 148.30 190.00 643.29
NoLan-Base (Ours) 160.00 135.00 133.33 190.00 618.33
NoLan-Plus (Ours) 185.00 145.00 138.33 180.00 648.33

InstructBLIP

Regular 141.00 75.33 66.67 97.33 380.33
VCD 168.33 92.33 64.00 123.00 447.67
NoLan-Base (Ours) 175.00 61.67 68.33 118.33 423.33
NoLan-Plus (Ours) 180.00 65.00 76.67 138.33 460.00

Language Question: Can you explain this meme in detail?

NoLan-Plus Decoding: The scene presents pieces of fried chicken shaped into continents spread
out on a baking tray. These breaded cuts represent various parts of the Earth, showcasing a
creative design. There are multiple pieces of chicken visible on the pan, covering almost the entire
cooking area. A few chicken pieces are placed in different positions, with some at the bottom, and
others at the top and center of the image. Overall, the image is visually appealing, featuring the
unique presentation of these delicious fried items.

Regular Decoding:  This meme features chicken legs prepared and
ready to be eaten, meticulously shaped into the form of various
continents. The chicken legs are placed on a metal tray on a regally
appointed table, giving an interesting twist to a real-life image by turning
the food into an artistic piece. The catchy phrase accompanying the
image alludes to the versatility of the chicken legs, making them suitable
for consumption by different people on our planet.

NoLan-Plus Decoding: In busy traffic, a man iron clothes right at the rear of a yellow SUV taxi car.
He hangs blue clothes onto a shelf attached to his vehicle as the car continues to move. Other
vehicles can be seen alongside the yellow taxi, including taxis and a cab company's car parked at
the side of the street. Flags can also be seen in the background. The man on the ironing machine
creates a unique sight for the people around, attracting attention as the taxi car navigates through
the city streets.

Language Question: Can you explain this meme in detail?

Regular Decoding: The image shows a man standing on an adjustable
iron or metal table, which is quickly stabilized by a suitcase attached to
the hood of an oncoming yellow taxi cab. The man appears to be in the
process of ironing clothes or adjusting the table to provide him with a
stable footing to do so. Nearby, other vehicles can be seen including a
couple of cars and a truck. A suitcase is also visible, likely belonging to
the man, possibly indicating that he is a traveler fitting his belongings to
use the mass transit vehicles more efficiently.

Figure 4: Illustration of hallucination mitigation by our proposed NoLan-Plus with two samples from
LLaVA-Bench. Hallucinated objects from LVLM’s regular decoding are highlighted in red.

This showcases NoLan-Plus’s ability to produce outputs that are more aligned with the visual input
without sacrificing informativeness. Due to space constraints, additional case studies are included in
Appendix A.11 for further reference.

5 CONCLUSION AND DISCUSSION

In this paper, we tackle the critical challenge of object hallucinations in LVLMs. We begin by
analyzing the roles of the vision encoder and language decoder in contributing to these hallucinations.
Our experiments reveal that in hallucination cases, vision encoders effectively detect objects; however,
the output distribution is heavily influenced by the priors of the language decoder. Based on
this insight, we propose No-Language-Hallucination Decoding (NoLan), a simple, training-free
framework to overcome language priors. It leverages contrastive distributions from multimodal and
text-only inputs, to refine the model’s outputs, without relying on external tools. This structure
introduces two method variants: NoLan-Base and NoLan-Plus. While NoLan-Base maintains
a constant configuration throughout generation, NoLan-Plus dynamically adjusts to the output
distribution, offering greater flexibility and improved effectiveness. NoLan operates during inference
and can be seamlessly integrated with any pre-trained autoregressive LVLMs. This design makes
NoLan a cost-effective and flexible solution for improving vision-language grounding. Extensive
experiments conducted across diverse benchmarks and architectures of LVLMs validate NoLan’s
effectiveness in mitigating object hallucinations.

Limitation and future work. One limitation of NoLan is its need for two forward passes during
inference, although the second pass is more resource-efficient than that of VCD and VDD. To reduce
the inference time, an alternative approach could involve processing two sets of batched queries
concurrently, with one set containing masked visual tokens. Additionally, our study focuses solely on
LVLMs designed for image and text processing. Expanding the NoLan framework to support a wider
range of LVLMs represents a promising direction for future development.
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A APPENDIX

A.1 THEORETICAL PROOF OF NOLAN-PLUS

The core mechanism of NoLan-Plus is a dynamic weighting method that uses KL divergence to
measure the difference between multimodal and text-only output distributions. In addition to the
empirical justification and experimental research for using KL divergence, we conduct the following
theoretical analysis.

Definition of Visual Object Hallucination.

Visual Object Hallucination is defined as the case where the model’s response y is almost independent
of the visual input v given a textual prompt x. Formally, this dependency is quantified using the
conditional mutual information:

I(y; v | x). (9)

A lower mutual information implies stronger hallucination. As an extreme case, if y and v are
independent, then the response is generated without reference to the visual input, and

I(y; v | x) = 0. (10)

Connecting Conditional Mutual Information to KL Divergence.

For a fixed prompt x, define

pm(y) = Pθ(y | v, x), pu(y) = Pθ(y | x), (11)

where pm is the output distribution conditioned on both image and text, and pu is conditioned on text
only.

By the standard identity between conditional mutual information and KL divergence, we have:

I(y; v | x) = Ev|x

[
DKL

(
pm ∥ pu

)]
. (12)

Proof. Starting from the definition of conditional mutual information:

I(y; v | x) = Ev,y|x

[
log

P (y, v | x)
P (y | x)P (v | x)

]
(13)

= Ev,y|x

[
log

P (y | v, x)
P (y | x)

]
(14)

= Ev|x

[∑
y

P (y | v, x) log P (y | v, x)
P (y | x)

]
(15)

= Ev|x
[
DKL

(
P (Y | v, x) ∥P (Y | x)

)]
(16)

= Ev|x
[
DKL

(
pm ∥ pu

)]
. (17)

Thus, a lower KL divergence DKL(pm ∥ pu) indicates a lower mutual information between the visual
input and the response, leading to stronger hallucination.

A.2 UNCERTAINTY ANALYSIS AND LANGUAGE PRIOR SUPPRESSION

A core motivation of our approach is to mitigate the influence of language priors in vision-language
models. To this end, we adopt a contrastive decoding strategy that reshapes the output distribution
without additional training. While this training-free formulation effectively suppresses dominant
linguistic priors, it may also introduce instability into the decoding process: by altering token
probabilities post hoc, it can distort the relative ranking of non-target tokens and occasionally amplify
spurious modes in the distribution.
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Table 7: Entropy-based uncertainty evaluation across four benchmarks: POPE, MME, MM-Vet, and
LLaVA-Bench. Results indicate that NoLan achieves the lowest uncertainty in all settings.

Decoding POPE ↓ MME ↓ MM-Vet ↓ LLaVA-Bench ↓
Regular 0.6484 2.9863 1.5889 4.1875
Text-only 0.6948 3.7051 2.0020 3.5508
VCD 0.4646 0.8632 0.6854 2.1153
NoLan-Base 0.4692 0.9106 0.6040 0.8188
NoLan-Plus 0.3786 0.7439 0.4423 0.7931

To evaluate these effects more explicitly, we analyze the LLaVA-1.5’s predictive uncertainty using
entropy over output distributions. Lower entropy indicates greater confidence and better calibration.

As shown in Table 7, we report entropy across four diverse benchmarks: POPE, MME, MM-Vet, and
LLaVA-Bench. Compared to regular decoding and the text-only baseline, both NoLan variants yield
substantially lower entropy in all settings. In particular, NoLan-Plus achieves the lowest uncertainty,
suggesting that our method not only suppresses linguistic bias but also maintains overall distributional
stability in most cases.

A.3 CORRELATION STUDY BETWEEN HALLUCINATION AND TOKEN POSITION

Table 8: Token-wise KL values indicating hallucination.

Token Pos 0 1 2 3 4 5 6 7 8 9 10 11 12

KL Value 1.36 0.53 0.97 0.50 0.57 0.76 0.63 0.66 0.47 0.46 0.36 0.42 0.42

Recent studies have highlighted that the position of a generated token within a sequence can be a
significant factor in the emergence of model hallucinations. For instance, M3ID (Favero et al., 2024),
demonstrated that as a model generates more tokens, its reliance on the initial visual prompt decreases,
leading to an increase in hallucinations. Based on this finding, we conducted a study to quantitatively
measure this correlation between token positions and the degree of hallucination. Specifically, we
used LLaVA-1.5 7B to evaluate performance across the entire LLaVA-Bench. Following the method
in our preliminary experiments, we calculated the mean KL divergence across all samples at each
token position to estimate the likelihood of hallucination. Here, token position refers to the index
assigned to each generated token after the model receives the input image and text. The first generated
token is assigned position 0, and subsequent tokens are indexed sequentially based on their order
in the output sequence. The results are shown in Table 8. The observation is generally in line with
the findings of M3ID. Overall, the experimental results show that the farther a token is from the
beginning of the sequence, the more similar the distributions of the two forward passes become, and
the greater the likelihood of hallucination. However, some samples deviate from this trend, possibly
because the output tokens are not strictly object-related but also include many non-object terms. As a
result, the values do not consistently vary with token position.

A.4 ABLATION STUDY

We use the same LVLM baselines for ablation studies.

Modulation rate. The parameter α governs the amplification of the modulation distribution generated
from multimodal and unimodal inputs, as defined in Equation 3. We adjust α to examine its impact
on NoLan-Base and identify the optimal value for performance. As shown in Table 9, α = 1 yields the
best or second-best performance, so we set it as the default. Similarly, the parameter β in NoLan-Plus,
which controls the boundary of the auto-adjusting modulation rate, achieves optimal or suboptimal
results at β = 0.8, as demonstrated in Table 10, making it our default setting.

Logit components. The logits in NoLan consist of regular multimodal logits lm , derived from image
and text inputs, and unimodal logits lu , derived from text-only inputs. As shown in Table 11, using
only lm or lu results in a significant performance drop, highlighting the critical role of each logit
component in NoLan and the effectiveness of its utilization mechanism. This finding further supports
our hypothesis that object hallucinations predominantly originate from linguistic priors.
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Table 9: Sensitivity to modulation rate α. In NoLan-Base, α is manually set to regulate the influence
of the modulation distribution, defined in Equation 3. When α = 0, NoLan-Base reverts to standard
decoding.

POPE MME MM-Vet
α Model Accuracy ↑ Precision Recall F1 Score ↑ MME-Hallu ↑ Existence ↑ Count ↑ Position ↑ Color ↑ total ↑
0.0 LLaVA-1.5-7B 83.29 92.13 72.80 81.33 565.33 175.67 124.67 114.00 151.00 31.1
1.0 LLaVA-1.5-7B 86.50 96.68 75.60 84.85 628.33 190.00 145.00 138.33 155.00 33.0
2.0 LLaVA-1.5-7B 86.27 96.66 75.13 84.55 620.00 190.00 143.33 138.33 148.33 32.5
3.0 LLaVA-1.5-7B 85.97 96.63 74.53 84.16 588.33 180.00 138.33 121.67 148.33 31.8
0.0 LLaVA-1.5-13B 84.35 93.22 74.04 82.60 616.67 185.00 136.67 131.67 163.33 36.1
1.0 LLaVA-1.5-13B 87.37 95.61 78.33 86.11 636.67 190.00 165.00 128.33 153.33 37.6
2.0 LLaVA-1.5-13B 87.23 97.03 76.56 85.62 620.00 190.00 145.00 138.33 155.00 36.8
3.0 LLaVA-1.5-13B 87.12 96.94 75.91 85.33 631.67 190.00 150.00 133.33 158.33 36.7
0.0 Qwen-VL 84.73 95.61 72.81 82.67 587.33 155.00 127.67 131.67 173.00 33.7
1.0 Qwen-VL 88.30 96.07 79.87 87.22 618.33 160.00 135.00 133.33 190.00 34.5
2.0 Qwen-VL 87.93 95.02 80.07 86.90 613.33 165.00 135.00 133.33 180.00 34.7
3.0 Qwen-VL 87.87 94.72 80.20 86.86 613.33 170.00 135.00 133.33 175.00 34.0
0.0 InstructBLIP-7B 80.71 81.67 79.19 80.41 380.33 141.00 75.33 66.67 97.33 25.2
1.0 InstructBLIP-7B 85.57 96.76 73.60 83.60 423.33 175.00 61.67 68.33 118.33 25.7
2.0 InstructBLIP-7B 84.20 97.32 70.33 81.66 413.33 180.00 50.00 58.33 125.00 25.4
3.0 InstructBLIP-7B 83.73 98.01 68.87 80.89 406.67 165.00 55.00 63.33 123.33 25.5
0.0 InstructBLIP-13B 81.92 83.13 80.44 81.75 440.00 160.00 60.00 66.67 153.33 21.2
1.0 InstructBLIP-13B 86.70 97.21 75.49 84.80 465.00 180.00 65.00 76.67 143.33 25.4
2.0 InstructBLIP-13B 85.43 97.72 72.15 83.03 460.00 180.00 60.00 76.67 143.33 25.5
3.0 InstructBLIP-13B 84.81 98.25 70.90 82.20 450.00 180.00 60.00 66.67 143.33 25.5

Table 10: Sensitivity to modulation rate β. In NoLan-Plus, β is manually set to regulate the
influence of the modulation distribution, defined in Equation 8. When β = 0, NoLan-Plus reverts to
standard decoding.

POPE MME MM-Vet ↑
β Model Accuracy ↑ Precision Recall F1 Score ↑ MME-Hallu ↑ Existence ↑ Count ↑ Position ↑ Color ↑ total ↑

0.0 LLaVA-1.5-7B 83.29 92.13 72.80 81.33 565.33 175.67 124.67 114.00 151.00 31.1
0.2 LLaVA-1.5-7B 86.37 96.66 75.33 84.68 588.33 180.00 138.33 121.67 148.33 30.5
0.4 LLaVA-1.5-7B 86.33 96.58 75.33 84.64 626.67 190.00 155.00 128.33 153.33 32.8
0.6 LLaVA-1.5-7B 86.60 96.76 75.73 84.97 645.00 190.00 143.33 143.33 168.33 32.5
0.8 LLaVA-1.5-7B 87.00 97.27 76.13 85.42 660.00 190.00 151.67 143.33 175.00 33.3
1.0 LLaVA-1.5-7B 86.83 97.10 75.93 85.22 631.67 190.00 150.00 133.33 158.33 32.7
0.0 LLaVA-1.5-13B 83.31 91.46 73.48 81.49 616.67 185.00 136.67 131.67 163.33 36.1
0.2 LLaVA-1.5-13B 85.60 93.84 76.20 84.11 620.00 190.00 143.33 138.33 148.33 36.8
0.4 LLaVA-1.5-13B 86.30 97.14 74.80 84.52 646.67 190.00 145.00 138.33 173.33 36.5
0.6 LLaVA-1.5-13B 87.03 97.28 76.20 85.46 630.00 190.00 148.33 133.33 158.33 36.7
0.8 LLaVA-1.5-13B 88.70 96.03 80.73 87.72 656.67 190.00 145.00 143.33 178.33 38.3
1.0 LLaVA-1.5-13B 86.97 97.11 76.20 85.39 646.67 190.00 145.00 138.33 173.33 35.8
0.0 Qwen-VL 84.73 95.61 72.81 82.67 587.33 155.00 127.67 131.67 173.00 33.7
0.2 Qwen-VL 85.03 89.54 79.33 84.13 626.67 170.00 138.33 138.33 180.00 34.0
0.4 Qwen-VL 87.13 94.07 79.27 86.03 613.33 165.00 135.00 133.33 180.00 34.3
0.6 Qwen-VL 87.90 95.81 79.27 86.76 618.33 170.00 135.00 138.33 175.00 33.6
0.8 Qwen-VL 88.10 95.83 79.67 87.00 648.33 185.00 145.00 138.33 180.00 35.2
1.0 Qwen-VL 87.73 96.32 78.47 86.48 628.33 185.00 135.00 133.33 175.00 34.8
0.0 InstructBLIP-7B 80.71 81.67 79.19 80.41 380.33 141.00 75.33 66.67 97.33 25.2
0.2 InstructBLIP-7B 83.53 87.04 78.80 82.72 408.33 175.00 50.00 58.33 125.00 24.5
0.4 InstructBLIP-7B 83.73 92.03 73.87 81.95 413.33 180.00 50.00 58.33 125.00 25.0
0.6 InstructBLIP-7B 85.80 91.63 78.80 84.73 396.67 170.00 50.00 58.33 118.33 25.5
0.8 InstructBLIP-7B 85.67 96.28 74.20 83.81 460.00 180.00 65.00 76.67 138.33 27.0
1.0 InstructBLIP-7B 85.57 96.43 73.87 83.65 406.67 165.00 55.00 63.33 123.33 27.3
0.0 InstructBLIP-13B 82.36 86.93 76.19 81.20 440.00 160.00 60.00 66.67 153.33 21.2
0.2 InstructBLIP-13B 83.43 92.11 73.13 81.53 441.67 180.00 60.00 58.33 143.33 24.3
0.4 InstructBLIP-13B 85.13 96.72 72.73 83.03 440.00 178.33 66.67 60.00 135.00 26.1
0.6 InstructBLIP-13B 88.07 93.92 81.40 87.21 488.33 180.00 88.33 76.67 143.33 25.8
0.8 InstructBLIP-13B 88.90 94.92 82.20 88.10 503.33 180.00 88.33 91.67 143.33 26.7
1.0 InstructBLIP-13B 85.57 88.24 82.07 85.04 436.67 180.00 60.00 53.33 143.33 25.5

LVLMs’ model size. Our evaluation extends to the larger 13B variants of the LLaVA-1.5 (Liu
et al., 2024a) and InstructBLIP (Dai et al., 2023), examining the scalability of our proposed NoLan
across different LVLM sizes and architectures. Table 12 illustrates that the 7B and 13B variants of
LLaVA-1.5 and InstructBLIP deliver comparable performances across POPE settings (e.g., F1 scores
of 78.36 and 78.35 for InstructBLIP 7B and 13B in the Popular setting), indicating that increasing
model parameters alone does not inherently resolve hallucination issues. Notably, NoLan uniformly
exceeds the regular method in every evaluated case. Its improvements are particularly pronounced
with larger models. These results highlight NoLan’s effectiveness and robustness across varying
model scales and architectures.

Variations of NoLan-Plus. We incorporate the tanh function into the Kullback-Leibler Divergence-
based function of NoLan-Plus, as defined in Equation 8. Given the similar mathematical properties of
the sigmoid and tanh functions, we conduct an in-depth analysis of both to evaluate their efficiency
and generalization potential. As illustrated in Table 13, tanh consistently outperforms sigmoid
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Table 11: Ablation studies for components of decoding logits and model sizes. For LLaVA-1.5 on
MSCOCO of POPE-random, the performance drops significantly with only multimodal or text-only
logits. Additionally, the performance gap between NoLan and other decoding methods increases as
the model size grows.

Decoding MSCOCO of POPE-random
logits Accuracy ↑ Precision Recall F1 Score ↑

LLaVA-1.5-7B

lm + α(lm − lu)
NoLan-Plus 87.00 97.27 76.13 85.42
NoLan-Base 86.50 96.68 75.60 84.85

lm multimodal 83.29 92.13 72.80 81.33
lu text-only 47.57 47.45 45.33 46.37

LLaVA-1.5-13B

lm + α(lm − lu)
NoLan-Plus 88.70 96.03 80.73 87.72
NoLan-Base 87.37 95.61 78.33 86.11

lm multimodal 83.31 91.46 73.48 81.49
lu text-only 49.43 49.13 32.00 38.76

Table 12: Ablation study for LVLMs’ model sizes on MSCOCO of POPE. Scaling up LVLM
model sizes does not significantly mitigate object hallucinations. In contrast, NoLan consistently
enhances model performance.

Dataset POPE Model Decoding Accuracy ↑ Precision Recall F1 Score ↑

MSCOCO

Random

LLaVA1.5-7B
Regular 83.29 92.13 72.80 81.33
NoLan-Base 86.50 96.68 75.60 84.85
NoLan-Plus 87.00 97.27 76.13 85.42

LLaVA1.5-13B
Regular 83.31 91.46 73.48 81.49
NoLan-Base 87.37 95.61 78.33 86.11
NoLan-Plus 88.70 96.03 80.73 87.72

InstructBLIP-7B
Regular 80.71 81.67 79.19 80.41
NoLan-Base 86.07 95.54 75.67 84.45
NoLan-Plus 85.67 96.28 74.20 83.81

InstructBLIP-13B
Regular 82.36 86.93 76.19 81.20
NoLan-Base 88.63 93.92 81.40 87.83
NoLan-Plus 88.90 94.92 82.20 88.10

Popular

LLaVA1.5-7B
Regular 81.88 88.93 72.80 80.06
NoLan-Base 85.13 93.41 75.60 83.57
NoLan-Plus 85.60 93.91 76.13 84.09

LLaVA1.5-13B
Regular 82.47 89.55 73.53 80.75
NoLan-Base 86.23 92.76 78.60 85.10
NoLan-Plus 87.40 93.15 80.73 86.50

InstructBLIP-7B
Regular 78.22 77.87 78.85 78.36
NoLan-Base 83.97 90.73 75.67 82.52
NoLan-Plus 84.00 92.29 74.20 82.26

InstructBLIP-13B
Regular 79.07 81.11 75.79 78.35
NoLan-Base 85.57 87.78 81.40 85.04
NoLan-Plus 85.90 88.77 82.20 85.36

Adversarial

LLaVA1.5-7B
Regular 78.96 83.06 72.75 77.57
NoLan-Base 83.00 88.73 75.60 81.64
NoLan-Plus 83.60 89.31 76.33 82.31

LLaVA1.5-13B
Regular 80.00 84.46 73.53 78.62
NoLan-Base 83.87 87.80 78.67 82.98
NoLan-Plus 84.90 88.07 80.73 84.24

InstructBLIP-7B
Regular 75.84 74.30 79.03 76.59
NoLan-Base 81.97 86.58 75.67 80.75
NoLan-Plus 82.37 88.62 74.27 80.81

InstructBLIP-13B
Regular 76.57 77.00 75.79 76.39
NoLan-Base 82.60 82.71 81.33 82.48
NoLan-Plus 82.97 83.57 82.07 82.81

in the majority of evaluated scenarios, showcasing its enhanced effectiveness. While sigmoid
achieves similar improvements on LLaVA, tanh demonstrates superior performance on Qwen-VL
and InstructBLIP, underscoring its greater adaptability and broader generalization capability. This
may be due to the faster convergence of the tanh function, allowing the moderation term to approach
its upper bound more quickly under the imposed constraints, thereby more effectively mitigating the
influence of linguistic priors.

A.5 BENCHMARKING NOLAN AGAINST THE ICD BASELINE

As a member of the contrastive decoding family of methods, Instruction Contrastive Decoding
(ICD) (Wang et al., 2024c) introduces a special mechanism into multimodal inference by injecting
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Table 13: Results of NoLan-Plus’s variants on POPE (Li et al., 2023d). Sigmoid refers to the use
of the Sigmoid function as the processing term, while Tanh denotes the use of the Tanh function for
the same purpose.The best performances within each setting are bolded.

Dataset Model Function Random Popular Adversarial
Accuracy↑ F1 Score↑ Accuracy↑ F1 Score↑ Accuracy↑ F1 Score↑ All↑

GQA

LLaVA1.5 Sigmoid 88.53 87.83 84.53 84.13 81.47 81.54 84.67
Tanh 88.57 87.88 84.57 84.31 81.50 81.88 84.79

Qwen-VL Sigmoid 86.83 86.44 82.20 82.42 80.10 80.76 83.13
Tanh 87.27 86.99 83.20 83.62 80.20 81.05 83.72

InstructBLIP Sigmoid 84.47 84.62 77.90 79.45 74.60 77.03 79.68
Tanh 86.13 85.23 81.13 80.92 78.10 78.41 81.65

A-OKVQA

LLaVA1.5 Sigmoid 88.03 87.38 86.03 85.58 79.87 80.39 84.55
Tanh 88.00 87.30 85.70 85.22 79.47 80.01 84.28

Qwen-VL Sigmoid 88.63 88.04 87.87 87.41 80.93 81.44 85.72
Tanh 89.37 89.03 87.97 87.72 81.20 82.06 86.23

InstructBLIP Sigmoid 86.53 86.60 81.23 82.27 74.27 77.11 81.34
Tanh 88.20 87.55 84.57 84.32 78.43 79.24 83.72

MSCOCO

LLaVA1.5 Sigmoid 87.03 85.46 85.63 84.14 83.63 82.36 84.71
Tanh 87.00 85.42 85.60 84.09 83.60 82.31 84.67

Qwen-VL Sigmoid 86.97 85.51 86.73 85.40 84.37 83.20 85.36
Tanh 88.10 87.00 87.43 86.40 84.90 84.07 86.32

InstructBLIP Sigmoid 85.53 84.54 83.33 82.60 80.63 80.34 82.83
Tanh 85.67 83.81 84.00 82.26 82.37 80.81 83.15

Table 14: Results of InstructBLIP on POPE (Li et al., 2023d). Regular decoding denotes direct
sampling, VCD (Leng et al., 2024) indicates sampling from visual contrastive distribution, ICD (Wang
et al., 2024c) expresses using Instruction Contrastive Decoding, while methods prefixed with NoLan
refers to sampling from our proposed contrastive distribution pnolan. The best performances within
each setting are bolded.

Dataset Decoding Random Popular Adversarial
Accuracy ↑ F1 Score ↑ Accuracy↑ F1 Score ↑ Accuracy ↑ F1 Score ↑

GQA

Regular 79.65 80.56 73.87 76.42 70.56 74.12
VCD 83.69 84.16 78.57 80.17 75.08 77.53
ICD 85.10 85.29 78.50 80.87 75.17 77.65
NoLan-Base (Ours) 85.63 85.04 79.60 80.01 76.97 77.99
NoLan-Plus (Ours) 86.13 85.23 81.13 80.92 78.10 78.41

A-OKVQA

Regular 80.91 81.86 76.19 78.17 70.71 75.56
VCD 84.11 84.56 79.78 81.15 74.33 77.19
ICD 85.82 86.29 81.64 83.32 74.42 78.48
NoLan-Base (Ours) 87.87 87.46 83.60 83.76 77.33 78.79
NoLan-Plus (Ours) 88.20 87.55 84.57 84.32 78.43 79.24

MSCOCO

Regular 80.71 80.41 78.22 78.36 75.84 76.59
VCD 84.53 83.68 81.47 81.07 79.56 79.52
ICD 86.43 85.61 82.93 82.55 80.87 80.84
NoLan-Base (Ours) 86.07 84.45 83.97 82.52 81.97 80.75
NoLan-Plus (Ours) 85.67 83.81 84.00 82.26 82.37 80.81

carefully crafted disturbance instructions during decoding. According to its process, ICD augments
the input with a misleading prompt (e.g., “You are a confused object detector”) to intentionally
increase alignment uncertainty. This yields two distributions: one conditioned on the standard
instruction and another on the disturbed version. By subtracting the latter from the former, ICD aims
to suppress hallucinated concepts that are overactivated by visual priors, thus enhancing prediction
robustness.

In this section, we provide a supplementary evaluation of the ICD baseline and compare its perfor-
mance with our proposed method built upon InstructBLIP. Table 14 presents a detailed comparison
across three datasets (GQA, A-OKVQA, and MSCOCO), covering random, popular, and adversarial
question categories. The results demonstrate that while ICD shows clear improvements over standard
decoding and VCD (Leng et al., 2024), our NoLan variants consistently outperform it across most
settings.

A.6 SUPPLEMENTARY EXPERIMENTS

MM-Vet. In addition to using POPE (Li et al., 2023d) for evaluation, we incorporate open-ended
questions assessed with an LLM-based evaluator to deliver a more thorough and comprehensive anal-
ysis of its performance. MM-Vet is an advanced benchmark designed to evaluate the capabilities of
Large Multimodal Models (LMMs) in tackling complex multimodal tasks (Yu et al., 2023). It defines
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Table 15: MM-Vet (Yu et al., 2023) evaluation results regarding each core VL capability. All the
numbers are presented in % and the full score is 100%. Our NoLan can improve performance for
different models.

Model Rec OCR Know Gen Spat Math Total
LLaVA1.5-7B (Liu et al., 2024a) – – – – – – 31.1
LLaVA1.5-7B NoLan-Base 36.2 26.5 21.3 23.3 33.5 7.7 33.0±0.1
LLaVA1.5-7B NoLan-Plus 38.0 25.7 18.8 24.2 31.8 7.7 33.3±0.2
LLaVA1.5-13B (Liu et al., 2024a) – – – – – – 36.1
LLaVA1.5-13B NoLan-Base 42.2 29.8 27.3 28.2 35.2 14.2 37.6±0.2
LLaVA1.5-13B NoLan-Plus 41.8 31.4 24.9 26.0 36.6 15.4 38.3±0.2
InstructBLIP-7B 30.7 16.2 15.3 13.2 22.3 7.7 25.2±0.0
InstructBLIP-7B NoLan-Base 32.8 13.0 14.0 14.3 17.1 4.2 25.7±0.1
InstructBLIP-7B NoLan-Plus 35.1 13.6 17.8 18.7 16.7 3.8 27.0±0.1
InstructBLIP-13B 25.1 12.8 10.5 8.5 18.6 5.8 21.2±0.3
InstructBLIP-13B NoLan-Base 31.7 12.5 15.7 9.5 19.9 3.5 25.4±0.2
InstructBLIP-13B NoLan-Plus 30.9 18.6 12.7 8.7 22.4 11.5 26.7±0.1
Qwen-VL 33.7 27.7 18.5 10.1 33.2 11.2 33.7±0.1
Qwen-VL NoLan-Base 36.0 26.9 17.5 9.0 33.0 7.7 34.5±0.1
Qwen-VL NoLan-Plus 36.8 26.5 21.8 13.6 32.6 7.7 35.2±0.2

Table 16: MM-Vet (Yu et al., 2023) evaluation results regarding each capability integration. Our
NoLan can improve model performance for different models.

Model Rec
Know
Gen Rec

OCR
Spat

OCR
Spat
Math

Rec
Spat OCR

OCR
Math

Rec
Know

Rec
OCR
Know
Gen

Rec
OCR
Gen
Spat

Rec
OCR
Spat

Rec
OCR

OCR
Know
Spat

Rec
Know
Spat

OCR
Gen
Spat

Rec
OCR
Spat
Math

Total

LLaVA1.5-7B (Liu et al., 2024a) – – – – – – – – – – – – – – – – 31.1
LLaVA1.5-7B NoLan-Base 21.1 62.2 34.6 14.3 65.8 40.8 0.0 27.8 16.8 43.8 14.3 50.0 33.3 0.0 37.0 0.0 33.0±0.1
LLaVA1.5-7B NoLan-Plus 22.3 68.9 29.8 14.3 66.7 40.8 0.0 5.6 52.2 12.5 14.3 75.0 16.7 0.0 20.0 0.0 33.3±0.2
LLaVA1.5-13B (Liu et al., 2024a) – – – – – – – – – – – – – – – – 36.1
LLaVA1.5-13B NoLan-Base 27.5 70.0 28.5 26.4 58.3 47.3 0.0 26.7 12.5 54.2 17.1 87.5 50.0 50.0 12.0 0.0 37.6±0.2
LLaVA1.5-13B NoLan-Plus 23.5 73.5 34.7 28.6 58.3 53.3 0.0 38.9 51.2 16.2 14.3 75.0 16.7 50.0 40.0 0.0 38.3±0.2
InstructBLIP-7B 12.0 63.7 13.4 14.3 41.7 15.8 0.0 27.8 33.0 5.2 14.3 62.5 50.0 50.0 5.0 0.0 25.2±0.0
InstructBLIP-7B NoLan-Base 14.3 73.7 13.5 7.9 45.8 19.0 0.0 22.2 21.5 11.5 14.3 50.0 0.0 0.0 0.0 0.0 25.7±0.1
InstructBLIP-7B NoLan-Plus 17.9 73.5 11.5 7.1 41.7 18.5 0.0 27.8 31.2 16.8 14.3 50.0 0.0 0.0 0.0 0.0 27.0±0.1
InstructBLIP-13B 8.0 58.1 19.2 10.7 33.3 16.7 0.0 27.8 17.5 4.2 14.3 25.0 0.0 50.0 5.0 0.0 21.2±0.3
InstructBLIP-13B NoLan-Base 10.4 67.6 13.5 0.0 58.3 19.8 8.2 44.4 5.0 9.8 28.6 25.0 33.3 50.0 0.0 0.0 25.4±0.2
InstructBLIP-13B NoLan-Plus 6.4 72.7 15.4 14.3 50.0 23.3 9.1 38.9 21.5 15.2 14.3 50.0 66.7 0.0 4.0 0.0 26.7±0.1
Qwen-VL 11.5 76.9 42.3 14.3 54.2 47.5 8.2 42.2 7.5 1.2 14.3 50.0 100.0 50.0 14.0 0.0 33.7±0.1
Qwen-VL NoLan-Base 9.5 83.2 44.2 14.3 59.8 47.5 0.0 50.0 16.5 0.5 14.3 57.5 66.7 50.0 0.0 0.0 34.5±0.1
Qwen-VL NoLan-Plus 15.0 80.5 40.4 7.1 62.5 50.0 9.1 42.7 2.8 14.8 14.3 32.5 100.0 50.0 10.0 0.0 35.2±0.2

16 novel tasks of significant importance, derived from six core visual-language (VL) capabilities, and
employs an LLM-based evaluator to assess the open-ended outputs of LMMs. To demonstrate the
effectiveness of NoLan in open-ended generation tasks, we conducted a comprehensive evaluation
using the MM-Vet benchmark and its GPT-4 aided evaluator. This benchmark can test NoLan’s
performance in scenarios requiring nuanced and contextually accurate multimodal understanding.

As shown in Table 15, NoLan consistently outperforms regular decoding across both 7B and 13B
models, highlighting its ability to enhance the open-ended generation capabilities of LVLMs. Notably,
the findings also suggest that NoLan’s effectiveness scales with larger model sizes, delivering
sustained improvements as models increase in complexity. For example, NoLan-Plus improves
the performance of LLaVA-1.5 7B from 31.1 to 33.3, while the 13B model increases from 36.1
to 38.3. Additionally, as shown in Table 16, most capability integrations exhibit growth. For
instance, the combination of “Rec" and “Spat" shows an increase of up to 8.3%. Furthermore, the
results demonstrate that mitigating object hallucinations can positively impact open-ended generation
capabilities.

This result is not entirely unexpected, as the original model often generates content with hallucinatory
effects in open-ended tasks. Previous experiments have demonstrated NoLan’s effectiveness in
reducing hallucinations, reinforcing its ability to address this issue. Importantly, unlike the binary
classification setting in POPE, the diversity of the generated content plays a crucial role in this
evaluation. Despite this added complexity, NoLan consistently achieves higher evaluation scores,
demonstrating its ability to mitigate hallucinations while preserving the diversity of the model’s
output. This balance allows the model to excel in open-ended question responses, showcasing
NoLan’s capability to enhance both accuracy and content richness.

MMHAL-BENCH. MMHAL-BENCH (Sun et al., 2023) is a 96-pair benchmark that tests hallucina-
tion in large multimodal models across eight error types: wrong object attributes, nonexistent objects,
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Table 17: Results on MMHalBench (Sun et al., 2023) for different decoding strategies. NoLan
variants improve the overall score and decrease the hallucination rate.

Decoding MMHalBench
Overall Score↑ Hallucination Rate↓ Attribute Adversarial Comparison Counting Relation Environment Holistic Other

Regular 1.55 76% 1.33 0 1.83 1.17 2.00 2.58 1.67 1.83
NoLan-Base 1.85 75% 3.42 1.58 1.42 1.42 1.75 3.33 0.83 1.08
NoLan-Plus 2.29 68% 3.42 3.25 1.33 1.58 1.58 3.83 1.33 2.00

faulty comparisons, counting errors, spatial mistakes, false environment inferences, misleading
holistic descriptions, and misrecognition of text or icons.

As shown in Table 17, we evaluate different decoding strategies on LLaVA-1.5 (Liu et al., 2024a)
using this challenging benchmark. The metrics include the overall score (higher is better) and
hallucination rate (lower is better), as well as category-wise breakdowns. Both NoLan variants
outperform regular decoding: NoLan-Base improves the overall score from 1.55 to 1.85, while
NoLan-Plus further increases it to 2.29 and reduces the hallucination rate from 76% to 68%.

These results highlight that suppressing language priors not only boosts semantic alignment but
also reduces vulnerability to hallucination across diverse categories, with NoLan-Plus showing the
strongest robustness against visual misinterpretation.

Table 18: Results on HallusionBench (Guan et al., 2024) for different decoding strategies. NoLan
variants improve overall accuracy (aAcc) and category-specific metrics.

Decoding HallusionBench
qAcc fAcc easyaAcc hardaAcc aAcc

Regular 14.2857 15.6069 37.1429 38.8372 43.4898
NoLan-Base 15.1648 17.9191 45.0549 35.5814 46.5899
NoLan-Plus 18.6813 19.6532 43.9560 40.6977 47.4756

HallusionBench. HallusionBench (Guan et al., 2024) is a recently proposed diagnostic benchmark
specifically designed to probe and quantify the failure modes of large vision-language models
(LVLMs) in image-context reasoning. It consists of 1129 handcrafted visual-question-answer (VQA)
pairs, built upon 346 distinct visual figures—including original and human-edited images—covering
a wide range of domains such as geometry, food, statistics, maps, and visual illusions. Each question
pair is designed to reveal inconsistencies or hallucinations in model predictions, going beyond
traditional accuracy metrics to expose deeper reasoning flaws.

As shown in Table 18, we evaluate different decoding strategies on LLaVA-1.5 (Liu et al., 2024a)
using this challenging benchmark. The metrics include qAcc (Question Pair Accuracy), fAcc (Figure
Accuracy) over both easy and hard examples. Both NoLan variants outperform regular decoding
across all metrics. In particular, NoLan-Plus achieves the highest question accuracy (qAcc: 18.68)
and overall accuracy (aAcc: 47.48), suggesting improved robustness against hallucinations and visual
misinterpretation.

These results highlight that suppressing language priors not only enhances semantic alignment but
also reduces model vulnerability to visually deceptive or noisy contexts, especially on hard cases
(hardaAcc: 40.70). HallusionBench thus provides critical insights into the nuanced failure modes of
LVLMs and demonstrates the effectiveness of contrastive decoding in mitigating them.

Table 19: CircularEval results on MMBench (Liu et al., 2024d) test set (L-2 abilities). NoLan variants
improve overall and category-specific metrics.

Decoding MMBench
Overall AR CP FP-C FP-S LR RR

Regular 63.4 77.6 70.0 57.7 68.0 33.2 56.2
NoLan-Base 64.6 76.0 77.1 56.7 66.3 33.0 53.6
NoLan-Plus 65.8 74.7 77.5 55.1 67.1 38.7 60.2

MMBench. MMBench (Liu et al., 2024d) is a systematically constructed benchmark designed to
evaluate a wide range of vision-language capabilities across 20 distinct ability dimensions, such as
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object localization, commonsense reasoning, and social understanding. Each ability is uniformly
represented by over 125 multiple-choice questions, enabling balanced and fine-grained assessment. To
address inconsistencies caused by VLMs’ limited instruction-following capabilities, the benchmark
employs GPT-4 as a robust choice extractor, achieving 91.5% alignment with human judgment.

To further improve evaluation robustness, MMBench introduces CircularEval—a strategy designed to
reduce bias and variance in performance assessment by aggregating multiple sampling and evaluation
rounds. This method emphasizes consistency across ability dimensions and mitigates artifacts from
instruction misalignment or label mismatch.

As shown in Table 19, we evaluate decoding strategies on LLaVA-1.5 (Liu et al., 2024a) using the
CircularEval protocol. Both NoLan variants outperform regular decoding in overall accuracy and
several reasoning-specific dimensions. In particular, NoLan-Plus achieves the highest overall score
(65.8) and shows notable improvements in Coarse Perception (CP: 77.5) and Relation Reasoning (RR:
60.2), alongside gains in Logical Reasoning (LR: 38.7). These dimensions—abbreviated in Table 19
as CP, RR, and LR—correspond to L-2 level cognitive skills, which demand deeper visual-semantic
understanding.

These results indicate that suppressing language priors not only benefits general performance but also
enhances high-level reasoning under rigorous evaluation settings like CircularEval. Moreover, the
improved consistency across fine-grained and relational tasks suggests better grounding and reduced
over-reliance on textual shortcuts.

Table 20: Results on MathVision (Wang et al., 2024a) for different decoding strategies. NoLan
variants improve overall and most sub-categories, such as Algebra (Alg), Geometry (e.g., Angle,
Area), and Logical reasoning (Log).

Decoding MathVision
ALL Alg AnaG Ari CombG Comb Cnt DescG GrphT Log Angle Area Len SolG Stat Topo TransG

Random Chance 7.17 1.50 11.90 7.10 9.70 4.80 6.00 22.10 1.10 7.60 0.60 9.40 6.70 8.20 8.60 13.00 7.10
Regular 8.52 7.00 7.10 10.70 7.10 4.80 10.50 7.70 10.00 9.20 15.60 10.20 9.80 5.30 8.60 4.40 4.80
NoLan-Base 9.34 5.22 4.76 5.71 11.36 7.14 8.96 13.46 14.44 7.56 13.29 10.60 10.02 6.15 17.24 4.35 10.71
NoLan-Plus 9.84 6.96 8.33 7.14 11.04 6.55 5.97 17.31 17.78 7.56 13.29 8.60 9.80 9.43 13.79 13.04 13.10

MathVision. MathVision (Wang et al., 2024a) (MATH-V) is a curated benchmark designed to assess
the mathematical reasoning capabilities of large multimodal models in visually grounded settings.
The dataset consists of 3,040 high-quality visual math problems spanning 16 mathematical disciplines
and 5 difficulty levels, covering topics such as algebra, combinatorial geometry, topology, and logic.
Problems are sourced from 19 official math competitions and are annotated and verified by domain
experts to ensure uniqueness and correctness of answers. The benchmark contains both multiple-
choice and open-ended formats, requiring models to perform fine-grained multimodal understanding
and symbolic reasoning.

As illustrated in Table 20, we compare decoding strategies on LLaVA-1.5 (Liu et al., 2024a) across
all subject areas. Both NoLan variants significantly outperform the regular baseline in overall
performance (ALL), with NoLan-Plus achieving the best accuracy (9.84%). Improvements are
especially prominent in core areas such as Algebra (Alg: 6.96), Graph Theory (GrphT: 17.78), and
metric geometry - angle (Angle: 13.29), all of which require both precise visual perception and
subject-specific mathematical reasoning.

These results demonstrate that suppressing language priors helps reduce superficial biases and
encourages more deliberate reasoning. MathVision thus reveals the benefits of contrastive decoding
in tackling symbolically grounded, visually rich tasks where hallucinations and template-like answers
are common failure modes for conventional VLMs.

A.7 CONTRASTING NOLAN WITH ATTENTION-BASED APPROACHES

While our main analysis focuses on contrastive decoding strategies, several recent methods adopt
alternative training-free techniques to mitigate hallucinations by intervening in the attention mecha-
nism. Among them, Pay Attention to Image (PAI)(Liu et al., 2024c) and OPERA(Huang et al., 2024)
stand out as representative and competitive approaches.
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Table 21: Comparison between NoLan and attention-based methods

Decoding MSCOCO of POPE-random
Accuracy F1 Score

Regular 83.29 81.33
OPERA (Huang et al., 2024) – 85.40
PAI (Liu et al., 2024c) 86.33 85.89
NoLan-Base (Ours) 87.80 85.60
NoLan-Plus (Ours) 88.80 86.70

PAI operates by amplifying attention weights directed toward image tokens during inference. It
adjusts the self-attention heads in the decoder layers to emphasize image regions in their original
direction, thereby reducing reliance on language priors. In addition, PAI constructs auxiliary textual
prompts (comprising instructions and historical responses) and subtracts their logits from the image-
conditioned logits. This dual intervention strategy encourages more image-grounded reasoning while
suppressing text inertia. Importantly, PAI is fully training-free and directly targets two key issues:
image neglect and language dominance.

OPERA, on the other hand, addresses the over-trust phenomenon in beam search decoding. It
introduces a column-wise metric over the attention map to detect knowledge aggregation patterns
that correlate with hallucination. A penalty score is integrated with the logits during candidate
selection, disfavoring over-trusted tokens. Additionally, OPERA employs a retrospection-reallocation
mechanism that can roll back to previous decoding positions if over-trust is detected, enabling the
model to reallocate attention and choose alternative candidates.

As shown in Table 21, we compare these methods on LLaVA-1.5 (Liu et al., 2024a) using the
MSCOCO of the POPE benchmark. Both PAI and OPERA achieve strong results, with F1 scores of
85.89 and 85.40, respectively. Our NoLan-Plus further improves on these with the highest accuracy
(88.80) and F1 score (86.70), demonstrating that contrastive decoding with language prior suppression
remains a highly effective strategy.

These results suggest that while attention-based methods offer promising avenues, contrastive de-
coding offers a more general and robust framework for hallucination mitigation, especially when the
distributional shift is carefully controlled by leveraging the difference between dual forward outputs.

A.8 QWEN-VL SERIES

Table 22: Results of Qwen2-VL (Wang et al., 2024b) and Qwen2.5-VL (Bai et al., 2025) on POPE (Li
et al., 2023d).

MSCOCO of POPE-random
Decoding Accuracy Precision Recall F1 Score

Qwen2-VL-2B
Regular 71.27 76.76 61.00 67.98
NoLan-Base 73.93 85.83 57.33 68.75
NoLan-Plus 77.67 79.64 74.33 76.90

Qwen2-VL-7B
Regular 87.27 96.58 77.27 85.85
NoLan-Base 88.90 98.18 79.27 87.72
NoLan-Plus 89.80 97.38 81.80 88.91

Qwen2.5-VL-3B
Regular 87.27 91.78 81.87 86.54
NoLan-Base 88.57 97.85 78.87 87.34
NoLan-Plus 90.67 93.70 87.20 90.33

Qwen2.5-VL-7B
Regular 83.70 99.22 67.93 80.65
NoLan-Base 87.40 98.36 76.07 85.79
NoLan-Plus 88.63 92.89 83.67 88.04
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Qwen2-VL (Wang et al., 2024b) and its successor Qwen2.5-VL (Bai et al., 2025) are recent multi-
modal large language model families that unify image, text, and video processing through a dynamic
resolution mechanism and multimodal rotary position embedding (M-RoPE). The series scales across
parameter sizes from 2B to 72B, with Qwen2.5 introducing architectural refinements for stronger
visual–language alignment.

Table 22 reports POPE results with NoLan. On Qwen2-VL-2B, NoLan-Plus improves F1 from
67.98 to 76.90, while on Qwen2-VL-7B it raises F1 from 85.85 to 88.91. Similar trends hold for
Qwen2.5-VL: NoLan-Plus boosts F1 from 86.54 to 90.33 on the 3B model and from 80.65 to 88.04
on the 7B model, with substantial recall gains. These consistent improvements across scales and
generations demonstrate the robustness of NoLan in enhancing visual grounding.

These results highlight the generality and scalability of our contrastive decoding approach: even
when integrated with advanced architectures like Qwen2-VL and Qwen2.5-VL, NoLan continues to
effectively suppress language priors and enhance grounding, particularly in challenging settings like
POPE where precise visual grounding is essential.

A.9 CONSUMPTION OF INFERENCE

Table 23: Inference efficiency comparison of contrastive decoding strategies.

Decoding Seconds per Token ↓ Memory Usage (GB, 50 tokens) ↓
Regular 0.4579 13.57
VCD 0.7537 15.09
VDD 0.7359 15.09
NoLan-Base 0.6075 13.59
NoLan-Plus 0.6277 13.59

We compare the inference efficiency of NoLan and contrastive decoding baselines (VCD, VDD) in
terms of computation time and memory usage. As shown in Table 23, VCD and VDD require two
forward passes over inputs (v, x) and (v′, x), along with additional post-processing using adaptive
plausibility constraints. In contrast, NoLan simplifies this process by using only (v, x) and (x)
as inputs. NoLan-Base requires no post-processing, and NoLan-Plus adds only a lightweight KL
divergence computation, making both significantly more efficient.

Empirical results on LLaVA-v1.5-7B with a Titan RTX 24GB GPU confirm the efficiency of NoLan:
among contrastive decoding methods, NoLan-Base achieves the fastest inference speed (0.6075
seconds per token) and the lowest memory usage (13.59 GB for 50 tokens). In comparison, VCD
and VDD are both slower and more memory-intensive (15.09 GB), underscoring NoLan’s practical
advantages in latency and resource efficiency.

A.10 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics statement. Our research adheres to the ICLR Code of Ethics. The primary focus of our work
is to mitigate object hallucinations in Large Vision-Language Models (LVLMs). Object hallucination,
a phenomenon where models generate text describing objects that are either mismatched or entirely
absent in an image, poses a significant ethical concern. Such fabrications can lead to the spread of
misinformation and reduce the reliability of AI systems in critical applications. Our proposed method,
NoLan, contributes to the development of more trustworthy and factual AI by directly addressing
this issue. By suppressing the language priors that we identify as a principal cause of hallucinations,
NoLan improves the accuracy and faithfulness of LVLM outputs. This can have positive societal
benefits by making these models safer and more reliable for public use. The datasets and models
used in our experiments are publicly available, and our research does not involve any personally
identifiable information or sensitive data. We will make our code publicly available to encourage
transparency and allow for further research in this area. We are not aware of any direct negative social
impacts or ethical concerns arising from our work. We believe that by improving the factuality of
LVLMs, our work represents a positive step towards more ethical and responsible AI.

Reproducibility statement. To ensure full reproducibility, we will make our complete source code
publicly available. This repository contains the implementation of our NoLan framework, alongside
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all scripts necessary to replicate our experiments and evaluations against the reported baselines
(Regular, VCD, M3ID, and VDD). Our experiments are conducted on publicly accessible LVLMs,
including the LLaVA-1.5, InstructBLIP, and Qwen-VL series, using widely-adopted benchmarks.
Specifically, we use POPE, MME, and LLaVA-Bench in the main paper, with extended evaluations on
MM-Vet, MMHAL-BENCH, and MMBench, among others, in the appendix. As detailed in Section
4, our experimental setup, including dataset-specific configurations, aligns with prior work for fair
comparison. For our mechanism in NoLan-Plus variant, a complete theoretical proof is also provided
in the appendix. This comprehensive release is intended to allow the community to easily verify our
findings and build upon our work.

A.11 MORE CASE STUDIES

To further validate the impact and effectiveness of our proposed NoLan-Plus on open-ended generation
tasks, we conduct additional case studies on the LLaVA-bench. Figure 5 provides further instances of
hallucination corrections by NoLan-Plus. In the examples presented, objects such as “thinking face"
and “question mark," which are commonly linked to the ground truth object “funny joke," mistakenly
appear as hallucinations in the generated output. In contrast, applying NoLan-Plus substantially
reduces these hallucinations while maintaining the consistency and richness of the generated text.
This highlights NoLan-Plus’s ability to produce outputs that are more faithfully aligned with the
visual input, without compromising informativeness. Additional examples are provided in Figure 6.
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Language Question: Can you explain this meme in detail?

NoLan-Plus Decoding: There are three uncut fruits in the image.

Regular Decoding: There are four uncut fruits in the image.

Language Question: Can you explain this meme in detail?

NoLan-Plus Decoding: The meme showcases a small tan French Bulldog lying face down on blue
wooden flooring. Underneath the picture of the resting dog, black lettering reads "just...Monday",
adding humor and possibly insinuating a viewer's dislike for Mondays. Additionally, there is a chair
located in the background of the image.

Regular Decoding:  The meme features a white dog lying down on a wooden floor. The setting
appears to be a balance board from the Nintendo Wii game console, suggesting that the dog may
be enjoying a leisurely play session.  The image is stylized and accompanied by a caption in bold
text that says, "Just...Monday" at the bottom, emphasizing the fun connection between the dog and
the game console. 

Language Question: Describe this sketch in detail.

NoLan-Plus Decoding:  The blue writing on a white sheet of paper includes humorous website
instructions, asking the reader push to reveal punchline. The sheet might be from a joke website
that encourages the subsiding of the punchline in some form of interactive humor. The combination
of handwritten instructions and dialogue boxes makes the instructions entertaining and visually
appealing.

Regular Decoding: The sketch is a handmade representation of a joke HTML structure, as if it
were a site in progress. The main headings include "My Joke Website" and "= Funny Joke?
Thinking face". Beneath these, there is a subheading that says "Push to Reveal Punchline?".A few
elements within the joke structure include a question mark and a box to the right, possibly for humor
content, and a square for the punchline. There is also a comments space to accommodate user
feedback on the jokes presented. The drawing illustrates a lighthearted, humorous, and interactive
approach to storytelling on the web.

Figure 5: More examples from LLaVA-Bench of our proposed NoLan-Plus for hallucination correc-
tions. Hallucinated objects from LVLM’s regular decoding are highlighted in red.
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Language Question: Can you explain this meme in detail?

NoLan-Plus Decoding: The image features three coffee mugs each portraying Mario, the popular
Nintendo character. The mugs closely stacked next to each other depict the same animated face
design, making the scene visually indistinguishable. The collective presence of the close-up mugs
covers objects such as another coffee mug and some ears, adding to the feeling of uniformity
throughout the scene.

Regular Decoding: The image shows a collection of four coffee mugs placed horizontally on a
shelf. Each mug is decorated differently, but they all share a common theme - they are designed
with cartoon characters resembling Super Mario. The characters are positioned around the
perimeter of each mug, giving them a protruding appearance. There is a clear separation between
the four individual mugs, with each one having its own distinct arrangement of Super Mario
characters displayed.

Language Question: Describe this sketch in detail.

NoLan-Plus Decoding: The image features a whimsical figurine of a flaming, toy animal with
glasses made out of plastic. The unique creation portrays an odd and eye-catching design. The
horse has a large eyeglasses and its legs are covered in flames, adding to its whimsical
appearance. Adding a fun touch to the scene, the toy animal appears to be sitting on a pedestal,
further enhancing its exhibition-like setting.

Regular Decoding: The image features a unique figurine of an anthropomorphic red and yellow
flamingo, which appears to be on fire, in a large glass case. The flamingo, wearing red and green
glasses for fun, is placed on a shelf in the display. The glass case surrounds the flamingo,
emphasizing and protecting it from potential damage. This whimsical display adds a touch of fun to
the room where it is found.

Language Question: Can you explain this meme in detail?

NoLan-Plus Decoding: The painting features a canine portrait dressed as Mona Lisa, looking to its
side with one paw crossed. It seems like the artist painted the pit bull masquerading as a religious
figure. The large pit bull/female character is surrounded by mountains and a river, adding depth to
the background. The scene has a whimsical touch, combining human imagery with a dog, creating
a unique, blended composition.

Regular Decoding: The image features a dog dressed up in a flowing costume, resembling a
painting of a young woman. The furry canine, which appears to be a large brown and white dog, is
sitting on a chair in a large living room. It seems to be posing for the unique human-like portrait. The
room features additional furnishings such as a second small chair, located at the right side of the
image, and a rock formation in the background on the right side. Overall, the scene is quite unusual
with the focus on the dressed-up dog.

Figure 6: More examples from LLaVA-Bench of our proposed NoLan-Plus for hallucination correc-
tions. Hallucinated objects from LVLM’s regular decoding are highlighted in red.
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