
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS LEARNING HIGH-PRECISION LEAST
SQUARES ALGORITHMS WITH SEQUENCE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates whether sequence models can learn to perform numerical
algorithms, e.g. gradient descent, on the fundamental problem of least squares. Our
goal is to inherit two properties of standard algorithms from numerical analysis: (1)
machine precision, i.e. we want to obtain solutions that are accurate to near floating
point error, and (2) numerical generality, i.e. we want them to apply broadly across
problem instances. We find that prior approaches using Transformers fail to meet
these criteria, and identify limitations present in existing architectures and training
procedures. First, we show that softmax Transformers struggle to perform high-
precision multiplications, which prevents them from precisely learning numerical
algorithms. Second, we identify an alternate class of architectures, comprised en-
tirely of polynomials, that can efficiently represent high-precision gradient descent
iterates. Finally, we investigate precision bottlenecks during training and address
them via a high-precision training recipe that reduces stochastic gradient noise.
Our recipe enables us to train two polynomial architectures, gated convolutions
and linear attention, to perform gradient descent iterates on least squares problems.
For the first time, we demonstrate the ability to train to near machine precision.
Applied iteratively, our models obtain 100, 000× lower MSE than standard Trans-
formers trained end-to-end and they incur a 10, 000× smaller generalization gap
on out-of-distribution problems. We make progress towards end-to-end learning of
numerical algorithms for least squares.

1 INTRODUCTION

Least squares is the workhorse of modern numerics: it is well understood theoretically (Boyd &
Vandenberghe, 2004; Trefethen & Bau, 2022) and has important downstream applications in science
and engineering, including solving regression problems and differential equations (Orszag, 1972;
Trefethen, 2000). Thus, least squares has gained interest as a natural testbed for investigating how
well ML models can learn to implement algorithms (Garg et al., 2022; Von Oswald et al., 2023).

A surge of recent work suggests that Transformers (Vaswani et al., 2017) can learn to solve least
squares using optimization algorithms like gradient descent and Newton’s method (Akyürek et al.,
2022; Fu et al., 2023; Ahn et al., 2024; Bai et al., 2024; Zhang et al., 2023b). These arguments rest
on two observations: (1) simplified Transformer architectures (e.g. non-causal linear attention) can
exactly implement such algorithms; (2) standard (softmax attention) Transformers learn solutions
with similar properties (e.g. convergence rates) as iterative algorithms. Crucially, these works focus
on statistical least squares: they evaluate Transformer solutions in underdetermined/noisy settings
and compare to Bayes-optimal estimators. However, scientific applications like climate or fluids
modeling require numerically precise solutions to least squares, e.g. to accurately model turbulence
or to maintain stable temporal rollouts (Frisch, 1995; Wilcox, 2006). Prior works do not engage with
the issue of high precision, so it is still unclear how well Transformers can solve least squares from
this perspective.

In this work, we thus study whether existing approaches can solve numerical least squares. Specif-
ically, numerical analysis requires that algorithms exhibit (1) machine precision, i.e. they should
obtain solutions that are accurate to near floating point error, and (2) numerical generality, i.e. they
are computational procedures that should apply broadly across problem instances. (See Section 2.1
for details.) Since traditional least squares algorithms (e.g. gradient descent and conjugate gradients)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Prior work focuses on statistical least squares: Transformers approximate Bayes-optimal
estimators (left, adapted from Garg et al. (2022)). In this work, we focus on numerical least squares:
Transformers struggle to obtain precise solutions (inset). Using a high-precision training recipe,
we train two polynomial architectures, BASECONV and linear attention, to perform high-precision
gradient descent iterates on least squares (right): applied iteratively, they reach ≈ 10−13 MSE.

provably meet these criteria (Trefethen & Bau, 2022), it is crucial to evaluate machine learning
methods against these same standards to determine their ability to learn numerical algorithms.

We focus on learning the gradient descent (GD) algorithm for least squares. Our study has three parts:

• We benchmark standard Transformers for precision/generality and identify an expressivity
gap on least squares. When we replicate the standard end-to-end training setup for least squares
with Transformers, we find that solutions do not exhibit machine precision and numerical generality
(Figure 1a, 2). We identify high-precision multiplications as a fundamental challenge for softmax
Transformers. Empirically, on a synthetic element-wise multiplication task, we find precision
scales poorly with larger Transformers: an 8-layer model trains to an MSE that is still 10 million
times worse than machine epsilon (Figure 3). Theoretically, we argue that a single layer of softmax
attention is unable to exactly express element-wise multiplications. Since implementing GD
involves high-precision multiplications, this observation suggests standard Transformers are unable
to even precisely express GD, much less precisely learn the algorithm.

• We identify an alternate architecture class which does not suffer from expressivity problems.
Motivated by the expressivity limitations of softmax attention, we investigate alternate sequence
mixer architectures. Prior work notes that non-causal linear attention is able to exactly implement
algorithms like GD and Newton’s method (Von Oswald et al., 2023; Giannou et al., 2024) because it
consists entirely of polynomials. We provide a unified framework to understand existing expressivity
results from the lens of arithmetic circuits. In our work, we focus on BASECONV, a gated
convolutional architecture, as a case study, since it is provably equivalent to the entire class of
polynomial architectures (Arora et al., 2023; 2024). We demonstrate that gated convolutions can
express a high-precision GD algorithm (≈ 10−13 MSE when implemented in practice, Figure 4).

• We identify an optimization precision bottleneck and propose a high-precision training
recipe. Although polynomial architectures can precisely express the GD algorithm, we find that
standard training procedures struggle to find a solution with sufficiently high precision (10−5 MSE,
Figure 9). Therefore, towards disentangling precision bottlenecks during training, we first focus on
the intermediate task of explicitly learning GD iterates. We identify stochastic gradient noise from
minibatching as the main optimization bottleneck, and we find that a simple metric, cosine similarity
of minibatch gradients (Liu et al., 2023b), is diagnostic of precision saturation. Towards reducing
stochasticity, we propose (1) a learning rate (LR) scheduler that adaptively adjusts LR based on the
cosine similarity metric, and (2) to apply EMA over optimizer updates to maintain strong gradient
signal. Our high-precision training recipe allows us to train ML architectures to near machine
precision for the first time. We successfully train two 3-layer models, with BASECONV and linear
attention, that learn to perform a single high-precision iteration of GD (Figure 1b). Excitingly, we
can also learn multiple GD iterates at once, scaling up to 4 iterations with 10−10 MSE.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Overall, our work makes the following contributions: (1) we specify the desiderata of learning
numerical algorithms, machine precision and numerical generality, and we demonstrate that standard
Transformers fall short because of expressivity limitations of softmax attention; (2) we provide a
unified framework using arithmetic circuits to investigate the expressivity of the class of polynomial
architectures; (3) we address additional precision bottlenecks that emerge during training, even when
using expressive polynomial architectures. Although we do not achieve end-to-end learning of GD,
we make significant headway: we propose a high-precision training recipe, which, for the first time,
allows us to learn iterates of the GD algorithm to near machine precision.

2 LEARNING NUMERICAL ALGORITHMS FOR LEAST SQUARES

In this section, we distinguish between statistical vs. numerical least squares and discuss the two
properties we want our models to inherit from numerical algorithms: machine precision and numerical
generality. We then briefly discuss prior work and, in doing so, tease apart two increasingly end-to-
end notions of performing algorithms with ML: expressing an algorithm in-weights and learning
algorithm iterates.

2.1 PROBLEM FORMULATION AND RELATED WORK

In this work, our goal is to train a model that solves least squares problems: find x ∈ RD given
A ∈ RN×D and b ∈ RN such that Ax = b. Here, we briefly discuss two different perspectives on
least squares: statistical (in the form of in-context learning) and numerical.

Statistical least squares. Originally motivated by applications in language modeling, prior works
on solving least squares with Transformers typically take a statistical perspective. Transformers are
trained using an in-context learning setup (Garg et al., 2022; Akyürek et al., 2022): problem instances
Ax = b are sampled from a pre-specified distribution Dtrain, and the model is trained to minimize
mean squared error (MSE) over Dtrain. Trained models are then evaluated on unseen problem
instances, both in and out-of-distribution, and their performance is compared to Bayes-optimal
estimators (Garg et al., 2022; Akyürek et al., 2022). We define the in-context least squares training
setup in Appendix B and leave a more detailed discussion of related in-context learning work to
Appendix A.

Numerical least squares. In this work, we instead take a numerical perspective on least squares.
A prototypical numerical algorithm for least squares is GD. For a problem instance Ax = b, we
initialize x0, an estimate of x, and iteratively improve our estimate via

xi+1 = xi − η∇L(xi), (1)

where L(x̂) := 1
2 ||Ax̂− b||22 is the squared residual error. GD exhibits two properties of numerical

algorithms that we want our models to inherit:

• Machine precision. Numerical algorithms provably obtain high-precision solutions. For GD,
obtaining higher precision simply requires performing more iterations until convergence to ma-
chine precision (i.e. the smallest achievable error with floating-point arithmetic) (see Chapter 11
of Trefethen & Bau (2022)). In this work, we use float32 throughout, where machine precision
is 2−23 ≈ 1.19× 10−7, so we hope for MSEs around 2−46 ≈ 1.42× 10−14.

• Numerical generality. Although the convergence rate of GD depends on the spectrum of A (see
Chapter 9 of Boyd & Vandenberghe (2004)), the computational procedure comprising GD is
general and can be applied broadly to problem instances. This is unlike statistical generalization
and notions of in vs. out-of-distribution. In this work, we are interested to study how closely ML
models can emulate the numerical generality of algorithms despite training on a data distribution.

2.2 OUTLINE OF THIS WORK

A recent line of work probes the estimators learned by Transformers on in-context least squares,
and suggests that Transformers learn to solve least squares by mimicking iterative algorithms like
gradient descent and Newton’s method (Von Oswald et al., 2023; Ahn et al., 2024; Fu et al., 2023;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Giannou et al., 2024). These works typically analyze simplified models theoretically and extrapolate
to standard training regimes, backed by empirical observations:

• Theoretical results for simplified models, e.g. non-causal linear attention can implement GD
using a specific choice of model weights.

• Empirical experiments training standard Transformers, e.g. decoder-only softmax attention
Transformers trained end-to-end on in-context least squares display convergence rates reminiscent
of iterative algorithms.

Although prior works suggest that trained Transformers learn to solve least squares with algorithms, it
is still unclear whether statements about learning algorithms in simplified settings transfer to standard
Transformers trained end-to-end. We note two significant gaps between previously-analyzed settings
and standard in-context least squares:

• Architectural differences. Standard Transformers use softmax instead of linear attention, causal
instead of non-causal sequence mixers, and include MLPs and LayerNorms (Ba et al., 2016).

• Optimization. Even if a model can express a precise and general algorithm, it is unclear whether
the model can learn the algorithm from data.

In this work, we tease apart bottlenecks caused by architecture expressivity limitations (Sections 3.3, 4)
and optimization difficulties (Section 5) by investigating two increasingly sophisticated notions of
performing GD for least squares with ML: expressing GD in-weights and learning GD iterates.

3 TRANSFORMERS DO NOT LEARN NUMERICAL ALGORITHMS IN-CONTEXT

In this section, we evaluate standard Transformers, trained end-to-end, on the criteria of machine
precision and numerical generality. Surprisingly, we demonstrate that existing approaches fail to
exhibit these properties: the precision of Transformer solutions saturates 106× worse than machine
precision (Section 3.1), and their performance further degrades as problem instances deviate from the
model’s training distribution (Section 3.2). These results suggest that Transformers are not learning
proper algorithms as numerical analysis defines them.

Towards identifying expressivity bottlenecks, we identify three linear algebra primitives that comprise
standard algorithms including GD and Newton’s method (Section 3.3). We find empirically that
Transformers struggle to implement high-precision multiplication, and theoretically we argue that
softmax attention faces an expressivity gap when trying to exactly express multiplications.

3.1 TRANSFORMERS STRUGGLE TO REACH MACHINE PRECISION

Recent work (Von Oswald et al., 2023; Ahn et al., 2024; Fu et al., 2023; Giannou et al., 2024)
studying in-context least squares suggests that Transformers learn to mimic iterative algorithms like
GD and Newton’s method. Note that if Transformers are able to implement iterative algorithms,
the depth of the model should correspond to the number of iterations performed. We thus focus on
the simplest case of fully determined least squares problems with fixed size design matrices and
investigate whether precision improves as we scale to larger and deeper models.

In Figure 1b, following prior work (Ahn et al., 2024), we fix the size of A ∈ R20×5 and train
Transformers end-to-end on least squares, scaling up to L = 64 layers. We compare their precision
to the convergence rate of the full-batch gradient descent algorithm on least squares. For more details
about the training setup, refer to Appendix B.3.1.

At first, Transformer precision scaling exceeds the convergence rate of gradient descent: this finding
mirrors similar results reported by Fu et al. (2023), who suggest Transformers may instead be learning
higher-order algorithms like Newton’s method. However, we further observe that the precision
gains for Transformers rapidly diminish, such that we observe very little difference in precision
between L = 32 and L = 64 layers. The deepest Transformer models we are able to train achieve
an MSE around 10−8. In contrast, gradient descent converges linearly to machine precision, almost
1, 000, 000× better precision. The diminishing returns of the Transformer precision scaling imply
that Transformers are not learning standard numerical algorithms like GD.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 TRANSFORMERS DO NOT EXHIBIT THE GENERALITY OF GRADIENT DESCENT

Figure 2: Transformers generalize poorly to
out-of-distribution regression targets. In con-
trast, using our training recipe, we train a
BASECONV model to perform high-precision
GD iterates. Applied iteratively, our BASEC-
ONV model incurs 10, 000× less generaliza-
tion error on out-of-distribution target vectors
than the Transformer.

We further investigate whether Transformers learn
solutions to least squares that exhibit numerical gen-
erality. Recall that models are trained on a predefined
distribution of least squares problems, Dtrain. If
Transformers learn to solve least squares using a stan-
dard numerical algorithm like GD, then we expect
the performance of the model should be robust to
out-of-distribution inputs.

For GD specifically, the convergence criterion (0 <
η < 2/σ2

max) depends on σmax, the maximum
singular value of A, and the optimal rate of con-
vergence depends on the condition number of A,
κ = σmax/σmin (Boyd & Vandenberghe, 2004).
Thus we specify our training distribution Dtrain over
least squares problems (A ∈ R20×5, b = Ax ∈ R20)
as follows. First, as in prior work (Garg et al., 2022),
we sample the entries of A and x i.i.d from a stan-
dard Gaussian N(0, 1). We then shift and rescale
the singular values of A so that σmax = κ = 5.
After training a 12-layer Transformer model on the
in-context objective, we evaluate our model on out-
of-distribution regression targets b.

We define Db
OOD(σ) by sampling each entry of x

i.i.d. from N(0, σ) and computing b = Ax. Al-
though the distribution of b’s and x’s changes with σ, because the spectra of the A’s is consistent,
we know that GD with fixed choice of η will provably converge to high precision.

We find that compared to GD, the Transformer solutions are brittle to unseen regression target
distributions. Simply scaling the inputs by a factor of 10×, the MSE of the trained Transformer
degrades by a factor of 108. In contrast, GD is robust: a fixed number of GD iterations consistently
converges to the same order of magnitude of precision (Figure 2). The brittleness of the learned
Transformer solution compared to GD again suggests that Transformers are not performing standard
numerical algorithms.

3.3 IDENTIFYING AN EXPRESSIVITY GAP WITH STANDARD TRANSFORMERS

Toward understanding the limitations of the Transformer architecture, we start with GD and Newton’s
method, two algorithms used to solve least squares, and look into primitives that comprise them.

Linear algebra primitives. We observe that GD and Newton’s method can be expressed as
compositions of three simple linear algebra operations: sequence-wise read/write (READ), affine
transformations (LINEAR), and element-wise multiplications (MULTIPLY). For input u ∈ RN×D:

READ(i, j, a, b)(u) =

{
u[k, a:b] k ̸= j

u[i, a:b] k = j
,

LINEAR(H)(u) = uH, where H : RD → Rdout is linear,
MULTIPLY(a, b, dout)(u) = u[:, a:a+dout]⊙ u[:, b:b+dout]

In Appendix D.2, we define these primitives formally and describe how GD and Newton’s method
iterates can each be expressed as a composition of these primitives. Intuitively, READ is required
to transfer information across the sequence dimension, LINEAR to transfer information across the
hidden dimension, and MULTIPLY to compute high-degree interaction terms (like dot products or
element-wise squaring).

Empirical analysis: standard Transformers struggle with multiplication. We train Transformers
on synthetic formulations of these tasks to investigate how precision scales with model size. Details
about our training setups are in Appendix B.3.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Precision vs. Transformer depth, with and without LayerNorms (LN), on synthetic tasks.
While shallow Transformers are able to learn the READ and LINEAR tasks to high precision (< 10−8

with 2-layer models), precision on the MULTIPLY task scales poorly with depth (only 10−6 with
8-layer models).

In Figure 3, we show that even 2-layer Transformers are able to achieve 10−8 MSE on the READ
and LINEAR tasks. However, we find that Transformers struggle with the MULTIPLY task: precision
scales poorly with model depth, such that an 8-layer Transformer is only able to achieve 10−6 MSE.
In Appendix C.1, we further show that precision on the MULTIPLY task also scales poorly with
increased attention dimension, number of attention heads, and MLP upscaling factor.

Theoretical analysis: softmax attention struggles to exactly express multiplication. In Ap-
pendix D.2.4, we provide a proof that a single layer of softmax attention cannot exactly express the
simple element-wise squaring function SQUARE(u)[i, j] = u[i, j]2 (intuitively, because softmax
cannot implement polynomials). Crucially, we note that element-wise squaring is a special case of
element-wise multiply, so softmax attention cannot exactly implement MULTIPLY either:
Theorem 3.1 (Informal statement of Theorem D.31 and Corollary D.32). One-layer single-headed
(causal) softmax attention cannot exactly represent SQUARE and MULTIPLY for all possible inputs.
Since precisely implementing numerical algorithms like GD hinges on performing high-precision
multiplications, this result suggests that the standard Transformer architecture struggles to precisely
implement these algorithms because of a fundamental expressivity gap.

We mention briefly that these findings do not conflict with prior results (Yun et al., 2020b) proving
universal approximation theorems for Transformers, because they typically require parameter count
to scale exponentially with dimension: see Appendix A.

4 ALTERNATE ARCHITECTURES CLOSE THE EXPRESSIVITY GAP

Motivated by the finding that softmax attention struggles to precisely express multiplications, we
next investigate alternate sequence mixer architectures. We are inspired by prior results (Von Oswald
et al., 2023; Giannou et al., 2024) that show non-causal linear attention is able to exactly implement
algorithms like GD and Newton’s method. Thus, we focus on the class of polynomial architectures,
i.e. sequence mixers comprised entirely of polynomial operations, in order to explicitly bake in
multiplications. In this section, we present a unified framework that integrates previous findings
through the perspective of arithmetic circuits. Specifically, we focus on BASECONV, a gated
convolutional model that combines element-wise multiplications (gating) with long convolutions. We
work with BASECONV for two reasons:

• Recent work (Arora et al., 2023; 2024) has shown that BASECONV is equivalent to general arith-
metic circuits, including all polynomial architectures. Thus, existing results with other polynomial
architectures, e.g. linear attention, transfer directly to BASECONV.

• Empirically, gated convolutional models have been shown to perform comparably to attention-based
architectures on tasks like language, audio, and DNA modeling (Arora et al., 2024; Nguyen et al.,
2024; Zhang et al., 2023a).

We emphasize that although we find gated convolutions are convenient to work with theoretically
and empirically, we believe that other sequence mixer architectures may also be able to alleviate the
expressivity issues we highlight in Section 3.3. In particular, we show promising empirical results for
non-causal linear attention in Section 5.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 GATED CONVOLUTIONS ARE EQUIVALENT TO ARITHMETIC CIRCUITS

BASECONV definition. In this work, we focus on a variant of the BASECONV operator from Arora
et al. (2023). Given an input u ∈ RN×D, BASECONV(u) is defined as:

((uWgate + bgate)︸ ︷︷ ︸
Linear Projection

⊙ (h ∗ (uWin + bin) + bconv)︸ ︷︷ ︸
Convolution

)Wout + bout
(2)

where the layer is parameterized by learnable filters h ∈ RN×D, linear projections
Win,Wgate,Wout ∈ RD×D , and bias matrices bconv, bin, bgate, bout ∈ RN×D. Here, ⊙ rep-
resents the Hadamard product, and convolution of two matrices is computed as convolution of the
corresponding columns.

Figure 4: BASECONV can express high-
precision gradient descent: our imple-
mentation of the weight construction
reaches 10−13 MSE in practice.

BASECONVs can exactly express linear algebra prim-
itives. In Appendix D.2.1, we provide explicit construc-
tions of single-layer BASECONV models that exactly im-
plement the READ, LINEAR, and MULTIPLY primitives
from Section 3.3.

We note that this result is stronger than prior BASEC-
ONV expressivity results (e.g. Theorem H.21 from Arora
et al. (2023)), which imply a poly-log-factor increase in
parameters (specifically layers) translating from arbitrary
arithmetic circuits. Here, we show by construction that
these specific primitives, and any circuits that are compo-
sitions of them, incur only a constant factor loss.

BASECONVs can perfectly recover linear algebra prim-
itives from data. In Appendix D.7, for SQUARE and
LINEAR, we further show the following under mild as-
sumptions, which our input distribution satisfies (see de-
tails in Assumptions D.45, D.46, D.55, D.61):
Theorem 4.1 (Informal statement of Theo-
rems D.59, D.62). BASECONV perfectly recovers SQUARE and LINEAR when it achieves
zero population gradient w.r.t. MSE loss.
We note that although results of the form “exact solution implies zero population gradient” exist in the
literature (Ahn et al., 2024; Mahankali et al., 2023), to the best of our knowledge, we are the first to
show the converse (“zero population gradient implies recovery of exact solution”) for sequence model
architectures. In Appendix C.1, we show that BASECONV models can learn the READ, LINEAR, and
MULTIPLY primitives to high precision in practice (Figure 6).

BASECONVs are universal approximators. Finally, we show in Appendix D.4 that BASEC-
ONV can efficiently approximate smooth functions by implementing polynomials:
Theorem 4.2 (Informal statement of Theorem D.39). Given a k-times differentiable function f̄ :
[−1, 1] → R, define f : [−1, 1]N→D → RN×D, which applies f̄ element-wise to all inputs. Then

∀ϵ > 0, there exists a BASECONV model approximates f to within error ϵ, with O
(

k

√
L
ϵ

)
+ k depth

and O(ND) parameters, where ||f (k)||∞ ≤ L.
We additionally prove a universal approximation theorem for general smooth multivariate functions
in Appendix D.4 (Theorem D.44).

4.2 BASECONV CAN PRECISELY EXPRESS GRADIENT DESCENT FOR LEAST SQUARES

We now focus on the gradient descent algorithm for least squares. Explicitly, given a least squares
problem instance Ax = b and an initial iterate x0, a single iteration of gradient descent computes

x1 := x0 − η∇L(x0), where∇xL = AT (Ax− b). (3)

We provide two explicit O(1)-layer weight constructions to express a GD iterate using BASECONV in
Appendix D.3.1. One requires a O(D) state size using a non-causal model (i.e. each entry can access

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

any other entry of the sequence) and one requires a O(D2) state size using a causal model (i.e. entries
cannot access later entries of the sequence). In Appendix D.3.2, we prove that both constructions are
asymptotically optimal with respect to state size.

In Figure 4, we implement our non-causal weight construction into a deep BASECONV model as
a proof of concept. We confirm that gated convolutions can empirically implement high-precision
gradient descent – notably, roundoff errors due to machine precision do not significantly accumulate
in practice, despite scaling up to a depth-100 BASECONV model.

5 TOWARDS TRAINING MODELS TO MACHINE PRECISION

Although BASECONVs are expressive enough to solve least squares precisely, we find that simply
swapping out softmax attention with BASECONV and training end-to-end is insufficient for high
precision: our BASECONV models perform as poorly as standard Transformers (Figure 9). This
suggests that additional precision bottlenecks are present during high-precision training. In this
section, we thus investigate what it takes to train polynomial architectures to machine precision.

Recent works (Rodionov & Prokhorenkova, 2023; 2024) on algorithm learning find that intermediate
supervision is crucial for learning long computation trajectories. We hypothesize that end-to-end least
squares faces a similar challenge. Thus, to study high-precision optimization, we first investigate a
simplified setting: learning to perform explicit GD updates for least squares.

Using this task as a benchmark, we identify a fundamental bottleneck in high-precision regimes,
gradient variance from minibatching, and we identify a metric based on cosine similarity of successive
gradients that is diagnostic of precision saturation during training. We then propose a high-precision
training recipe, which for the first time allows us to train ML models to near machine precision. Using
our training recipe, we learn to perform explicit GD updates to 10−13 average MSE (Figure 1b), and
we can also learn up to 4 iterates of GD at once with an MSE of 10−10 (Table 7).

Simplifying the training setup. We first define a sequence of k-th iterate tasks, where the goal is
to explicitly produce the k-th iterate of GD given a least squares problem instance (A, b), an initial
iterate x0, and a step size η:

{(a1, b1), . . . , (aN , bN),x0} → xk, where xi+1 = xi − η∇L(xi), i ∈ [k − 1]. (4)
We then define the explicit gradient task, where the goal is to produce the GD update vector:

{(a1, b1), . . . , (aN , bN),x0} → ∇L(x0). (5)
Note that (up to a residual connection), the explicit gradient task is equivalent to 1-step GD, and
standard in-context least squares is equivalent to taking k →∞. Thus, the explicit gradient task is
a natural simplification of standard in-context least squares, and the k-th iterate task allows us to
smoothly interpolate between the two extremes of difficulty. Refer to Appendix B for more details.

5.1 TOWARDS A HIGH-PRECISION TRAINING RECIPE

Our theoretical results in Section 4 imply that a 3-layer BASECONV is expressive enough to solve the
explicit gradient task, so we use training a 3-layer BASECONV on this task as our benchmark for
studying the challenges of high-precision learning.

Precision saturates with standard training procedures. Motivated by prior work (Garg et al.,
2022; Von Oswald et al., 2023; Ahn et al., 2024), we start by investigating two basic optimization
procedures: Adam with constant learning rate (LR) and with exponentially decaying LR.

In Appendix C.2 (Figure 10), we sweep initial LR and LR steprate across 2-3 orders of magnitude for
constant and decaying LR schedules. We find:

• Precision saturation occurs with both constant and decaying LR schedules. After a number of
training iterations, the average loss saturates and is unable to improve. We note that this occurs
even while gradients magnitudes and LR are non-zero.

• Slower-decaying LR schedules perform better but require exponentially more training iterations.
In Figure 8, we further analyze this phenomenon in the simpler case of 1-layer Transform-
ers/BASECONVs on the MULTIPLY synthetic. We observe a power-law relation between precision

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Gradient metric is predictive of precision saturation (left). We propose a simple adaptive
LR scheduler that alleviates precision saturation (middle). Adaptive LR effectively boosts gradient
signal during training (right).

and number of training iterations as we sweep steprate; although it may be possible to train to high
precision in theory, this approach seems infeasible in practice.

• With aggressively-decaying LR schedules, higher initial LR is better. For a fixed scheduler step
rate, increasing initial LR leads to significant improvements in final MSE, e.g. in Figure 10, an
improvement of 1000× simply by increasing initial LR from 10−3 to 10−2. Choosing a LR that is
too large causes training instability, so in practice we set it to the largest value that trains stably.

Our analysis suggests that Adam with an exponentially decreasing LR scheduler gets us only part of
the way to a machine precision training recipe. We next address the issue of precision saturation.

Stochastic gradients bottleneck precision. We identify minibatch gradient variance as the main
source of precision saturation. Although our goal is to minimize the expected loss over problem
instances from Dtrain, in practice we minimize over finite minibatch samples instead. Minibatch
training is the standard in ML, but interestingly we find that the variance in minibatch gradients can
dominate the population gradient signal in high-precision regimes, causing the loss to stagnate.

To demonstrate this, we define a simple metric to assess the strength of the gradient signal during
training. At a given training step, we take the current model weights, sample n different minibatches
of least squares problems, and compute the minibatch model gradients {g1, . . . , gn}. We then
compute the average cosine similarity between all pairs, as in Liu et al. (2023b):

σg :=
2

n(n− 1)

∑
i ̸=j

gTi gj
||gi||2||gj ||2

(6)

We observe that this cosine similarity metric is predictive of precision saturation across MSE scales
and optimizer hyperparameters (Figure 5).

An adaptive LR scheduler boosts gradient signal beyond precision saturation. We thus propose
an adaptive LR scheduler based on the gradient variance. Our scheduler is motivated by two intuitions:

• Whenever the cosine similarity metric is high, gradient signal is strong. In order to refine the
highest-precision bits of the model weights, we need to slowly decrease the LR.

• Whenever the cosine similarity metric is low, the model weights are stuck in a local region of the
loss landscape. To allow the model to escape this region, we need to increase the LR.

The basic scheduler we use in this work simply decreases the LR exponentially while the metric is
above a threshold σth and increases the LR instead if the metric is below σth. In Figure 5, we show
that this simple approach alleviates the loss saturation phenomenon: we see a boost in population
loss across our LR settings, and we observe the models consistently improve as we continue training.
We note that proper choice of LR hyperparameters is still crucial for efficient convergence to machine
precision – we leave speeding up the convergence rate via better adaptive schedulers to future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Exponential Moving Average (EMA) over optimizer updates. Finally, motivated by our obser-
vation that gradient variance bottlenecks precision and inspired by recent works (Lee et al., 2024;
Pagliardini et al., 2024), we apply an additional EMA over Adam’s update vectors to help smooth
out minibatch noise. Empirically, we find this boosts the final MSE by as much as 100, 000× on the
explicit gradient task: see Appendix C.2 (Figure 11).

Our training recipe for efficient high-precision convergence thus involves two techniques: (1) an
adaptive LR scheduler that exponentially increases or decays LR according to the cosine similarity
metric; and (2) applying EMA over optimizer updates.

5.2 LEARNING HIGH-PRECISION GRADIENT DESCENT WITH POLYNOMIAL ARCHITECTURES

Using our training recipe, we successfully train two 3-layer models with polynomial architectures,
BASECONV and non-causal linear attention, on the explicit gradient task. For the first time, we are
able to train to near machine precision: we achieve an average loss of 10−13 MSE.

In Figure 1b, we slot our trained models into the standard GD algorithm, using their predictions
in place of the true least squares gradients ∇L. Specifically, for a least squares problem Ax = b
and initial iterate x0, we repeatedly compute xi+1 := xi − η∆i, where ∆i := Tθ(A, b,xi) is the
prediction of the model. We iteratively apply the model until convergence to a fixed point x∞.

We find that both our models achieve high precision. In this setting, we reach an average MSE of
10−12 (Figure 1, right): this is 100, 000× better MSE than the biggest Transformers we are able
to train end-to-end. Moreover, our BASECONV model exhibits better numerical generality than
the Transformer, incurring a 10, 000× smaller generalization gap on problems outside its training
distribution (Figure 2). Interestingly, we find that our linear attention model exhibits markedly worse
generality: its out-of-distribution performance nearly matches the Transformer’s, and the model
iterates eventually diverge: see Figure 13.

Learning k-iterates of GD for larger k. We find that our training recipe also allows us to learn up
to k = 4 iterates of GD at once with 10−10 MSE: see Table 7 and Figure 14 for results. We are not
able to stably train deeper models without reintroducing non-polynomial normalization techniques
like LayerNorms, which causes precision bottlenecks. For small k, we observe that LayerNorms
worsen precision by over 1, 000×. See Appendix C.3 for details.

Experiments with in-context ODE solving. Finally, towards high-precision ML for more realistic
tasks, we provide preliminary results on in-context ODE solving. We find that our proposed techniques
outperform standard Transformers by up to 1, 000, 000× in MSE (up to ≈ 10−10 with iterative
BASECONVs vs. ≈ 10−4 with 12-layer Transformers). See Appendix C.4 for details.

6 DISCUSSION AND LIMITATIONS

In this work, we investigate learning to solve least squares from a numerical perspective. We
find that Transformers fail to learn solutions that exhibit the properties of machine precision and
numerical generality. Disentangling effects from the model architecture and optimizer, we find
that standard design choices perform surprisingly poorly from the lens of numerics. We identify
expressivity limitations with softmax attention, and find surprisingly that even MLPs and LayerNorms
significantly affect precision (up to 1, 000, 000× worse MSE on the explicit gradients task). On the
optimization front, we find stochastic gradient noise from minibatch training becomes a precision
bottleneck in high-precision regimes. We propose an adaptive LR scheduler that alleviates this
issue on a simplified task, but we suspect that this issue remains a fundamental challenge on harder
problems. Crucially, although we make progress toward learning to solve numerical least squares
end-to-end, our techniques struggle to maintain stable and precise training with deep networks.

We note that the numerical criteria we consider in this work represent a fundamentally different type
of learning and generalization from statistical notions that are prevalent in ML. We believe these
numerical perspectives may be relevant to the wider scientific ML community. For example, existing
approaches to solving PDEs have shown promise but are known to be brittle outside their training
distributions (Wang & Lai, 2023; Rathore et al., 2024). This inhibits their usefulness in high-impact
applications like climate or fluids modeling, where high precision and robustness are crucial. We
believe learning to implement precise numerical algorithms directly from data is an exciting prospect
that has the potential to unlock new capabilities across science and engineering.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We will release the code and configuration files necessary to reproduce our experiments upon
acceptance of this paper. In this work, all experiments are done using synthetic data and tasks. All
experiments were conducted using PyTorch on NVIDIA A100/H100 GPUs. Detailed hyperparameters
(learning rate, batch size, and optimizer settings) and proofs of all theoretical claims are provided in
the supplementary materials.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024.

Kabir Ahuja, Madhur Panwar, and Navin Goyal. In-context learning through the bayesian prism.
arXiv preprint arXiv:2306.04891, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitec-
tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and Improving Recall in Efficient Language Models,
2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W
Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.
arXiv preprint arXiv:2402.15734, 2024.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context, 2024. URL https://arxiv.org/abs/2312.06528.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In International Conference on Machine Learning, pp. 5544–5562. PMLR, 2023.

Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, and Sanjay Shakkottai. In-
context learning with transformers: Softmax attention adapts to function lipschitzness, 2024. URL
https://arxiv.org/abs/2402.11639.

D. Jackson. The theory of approximation. Amer. Math. Soc. Colloq. Publ., vol. 11, Amer. Math. Soc,
Providence, R. I., 1930.

11

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2312.06528
https://arxiv.org/abs/2402.11639

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao, Nimit S Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri
Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all structured
linear maps. arXiv preprint arXiv:2012.14966, 2020.

Ishita Dasgupta, Andrew K Lampinen, Stephanie CY Chan, Antonia Creswell, Dharshan Kumaran,
James L McClelland, and Felix Hill. Language models show human-like content effects on
reasoning. arXiv preprint arXiv:2207.07051, 2022.

Uriel Frisch. Turbulence: the legacy of AN Kolmogorov. Cambridge university press, 1995.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. arXiv preprint arXiv:2310.17086,
2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D Lee. How well
can transformers emulate in-context newton’s method? arXiv preprint arXiv:2403.03183, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Michael T Heideman and C Sidney Burrus. Multiplicative complexity, convolution, and the DFT.
Springer, 1988.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes, 2024. URL
https://arxiv.org/abs/2405.19101.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking by
amplifying slow gradients, 2024. URL https://arxiv.org/abs/2405.20233.

Jerry Weihong Liu, N Benjamin Erichson, Kush Bhatia, Michael W Mahoney, and Christopher Re.
Does in-context operator learning generalize to domain-shifted settings? In The Symbiosis of Deep
Learning and Differential Equations III, 2023a.

Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqiang Shen, and Trevor Darrell. Dropout reduces underfitting,
2023b. URL https://arxiv.org/abs/2303.01500.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in
machine learning for fluid-related partial differential equations. Nature Machine Intelligence, 6
(10):1256–1269, September 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00897-5. URL
http://dx.doi.org/10.1038/s42256-024-00897-5.

12

https://arxiv.org/abs/2405.19101
https://arxiv.org/abs/2405.20233
https://arxiv.org/abs/2303.01500
http://dx.doi.org/10.1038/s42256-024-00897-5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in Neural Information Processing Systems, 36, 2024.

William Merrill and Ashish Sabharwals. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.
doi: 10.1162/tacl_a_00562. URL https://aclanthology.org/2023.tacl-1.31.

Eric J. Michaud, Ziming Liu, and Max Tegmark. Precision machine learning. Entropy, 25(1):175,
January 2023. ISSN 1099-4300. doi: 10.3390/e25010175. URL http://dx.doi.org/10.
3390/e25010175.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023. URL https://arxiv.org/abs/2301.
05217.

Eric Nguyen, Michael Poli, Matthew G. Durrant, Armin W. Thomas, Brian Kang, Jeremy Sul-
livan, Madelena Y. Ng, Ashley Lewis, Aman Patel, Aaron Lou, Stefano Ermon, Stephen A.
Baccus, Tina Hernandez-Boussard, Christopher Ré, Patrick D. Hsu, and Brian L. Hie. Se-
quence modeling and design from molecular to genome scale with evo. bioRxiv, 2024.
doi: 10.1101/2024.02.27.582234. URL https://www.biorxiv.org/content/early/
2024/02/27/2024.02.27.582234.

Steven A Orszag. Comparison of pseudospectral and spectral approximation. Studies in Applied
Mathematics, 51(3):253–259, 1972.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older,
2024. URL https://arxiv.org/abs/2409.03137.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023.

Peter Bürgisser and Michael Clausen and M. Amin Shokrollah. Algebraic Complexity Theory.
Springer, 1997.

Tobias Von Petersdorff. Polynomial approximation and interpolation. 2015. Numerical Analysis Class
Notes. https://www.math.umd.edu/~petersd/666/amsc666notes02.pdf.

W. Pleśniak. Multivariate jackson inequality. Journal of Computational and Applied Math-
ematics, 233(3):815–820, 2009. ISSN 0377-0427. doi: https://doi.org/10.1016/j.cam.
2009.02.095. URL https://www.sciencedirect.com/science/article/pii/
S0377042709001307. 9th OPSFA Conference.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.org/
abs/2201.02177.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
pinns: A loss landscape perspective, 2024. URL https://arxiv.org/abs/2402.01868.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. Advances in Neural Information
Processing Systems, 36, 2024.

Gleb Rodionov and Liudmila Prokhorenkova. Neural algorithmic reasoning without intermediate
supervision, 2023. URL https://arxiv.org/abs/2306.13411.

13

https://aclanthology.org/2023.tacl-1.31
http://dx.doi.org/10.3390/e25010175
http://dx.doi.org/10.3390/e25010175
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://www.biorxiv.org/content/early/2024/02/27/2024.02.27.582234
https://www.biorxiv.org/content/early/2024/02/27/2024.02.27.582234
https://arxiv.org/abs/2409.03137
https://www.math.umd.edu/~petersd/666/amsc666notes02.pdf
https://www.sciencedirect.com/science/article/pii/S0377042709001307
https://www.sciencedirect.com/science/article/pii/S0377042709001307
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2402.01868
https://arxiv.org/abs/2306.13411

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Gleb Rodionov and Liudmila Prokhorenkova. Discrete neural algorithmic reasoning, 2024. URL
https://arxiv.org/abs/2402.11628.

Günther Schulz. Iterative berechung der reziproken matrix. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 13(1):57–59, 1933.

Smoothness. Smoothness — Wikipedia, the free encyclopedia, 2006. https://en.wikipedia.
org/wiki/Smoothness.

Gilbert Strang. Linear algebra and its applications. 2012.

Lloyd N Trefethen. Spectral methods in MATLAB. SIAM, 2000.

Lloyd N. Trefethen and David Bau. Numerical Linear Algebra, Twenty-fifth Anniversary
Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2022. doi:
10.1137/1.9781611977165. URL https://epubs.siam.org/doi/abs/10.1137/1.
9781611977165.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark,
2022. URL https://arxiv.org/abs/2205.15659.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Yongji Wang and Ching-Yao Lai. Multi-stage neural networks: Function approximator of machine
precision, 2023. URL https://arxiv.org/abs/2307.08934.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

D.C. Wilcox. Turbulence Modeling for CFD. Number v. 1 in Turbulence Modeling for CFD. DCW
Industries, 2006. ISBN 9781928729082. URL https://books.google.com/books?id=
tFNNPgAACAAJ.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
model selection capabilities in transformer models. arXiv preprint arXiv:2311.00871, 2023.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J. Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences,
120(39), September 2023a. ISSN 1091-6490. doi: 10.1073/pnas.2310142120. URL http:
//dx.doi.org/10.1073/pnas.2310142120.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning for differential
equation problems. arXiv preprint arXiv:2304.07993, 2023b.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions?, 2020a.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv
Kumar. O (n) connections are expressive enough: Universal approximability of sparse transformers.
Advances in Neural Information Processing Systems, 33:13783–13794, 2020b.

Michael Zhang, Khaled K. Saab, Michael Poli, Tri Dao, Karan Goel, and Christopher Ré. Effectively
modeling time series with simple discrete state spaces, 2023a. URL https://arxiv.org/
abs/2303.09489.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023b.

14

https://arxiv.org/abs/2402.11628
https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Smoothness
https://epubs.siam.org/doi/abs/10.1137/1.9781611977165
https://epubs.siam.org/doi/abs/10.1137/1.9781611977165
https://arxiv.org/abs/2205.15659
https://arxiv.org/abs/2307.08934
https://books.google.com/books?id=tFNNPgAACAAJ
https://books.google.com/books?id=tFNNPgAACAAJ
http://dx.doi.org/10.1073/pnas.2310142120
http://dx.doi.org/10.1073/pnas.2310142120
https://arxiv.org/abs/2303.09489
https://arxiv.org/abs/2303.09489

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

The appendix is organized as follows:

• Appendix A provides a more detailed overview of related work.
• Appendix B provides details about our experimental setup.
• Appendix C provides additional experiments and ablation studies.
• Appendix D provides details about our main theoretical results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXTENDED BACKGROUND

A.1 LEAST SQUARES

Least squares, Ax = b, is well-understood theoretically, and we know of simple numerical algorithms
for solving least squares to high precision (Weisberg, 2005; Boyd & Vandenberghe, 2004). We focus
on two algorithms: gradient descent and Newton’s method.

Gradient descent Given a guess for x∗, we minimize the least squares loss

L(x) = 1

2

N∑
i=1

(aT
i x− bi)

2 (7)

via gradient descent on x:

∇xLN =

N∑
i=1

(xTai − bi)ai (8)

xt+1 = xt − η∇LN (xt) (9)

Ordinary Least Squares and Newton’s method In the noiseless, full determined regime, the
Bayes-optimal estimator is ordinary least squares (OLS) (Weisberg, 2005):

xOLS = (ATA)−1AT b, (10)

where

A =

← a1 →
...

← aN →

 , b =

 b1
...
bN

 (11)

Note that this estimator requires a matrix inverse, which is expensive to compute exactly. An
alternative is to use Newton’s method to approximate the matrix inverse term (Schulz, 1933). To
estimate (ATA)−1, we can perform the following iterative algorithm:

Mt+1 = Mt(2I − (ATA)Mt) (12)

where Mt converges to (ATA)−1.

A.2 RELATED WORK

In this section, we detail prior work on in-context learning, Transformer expressivity, gated convolu-
tional architectures, and algorithm learning.

In-context learning. The capability of Transformers to perform in-context learning on language
and pattern matching tasks has been well-documented (Brown et al., 2020; Dasgupta et al., 2022; Wei
et al., 2022). More recently, a flurry of work has investigated in-context learning for regression-style
tasks. Garg et al. (2022) first formulated the mathematical framework to analyze the estimators
Transformers implement in-context, focusing on linear regression and other least squares problems. A
number of works further observed empirically that Transformers seem to approximate Bayes-optimal
estimators on distributional problems. For example, based on the task distribution, the performance of
in-context Transformers mimics optimally-tuned LASSO on sparse linear regression, ridge regression
on noisy dense linear regression, and Bayes-optimal priors for task mixtures (Akyürek et al., 2024;
Raventós et al., 2024; Yadlowsky et al., 2023; Ahuja et al., 2023; Bai et al., 2024). Beyond standard
least squares problems, other works have investigated the ability of Transformers to in-context solve
broader problems of scientific interest like differential equations (Yang et al., 2023b; Chen et al.,
2024; Liu et al., 2023a).

Towards explaining these observations, recent works have focused on understanding the expressivity
and optimziation landscapes of Transformer variants (typically non-causal linear attention) on linear
regression. Linear attention has been shown to be expressive enough to implement numerical
algorithms for solving linear regression, including gradient descent (Akyürek et al., 2022; Von Oswald

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

et al., 2023) and Newton’s method (Fu et al., 2023; Giannou et al., 2024). Recent work (Ahn et al.,
2024; Mahankali et al., 2023; Zhang et al., 2023b) has also begun to investigate the optimization
dynamics for linear attention on least squares. Finally, we highlight that recent work (Bai et al.,
2024; Huang et al., 2023; Collins et al., 2024; Cheng et al., 2024) makes progress on theoretically
understanding non-linear attention, e.g. with softmax or ReLU activations.

Unlike prior work, we investigate the capabilities of standard Transformers, focusing on exploring
their capability to perform high-precision optimization algorithms. Noting a gap between empirical
performance and theoretical claims regarding in-context least squares as gradient descent, we further
investigate alternative architectures to softmax attention.

Expressivity and approximation ability of Transformers. Although Transformers were initially
designed for discrete tasks like language modeling, recent works have investigated the ability of
the Transformer architecture to express general continuous-valued sequence-to-sequence maps. We
briefly mention three classes of prior work:

• Constructive arguments. We highlight Giannou et al. (2023), which proposes a looped-
Transformer weight construction that implements a basic mathematical instruction set. Using
compositions of these instructions, the authors demonstrate that Transformers are expressive
enough to implement numerical algorithms, including matrix inversion and SGD on linear
models.

• Universal approximation results. Several works, such as Yun et al. (2020a;b), provide
bounds on the number of parameters and layers required to approximate smooth sequence-
to-sequence functions to arbitrary precision using Transformers. However, these results
typically require parameters to scale exponentially with respect to problem size, which
quickly becomes impractical in practice.

• Complexity theory results. Recent works (Chiang et al., 2023; Merrill & Sabharwals, 2023;
Merrill & Sabharwal, 2024) prove that log-precision Transformers lie in TC0, a limited
complexity class of circuits.

Gated convolutions. Gated convolutional models are a class of architectures that serve as an
efficient alternative to attention. These models, consisting of gating (element-wise multiplication)
and long convolutions (filter size equal to sequence length), stem from earlier work (Gu et al.,
2021) inspired by the signal processing literature. In this work we focus on the BASECONV model
from Arora et al. (2023), but a recent surge of interest in efficient attention replacements has led to a
flood of gated convolutional architectures (Poli et al., 2023; Peng et al., 2023; Gu & Dao, 2023).

Recent architectural innovations within the class of gated convolutional models have been largely
motivated by language modeling tasks (Fu et al., 2022; Arora et al., 2023). Unlike these prior works,
which focus on matching attention’s performance on discrete tasks, we observe that the connection
between gated convolutions and arithmetic circuits implies they are able to exactly express a range of
important numerical algorithms for continuous-valued tasks. We further investigate their ability to
learn these algorithms in-context.

Algorithm learning. We mention two lines of work related to learning algorithms using ML:

• Grokking. Several works (Power et al., 2022; Nanda et al., 2023; Lee et al., 2024) have
observed the ability of Transformers to learn to perfectly perform small discrete algorithmic
tasks, e.g. modular arithmetic.

• Neural Algorithmic Reasoning. Recent work (Rodionov & Prokhorenkova, 2023; 2024)
investigates the ability of graph neural networks to learn fundamental algorithms like
breadth-first search (Veličković et al., 2022).

Crucially, we note that these previous works focus on learning discrete algorithmic tasks, which
Transformers excel at. As far as we know, we are the first to investigate whether Transformers are
able to learn numerical algorithms, which rely on addressing key challenges with high-precision
floating-point arithmetic.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Precision and scientific ML. The importance and difficulty of high-precision ML for scientific
settings is well-established: although the scientific ML community has made exciting progress in
recent years, numerical methods are still known to outperform existing ML methods in precision
even on simple PDE benchmarks (McGreivy & Hakim, 2024). Despite this, we are aware of only a
few works which directly focus on investigating high precision for ML. We highlight (Michaud et al.,
2023; Wang & Lai, 2023), which focus on small MLPs for regression tasks and propose alternate
training recipes.

As far as we are aware, we are the first to investigate and isolate effects of model architectures and
optimizers on precision in a controlled setting: in-context least squares. We find that typical training
recipes for sequence models (e.g. softmax attention, Adam, and standard LR schedulers) encounter
surprising precision barriers when applied to numerical tasks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL SETUP

Here, we provide additional details about our experimental setup.

B.1 MODEL ARCHITECTURE

We base our Transformer and BASECONV models off the GPT2 family (Radford et al., 2019). Unless
otherwise specified, we use the following default settings for Transformers:

Config Setting
Embedding size 64

Number of layers 12
Number of heads 1

MLPs True
MLP hidden size 4× embedding size
MLP activation ReLU

LayerNorms True
Input dim 5

Sequence length 20

Table 1: Standard Transformer architecture details.

and the following settings for BASECONVs:

Config Setting
Embedding size 64

Number of layers 3
MLPs False

LayerNorms False
Input dim 5

Sequence length 20

Table 2: BASECONV architecture details.

Finally, we describe the settings we use for our linear attention experiment (Figure 2):

Config Setting
Embedding size 256

Number of layers 3
Number of heads 16

MLPs False
LayerNorms False

Input dim 5
Sequence length 20

Table 3: Linear attention architecture details.

B.2 OPTIMIZER

We describe two sets of optimizer settings we use throughout this work.

The first, representative of standard training procedures, is inspired by prior in-context learning
setups (Garg et al., 2022; Von Oswald et al., 2023).

The second, our training recipe, is for our high-precision experiments, where we find a more
aggressive learning rate scheduler is essential. Note we use the adaptive learning rate scheduler and
EMA described in Section 5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Config Setting
Batch size 256
Optimizer Adam

Learning rate 10−3

Scheduler StepLR
Training iterations 106

Step rate 104

Decay rate 0.9

Table 4: Standard optimizer settings.

Config Setting
Batch size 1024
Optimizer Adam

Learning rate 10−2

Scheduler AdaptiveLR
Training iterations 2.5× 106

Step rate 3× 103

Decay rate 0.9
EMA decay 0.98

EMA lambda 2

Table 5: High-precision training recipe settings for BASECONV.

Finally, we describe the optimization settings we used for high-precision linear attention, which we
found needed a slightly different learning rate scheduler.

Config Setting
Batch size 1024
Optimizer Adam

Learning rate 10−2

Scheduler AdaptiveLR
Training iterations 2.5× 106

Step rate 3× 103

Decay rate 0.9
EMA decay 0.98

EMA lambda 2

Table 6: High-precision training recipe settings for linear attention.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3 TASKS

Each of our in-context learning tasks can be viewed as a sequence-to-sequence map

M : RNin×Din → RNout×Dout

In this subsection, we provide details about task implementations, specifying the input/output formats
for each of the synthetic tasks and in-context least squares variants we implement.

B.3.1 IN-CONTEXT LEAST SQUARES.

We considerMLS : RN×(D+1) → RD, where as above the inputs are formatted as

uin :=

[
a1 . . . aN

b1 . . . bN

]
and the expected output is

Tθ(uin)[:-1, -1:] := x.

B.3.2 PRIMITIVES.

For each of the following linear algebra primitives, we increase the task size, setting D = 20 and
N = 40.

• READ is defined asMRead : RN×D → RN×D, where the inputs are formatted as

uin ∈ RN×D := [x1 . . . xN]

and the expected outputs are Tθ(uin) ∈ RN×D such that

Tθ(uin)[k, :] :=

{
uin[i, :] k = j

uin[k, :] k ̸= j

for task parameters i ̸= j ∈ [N].
• LINEAR is defined asMLinear : RN×D → RN×1, where the inputs are formatted as

uin ∈ RN×D := [x1 . . . xN]

and the expected outputs are

Tθ(uin) :=
[
xT
1 h . . . xT

Nh
]

where h ∈ RD is a task parameter.

• MULTIPLY is defined asMMultiply : RN×D → RN×D/2, where the inputs are formatted
as

uin ∈ RN×D := [x1 . . . xN]

and the expected outputs are

Tθ(uin) := (x1[:, : D/2]⊙ x1[:, D/2 :] . . . xN [:, : D/2]⊙ xN [:, D/2 :]) .

B.3.3 EXPLICIT GRADIENT UPDATES.

In Section 5, we investigate a simple training setting, in which the model is explicitly trained
to predict the gradient of the least squares loss. We proceed to define the task Mgradient :

R(N+1)×(D2+2D+1) → RD.

The inputs are formatted as

uin :=

[
a1 . . . aN x0

b1 . . . bN 0

]
.

The expected outputs are
Tθ(uin)[-1:, :D] := ∇wL(x0).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.3.4 k-TH GRADIENT DESCENT ITERATE.

Finally, toward end-to-end least squares, we investigate a series of increasingly end-to-end tasks in
which the model is explicitly trained to predict the k-th gradient descent iterate. We proceed to define
the taskMk

iter : R(N+1)×(D2+2D+1) → RD.

The inputs are formatted as

uin :=

[
a1 . . . aN x0

b1 . . . bN 0

]
.

The expected outputs are
Tθ(uin)[-1:, :D] := xk.

B.4 DATA GENERATION

At each training step, we produce a random training prompt uin by sampling each variable randomly:
from the isotropic Gaussian distribution N(0, I) for continuous-valued parameters, and from the
uniform distribution for discrete parameters. Concretely:

• For the in-context linear regression tasks, input vectors x1, . . . ,xN are sampled from
N(0D, ID), and the unknown linear function is determined by w∗, also drawn from
N(0D, ID).

• For the synthetic tasks READ, LINEAR, MULTIPLY (Section 3.3), each column of the inputs
uin ∈ RN×D is sampled from the isotropic Gaussian distribution N(0D, ID). The tasks
READ and LINEAR require specifying additional parameters as follows:

– For READ, at each iteration, i ̸= j ∈ [N] are sampled uniformly.
– For LINEAR, at each iteration, the affine transformation h is sampled from
N(0D, 3ID).

• For the explicit gradient task and the k-th gradient descent iterate task, the random initializa-
tion w0 is also drawn from N(0D, ID).

The model is trained to minimize mean squared error over the distribution of prompts.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATIONS: LINEAR ALGEBRA PRIMITIVES

In Figure 6, we train Transformers and BASECONVs, with MLPs, with and without LayerNorms
(LN), on the READ, LINEAR, and MULTIPLY primitives from Section B.3.2. We vary the model depth
L ∈ {1, 2, 4, 8} and investigate how precision scales with number of layers. In these experiments,
we use a standard exponentially decaying LR schedule for Adam.

We show that Transformers and BASECONVs both achieve high precision (< O(10−9)) on the READ
and LINEAR tasks. However, the Transformers struggle to implement MULTIPLY to high precision,
and performance scales poorly with model depth. We observe that BASECONV without LayerNorm
generally performs the best across all three primitives, consistently outperforming BASECONV with
LayerNorm by 2-4 orders of magnitude.

Figure 6: Attention vs. BASECONV, with and without LayerNorms, on synthetic tasks. Precision
consistently scales better with depth for BASECONV models than for Transformers. While both
models solve READ and LINEAR tasks to at least 10−8 MSE, the precision of Transformers scales
poorly for the MULTIPLY task.

Focusing on 2-layer Transformers and the MULTIPLY task, we additionally find that precision scales
poorly with multiple scaling axes, including hidden dimension, number of heads, and MLP upscaling
factor (Figure 7).

Figure 7: Precision of (2-layer) Transformers on MULTIPLY task scales poorly with attention
dimension (left), number of heads (middle), and MLP width (right, where MLP hidden dimension =
width × attention dimension).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 8: Scaling number of training iterations for 1-layer Transformer vs. BASECONV on the
MULTIPLY task. Both models improve precision by 2-3 orders of magnitude as training duration
increases by 3 orders of magnitude.

Finally, we investigate the effect of training duration on precision. In Figure 8, we train 1-layer
Transformers and BASECONVs, with MLPs and LayerNorms, on the MULTIPLY primitive and vary
the number of iterations for which the model is trained. Recall that since new data is sampled at
each iteration, we also effectively scale the dataset size proportionally. To keep the learning rates
consistent across runs, we scale back the scheduler step size accordingly:

num_iters ∈ {105, 106, 107, 108}
step_size ∈ {103, 104, 105, 106}

We observe a power law, particularly clearly for BASECONV, as we scale from 105 to 108 iterations.
Both models achieve a 2-3 order of magnitude improvement in precision, but this requires also
increasing training duration by 3 orders of magnitude.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.2 ABLATIONS: HIGH-PRECISION OPTIMIZATION

In Figure 9, we try directly training on the end-to-end least squares task, simply replacing softmax
attention with BASECONV in the standard Transformer architecture. We find we are unable to reach
high precision using this training procedure.

Figure 9: Replacing softmax attention with BASECONV in the standard Transformer architecture
and training end-to-end on least squares is not enough to achieve high-precision solutions. BASEC-
ONV models trained end-to-end perform as badly as Transformers at small scale, and our largest
models perform 100× worse than parameter-matched Transformers.

In Figure 10, we ablate the effects of constant and exponentially decaying LR schedulers with Adam
(cutting off training after 106 iterations). We find that neither are able to efficiently train to machine
precision on the explicit gradients task. For exponentially decaying LR schedule, we find that the
LR steprate is a crucial parameter: on the explicit gradient task, a difference of 10, 000× between
precision saturation thresholds using 1× 103 vs 3× 103 for example.

Figure 10: Training with Adam on the explicit gradient task, we ablate LR for constant scheduler
(left), initial LR (middle) and LR steprate (right) for decaying scheduler.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

In Figure 11, we ablate the effect of applying an EMA over the update vectors from the Adam
optimizer. Empirically, we find that this boosts the final MSE by as much as 100, 000× on the explicit
gradient task.

Figure 11: Training on the explicit gradient task, applying EMA over Adam’s update vectors
consistently boosts final MSE, by up to 5 orders of magnitude.

In Figure 12, we ablate the effect of restoring the MLPs and LayerNorms to BASECONV models.
Surprisingly, we find that even these architectural components worsen the model’s precision: on the
explicit gradient task, by a factor of up to 1, 000, 000×MSE. We note that due to training instability
with the BASECONV+MLP model, we used a less aggressive LR schedule with initial LR 10−3 and
LR steprate 104.

Figure 12: Training on the explicit gradient task, adding MLPs and LNs consistently bottlenecks
precision: here, by up to 6 orders of magnitude.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

In Figure 13, we evaluate 3-layer BASECONV and linear attention models trained on the explicit
gradient task. As in Section 5.2, we apply them iteratively until convergence. We then evaluate on
out-of-distribution regression targets, as in Section 3.2.

We surprisingly find that linear attention demonstrates poor numerical generality, despite training to
near machine precision on the training distribution. Beyond σ = 4, the iterations of linear attention
diverge.

This result suggests that although different polynomial architectures may equally be able to express
algorithms, they may learn solutions that exhibit vastly different numerical properties.

Figure 13: While BASECONV demonstrates improved numerical generality compared to end-to-end
trained Transformers, the generalization gap for linear attention is as bad as the Transformer.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.3 k-TH ITERATE GD

In this section, we investigate how well our proposed techniques can learn the k-th GD iterate tasks
as defined in Section 5:

{(a1, b1), . . . , (aN , bN),x0} → xk, where xi+1 = xi − η∇L(xi), i ∈ [k − 1]. (13)

Recall that k = 1 is equivalent to the explicit gradient task, while taking k → ∞ is equivalent to
the standard in-context least squares task. Here, we are interested in understanding how well our
techniques extend to larger k, towards learning end-to-end least squares. See Appendix B for a more
detailed description of the training setup.

Our theoretical results in Section 4 imply that a k + 2-layer BASECONV is expressive enough to
solve the k-th iterate task to machine precision. Thus we train k+2-layer BASECONV models on the
k-th iterate task for k ≥ 1 using our training recipe.

k 1 2 3 4
MSE 5.0× 10−13 2.5× 10−11 2.5× 10−11 3.1× 10−10

Table 7: We can learn up to 4 iterations of GD at once with our current training techniques. Model
stability becomes a bottleneck with harder tasks.

Training on the k-iter GD task, we find our training recipe scales to k = 4 before training instability
occurs. Adding LayerNorms, we are able to train deeper models, but we find MSE worsens by at
least 1, 000× for small k: see Figure 14.

Figure 14: BASECONV with LayerNorms are able to stably scale to deeper models, but LayerNorms
present a precision bottleneck: even on small k, MSE degrades by over 1, 000×.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.4 IN-CONTEXT ODE SOLVING

In this section, we demonstrate the generality of our insights on the more practical setting of in-context
ODE solving. We note that solving differential equations in-context with Transformers is a framework
that has been explored in recent papers (Yang et al., 2023a; Herde et al., 2024; Liu et al., 2023a),
and thus represents a natural first step towards extending our techniques to realistic scientific ML
problems.

Experimental setup. We follow the setup from Liu et al. (2023a):

• We train on a distribution of 1D ODEs over t ∈ [−1, 1], defined by

u′(t) = α1c(t) + α2u(t) + α3. (14)

For each operator, we provide 25 in-context examples of forcing functions, initial conditions,
and their corresponding solution values at a fixed time tquery ∈ [−1, 1]. We then give
the model a query forcing function and initial condition, and the goal is to predict the
corresponding solution at tquery.

• We sample our parameters α1 ∼ Unif([0.5, 1.5]), α2 ∼ Unif([−1, 1]), α3 ∼ Unif([−1, 1]).
• Initial conditions are sampled from u(0) ∼ Unif([−1, 1]).
• Forcing functions c(t) are sampled from a Gaussian process with RBF kernel K(x, x′) =

exp
(
− (x−x′)2

2ℓ2

)
, with length-scale parameter ℓ = 1. We sample each forcing function on

21 equispaced points over [−1, 1].
• ODEs are solve pseudospectrally on N = 41 nodes: we find this is sufficient for machine-

precision solutions with FLOAT32 datatype.

We find that our observations from least squares transfer to the setting of in-context ODEs:

Transformers struggle to learn precise solutions. We find that a 12-layer, 9M parameter Trans-
former model only achieves ≈ 10−4 MSE, almost 1010× worse than the threshold FLOAT32 machine
epsilon implies. Furthermore, as with least squares, we observe precision saturation with model size.
In Figure 15, we find that scaling the depth of the model by up to 2× does not improve precision.
We further note that precision saturations already seems to occur with 4-layer Transformers. We
hypothesize that the depth at which precision saturation begins is dependent on the task difficulty.

Figure 15: Transformers fail to learn precise algorithms for solving ODEs in-context. As with
least squares, precision saturates with deeper models: in our experiments, we observe no significant
performance boost between 4-layer and 24-layer Transformers.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 16: Transformers fail to learn numerically general solutions: performance is brittle to out-
of-distribution ODE parameters (left), forcing function smoothness (middle), and initial condition
distribution (right).

Transformers exhibit brittle generalization. We observe that Transformers are not robust to
changes to the distributions of ODE parameters, forcing functions, and initial conditions. We describe
our experimental setup below, mirroring Liu et al. (2023a):

• Out-of-distribution ODE parameters. We parameterize out-of-distribution ODEs via a scale
parameter σop, where α1 ∼ Unif([1− 1

2σop, 1+
1
2σop]) and α2, α3 ∼ Unif([−σop, σop]). As

we increase σop, we sample from a wider distribution of ODE solution operators, including
those with larger operator norms and worse-conditioned design matrices.

• Out-of-distribution forcing functions. We vary ℓ, the length parameter of the Gaussian
process from which we sample our forcing functions, which effectively controls their
smoothness.

• Out-of-distribution initial conditions. We sample out-of-distribution initial conditions as
u(0) ∼ Unif([−σIC , σIC]). As we vary σ, we widen the distribution of the solution values
at t = 0, which increases the overall magnitudes of the solutions.

We note that in all out-of-distribution experiments, the Transformer’s MSE explodes to near O(1):
refer to Figure 16.

Our proposed techniques obtain precise and general solutions. Liu et al. (2023a) shows that
in-context ODEs can be reduced to solving least squares problems. Thus, we train a 3-layer BASEC-
ONV architecture on the explicit gradient task for the equivalent least squares problem, and apply our
model iteratively, as in Section 5. We compare the performance of our iterative model with end-to-end
Transformers, least squares solvers, and standard gradient descent applied to the equivalent least
squares problem.

We note that our ODEs reduce to least squares problems that are ill-conditioned. In this set of
experiments, we find the condition numbers of our design matrices are O(108). Since the theo-
retical convergence rate of gradient descent on least squares depends inversely on the condition
number (Boyd & Vandenberghe, 2004), we expect our iterative models and standard gradient descent
will require orders of magnitude more iterations than in the least squares problems of Section 5. As
such, we limit the number of iterations for our BASECONV model and standard gradient descent to
10, 000. Nonetheless, we find that our BASECONV model learns to high enough precision that we are
able to maintain the stability of the iterative algorithm for up to O(105) steps. In our experiments, we
iteratively apply our BASECONV model until convergence to a fixed point and report final MSEs.

We find that BASECONV learns a precise and general algorithm for in-context ODEs:

• Precision. In Figure 17, we show that our BASECONV model, applied iteratively, converges
to ≈ 10−10 MSE, ≈ 1, 000, 000× higher precision than our best Transformers.

• Generality. In Figure 18, we find that our BASECONV model exhibits more robust gen-
eralization than the Transformer model: in all the out-of-distribution settings we test, our
BASECONV model achieves higher precision than Transformers in-distribution. Like above,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

we evaluate on out-of-distribution ODE parameters, forcing functions, and initial condi-
tions. In particular, we note that the performance of our BASECONV model almost exactly
matches proper gradient descent, even in out-of-distribution settings. Additionally, we find
the generalization behavior of our BASECONV model matches the generalization of a proper
least squares solver with preconditioning, except for out-of-distribution initial conditions,
where we note that the iterative procedure suffers from slow convergence and times out at
10, 000 iterations.

We believe these preliminary results show the promise of our techniques towards learning numerical
algorithms for more complex tasks, such as solving PDEs, directly from data.

Figure 17: In-distribution error comparison between Transformer, BASECONV, gradient descent, and
least squares.

Figure 18: Out-of-distribution error comparison between Transformer (orange), BASECONV (blue),
gradient descent (gray), and least squares (green): we evaluate out-of-distribution ODE parameters
(left), forcing function smoothness (middle), and initial condition distribution (right). BASEC-
ONV learns a numerically general algorithm that closely matches proper gradient descent and least
squares.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D THEORETICAL RESULTS

This section is organized as follows:

• We detail notation and definitions in Appendix D.1, Appendix D.6.

• In Appendix D.2, we include theoretical results regarding the primitives from Section 3.3:
expressivity results with BASECONV and attention, and iterative algorithms as compositions
of primitives.

• In Appendix D.3, we discuss upper and lower bounds for implementing gradient descent on
least squares using BASECONV, supplementing Section 4.1.

• In Appendix D.4, we provide theoretical details regarding BASECONV and polynomials.

• Finally, in Appendix D.7, we provide technical details about the claims from Section 4.1
that BASECONV can perfectly recover Square and Linear.

D.1 NOTATION

We heavily borrow notation from Appendix H of Arora et al. (2023), which we recollect below. We
denote the all 1 row vector of size k, given by [1 1 . . . 1 1], and the all 0 row vector of size k,
given by [0 0 . . . 0 0], as 1k and 0k, respectively. We also construe the standard basis vector
ei as a column vector in this appendix, and adhere to the following matrix indexing convention:
M[i, j] is the entry in the ith row and the jth column, M[i, :] ∈ F1×n denotes the ith row, and
M[:, j] ∈ Fm×1 denotes the jth column of M ∈ Fm×n, where F is a field (the reader can assume
that F is the field of real numbers i.e. F = R). We then use 1m×n,0m×n ∈ Fm×n to denote the
matrix of all 1s and 0s, respectively. We note that some notation differs from those used in earlier
sections.

Next, we denote the Hadamard product of vectors u,v ∈ Fn as u⊙v; the operation can be extended
to matrices by applying the Hadamard product column-wise across the matrices. This is commonly
referred to as (element-wise) gating. For vectors u,v ∈ Fn, we also denote their linear (or acyclic)
convolution as u ∗ v and cyclic convolution as u⊛ v.

Polynomial Notation. Since convolution is equivalent to operations on polynomials, it is convenient
to use them to discuss the inputs and outputs of gated convolution models. Let us define maps
poly : Fn → F[X]/(Xn) such that

poly(u) =
n−1∑
i=0

u[i]Xi.

This allows us to map between vectors and polynomial. Accordingly, we also define coeff :
F[X]/(Xn+1) → Fn as the map converting polynomials back to vectors: coeff(u(X)) = u with
u[i] defined as the coefficient in u(X) at degree i.

These operations allow us to interpret the convolution of vectors in terms of polynomial multiplica-
tion (Heideman & Burrus, 1988). More specifically, we have

u ∗ v = coeff (u(X) · v(X) mod Xn)

The following notation for a polynomial will be used in this section:

Definition D.1. A polynomial P (X) with degree d and some coefficients c ∈ Rd+1 is defined as,

P (X) =

d∑
i=0

ciX
i.

Further, the degree of P (X) will be denoted as deg(P).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Function Approximation. In this part, we collect notation and known results about function approx-
imation. We will reference some definitions from Pleśniak (2009); Petersdorff (2015); Smoothness
(2006).

The following notation is to denote the kth derivative of a function:

Definition D.2. For some function f : R→ R, f (k) := dk

dxk f(x) is the kth derivative of f .

Define a set of univariate functions with a notion of continuity:
Definition D.3. We denote Ck[a, b] for k = 1, 2, . . . the space of univariate functions f : [a, b]→ R,
which have derivatives f (1), . . . , f (k) that are continuous on the closed interval [a, b].

Next we define a set of multivariate functions with a notion of continuity:
Definition D.4. A function f : [a, b]n → R is in Ck[a, b]n for k = 1, 2, . . . if all partial derivatives

∂α

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

f(y1, y2, . . . , yn)

exist and are continuous, for every α1, α2, . . . , αn ∈ Z≥0, such that α1 + α2 + · · ·+ αn ≤ k and
every (y1, . . . yn) ∈ [a, b]n.

We use the following notation for the set of all univariate polynomials:
Definition D.5. For any integer d ≥ 0, we define

Pd(X) = {c0 + c1X + · · ·+ cdX
d|ck ∈ R}.

In other words, Pd(X) is the space of univariate polynomials of degree less or equal to d.

We use the following notation for multivariate polynomials:
Definition D.6. For any integers n, d ≥ 0 , we define

Pn
d (X1, . . . , Xn) =

{ ∑
α=(α1,...,αn)∈Zn

≥0

cαX
α1
1 Xα2

2 · · ·Xαn
n

∣∣∣∣∣cα ∈ R,
n∑

i=0

αi ≤ d

}
.

Then Pn
d (X1, . . . Xn) is the space of n-variate polynomials of degree less or equal to d.

The following notation is for considering the pointwise absolute value of a matrix:
Definition D.7. For M ∈ RN×D define,

∥M∥∞ =
max

0≤i<N
0≤j<D

|M [i, j]| .

Now lets define the corresponding∞−norm for functions:
Definition D.8. For g : [−1, 1]N×D → RN×D, define

∥g∥∞ =
max

x∈[−1,1]N×D |g(x)| .

We will use the following version of Jackson’s theorem for univariate inputs:
Theorem D.9 (D. Jackson (1930) Jackson’s Theorem for Ck[−1, 1].). Let d, k be integers with
d+ 1 ≥ k ≥ 0 and f ∈ Ck[−1, 1]. Then

inf
P∈Pd

∥f − P∥∞ ≤
(π
2

)k 1

(d+ 1)d · · · (d− k + 2)

∥∥∥f (k)
∥∥∥
∞
. (15)

We will use the following version of Jackson’s theorem for multivariate inputs:
Theorem D.10 (Pleśniak (2009) Jackson’s Theorem for Ck[−1, 1]n). Let d, k be integers with
d+ 1 ≥ k ≥ 0 and f ∈ Ck[−1, 1]n. Then

inf
P∈Pn

d
∥f − P∥∞ ≤

ck
dk

n∑
j=1

∥∥∥∥∥ ∂k+1

∂xk+1
j

f(x)

∥∥∥∥∥
∞

(16)

where ck is a positive constant.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We will use the following definition of univariate smooth functions:
Definition D.11. We call a k times differentiable function f : [−1, 1]→ R to be (k, L)-smooth if∥∥f (k)

∥∥
∞ ≤ L.

Next, we observe that given a univariate smooth function, there’s a univariate bounded degree
polynomial that approximates it to some error, ϵ:
Corollary D.12. For some (k, L)-smooth univariate function f (as in Definition D.11), then there
exists a polynomial Pf (x) with

deg(Pf) ≤ O

(
k

√
L

ϵ

)
+ k

such that for all x ∈ [−1, 1]
|f(x)− Pf (x)| ≤ ϵ.

Proof. We will be a bit more specific on an upper bound of deg(Pf). We pick:

deg(Pf) =

⌈
π

2

(
L

ϵ

) 1
k

+ k

⌉
. (17)

Let d = deg(Pf) where Pf is the polynomial that achieves the left hand side of Equation (15). Then
we have error at most (π

2

)k 1

(d+ 1)d · · · (d− k + 2)

∥∥∥f (k)
∥∥∥
∞
.

Using the definition of a (k, L)-smooth univariate function in Definition D.11 we get the error at most(π
2

)k L

(d+ 1)d · · · (d− k + 2)
≤
(π
2

)k L

(d− k)k

where the inequality follows since each d+ 1, d, . . . , d− k + 2 ≥ (d− k).

Plugging in Equation (17) for d we get the error is at most:(π
2

)k L(
π
2

)k (k

√
L
ϵ

)k = ϵ,

as desired.

We will use the following definition of multivariate smooth functions that map to a single value:
Definition D.13. We call a k times differentiable f : [−1, 1]n → R to be (k, L)-smooth if∥∥∥ ∂k

∂xk
m
f(x)

∥∥∥
∞
≤ L for all 1 ≤ m ≤ n.

Now we show the corresponding observation for multivariate functions and polynomials:
Corollary D.14. Let deg(Pf) = d. For some (k, L)-smooth multivariate function f (as in Defini-
tion D.13), then there exists a polynomial Pf (x) with

deg(Pf) ≤ Ok

(
k

√
nL

ϵ

)
such that for all x ∈ [−1, 1]n

|f(x)− Pf (x)| ≤ ϵ.

Proof. Let Pf be the polynomial we get from the left hand side of Equation (16). We want to upper
bound the error as

ck
dk

n∑
j=1

∥∥∥∥∥ ∂k+1

∂xk+1
j

f(x)

∥∥∥∥∥
∞

≤ ϵ,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

which follows if
ck
dk

n∑
j=1

L ≤ ϵ

since f is (k, L)-smooth. The above is the same as

cknL

dk
≤ ϵ,

or equivalently
k

√
cknL

ϵ
≤ d.

Picking d =

⌈
k

√
cknL

ϵ

⌉
suffices.

Arithmetic Circuit Notation. We briefly recall arithmetic circuits Peter Bürgisser and Michael
Clausen and M. Amin Shokrollah (1997). An arithmetic circuit C with variables X ≜
{x1, x2, . . . , xn} over a field F is interpreted as a directed acyclic graph, where the input nodes
are labelled by either the variables from X or constants from F and the internal nodes are labelled by
+ or × with the output being the polynomial computed at the output node.

We shall also refer to the size1 of the circuit C as the number of wires (or edges in C), the depth of the
circuit as the length of the longest path between an input node and the output node, and the width of
the circuit as the number of wires that will be intersected by a horizontal ‘cut’ through the circuit.
Moreover, the degree of a circuit is defined as the degree of the polynomial computed by the circuit.
We summarize this with the following definition:
Definition D.15. An arithmetic circuit C is an (n, s,∆, w)-circuit if C is an n-variate arithmetic
circuit of size s, depth at most ∆, and width w.

BASECONV Architecture. In the following definitions we formally define the BASECONV model
Arora et al. (2023). To formally define BASECONV, we will need the Kaleidoscope hierarchy Dao
et al. (2020) as well.

To start, we define butterfly factors:

Definition D.16. A butterfly factor of size k ≥ 2 (denoted as Bk) is a matrix of the form Bk =[
D1 D2

D3 D4

]
where each Di is a k

2 ×
k
2 diagonal matrix. We restrict k to be a power of 2.

The following definition is for a butterfly factor matrix, which is made up of the above butterfly
factors:

Definition D.17. A butterfly factor matrix of size n with block size k (denoted as B
(n)

k) is a block
diagonal matrix of n

k (possibly different) butterfly factors of size k:

B
(n)

k = diag
([

Bk

]
1
,
[
Bk

]
2
, . . . ,

[
Bk

]
n
k

)
Now lets define a butterfly matrix:

Definition D.18. A butterfly matrix of size n (denoted as B
(n)

) is a matrix that can be expressed as
a product of butterfly factor matrices: B

(n)
= B

(n)

n B
(n)
n
2

. . .B
(n)

2 . Equivalently, we may define B
(n)

recursively as a matrix that can be expressed in the following form:

B
(n)

= B
(n)

n

[
[B

(n
2)
]1 0

0 [B
(n
2)
]2

]

(Note that [B
(n
2)
]1 and [B

(n
2)
]2 may be different.)

1Note that if all the gates of an arithmetic circuit have bounded arity then the number of wires and gates are
asymptotically the same but in this appendix we will consider gates with unbounded arity.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Using these butterfly matrices, lets define the Kaleidoscope Hierarchy:

Definition D.19 (The Kaleidoscope Hierarchy (Dao et al., 2020)).

• Define B as the set of all matrices that can be expressed in the form B
(n)

(for some n).

• Define (BB∗) as the set of matrices M of the form M = M1M
∗
2 for some M1,M2 ∈ B.

• Define (BB∗)w as the set of matrices M that can be expressed as M = Mw . . .M2M1,
with each Mi ∈ (BB∗) (1 ≤ i ≤ w). (The notation w represents width.)

• Define (BB∗)we as the set of n× n matrices M that can be expressed as M = SES⊤ for
some en× en matrix E ∈ (BB∗)w, where S ∈ Fn×en = [In 0 . . . 0]] (i.e. M is the
upper-left corner of E). (The notation e represents expansion relative to n.)

Here we now formally define a BASECONV layer:

Definition D.20 (BASECONV (Arora et al., 2023)). Given an input sequence u ∈ RN×D, where N is
the sequence length and D is the model dimension, a learned weight matrix W ∈ RD×D and biases
B1,B2 ∈ RN×D and a matrix of convolution filters H ∈ RN×D, a BASECONV layer computes the
following:

yBASECONV := (uW +B1)⊙ (H ∗ u+B2) ∈ RN×D, (18)

where the jth column of H ∗ u ∈ RN×D is defined as H[:, j] ∗ u[:, j].

The corresponding pseudocode for a BASECONV layer is as follows:

Algorithm 1 BASECONV(u,W ,B1,H,B2)

Require: Input sequence u ∈ RN×D, linear map W ∈ RD×D, convolution filter H ∈ RN×D, and
bias matrices B1,B2 ∈ RN×D.

1: In parallel for 0 ≤ n < N : x[n, :] = u[n, :] ·W
2: In parallel for 0 ≤ t < D : z[:, t] = H[:, t] ∗ u[:, t]

3: In parallel for 0 ≤ t < D : y[:, t]← (x[:, t] +B1[:, t])⊙ (z[:, t] +B2[:, t]). ▷ See eq. (18)
4: return y

Remark D.21. The definition of a BASECONV layer in Equation (19) has the input go through a
linear layer before the convolution operation. For this section we will assume the linear layer is the
identity matrix, as it is not needed for the results in this section.

Assumption D.22. Moving forward we assume the weight matrix W ∈ RD×D in Definition D.20
also has the property W ∈ (BB∗)poly- logD

poly- logD. Consequently, each matrix W has Õ(D) parameters
and runtime for matrix vector multiplication Dao et al. (2020).

In this section, we will establish some additional basic primitives that we expect need to implement
via a BASECONV layer: shift and remember. We specify them below:

Definition D.23. shift(y, r, t, f)
Shift an sequential input of length N up or down by s entries:
INPUT: y ∈ RN×D, s ≥ 0.
OUTPUT: z ∈ RN×D where z+ = shift_down(y, s) and z− = shift_up(y, s)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

y ≡

← y0 →

...

← yi−1 →

← yi →

...

← yN−1 →

z+ ≡

← 0→

...

← 0→

← y0 →

...

← yN−1−s →

z− ≡

← ys →

...

← yN−1 →

← 0→

...

← 0→

The following proposition is defining the convolution Kernel that computes the
shift_down

(
·, ⌊N2 ⌋

)
primitive:

Proposition D.24. Define H ∈ R2N×D as

H[k, :] =

{
1D if k = N

0 otherwise
.

For any u ∈ R2N×D, H ∗ u will result in

H ∗
(
u1

u2

)
→
(
0N×D

u1

)
,

where u1,u2 ∈ RN×D.

Proof. The convolution operation: H ∗
(
u1

u2

)
where each column of H is convolved with each

column of u can be restated as a polynomial multiplication. For column i, 0 ≤ i < 2N ,

H[:, i] ∗
(
u1

u2

)
[:, i] = coeff((XN · u[:, i](X)) mod X2N).

Note that the columns of H are all eN basis vectors and poly(eN) = XN .

When we multiply the term through the input polynomial we get,

coeff
(
XN ·

(
u[0][i] + u[1][i]X + · · ·+ u[2N − 1][i]X2N−1) mod X2N

)
= coeff(u[0][i]XN + u[1][i]XN+1 + · · ·+ u[2N − 1][i]X3N−1 mod X2N).

With the lower order terms all becoming zeros, the above is same as

coeff((0 + 0X + · · · 0XN−1

+ u[0][i]XN + u[1][i]XN+1 + · · ·+ u[2N − 1][i]X3N−1) mod X2N).

After we take the mod X2N we get

coeff(0 + 0X + · · ·+ 0XN−1 + u[0][i]XN + · · ·+ u[N − 1][i]X2N−1),

which implies that H ∗
(
u1

u2

)
is (

0N×D

u1

)
,

as desired.

We also define the following primitive:

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Definition D.25. remember(y, r, t, f)
INPUT: y ∈ RN ′×d′

, r ∈ Z, t ∈ Z, f : Rt−r → Rt−r+s,v1 ∈ Rr,x ∈ Rt−r, where y is defined as
below.
OUTPUT: z ∈ RN ′×d′

, which is defined as follows:

y ≡

← v1 →

← x→

0s×d′

← v2 →

0

...

0

z ≡

← v1 →

← f(x)→

← v2 →

0

...

0

We will need the following BASECONV implementation of remember:

Proposition D.26 (Arora et al. (2024), The Remembering Primitive). For any x ∈ Rn×d′
,v1 ∈

Rr×d′
,v2 ∈ Rm−r where n = t − r contained in some y ∈ RN ′×d′

such that v1 is in the first r
rows, x is in the next n rows, 0s fill up the next s rows, and v2 are in the next m− r rows, for some
3n + 3m + 2s + 2t ≤ N ′ so that for h ∈ Rn×d and W ∈ Rd′×d′

with x ∗ h ∈ R(n+s)×d′
and

v ∗ h ∈ R(m+t)×d′
, where v ∈ Rm×d′

is defined as v2+shift_down(v1,m− r), there exists a
(N ′, 8, d′, N ′, d′)− BASECONV that computes remember(y, r, t, f), where f can be implemented
in 1 layer of BASECONV through the parameters W ∈ Rd′×d′

,h ∈ RN ′×d′
, b1 ∈ RN ′×d′

, b2 ∈
RN ′×d′

as defined below:

f(u) =

((
uW

0s×d′

)
+

(
b1

1s×d′

))
⊙
(
u ∗ h+

(
b2

0s×d′

))
We will also need the following generalization of the above result:
Corollary D.27 (Arora et al. (2023)). Let y be as in Proposition D.26 but now let f be implemented
with BASECONV(N,L,D,N,D). Then remember(y, r, t, f) where t−r = n can be implemented
with BASECONV via (N,O(L), D,N,D)− BASECONV.

The rest of Appendix D will use this 5−tuple notation for BASECONV:
Definition D.28. Lets define a 5-tuple notation for a BASECONV layer as (N, ℓ,D,N ′, D′) −
BASECONV with ℓ layers such that:

1. Input and output are N ×D matrices.

2. Each layer is defined by Definition D.20 where N and D are replaced by N ′ and D′. I.e.
each layer takes in N ′ ×D′ matrices and output N ′ ×D′ matrices. We refer to the tuple
(N ′, D′) as the inner dimension of the model.

3. The matrices are projected from (N,D)→ (N ′, D′) (and vice-versa) via a linear projection.

We state the following bounds on parameters and runtime for a single BASECONV layer:

Proposition D.29 (Arora et al. (2023)). An (N, 1, D,N,D)− BASECONV requires Õ(ND) param-
eters and runtime.

We state the following result that says arithmetic circuit can be represented as a BASECONV model:
Theorem D.30 (Arora et al. (2023), Theorem H.21). For any (ND, s,∆, w)-arithmetic circuit
C, there exists an equivalent (N,∆′, D,N ′, D′) − BASECONV with ∆′ = O(∆ logw), N ′ =
O(w), D′ = D that simulates C.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

D.2 PRIMITIVES

In this section, we provide theoretical results about primitives.

• In Appendix D.2.1, we implement the three primitives (READ, LINEAR, and MULTIPLY)
from Section 3.3 using BASECONV, each using a single layer.

• Next, in Appendix D.2.2 and D.2.3, we briefly sketch how the three primitives READ,
LINEAR, and MULTIPLY can be used in composition to exactly express gradient descent
and Newton’s method iterations on least squares (see Appendix A).

• Finally, in Appendix D.2.4, we provide a proof that a single layer of causal softmax attention
cannot exactly represent the entry-wise squaring function. As a corollary, since entry-wise
square is a special case of MULTIPLY, this implies that attention cannot exactly express the
MULTIPLY task for all arguments.

BASECONV parameterization We recount the parameterization of BASECONV from Equation 2:

y :=

(u ·Wgate + bgate)︸ ︷︷ ︸
Linear Projection

⊙ (h ∗ (u ·Win + bin) + bconv)︸ ︷︷ ︸
Convolution

 ·Wout + bout

:= Wout(Wgate(u)⊙ Conv(Win(u)))

(19)

where Win,Wgate,Wout are linear projections RD → RD.

D.2.1 1-LAYER BASECONV CAN IMPLEMENT LINEAR ALGEBRA PRIMITIVES

Below, we formally define the linear algebra primitives we discuss in Section 3.3, and we describe
our BASECONV weight constructions.

Read The READ operator, which maps inputs u ∈ RN×d to outputs y ∈ RN×d, is:

READ(i, j, a, b)(u) =

{
u[k, a : b] k ̸= j

u[i, a : b] k = j
. (20)

Our implementation requires the use of the positional encodings and residual connections within the
BASECONV architecture. Concretely, consider the input

uin =

(
e1 e2 . . . eN

u[1, :] u[2, :] . . . u[N, :]

)
,

where the basis vector ek represents the positional encoding for the k-th entry of the sequence. Define
the output of the BASECONV layer with residual connection:

y := Wout(Wgate(u)⊙ Conv(Win(u)) + u).

Then the following weight construction is equivalent to READ(i, j, a, b):

• Wgate(u[k, :]) := u[k, j]1D

• Conv(Win(u))[k, :] := u[k + i− j, :]− u[k, :]

• Wout := proj(a : b).

In particular, Wgate is defined such that

Wgate(u[k, :]) =

{
1D k = j

0D k ̸= j
.

Thus

Wgate(u)⊙ Conv(Win(u)) =

{
u[k + i− j, :]− u[k, :] = u[i, :]− u[j, :] k = j

0D k ̸= j
.

Finally,

Wgate(u)⊙ Conv(Win(u)) + u =

{
u[i, :] k = j

u[k, :] k ̸= j

so the final output of this layer will be exactly equivalent to READ(i, j, a, b).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Linear transformation The LINEAR operator, which maps inputs u ∈ RN×din to outputs y ∈
RN×dout , is:

LINEAR(H)(u) = uH (21)
where H : Rdin → Rdout is a linear map.

Define Conv(Win(u)) = 1D, Wgate = I , and Wout = H . Then

Wgate(u)⊙ Conv(Win(u)) = u

so
Wout(Wgate(u)⊙ Conv(Win(u))) = uH.

Thus the output of this layer is exactly equivalent to LINEAR(H).

Element-wise multiply The MULTIPLY operator, which maps inputs u ∈ RN×din to outputs
y ∈ RN×dout , is:

MULTIPLY(a, b, dout)(u) = u[:, a : a+ dout]⊙ u[:, b : b+ dout] (22)

Define Conv = Identity, Win = proj(a : a+ dout), Wgate = proj(b : b+ dout), and Wout = I .

Then
Wgate(u)⊙ Conv(Win(u)) = u[:, a : a+ dout]⊙ u[:, b : b+ dout].

Since Wout = I , the output of this layer will be equivalent to MULTIPLY(a, b, dout).

D.2.2 GRADIENT DESCENT

We assume our input is of the form

u =

(
a1 . . . aN x0

b1 . . . bN 0

)
.

Our goal is to compute the gradient update

x1 := x0 − η

N∑
i=1

(xT
0 ai − bi)ai. (23)

Intuitively, our argument proceeds similarly to the causal gradient descent construction from Ap-
pendix D.3.1:

• First, we repeatedly apply READ and LINEAR to move the information {ai, bi} ∀i into e.g.
the final entry of the sequence. Without loss of generality, we omit the rest of the sequence,
and assume we have access to a large enough embedding dimension that we can make use
of arbitrary amounts of memory.
After this phase, our u is of the form

. . . (x0 0 a1 . . . aN b1 . . . bN . . .)
T
.

• Next, we use MULTIPLY and LINEAR to compute and store {xT
0 ai} for all i. We will end

up with
u = . . .

(
x0 0 {ai}i {bi}i {xT

0 ai}i . . .
)
.

• We use LINEAR to compute and store {xT
0 ai − bi} for all i:

u = . . .
(
x0 0 {ai}i {bi}i {xT

0 ai}i {xT
0 ai − bi}i . . .

)
.

• We use MULTIPLY and LINEAR to compute and store {(xT
0 ai − bi)ai} for all i:

u = . . .
(
x0 0 {ai}i {bi}i {xT

0 ai}i {(xT
0 ai − bi)ai}i . . .

)
.

• Finally, we can use LINEAR to compute the gradient update:

u = . . .
(
x0 − η

∑N
i=1(x

T
0 ai − bi)ai 0 {ai}i {bi}i {xT

0 ai}i {(xT
0 ai − bi)ai}i . . .

)
.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

D.2.3 NEWTON’S METHOD

We assume our input is of the form

u =

(
a1 . . . aN M0[1, :] . . . M0[D, :]
b1 . . . bN 0 . . . 0

)
.

Our goal is to compute the Newton’s iterate:

M1 := M0(2I − (aTa)M0), (24)

where

a =

← a1 →
...

← aN →

 , b =

 b1
...
bN

 . (25)

For any matrix M ∈ Rn×p, let flt denote the flatten operation, so that flt(M) represent a
vectorized version of M : flt(M) ∈ Rnp.

We proceed similarly to the argument from Appendix D.2.2.

• First, we repeatedly apply READ and LINEAR to move all information {ai}i ∀i and flt(M)
to e.g. the final entry of the sequence. We omit the rest of the sequence for notational ease,
and we assume we have access to a large enough embedding dimension that we can make
use of arbitrary amounts of memory.
After this phase, we have

u = . . . (flt(M0) {ai}i . . .) .

• Using LINEAR, we can copy and rearrange the ai’s to construct copies of flt(a) and
flt(aT):

u = . . .
(
flt(M0) {ai}i flt(aT) flt(a) . . .

)
.

• Now, note that we can represent the matrix multiplication aTa as a linear combination of
the entries of the element-wise multiplication flt(aT)⊙ flt(a). This means that we can
obtain flt(aTa) using a single application of MULTIPLY and LINEAR:

u = . . .
(
flt(M0) {ai}i flt(aT) flt(a) flt(aTa) . . .

)
.

• By the same argument, we can obtain flt((aTa)M0) using another application of MULTI-
PLY and LINEAR:

u = . . .
(
flt(M0) {ai}i flt(aT) flt(a) flt((aTa)M0) . . .

)
.

• Finally, we have that flt(M1) := 2flt(M0) − flt((aTa)M0) can be obtained using
LINEAR once more:

u = . . .
(
flt(M1) {ai}i flt(aT) flt(a) flt((aTa)M0) . . .

)
.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

D.2.4 SOFTMAX ATTENTION CAN’T IMPLEMENT ELEMENT-WISE SQUARING.

In this section, we consider the following parameterization of softmax attention:

Attn(u) = softmax
(
(uWQ)(uWK)T +M

)
(uWV +B), (26)

where u ∈ RN×D, WQ,WK ,WV ∈ RD×D, B ∈ RN×D, and M ∈ RN×N is the causal attention
mask:

Mij =

{
−∞ i < j

0 otherwise
(27)

Theorem D.31. One-layer single-headed causal softmax attention cannot exactly represent the
entry-wise squaring function SQUARE : RN×D → RN×D s.t.

SQUARE(u)ij = u2
ij

for all u ∈ RN×D.

Proof. We proceed by contradiction. Let’s assume there exists WQ,WK ,WV ,B ∈ RD×D and
B ∈ RN×D such that ∀u ∈ RN×D,

softmax
(
(uWQ)(uWK)T +M

)
(uWV +B) = SQUARE(u). (28)

Consider the set of inputs u ∈ RN×D with at most one non-zero entry, defined as

uij =

{
uij (i, j) = (a, b)

0 else
(29)

for an arbitrary choice of a ∈ [N], b ∈ [D]. Then:

Q := uWQ =

0N

...

0N

uabWQ[b, :]

...

0N

(30)

where Q’s rows are all 0 except for the a-th, which is uabWQ[b, :].

Similarly:

K := uWK =

0N

...

0N

uabWK [b, :]

...

0N

(31)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

and

V := uWV =

0N

...

0N

uabWV [b, :]

...

0N

(32)

Then the pre-softmax attention matrix, A′ = QKT , satisfies

A′ij =

{
u2
ab(WQW T

K)bb (i, j) = (a, a)

0 otherwise
. (33)

Define
C := u2

ab(WQW T
K)bb. (34)

Now consider what happens after we apply the softmax operator. Recall that the softmax operator is
defined as

softmax(z)i =
exp(zi)∑D
j=1 exp(zj)

(35)

for z ∈ RD. Then A := softmax(A′ +M) satisfies

Aij =

1
i i ̸= a

1
exp(C)+a−1 i = a, j ̸= a

exp(C)
exp(C)+a−1 (i, j) = (a, a)

(36)

Now let’s consider the output of softmax attention:

O = A(V +B) (37)

such that O = SQUARE(u).

Note that for i ̸= a:

O[i, :] =
1

i

i∑
k=1

(V +B)[k, :] (38)

and this must also be equal to 0N = SQUARE(u)[i, :]. We consider three cases:

• First, consider i < a in order from i = 1, . . . , a− 1. Since this equality is true for all i < a,
we can verify that (V +B)[i, :] must equal 0N for all i < a.

• Next, looking at i = a+ 1, we have

1

a+ 1
((V +B)[a, :] + (V +B)[a+ 1, :]) = 0N (39)

so we must have
(V +B)[a, :] = −(V +B)[a+ 1, :] (40)

• Finally, from i ≥ a + 1, we can again conclude that (V +B)[i, :] must equal 0N for all
i > a+ 1.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

This means the only rows of V +B that might not be zero are (V +B)[a, :] and (V +B)[a+ 1, :].
Thus looking at the a-th row:

exp(C)

exp(C) + a− 1
(V +B)[a, :] = SQUARE(u)[a, :]

=
[
0 . . . u2

ab . . . 0
]

Recall that from above,
V [a, :] = uabWV [b, :] (41)

Then analyzing entry-wise, we have:

exp(C)

exp(C) + a− 1
(uabWV [b, j] +B[a, j]) = 0 (42)

for all j ̸= b, and
exp(C)

exp(C) + a− 1
(uabWV [b, b] +B[a, b]) = u2

ab. (43)

We now plug back in our expression for C and simplifying the latter equation. For ease of notation,
denote A := (WQW T

K)bb, V := WV [b, b], and B := B[a, b]. Then the expression simplifies to:

V exp(Au2
ab)uab +B exp(Au2

ab) = exp(Au2
ab)u

2
ab + (a− 1)u2

ab

This must hold for all non-zero values of uab. We can take V = B = 0, but we are still left with

− exp(Au2
ab)u

2
ab = (a− 1)u2

ab

− exp(Au2
ab) = a− 1

However, there is no choice of A such that this statement holds. This completes the proof by
contradiction.

As a corollary, we have

Corollary D.32. One-layer single-headed causal softmax attention cannot exactly represent the
entry-wise multiply function MULTIPLY : RN×D → RN×dout s.t.

MULTIPLY(a, b, dout)(u) = u[:, a : a+ dout]⊙ u[:, b : b+ dout] (44)

for all u ∈ RN×D and all choices of a, b, dout.

Proof. Note that for a = 0, b = 0, and dout = D,

SQUARE(u) = MULTIPLY(a, b, dout)(u).

Since softmax attention cannot exactly represent SQUARE for all u, it also cannot represent
MULTIPLY for all u.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

D.3 UPPER AND LOWER BOUNDS WITH BASECONV FOR GRADIENT DESCENT

In this section, we detail upper and lower bounds for implementing gradient descent using BASEC-
ONV, as discussed in Section 4.1.

• Upper bounds. We provide two explicit constructions for implementing iterations gradient
descent on linear regression: one for non-causal BASECONV requiring O(1) layers and
O(D) state size, and one for causal BASECONV requiring O(1) layers and O(D2) state
size.

• Lower bounds. In Appendix D.3.2, we prove that our constructions are asymptotically
optimal with respect to layers and state size.

D.3.1 UPPER BOUNDS: BASECONV CAN IMPLEMENT GRADIENT DESCENT FOR LINEAR
REGRESSION

In this section, we provide weight constructions for exactly implementing gradient descent on linear
regression. Recall:

LN =
1

2N

N∑
i=1

(xTai − bi)
2 (45)

so

∇xLN =
1

N

N∑
i=1

(xTai − bi)ai (46)

=
1

N

(
N∑
i=1

biai −

(
N∑
i=1

aia
T
i

)
x

)
(47)

Non-causal BASECONV This weight construction uses Equation 46 to compute the gradient
descent update.

We note that non-causal constructions for in-context linear regression are standard in the literature:
e.g. Von Oswald et al. (2023); Ahn et al. (2024).

We start with input:

b ≡

a1 . . . aN aq

b1 . . . bN 0

We define the initial embedding:

a1 . . . aN 0D

b1 . . . bN 0

x0 . . . x0 x0

0D . . . 0D 0D

0D . . . 0D 0D

0D . . . 0D aq

0 . . . 0 0

We drop the bottom two rows of the block matrix representation for now and show how to perform
the gradient descent update with the rest of the embedding.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Layer 1:

← ai →

← bi →

← x0 →

← ai →

← 0D →

︸ ︷︷ ︸
conv(in_proj(·))

⊙

← 1D →

← 1→

← 1D →

← x0 →

← 0D →

︸ ︷︷ ︸
gate_proj(·)

=

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← 0D →

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← 0D →

→︸︷︷︸

out_proj(·)

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← (xT
0 ai − bi)1

D →

Layer 2:

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← (xT
0 ai − bi)1

D →

︸ ︷︷ ︸

conv(in_proj(·))

⊙

← 1D →

← 1→

← 1D →

← 1D →

← ai →

︸ ︷︷ ︸
gate_proj(·)

=

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← (xT
0 ai − bi)ai →

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← (xT
0 ai − bi)ai →

→︸︷︷︸

out_proj(·)=Identity

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← (xT
0 ai − bi)ai →

Layer 3:

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

← (xT
0 ai − bi)ai →

→︸︷︷︸

conv(in_proj(·))

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

←
∑N

i=1(x
T
0 ai − bi)ai →

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

← ai →

← bi →

← x0 →

← ai ⊙ x0 →

←
N∑
i=1

(xT
0 ai − bi)ai︸ ︷︷ ︸

=∇xL(x0)

→

→︸︷︷︸

out_proj(·)

← ai →

← bi →

← x0 − η∇xL(w0)→

← 0D →

← 0D →

Causal BASECONV This weight construction uses Equation 47 to compute the gradient descent
update.

We start with input:

b ≡

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

We use two BASECONV layers to construct an initial embedding, after which each gradient descent
update step will only require a single BASECONV layer.

In the following construction, we use flt to denote the flatten operation, which maps an M ×N
matrix to a MN -entry vector with the same elements.

Layer 1:

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

a1 . . . aN 0D

flt(a1(1
D)T) . . . f lt(aN (1D)T) flt(0D(0D)T)

︸ ︷︷ ︸

conv(in_proj(·))

⊙

← 1D →

← 1→

← 1D →

b11
D . . . bN1D 0D

flt(1DaT
1) . . . f lt(1DaT

N) flt(0D(0D)T)

︸ ︷︷ ︸

gate_proj(·)

=

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

b1a1 . . . b1aN 0D

flt(a1a
T
1) . . . f lt(aNaT

N) flt(0D(0D)T)

→︸︷︷︸

out_proj=Identity

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

b1a1 . . . b1aN 0D

flt(a1a
T
1) . . . f lt(aNaT

N) flt(0D(0D)T)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Layer 2:

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

︸ ︷︷ ︸

conv(in_proj(·))

⊙

← 1D →

← 1→

← 1D →

← 1D →

← 1D2 →

︸ ︷︷ ︸

gate_proj(·)

=

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

→︸︷︷︸

out_proj=Identity

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

Now, we use a single BASECONV layer to implement a gradient descent update.

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

0D . . . 0D 1D

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

︸ ︷︷ ︸

conv(in_proj(·))

⊙

← 1D →

← 1 →

← 1D →

← 1D →

← 1D →

← 1D2 →

0D . . . 0D 1D

0D2

. . . 0D2

flt(1DxT
0)

︸ ︷︷ ︸

gate_proj(·)

=

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

0D . . . 0D 1D

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

0D . . . 0D
∑N

i=1 biai

0D2

. . . 0D2 ∑N
i=1 flt(ai(ai ⊙ x0)

T)

Note that the gradient

∇xL(x0) =

N∑
i=1

biai −

(
N∑
i=1

aia
T
i

)
w0

can be written as a linear combination of the vector ∑N
i=1 biai∑N

i=1 flt(ai(ai ⊙ x0)
T)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

so we can write a weight construction for out_proj that updates w0 → w0 − η∇xL(x0):

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0

0D . . . 0D 1D

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

0D . . . 0D
∑N

i=1 biai

0D2

. . . 0D2 ∑N
i=1 flt(ai(ai ⊙ x0)

T)

→︸︷︷︸
out_proj

a1 . . . aN 0D

b1 . . . bN 0

0D . . . 0D x0 − η∇xL(x0)

0D . . . 0D 1D

←
∑N

i=1 biai →

←
∑N

i=1 flt(aia
T
i)→

0D . . . 0D
∑N

i=1 biai

0D2

. . . 0D2 ∑N
i=1 flt(ai(ai ⊙ x0)

T)

D.3.2 LOWER BOUNDS: BASECONV CONSTRUCTIONS ARE ASYMPTOTICALLY OPTIMAL

Note that the non-causal weight construction in Appendix D.3.1 requires O(1) layers and O(D) state
size, while the causal weight construction in Appendix D.3.1 requires O(1) layers and O(D2) state
size. Clearly the O(D) state size requirement for non-causal models is tight, since one needs to store
the gradient ∇xL ∈ RD. In this section, we prove that the O(D2) state size requirement for causal
models is also asymptotically tight.

Theorem D.33. Any single-pass (causal) algorithm computing the gradient

∇xL =

N∑
j=1

bjaj −

 N∑
j=1

aja
T
j

x

given inputs {(a1, b1), . . . , (aN , bN); x}, with (ai, bi) ∈ R(D+1)N) and x ∈ RD, requires Ω(D2)
state size in the worst case, where bj ∈ R and aj ,x ∈ RD.

Proof. For simplicity, we pick N = D for large enough D.

Since we can compute
∑D

j=1 bjaj in O(D) space, we focus on computing the expen-

sive
(∑N

j=1 aja
T
j

)
x term. Assume there exists a single-pass algorithm A that computes(∑N

j=1 aja
T
j

)
x exactly for all choices of a1, . . . ,aD,x ∈ RD. Now consider the following

two claims:

1. Define sD to be the state of the algorithm after seeing a1, . . . ,aD. Then we claim that sD
must have enough information to exactly reconstruct MD :=

∑D
j=1 aja

T
j .

This follows since the algorithm must be correct for any value x ∈ RD takes on. In
particular, setting x = ei for i ∈ [D], we observe that the algorithm must be able to exactly
recover MDei = MD[:, i], i ∈ [D].

2. The space of matrices
D∑

j=1

aja
T
j

over all choices of aj ∈ RD, j ∈ [d] contains the set of all real symmetric matrices in
RD×D.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

This holds since for any real symmetric matrix A, we can obtain a set of possible aj’s via
its eigendecomposition Strang (2012):

A = QΛQT =

D∑
j=1

aja
T
j

where aj =
√

λjQ[:, j].

From the first claim, we conclude that sD must contain enough information to be able to recover MD

for any possible value MD can take on (over all choices of a1, . . . ,aD ∈ RD). From the second
claim, we have that the space of possible values of MD includes the set of all possible real symmetric
matrices. Since we know that this set requires (D)(D+1)

2 parameters to represent, we can conclude
that |sD| ≥ (D)(D+1)

2 ≥ Ω(D2).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

D.4 BASECONV AND JACKSON’S THEOREM

In this section we prove BASECONV’s ability to approximate arbitrary univariate and multivariate
smooth functions.

We start with a special case of smooth functions that apply entry-wise univariate smooth functions:

Definition D.34. Let f : [−1, 1]→ R be a (k, L)-smooth univariate function. Then define

f : [−1, 1]N×D → RN×D

as follows. For all 0 ≤ i < N , 0 ≤ j < D, and u ∈ [−1, 1]N×D:

(f(u))[i, j] = f(u[i, j]).

Now we will state a simple observation on BASECONV’s ability to approximate these functions.

Lemma D.35. For any smooth function f as defined in Definition D.34, let g(x) = Pf̄ (x) with Pf̄

being the polynomial from Corollary D.12. Then for all x ∈ [−1, 1]N×D,

∥g(x)− f(x)∥∞ ≤ ϵ.

Proof. Follows from Definitions D.7 and D.34 and Corollary D.12.

Next we will state a construction of an arithmetic circuit for a function that applies a univariate
polynomial to all entries in [−1, 1]N×D:

Lemma D.36. Let P(X) be a degree d univariate polynomial. Then there is a
(ND,O(ND), O(d), ND)-circuit to compute P (u) where P (u) is defined as follows. For an
input u ∈ [−1, 1]N×D,

P (u)[i, j] = P (u[i, j]).

Proof. Let the univariate polynomial be

P (X) =

d∑
i=0

ciX
i

where coefficients ci ∈ R.

Next we state the natural arithmetic circuit to compute P (x) for x ∈ R in Algorithm 2:

Algorithm 2 circuit CP (x):
1: s0 ← c0
2: m0 ← 1
3: for j = 1, 2, . . . , d do
4: mj ← mj−1 · x ▷ Multiplication gate
5: tj ← cj ·mj ▷ Multiplication gate
6: sj ← sj−1 + tj ▷ Addition gate
7: return sd ▷ sd is the output gate

Next we apply the above circuit in parallel to form the circuit that computes P (u) in Algorithm 3:

Algorithm 3 Circuit for P (u):

1: for i = 0, 1, . . . , N − 1 do
2: for j = 0, 1, . . . , D − 1 do
3: z[i, j] = CP (u[i, j]) ▷ Do this in parallel
4: return z ▷ z is the output matrix

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Looking at Algorithm 2, the depth of the circuit is 3d, or O(d), since that is the bound on iter-
ations of the for loop, and each iteration we compute 3 sequential operations. Therefore it’s a
(1, O(d), O(d,O(1))-circuit.

For Algorithm 3, The width is O(ND), since we have our input of size N ×D, which goes through
the circuit in parallel, as stated in Algorithm 3. Therefore we have an (ND,O(ND), O(d), O(ND))-
circuit that computes P (u).

Since BASECONV has the ability to represent any arithmetic circuit, we get the following:

Corollary D.37. We can implement P (u) (where P (u) is as defined in Lemma D.36) when deg(P) =
d with a (N,O(d log(ND)), D,O(ND), D)− BASECONV.

Proof. Follows from Lemma D.36 giving us the (ND,O(ND), O(d), O(ND))-circuit for an arbi-
trary polynomial and Theorem D.30 gives us the BASECONV model to implement the circuit.

We will prove a tighter bound showing we can represent P (u) using a constant number of BASECONV
layers (for constant deg(P)):

Theorem D.38. We can implement P (u) when deg(P) = d with an (O(N), O(d), D,O(N), D)−
BASECONV model.

Proof. We will convert the steps done in Algorithm 2 to layers of BASECONV. Since Algorithm 3
is essentially running Algorithm 2 in parallel over all entries of input u ∈ [−1, 1]N×D, the latter
happens automatically in our BASECONV implementation.

For this proof, define
Pj(X) = Xj

and let Ci be the matrix of size N ×D and all the entries are ci.

We expand the input to our BASECONV layers as follows,

u =

(
u′

03N×D

)
.

This means that the size of the internal dimension of our BASECONV layers will be (4N,D).

To begin iterations of the for loop we need to store initial values into the extra space in u. Taking us
from

u =

u′

0N×D

0N×D

0N×D

→
 u
1N×D

1N×D

C0

 =: u0

We do this via BASECONV(u′, ID×D,

(
0N×D

1N×D

1N×D

C0

)
,04N×D,14N×D) which computes

u
0N×D

0N×D

0N×D

 ID×D +

0N×D

1N×D

1N×D

C0

⊙

04N×D ∗

u

0N×D

0N×D

0N×D

+ 14N×D

 .

The above simplifies to

u
0N×D

0N×D

0N×D

+

0N×D

1N×D

1N×D

C0

⊙ (14N×D) ,

which gives us u
1N×D

1N×D

C0

 =: u0,

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

as desired

This was done with a (4N, 1, D, 4N,D)− BASECONV layer.

Our goal is, at the end of iteration j to compute uj ∈ R4N×D such that,

uj =

 u
Pj(u)

Cj ⊙ Pj(u)
C0 +C1 ⊙ P1(u) + · · ·+Cj ⊙ Pj(u)

 .

We will view the above matrix in terms of the variables in the Algorithm 2 as follows u
Pj(u)

Cj ⊙ Pj(u)
C0 +C1 ⊙ P1(u) + · · ·+Cj ⊙ uj

 =:

 u
mj

tj
sj

 .

The for loop runs for values of 1 ≤ j ≤ d which the remainder of this proof will replicate. There
are three lines in the for loop in Algorithm 2 which we will cover how these operations happen in
constant number of BASECONV layers.

In line 4, the first line in the for loop computes

uj−1 =

 u
mj−1
tj−1
sj−1

→
 u

mj

tj−1
sj−1

 =: u
(1)
j .

Note that mj = mj−1 ⊙ u.

We use the remember primitive to compute u
(1)
j from uj−1. Define f : R2N×D → R2N×D as

follows

f

(
u

mj−1

)
=

(
u

mj−1 ⊙ u

)
.

If we can compute f with BASECONV layers then we can compute u
(1)
j for uj−1 by calling

remember(uj , 0, 2N − 1, f).

We show BASECONV

((
u
mj

)
, ID×D,02N×D,H,

(
1N×D

0N×D

))
maps(

u
mj−1

)
→
(

u
mj

)
,

where H is defined as in Proposition D.24. We plug the matrices into the BASECONV layer as
follows: ((

u
mj−1

)
· ID×D + 02N×D

)
⊙
(
H ∗

(
u

mj−1

)
+
(
1N×D

0N×D

))
.

We know from Proposition D.24 that this convolution operation is a shift down by N rows. Therefore
the above simplifies to((

u
mj−1

)
· ID×D + 02N×D

)
⊙
((

0N×D

u

)
+
(
1N×D

0N×D

))
,

which simplifies to (
u

mj−1

)
⊙
(
1N×D

u

)
=

(
u

mj−1 ⊙ u

)
= f

(
u
mj

)
,

as desired. Therefore by Proposition D.26, line 4 can be computed by (4N, 8, D, 4N,D) −
BASECONV.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

For line 5 of the for loop we need to compute

u
(1)
j =

 u
mj

tj−1
sj−1

→
 u

mj

tj
sj−1

 =: u
(2)
j .

Note that tj = Cj ⊙mj .

To do this we will use three BASECONV layers. We use the remember primitive to compute u
(2)
j

from u
(1)
j . Define g : R2N×D → R2N×D as follows,

g

(
mj

tj−1

)
=

(
mj

Cj ⊙mj

)
.

If we can compute g with BASECONV layers then we can compute u
(2)
j for uj−1 by calling

remember(u(1)
j , N, 3N − 1, g).

Indeed, we show the g can be computed by first computing
BASECONV

((mj

tj−1

)
, ID×D,02N×D,02N×D,

(
1N×D

0N×D

))
:((

mj

tj−1

)
· ID×D + 02N×D

)
⊙
(
02N×D ∗

(
mj

tj−1

)
+

(
1N×D

0N×D

))
,

which simplifies to ((
mj

tj−1

))
⊙
((

1N×D

0N×D

))
.

This results in (
mj

0N×D

)
.

We pass into the next layer, BASECONV
((mj

0N×D

)
, ID×D,

(
0N×D

1N×D

)
,H,

(
1N×D

0N×D

))
where H is

defined as in Proposition D.24:((
mj

0N×D

)
· ID×D +

(
0N×D

1N×D

))
⊙
(
H ∗

(
mj

0N×D

)
+

(
1N×D

0N×D

))
.

Since the kernel H is as in Proposition D.24, this simplifies to((
mj

1N×D

)
⊙
((

0N×D

mj

)
+

(
1N×D

0N×D

)))
.

The above simplifies further to (
mj

1N×D

)
⊙
(
1N×D

mj

)
,

which results in: (
mj

mj

)
.

We pass the above to BASECONV
((mj

mj

)
, ID×D,02N×D,02N×D,

(
1N×D

Cj

))
:((

mj

mj

)
· ID×D + 02N×D

)
⊙
(
02N×D ∗

(
mj

mj

)
+

(
1N×D

Cj

))
which simplifies to (

mj

mj

)
⊙
(
1N×D

Cj

)
.

The above results in (
mj

Cj ⊙mj

)
= g

(
mj

tj−1

)
,

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

as desired.

Therefore by Corollary D.27, line 5 was computed by (4N,O(1), D, 4N,D)− BASECONV.

For line 6, the final line of the for loop, we want

u
(2)
j =

 u
mj

tj
sj−1

→
 u
mj

tj
sj

 =: uj .

Note that sj = sj−1 + tj

Define function h : R2N×D → R2N×D as follows,

h

(
tj

sj−1

)
=

(
tj

sj−1 + tj

)
.

If we can compute h with BASECONV layers then we can compute uj for uj−1 by calling
remember(u(2)

j , 2N, 4N − 1, h).

Indeed we show that h can be computed by computing

BASECONV

((
tj

sj−1

)
,0D×D,12N×D,H,02N×D

)
, where kernel H ∈ R2N×D is defined

as:

H[k, :] ≡
{
1D if k ∈ {0, N}
0D otherwise.

.

This layer computes((
tj

sj−1

)
· 02N×D + 12N×D

)
⊙
(
H ∗

(
tj

sj−1

)
+ 02N×D

)
.

This simplifies to (
12N×D)⊙ (H ∗ (tj

sj−1

))
=

(
H ∗

(
tj

sj−1

))
.

Now we compute this convolution for column i, 0 ≤ i < 2N . For notational convenience, let(
tj

sj−1

)
be noted as matrix V. Then we have:

H[:, i] ∗V[:, i] = coeff
(
(1 +XN)V[:, i](X) mod X2N

)
,

where (1 +XN) is the polynomial representation of the columns of H (since there’s a one in the 0th
index and a one in the N th index of each column).

The expression simplifies to

coeffV[:, i](X) +V[:, i](X)XN mod X2N ,

which can be broken down to

coeff
((
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1) mod X2N

)
+ coeff

((
V[0][i]XN +V[1][i]XN+1 + · · ·+V[2N − 1][i]X3N−1) mod X2N

)
with the lower order terms in the second coefficient vector being zeros,

coeff
((
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1) mod X2N

)
+ coeff

((
0 + 0X + · · ·+ 0XN−1 +V[0][i]XN + · · ·+V[2N − 1][i]X3N−1) mod X2N

)
After taking mod X2N we get

coeff
(
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1)

+ coeff
(
0 + 0X + · · · 0XN−1V[0][i]XN + · · ·V[N − 1][i]X2N−1)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

The first set of coefficients is the input matrix as is. And the second one is the input matrix shifted
down as seen in Proposition D.24. Therefore when we add these vectors we are doing(

tj
sj−1

)
+

(
0N×D

tj

)
= h

(
tj

sj−1

)
,

as desired. Therefore by Proposition D.26, line 6 is computed with by (4N, 1, D, 4N,D) −
BASECONV.

The sd matrix gives us C0 +C1 ⊙m1 + · · ·+Cd ⊙md. Recalling that

C0 +C1 ⊙m1 + · · ·+Cd ⊙md ≡
d∑

j=0

Cj ⊙ uj = P (u),

and hence sd is our desired output.

We have d layers, each consisting of O(1) BASECONV layers. Giving us O(d) many layers to
implement Algorithm 2.

Therefore, via the ability to stack BASECONV layers to do function composition, the for loop was
computed by a (4N,O(d), D, 4N,D)− BASECONV , as desired.

The following states BASECONV’s ability to approximate a univariate smooth function:

Proposition D.39. Let f be the (k, L) -smooth function defined in Definition D.34. Then there is a(
N,O

(
k

√
L
ϵ

)
+ k,D, (ND), D

)
− BASECONV model that approximates f within error ϵ.

Proof. Follows from Corollary D.12, Lemma D.35, and Theorem D.38.

D.5 MULTIVARIATE FUNCTION APPROXIMATION

We begin by defining more multivariate notation.

We consider the following multivariate functions:

Definition D.40. For 0 ≤ 1 < N, 0 ≤ j < D, let f̄i,j : [−1, 1]N×D → R be a (k, L)-smooth
multivariate function. Then define

f(x) : [−1, 1]N×D → RN×D

as follows. For all 0 ≤ i < N , 0 ≤ j < D, u ∈ [−1, 1]N×D define

f(u)[i, j] := f̄i,j(u).

Lemma D.41. For any smooth function f as defined in Definition D.40, let g(X1, . . . , XN×D) =
Pf̄ (X1, . . . , XN×D) be the polynomial from Corollary D.14. Then for all x ∈ [−1, 1]N×D,

∥g(x)− f(x)∥∞ ≤ ϵ.

Proof. Follows from Definitions D.7 and D.40 and Corollary D.14.

Next we will state a construction for an arithmetic circuit for a function that takes a [−1, 1]N×D
variable input:

Lemma D.42. Let P (X) be a degree d multivariate polynomial. Then there is a(
n,O(d · nd), O(d log(n)), O(nd)

)
-circuit to compute P (u) on any input u ∈ [−1, 1]n.

Proof. Let the multivariate polynomial be as defined in Definition D.6. We build the circuit to
compute this in Algorithm 4,

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Algorithm 4 circuit CP (x):
1: for α = (α1, . . . , αn) ∈ Zn

≥0 such that
∑n

i=1 αi ≤ d do
2: mα ← 1
3: for i = 1, 2, . . . , n do ▷ Done in parallel
4: if αi ̸= 0 then
5: mα ← mα · xαi

i

6: tα ← cα ·mα

7: for α = (α1, . . . , αn) ∈ Zn
≥0 such that

∑n
i=1 αi ≤ d do

8: s←
∑

tα ▷ Done in parallel
9: return s

We compute the for loop starting on line 3 by making multiplications in parallel. Therefore obtaining a
depth of O(log(d)). We also have the for loop starting on line 7, making pairwise addition operations,
resulting in a depth of O(d log(n)).

We again use the result that BASECONV can represent any arithmetic circuit to get:

Corollary D.43. We can implement P (u) (where P (u) is as defined in Lemma D.42) when
deg(P (X1, . . . , XND)) = d with a

(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV where

u ∈ [−1, 1]N×D.

Proof. Lemma D.42 gives us the arithetmic circuit that computes this polynomial. Then via Theo-
rem D.30 we get a

(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV model to implement the

circuit.

Finally we state BASECONV’s ability to approximate multivariate smooth functions:

Proposition D.44. Let f be the function defined in Definition D.40. Then there is a(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV model that approximates f to within error ϵ,

with d = Ok(
k

√
NDL

ϵ).

Proof. We get the existence of a polynomial that approximates f for some ϵ from Corol-
lary D.14. Then via Corollary D.43 we get that we can represent any polynomial, implying(
N,O(d log(ND)), D,O((ND)d), D

)
−BASECONV represents any polynomial that approximates

the multivariate smooth function f .

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

D.6 NOTATION FOR D.7

This notation section is for the succeeding subsection which will prove we can recover the functions
Square and Linear exactly given some assumptions and expected gradients of their respective loss
functions being 0.

When indexing an entry of a 2 dimensional matrix, A we denote it as Ai,j where i is the row number
and j is the column.

The following are the parameters of a BASECONV layer.

1. We will use 0 indexing

2. [N] = {0, 1, . . . , N − 1}

3. W = {Wi,j} ∈ Rd×d

4. K = {Ki,j} ∈ RN×d

5. B(1) = {B(1)
i,j } ∈ RN×d

6. B(2) = {B(2)
i,j } ∈ RN×d

7. θ =
(
W ,K,B(1),B(2)

)
8. ui:

def
=u[i, :]

9. Input to a BASECONV layer, u = {ui,j} ∈ RN×d

10. E [{Mi,j}] = {E [Mi,j]}

11. BASECONV layer operation,

Z = BASECONV
(
W ,K,B(1),B(2),u

)
def
=

(
uW +B(1)

)
⊙
(
K ∗ u+B(2)

)
(48)

12. Our target function:

f : RN×d → RN×d

We’ll denote (f(u)) [i, j] by f(u)i,j .

We need to define the training input distribution to begin talking about expected values of the layers.

D.6.1 TRAINING INPUT DISTRIBUTION

1. Let ∆ be the training distribution on RN×d

Assumption D.45. Given a monomial E [Πe (uie,je)
me

] = 0 if me is odd. Otherwise,
E [Πe (uie,je)

me
] > 0.

Assumption D.46. Assume that the training data is generated as

• u ∼ ∆ as input

• Output is y = f(u) + E where E = {Ei,j} ∈ RN×d is the random error matrix such that

– The distribution on E and ∆ are independent. (Call the distribution on E to be ∆E)
– E[Ei,j] = 0 for all (i, j) ∈ [N]× [d]

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

Loss function

• Define
Lij(u,θ,E) = (zij − yij)

2
= (zij − f(u)ij − Eij)

2 (49)

• L(u) =
∑

i,j Lij(u,θ,E)

• Training loss, L(t)(θ) = L(t) = E u∼∆
E∼∆E

[L(u)]

• ∇θL(t) (θ) = Eu,E

∑
i,j ∇θLij(u)

The Goal Given a target function f , what can we infer for θ =
(
W ,K,B(1),B(2)

)
from

∇θL (θ) = 0

1. Ideally, we’d like to assume that f can be represented exactly by 1−layer BASECONV.

2. For now, lets assume that f(u)ij only depends on ui:

This includes as special cases:

• f(u)ij = u⊙ u

• f(u) = u ·W for W ∈ Rd×d

We want to prove that there is a unique set of parameters that perform exactly these functions,
resulting in the gradients of their loss function to be 0.

D.6.2 A GENERIC PARTIAL DERIVATIVE

Lets try and reason as much as we can for a generic partial derivative. Let x ∈ θ =(
W ,K,B(1),B(2)

)
. Then from Equation (49), we have that for any i, j:

∂Li,j

∂x
=2 (zij − f(u)ij − Eij)

∂Zi,j

∂x

=2
(
T

(1)
ij − T

(2)
ij − T

(3)
ij

)
,

where

T
(1)
ij = Zi,j

∂Zi,j

∂x
.

T
(2)
ij = f(u)ij

∂Zi,j

∂x
.

T
(3)
ij = Eij

∂Zi,j

∂x
.

Proposition D.47. Eu,E[T
(3)
ij] = 0.

Proof. ∆ and ∆E are independent and E[Eij] = 0

From now on, we’ll ignore the T (3)
ij term because of Proposition D.47 we can (in expectation) assume

that E = 0.

D.7 SETTING THE GRADIENTS TO 0

In this section we will prove the results of BASECONV ability to exactly compute SQUARE and
LINEAR given assumptions on the input data and parameters. The results are as follows. First for the
SQUARE function we have

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Theorem D.48. Given Assumptions D.45, D.46, D.55, and a function

f(u) = u⊙ u.

Let θ be such that, E∇θL = 0 then BASECONV(u,θ) = f(u).

And the following result for the LINEAR function,

Theorem D.49. Given Assumptions D.45, D.46, D.55, D.61, and a function

f(u) = uW .

Let θ be such that, E∇θL = 0 then BASECONV(u,θ) = f(u).

The following is to provide information about each entry in the output of a BASECONV layer.

Lemma D.50. For all (i, j) ∈ [N]× [d], the entries of a resulting layer of BASECONV, Z, are:

Zi,j =

((
d−1∑
ℓ=0

ui,ℓ ·Wℓ,j

)
+B

(1)
i,j

)
·

((
i∑

k=0

Kk,j · ui−k,j

)
+B

(2)
i,j

)
(50)

Proof. To begin, from Equation (48), we know that a layer of BASECONV yields a matrix Z as,

Z =
(
u ·W +B(1)

)
⊙
((

K ∗ u+B(2)
))

.

Looking at the u ·W operation, we know that for a row i ∈ [N] and column j ∈ [d], the vector dot
product is computed as

⟨ui,:,W:,j⟩ =
d−1∑
ℓ=0

ui,ℓ ·Wℓ,j .

Meaning each entry in the resulting matrix is defined as such

(u ·W)i,j =

d−1∑
ℓ=0

ui,ℓ ·Wℓ,j .

To sum the matrix B(1) to this operation, we simply add the corresponding index giving us

(
u ·W +B(1)

)
i,j

=

(
d−1∑
ℓ=0

ui,ℓ ·Wℓ,j

)
+B

(1)
i,j . (51)

Then, for the convolution operation between K and u, that’s computed column by column, we have
for all j ∈ [d]:

(K ∗ u):,j = K:,j ∗ u:,j ,

i.e. for any i ∈ [N],

(K:,j ∗ u:,j) [i] =

i∑
k=0

Kk,j · ui−k,j .

Finally, to sum B(2) we add the corresponding entry giving us(
K ∗ u+B(2)

)
=

(
i∑

k=0

Kk,j · ui−k,j

)
+B

(2)
i,j . (52)

Combining Equations (51) and (52), gives us Equation (50) as expected.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

D.7.1 SOME PARTIAL DERIVATIVES ARE ALWAYS ZERO

To simplify future computations in this section we will state a simple lemma on chunks of the
gradients of pieces of a layer that go to 0.

Lemma D.51. Fix i, j. Then for any j′ ̸= j, 0 ≤ ℓ < N , and 0 ≤ k < N we have,

∂Zi,j′

∂Wℓ,j
=

∂Zi,j′

∂Kk,j
= 0.

Further, any (i′, j′) ̸= (i, j) we have,

∂Zi′,j′

∂B
(1)
i,j

=
∂Zi′,j′

∂B
(2)
i,j

= 0.

Proof. Follows from Equation (50) and definition of partial derivatives.

D.7.2 GENERIC FORM OF PARTIAL DERIVATIVES PLUS A CONSEQUENCE

Given Lemma D.50 we can conclude the following.

Lemma D.52. For 0 ≤ i < N and 0 ≤ j < d, any entry x ∈ {Wi,j ,B
(1)
i,j },

∂Zi,j

∂x
=
(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

) ∂

∂x

(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
and 0 ≤ i < N and 0 ≤ j < d, any entry x ∈ {Ki,j ,B

(2)
i,j },

∂Zi,j

∂x
=
(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
· ∂

∂x

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
.

A consequence of Lemma D.52 is the following.

Corollary D.53. Let θ =
(
W ,K,B(1),B(2)

)
= 0. Then for all parameter variable’s x, we have

∂Zi,j

∂x
= 0.

Specifically,
∇θL (θ) |θ=0 = 0.

Corollary D.53 implies that initializing θ = 0 is not a good choice for initializing parameters since it
is a local minima.

We can exactly figure out the partial derivatives of Lemma D.52 by the following.

Lemma D.54. Fix i, j. Then for any 0 ≤ ℓ < N we have,

∂

∂Wℓ,j

(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
= ui,ℓ

and
∂

∂B
(1)
i,j

(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
= 1.

Also,
∂

∂B
(2)
i,j

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
= 1.

Next, for any 0 ≤ k ≤ i, we have

∂

∂Kk,j

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
= ui−k,j

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

and for all k > i,
∂

∂Kk,j

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
= 0.

We don’t need to worry about k > i since those pieces will also be 0 due to the definition of
convolution.

Proof. Let’s begin by looking at
∂

∂Wℓ,j

(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
.

Expanding this out gives us

∂

∂Wℓ,j

(
d−1∑
ℓ=0

ui,ℓ ·Wℓ,j +B
(1)
i,j

)
.

When we take the partial derivative of this with respect to Wℓ,j , B(1)
i,j goes to 0. And the term

∂

∂Wℓ,j

(
d−1∑
ℓ=0

ui,ℓ ·Wℓ,j

)
= ui,ℓ,

as desired.

Next, let us look at
∂

∂B
(1)
i,j

(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
Since B(1)

i,j doesn’t show up in the dot product of the vectors, we know that piece goes to zero, giving
us

∂

∂B
(1)
i,j

(
⟨ui,:,W:,j⟩+B

(1)
i,j

)
=

∂B
(1)
i,j

∂B
(1)
i,j

= 1,

as desired.

Next, for any 0 ≤ k ≤ i we have
∂

∂Kk,j

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
.

The B
(2)
i,j term goes to 0 as we’re taking the partial derivative with respect to Kk,j . So we have

∂

∂Kk,j
((K:,j ∗ u:,j) [i]) =

∂

∂Kk,j

i∑
k′=0

Kk′,jui−k′,j = ui−k,j

as desired, since Kk,j only shows up in the summation when k′ = k. Then for k > i we have

∂

∂Kk,j
((K:,j ∗ u:,j) [i]) =

∂

∂Kk,j

i∑
k′=0

Kk′,jui−k′,j ,= 0 (53)

as desired, since Kk,j will never show up in the summation as k′ < k.

Finally, lets look at the fourth piece,
∂

∂B
(2)
i,j

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
.

The term B
(2)
i,j doesn’t appear in the result of the convolution operation, therefore that piece goes to

0, giving us
∂

∂B
(2)
i,j

(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
=

∂B
(2)
i,j

∂B
(2)
i,j

= 1,

as desired.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Another assumption Before our main result we have another restriction on the target f which
is that f must be defined with a linear map, W ∈ Rd×d that has non-zero columns. We make
further assumptions on W ,B(1),K,B(2) which we will justify later. We note that this assumption
is satisfied for both the SQUARE and LINEAR functions.

Assumption D.55. For all j either (K:,j ̸= 0) or
(
B

(2)
:,j ̸= 0

)
and W:,j ̸= 0. Further, we have

B(1) = 0.

The target function f : RN×d → RN×d is

1. 1-layer BC
(
W ,K,B

(1)
,B

(2)
)

such that for all j,
∥∥W :,j

∥∥
2
≥ 0

2. f(u)i,j only depends on ui,:

With the above assumptions and definitions, we are finally ready to look at the expected partial
derivatives of pieces of the loss function.

Definition D.56. For the rest of the section, we will redefine θ =
(
W ,K,B(2)

)
. Note that we are

just removing B(1) since it is all zeros as per Assumption D.55.

Lemma D.57. Given Assumption D.45 and recall that B(1) = 0. Fix i, j. Then we have

E
[
Zi,j

∂Zi,j

∂B(2)
i,j

]
= B

(2)
i,j

d−1∑
ℓ′=0

E
[
u2
i,ℓ′
]
W 2

ℓ′,j .

Next, for any 0 ≤ k ≤ i we have

E
[
Zi,j

∂Zi,j

∂Kk,j

]
= Kk,j

d−1∑
ℓ′=0

W 2
ℓ′,jE

[
u2
i,ℓ′
]
E
[
u2
i−k,j

]
.

(Recall for k > i partial derivatives are 0).

Finally, for any 0 ≤ ℓ ≤ d− 1,

E
[
Zi,j

∂Zi,j

∂Wℓ,j

]
= Wℓ,j

i∑
k′=0

K2
k′,jE

[
u2
i−k′,ju

2
i,ℓ

]
+
(
B

(2)
i,j

)2
Wℓ,jE

[
u2
i,ℓ

]
.

Proof. Given Lemma D.52 and Lemma D.54 (along with the fact that B(1) = 0) we have

E
[
Zi,j

∂Zi,j

∂B(2)
i,j

]
= E

[(
K:,j ∗ u:,j [i] +B

(2)
i,j

)
⟨ui,:,W:,j⟩2

]
=

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

i∑
k′=0

E [ui,ℓ′ui−k′,jui,ℓ′′]Wℓ′,jWℓ′′,jKk′,j

+B
(2)
i,j

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

E [ui,ℓ′ui,ℓ′′]Wℓ′,jWℓ′′,j .

In the above, the first summation goes to 0 since for all ℓ′, ℓ′′, k, by Assumption D.45, as the
expected value of the product of three u’s will be 0 since there’s an odd number of them. Again, by
Assumption D.45, the second summation will be non-zero if and only if ℓ′ = ℓ′′. Therefore we get
the following,

E
[
Zi,j

∂Zi,j

∂B(2)
i,j

]
= B

(2)
i,j

d−1∑
ℓ′=0

E
[
u2
i,ℓ′
]
W 2

ℓ′,j

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

as desired.

Moving onto the next piece, using Lemma D.52 and Lemma D.54 (along with the fact that B(1) = 0)
we have

E
[
Zi,j

∂Zi,j

∂Kk,j

]
= E

[(
K:,j ∗ u:,j [i] +B

(2)
i,j

)
⟨ui,:,W:,j⟩2 ui−k,j

]
=

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

i∑
k′=0

E [ui,ℓ′ui,ℓ′′ui−k′,jui−k,j]Wℓ′,jWℓ′′,jKk′,j

+B
(2)
i,j

d−1∑
ℓ′

d−1∑
ℓ′′=0

E [ui,ℓ′ui,ℓ′′ui−k,j]Wℓ′,jWℓ′′,j

By Assumption D.45, only expected values of terms with square monomials are non-zero. Specifically,
the first summation has the ui−k,j term, therefore, we need k′ = k to get an even exponent. This is
the same reasoning for ℓ′ = ℓ′′. Therefore, the first summation is non-zero if and only if k′ = k and
ℓ′ = ℓ′′. The second summation will be 0 since for all ℓ′, ℓ′′ the expected value of the u’s is 0 since
there’s an odd number of them, there will always be an odd exponent. So we get

E
[
Zi,j

∂Zi,j

∂Kk,j

]
= Kk,j

d−1∑
ℓ′=0

W 2
ℓ′,jE

[
u2
i,ℓ′
]
E
[
u2
i−k,j

]
as desired. In the above we note that by Assumption D.45, any two entries in u are independent
random variables so we can multiply their expectations as above.

Moving onto the final piece, given Lemma D.52 and Lemma D.54 and B(1) = 0 we have

E
[
Zi,j

∂Zi,j

∂Wℓ,j

]
= E

[(
(K:,j ∗ u:,j) [i] +

(
B

(2)
i,j

))2
⟨ui,:,W:,j⟩ui,ℓ

]
=

i∑
k′=0

i∑
k′′=0

d−1∑
ℓ′=0

E [ui−k′,jui,ℓ′ui−k′′,jui,ℓ]Kk′,jKk′′,jWℓ′,j

+ 2B
(2)
i,j

i∑
k′=0

d−1∑
ℓ′=0

E [ui−k′,jui,ℓ′ui,ℓ]Kk′,jWℓ′,j

+
(
B

(2)
i,j

)2 d−1∑
ℓ′=0

E [ui,ℓ′ui,ℓ]Wℓ′,j .

We again use Assumption D.45 to simplify teh summations. The first summation has the ui,ℓ term,
therefore to get an even exponent on it we need ℓ′ = ℓ. This is the same reasoning for k′ = k′′.
Therefore the first summation will be non-zero if and only if ℓ′ = ℓ and k′ = k′′. The second
summation will be 0 for all k′, ℓ′ since we’re taking the expected value of an odd number of u
products, there will always be an odd exponent. The third term will be non-zero if and only if ℓ′ = ℓ
to get an even exponent on u’s entry. Therefore we have,

E
[
Zi,j

∂Zi,j

∂Wℓ,j

]
= Wℓ,j

i∑
k′=0

K2
k′,jE

[
u2
i−k′,j

]
E
[
u2
i,ℓ

]
+
(
B

(2)
i,j

)2
Wℓ,jE

[
u2
i,ℓ

]
as desired. In the above we note that by Assumption D.45, any two entries in u are independent
random variables.

Lemma D.58. Fix i, j. Then we have

E
[
u2
i,j

∂Zi,j

∂B(2)
i,j

]
= 0.

Next, we have

E
[
u2
i,j

∂Zi,j

∂K0,j

]
= Wj,jE

[
u4
i,j

]
.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

For k > 0, we have

E
[
u2
i,j

∂Zi,j

∂Kk,j

]
= 0.

Next,

E
[
u2
i,j

∂Zi,j

∂Wj,j

]
= K0,jE

[
u4
i,j

]
.

otherwise, when ℓ ̸= j we have

E
[
u2
i,j

∂Zi,j

∂Wℓ,j

]
= 0.

Proof. Given Lemma D.52 and Lemma D.54 we have

E
[
u2
i,j

∂Zi,j

∂B(2)
i,j

]
= ⟨ui,:,W:,j⟩u2

i,j

=

d−1∑
ℓ′=0

E
[
ui,ℓ′u

2
i,j

]
Wℓ′,j .

We simplify the above using Assumption D.45. Therefore, the summation is 0 for all ℓ since we’re
taking the expected value of an odd number of u’s. Therefore,

E
[
u2
i,j

∂Zi,j

∂B(2)
i,j

]
= 0.

Next, by Lemma D.52 and Lemma D.54 we have

E
[
u2
i,j

∂Zi,j

∂Kk,j

]
= ⟨ui,:,W:,j⟩ui−k,ju

2
i,j

=

d−1∑
ℓ′=0

E
[
u2
i,jui−k,jui,ℓ′

]
Wℓ′,j .

We simplify the above using Assumption D.45. The summation will be non-zero only when k = 0
and ℓ′ = j to ensure we have an even exponent on the u variable, since that is the only way to get
even exponents on the u’s. Therefore we have

E
[
u2
i,j

∂Zi,j

∂K0,j

]
= Wj,jE

[
u4
i,j

]
,

and for k > 0,

E
[
u2
i,j

∂Zi,j

∂Kk,j

]
= 0.

Moving onto the final piece, given Lemma D.52 and Lemma D.54, we have

E
[
u2
i,j

∂Zi,j

∂Wℓ,j

]
=
((

K:,j ∗ u:,j [i] +B
(2)
i,j

))
ui,ℓu

2
i,j

=

i∑
k′=0

E
[
ui−k′,jui,ℓu

2
i,j

]
Kk′,j +B

(2)
i,j E

[
ui,ℓu

2
i,j

]
.

We simplify the above using Assumption D.45. The summation will be non-zero only when k′ = 0
and ℓ = j, since that is the only way to get even exponents on the u’s. The second term will be 0
since we’re taking the expected value of a non-square monomial. Therefore we have,

E
[
u2
i,j

∂Zi,j

∂Wj,j

]
= K0,jE

[
u4
i,j

]
.

Otherwise, when ℓ ̸= j we have,

E
[
u2
i,j

∂Zi,j

∂Wℓ,j

]
= 0

as desired.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

Theorem D.59. Given Assumptions D.45, D.46, D.55, and a function

f(u) = u⊙ u.

Let θ be such that, E∇θL = 0 then BASECONV(u,θ) = f(u).

Proof. Recall our loss function from Equation (49). Then given Lemma D.57 and Lemma D.58 we
know that for any k ≥ 0,

E
[

∂L

∂Kk,j

]
=
∑
i′j′

E
[
∂Li′,j′

∂Kk,j

]

=
∑
i′

E
[(
Zi′,j − u2

i′,j

) ∂Zi′,j

∂Kk,j

]
.

In the above, the second equality follows from Lemma D.51.

From Lemma D.57, Lemma D.58 we have the following for k > 0,

E
[

∂L

∂Kk,j

]
= Kk,j

∑
i′

d−1∑
ℓ′=0

W 2
ℓ′,jE

[
u2
i′,ℓ′
]
E
[
u2
i′−k,j

]
.

We know that from Assumption D.46 that the expected value of E
[
u2
i′,ℓ′

]
and E

[
u2
i′−k,j

]
are strictly

positive due to having an even exponent. Also, due to Assumption D.55 we know that W:,j has
at least one non-zero entry for all j. This implies that for at least one ℓ′, W 2

ℓ′,j > 0 (and hence
the summation is strictly a positive value).Therefore to set this partial derivative to 0 implies that
Kk,j = 0. Explicitly, Kk,j = 0 for all j and k > 0. This in turn implies that for all j:

K:,j ̸= 0⇔K0,j ̸= 0. (54)

Next we’ll examine the loss function when we take the partial derivative with respect to Wℓ,j . For all
ℓ ̸= j,

E
[

∂L

∂Wℓ,j

]
=
∑
i′j′

E
[
∂Li′,j′

∂Wℓ,j

]

=
∑
i′

Wℓ,j

i′∑
k′=0

K2
k′,jE

[
u2
i′−k′,ju

2
i′,ℓ

]
+
(
B

(2)
i′,j

)2
Wℓ,jE

[
u2
i′,ℓ

] .

In the above the second equality follows from Lemma D.51, Lemma D.57, and Lemma D.58.

We know from above that for k > 0, Kk,j = 0. Thus, we can simplify the above to∑
i′

Wℓ,j

(
K2

0,jE
[
u2
i′,j

]
E
[
u2
i′,ℓ

]
+
(
B

(2)
i′,j

)2
E
[
u2
i′,ℓ

])
= Wℓ,j

∑
i′

E
[
u2
i′,ℓ

](
K2

0,jE
[
u2
i′,j

]
+
(
B

(2)
i′,j

)2)
.

By Equation (54) we know K0,j > 0 and from Assumption D.55 at least one entry in each column
of B(2) may be non-zero, B(2)

:,j > 0. Therefore(
K2

0,jE
[
u2
i′,j

]
+B

(2)
i′,j

)
̸= 0 =⇒ Wℓ,j = 0

Since we proved that Wℓ,j = 0 for all ℓ ̸= j, and we know at least one entry in each column
W:,j ̸= 0, we must have

Wj,j ̸= 0. (55)

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

Moving onto B
(2)
i,j , we have

E

[
∂L

∂B
(2)
i,j

]
= B

(2)
i,j

d−1∑
ℓ′=0

W 2
ℓ′,jE

[
u2
i,ℓ′
]
.

The above summation piece is not equal to zero as we know Wj,j ̸= 0 and hence, W 2
j,j > 0. Also

note the exponents on the u’s is even, and so by Assumption D.45 we have for all ℓ′, E
[
u2
i,ℓ′

]
> 0 .

Therefore, if we set

E

[
∂L

∂B
(2)
i,j

]
= 0

we get for all i, j,
B

(2)
i,j = 0.

Now that we know B(2) = 0 this will help us simplify the following. Given Lemma D.57 and
Lemma D.58, for ℓ = j, we have

E
[

∂L

∂Wj,j

]
=
∑
i′

Wj,jK
2
0,jE

[
u4
i′,j

]
−K0,jE

[
u4
i′,j

]
,

we simplify and remove B(2) terms and get

K0,j (K0,jWj,j − 1)

(∑
i′

E
[
u4
i′,j

])
.

Setting this to 0 we can conclude that since K0,j ̸= 0 and the above summation isn’t 0, we get
K0,jWj,j = 1.

So far we have that B(2) = 0 and Kk,j = 0 for k > 0. Also that K0,j ̸= 0 for all j. Then by
Lemma D.58 and Lemma D.57, consider

E
[

∂L

∂K0,j

]
=
∑
i′

(
K0,jW

2
j,jE

[
u2
i′,ju

2
i′,j

]
−Wj,j

[
u4
i′,j

])
= Wj,j (K0,jWj,j − 1)

(∑
i′

E
[
u4
i′,j

])
. (56)

We know from (55) that Wj,j ̸= 0 and the summation piece isn’t 0 by Assumption D.45. Therefore,

E
[

∂L

∂K0,j

]
= 0 =⇒ K0,j ·Wj,j − 1 = 0

=⇒ K0,j ·Wj,j = 1

as desired.

Note that this implies for all j:

K0,j =
1

Wj,j
.

Given Assumption D.55 and the above values; we get that W is a diagonal matrix, K =(
1

W0,0

1
W1,1

... 1
Wd−1,d−1

0N−1×d−1

)
, B(2) = 0N×d. Lets use these pieces to show that BASECONV(u) = u⊙u

(recall that B(1) = 0).

Indeed,

BASECONV(u) = (u ·W)⊙
(
K ∗ u+B(2)

)

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Plugging in our values we getu ·

W0,0 0 . . . 0
0 W1,1 . . . 0

0 0
. . . 0

0 0 . . . Wd−1,d−1

⊙ ((1

W0,0

1
W1,1

. . . 1
Wd−1,d−1

0N−1×d−1

)
∗ u+ 0N×d

)
.

Note that

K ∗ u = u

1

W0,0
0 . . . 0

0 1
W1,1

. . . 0

0 0
. . . 0

0 0 . . . 1
Wd−1,d−1

 = uW−1,

which gives us

(uW ⊙K ∗ u) =
(
uW ⊙ uW−1) = u⊙ u,

where the last equality follows since W is a diagonal matrix with all non-zero entries in it’s diagonal.

The following lemma will be for when the function we are considering is an linear map.

Lemma D.60. Fix W ∈ Rd×d and i, j. Then we have

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂B(2)
i,j

]
=

d−1∑
ℓ

Wℓ,jW ℓ,jE
[
u2
i,ℓ

]
.

For all k,

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂Kk,j

]
= 0.

For all ℓ,

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂Wℓ,j

]
= B

(2)
i,j W ℓ,jE

[
u2
i,ℓ

]
.

Proof. Given Lemma D.52 and Lemma D.54 (and the fact that B(1) = 0) we have

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂B(2)
i,j

]
= E

[
⟨ui,:W:,j⟩

〈
ui,:W :,j

〉
}
]

=

d−1∑
ℓ=0

d−1∑
ℓ′=0

Wℓ,jW ℓ′,jE [ui,ℓui,ℓ′]

From Assumption D.45 we get that the summation will always be non-zero if and only if ℓ = ℓ′ so
that the u variable has an even exponent. Therefore we get,

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂B(2)
i,j

]
=

d−1∑
ℓ=0

Wℓ,jW ℓ,jE
[
u2
i,ℓ

]
as desired.

Next, for all k, by Lemma D.52 and Lemma D.54 (and the fact that B(1) = 0)

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂Kk,j

]
= E

[
⟨ui,:W:,j⟩ui−k,j

〈
ui,:W :,j

〉]
=

d−1∑
ℓ=0

d−1∑
ℓ′=0

Wℓ,jW ℓ′,jE [ui,ℓui,ℓ′ui−k,j] .

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

We simplify the above using Assumption D.45. The summation goes to 0 since there are an odd
number of u terms, there will always be an odd exponent. Note that this is true for k ≤ i. Recall
from Equation (53) that for k > i,

∂Zi,j

∂Kk,j
= 0.

Therefore, for all k,

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂Kk,j

]
= 0

as desired.

Next, for all ℓ, by Lemma D.52 and Lemma D.54 (and the fact that B(1) = 0)

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂Wℓ,j

]
= E

[(
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
ui,ℓ

〈
ui,:,W :,j

〉]
=

(
i∑

k′=0

d−1∑
ℓ′=0

Kk,jW ℓ′,jE [ui−k,jui,ℓ′ui,ℓ]

)

+B
(2)
i,j

d−1∑
ℓ′=0

W ℓ′,jE [ui,ℓui,ℓ′]

We simplify the above using Assumption D.45. The first summation will always be 0 due to an odd
exponent on the u’s. The second summation piece will always be non-zero if and only if ℓ′ = ℓ,
giving us the even exponent on the u variable. Therefore we get,

E
[〈
ui,:W :,j

〉 ∂Zi,j

∂Wℓ,j

]
= B

(2)
i,j W ℓ,jE

[
u2
i,ℓ

]
as desired.

We make another assumption to assist with the following theorem on linear maps.

Assumption D.61. For all j,
〈
W:,j ,W :,j

〉
̸= 0 and W :,j ̸= 0.

Theorem D.62. Given Assumptions D.45, D.46, D.55, D.61, and a function

f(u) = uW .

Let θ be such that, E∇θL = 0 then BASECONV(u,θ) = f(u).

Proof. From lemma D.51 we get that

E

[
∂L

∂B
(2)
i,j

]
=
∑
i′,j′

E

[
∂Li′,j′

∂B
(2)
i′,j′

]

=
∑
i,j

E

[
∂Li,j

∂B
(2)
i,j

]
Recall our loss function from Equation (49). Then given Lemma D.57 and Lemma D.60 we know
that ∑

i,j

E

[
∂Li,j

∂B
(2)
i,j

]
= B

(2)
i,j

d−1∑
ℓ=0

W 2
ℓ,jE

[
u2
i,ℓ

]
−

d−1∑
ℓ=0

Wℓ,jW ℓ,jE
[
u2
i,j

]
= 0,

Which implies that

B
(2)
i,j =

∑d−1
ℓ=0 Wℓ,jW ℓ,j∑d−1

ℓ=0 W
2
ℓ,j

.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

Given Assumption D.61 we know that the numerator will be non-zero and given assumption Assump-
tion D.55 we know the denominator will always be non-zero as well. Therefore we get that for all
i, j

Bi,j =

〈
W:,j ,W :,j

〉
⟨W:,j ,W:,j⟩

def
= bj . (57)

Next, via Lemma D.51 we have for all k ≥ 0:

E
[

∂L

∂Kk,j

]
=
∑
i′,j′

E
[
∂Li′,j′

∂Kk,j′

]

=
∑
i′

E
[
∂Li′,j

∂Kk,j

]
Then from Lemma D.57 and lemma D.60 we get

∑
i′

E
[
Zi′,j

∂Zi,j

∂Kk,j

]
=
∑
i′

Kk,j

d−1∑
ℓ′=0

W 2
ℓ′,jE

[
u2
i′,ℓ′
]
E
[
u2
i′−k,j

]
.

Since we know that the summation piece over ℓ′ is always non-zero due to the even exponents on the
u terms and at least one of Wℓ′,j ̸= 0. Therefore, if we set

E
[

∂L

∂Kk,j

]
= 0,

we get for all k, Kk,j = 0. In other words,

K = 0N×d.

Finally, via Lemma D.51 we have for all ℓ:

E
[

∂L

∂Wℓ,j

]
=
∑
i′j′

E
[
∂Li′,j′

∂Wℓ,j

]

=
∑
i′

E
[
∂Li′,j

∂Wℓ,j

]
From Lemma D.57 and Lemma D.60 we get

∑
i′

E
[
∂Li′,j

∂Wℓ,j

]
=
∑
i′

Wℓ,j

i′∑
k′=0

K2
k′,jE

[
u2
i′−k′,ju

2
i′,ℓ

]
+
(
B

(2)
i′,j

)2
Wℓ,jE

[
u2
i′,ℓ

]
−B2

i′,jW ℓ,jE
[
u2
i′,ℓ

]
= Wℓ,j

∑
i′

(
B

(2)
i′,j

)2
E
[
u2
i′,ℓ

]
−W ℓ,j

∑
i′

B
(2)
i′,jE

[
u2
i′,ℓ

]
.

We can drop the summation with K in it as we know K = 0 Recall that from (57), B(2)
i,j = bj . Then

we can rewrite the above as

E
[

∂L

∂Wℓ,j

]
= bj

(∑
i′

E
[
u2
i′,ℓ

]) (
Wℓ,jbj −W ℓ,j

)
we know from Assumption D.45 that the first summation will always be non-zero since there’s an
even exponent on the u variable and we know that bj is non-zero. Therefore setting

E
[

∂L

∂Wℓ,j

]
= 0

tells us that

Wℓ,j =
W ℓ,j

bj
.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

Given the above value for Wℓ,j and recall we have K = 0 and B(2) = (b0b1...bd−1) where each bj

is a column vector comprised of all bj values. Therefore, when we take BASECONV(u) we get

BASECONV(u) = (uW)⊙
(
0N×d ∗ u+B(2)

)
= (uW)⊙

(
B(2)

)
We can rewrite B(2) as

B(2) =
(
1N×d)

b0 0 . . . 0
0 b1 . . . 0

. . .
0 0 . . . bd−1

 .

Lets call this diagonal matrix on the right, D. Then note that

W = WD−1.

Therefore, we have

BASECONV(u) = uWD−1 ⊙ 1N×dD

= uW ⊙ 1N×d

= uW ,

as desired. In the above the second inequality follows since D is a diagonal matrix.

We now revisit the importance of Assumption D.55. Specifically, the following definition is a stronger
version of the complement of Assumption D.55. The following essentially states that there are many
ways to get the expected gradients of the loss function to be 0, though this doesn’t imply that we have
learned the exact solution, as we recover in theorem D.59.

Definition D.63. Define (assumption)∁ to be

• B(2) = 0

• For all j, either

(i) W:,j = 0 and K0,j = 0

(ii) K:,j = 0 and Wj,j = 0

The following theorem is to emphasize, there are many ways to get expected value of the gradients of
the loss function to be 0.

Theorem D.64. Let θ∗ satisfy Definition D.63 Then E∇θL
∣∣
θ←θ∗ = 0 when f(u) = u⊙ u

Proof. Next, via Lemma D.57 and Lemma D.58 when k > 0 we have

E
[

∂L

∂Kk,j

]
= Kk,j

∑
i′

d−1∑
ℓ′=0

W 2
ℓ′,jE

[
u2
i′,ℓ′
]
E
[
u2
i′−k,j

]
.

This expected value goes to zero since every column j either K:,j or W:,j is 0.

When k = 0 we have

E
[

∂L

∂K0,j

]
= Wj,j (K0,jWj,j − 1)

(∑
i′

E
[
u4
i′,j

])
.

This expected value goes to zero since in both D.63 and D.63 K0,j = Wj,j = 0.

Next we have for all ℓ, j where ℓ ̸= j,

E
[

∂L

∂Wℓ,j

]
= Wℓ,j

∑
i′

E
[
u2
i′,ℓ

] (
K2

0,jE
[
u2
i′,j

]
+B

(2)
i′,j

)

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

This expected value goes to zero since column j either K:,j or W:,j is 0.

Then when ℓ = j we have

E
[

∂L

∂Wj,j

]
=
∑
i′

Wj,jK
2
0,jE

[
u4
i′,j

]
−K0,jE

[
u4
i′,j

]
This expected value goes to zero since in both (i) and (ii), K0,j = Wj,j = 0

And we know that since B(2) is all zeros, we don’t need to consider the gradient of the loss function
to it.

What the above proves is that there are infinite instantiations of parameters such that the expected
gradient loss is 0. However not that in Definition D.63, for all j either Kk,j for k ̸= 0 or Wℓ,j

for ℓ ̸= j are unconstrained. In other words, we can set these values arbitrarily, which means we
get L → inf but we still have the expected gradient loss to be 0. This shows that some form of
Assumption D.55 is necessary to prove Theorem D.59.

D.8 LEARNING ANY POSSIBLE FUNCTION

We hope to be able to show that one layer of BASECONV will be able to exactly recover any one
layer BASECONV, given some assumptions on the parameters. We will later explain why these
assumptions are necessary for a meaningful result.

Lemma D.65. Fix i, j. Then we have

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂B(2)
i,j

]
= B

(2)
i,j

d−1∑
ℓ′=0

E
[
u2
i,ℓ′
]
Wℓ′,jWℓ′,j .

For 0 ≤ k ≤ i, we have

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂Kk,j

]
= Kk′,j

d−1∑
ℓ′=0

E
[
u2
i,ℓ′
] [

u2
i−k,j

]
Wℓ′,jWℓ′,j

Next for all 0 ≤ ℓ < d,

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂Wℓ,j

]
= Wℓ,j

i∑
k′=0

E
[
u2
i,ℓ

]
E
[
u2
i−k′,j

]
Kk′,jKk′,j+B

(2)
i,j B

(2)
i,j Wℓ,jE

[
u2
i,ℓ

]
Proof. Lets begin by looking at

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂B(2)
i,j

]
.

From lemma D.52 and lemma D.54 we have

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂B(2)
i,j

]
= E

[((
uW

)
⊙
(
K ∗ u+B(2)

))
i,j
· (⟨ui,:,W:,ℓ⟩)

]
This expands to

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

i∑
k=0

E [ui,ℓ′ui,ℓ′′ui−k,j]Wℓ′,jWℓ′′,jKk,j +B
(2)
i,j

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

E [ui,ℓ′ui,ℓ′′]Wℓ′,jWℓ′′,j .

We simplify the above using Assumption D.45. The first summation goes to 0 as we’re taking the
expectation of an odd number of u’s. The second summation will be non-zero if and only if ℓ′ = ℓ′′,
as that gives us a squared value on the u variable. Therefore we get

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂B(2)
i,j

]
= B

(2)
i,j

d−1∑
ℓ′=0

E
[
u2
i,ℓ′
]
Wℓ′,jWℓ′,j

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

as desired.

Next lets consider, for all 0 ≤ k ≤ i,

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂Kk,j

]
.

Recall we are only considering these values of k as we know from Lemma D.54 that for k > i,
the partial derivative piece is always 0. We can simplify this to the following via lemma D.52 and
lemma D.54,

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

(⟨ui,:,W:,ℓ⟩)ui−k,j

]
This expands to

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

i∑
k′=0

E [ui,ℓ′ui,ℓ′′ui−k′,jui−k,j]Wℓ′,jWℓ′′,jKk′,j +B
(2)
i,j

d−1∑
ℓ′=0

d−1∑
ℓ′′=0

E [ui,ℓ′ui,ℓ′′ui−k,j]Wℓ′,jWℓ′′,j

We simplify the above using Assumption D.45. The first summation will be non-zero if and only if
the exponents on the u’s is even. To get this we require ℓ′ = ℓ′′ and k′ = k. The second summation
will always be 0 as we have an odd exponent on the u’s. Therefore we get

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂Kk,j

]
= Kk′,j

d−1∑
ℓ′=0

E
[
u2
i,ℓ′
] [

u2
i−k,j

]
Wℓ′,jWℓ′,j

as desired.

Finally, lets consider

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂Wℓ,j

]
From lemma D.52 and lemma D.54 we get

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

](
(K:,j ∗ u:,j) [i] +B

(2)
i,j

)
ui,ℓ

This expands to

d−1∑
ℓ′=0

i∑
k′=0

i∑
k′′=0

E [ui,ℓ′ui,ℓui−k′,jui−k′′,j]Wℓ′,jKk′,jKk′′,j +B
(2)
i,j

d−1∑
ℓ′=0

i∑
k′′=0

E [ui−k′′,jui,ℓ′ui,ℓ′]Wℓ′,jKk′′,j

+B
(2)
i,j

d−1∑
ℓ′=0

i∑
k′=0

E [ui,ℓ′ui−k′,jui,ℓ]Wℓ′,jKk′,j +B
(2)
i,j B

(2)
i,j

d−1∑
ℓ′=0

E [ui,ℓ′ui,ℓ]Wℓ′,j .

We simplify the above using Assumption D.45. The first summation will be non-zero as we get
squared exponents on the u’s if and only if ℓ′ = ℓ and k′ = k′′. The second and third summation will
always be 0 since we’re taking the expectation of an odd number of u’s. The fourth summation will
be non-zero if and only if ℓ′ = ℓ. Therefore we get,

E
[((

uW
)
⊙
(
K ∗ u+B(2)

))
i,j

∂Zi,j

∂Wℓ,j

]
= Wℓ,j

i∑
k′=0

E
[
u2
i,ℓ

]
E
[
u2
i−k′,j

]
Kk′,jKk′,j +B

(2)
i,j B

(2)
i,j Wℓ,jE

[
u2
i,ℓ

]
as desired.

73

	Introduction
	Learning numerical algorithms for least squares
	Problem formulation and related work
	Outline of this work

	Transformers do not learn numerical algorithms in-context
	Transformers struggle to reach machine precision
	Transformers do not exhibit the generality of gradient descent
	Identifying an expressivity gap with standard Transformers

	Alternate architectures close the expressivity gap
	Gated convolutions are equivalent to arithmetic circuits
	BaseConv can precisely express gradient descent for least squares

	Towards training models to machine precision
	Towards a high-precision training recipe
	Learning high-precision gradient descent with polynomial architectures

	Discussion and Limitations
	Extended background
	Least squares
	Related work

	Experimental setup
	Model architecture
	Optimizer
	Tasks
	In-context least squares.
	Primitives.
	Explicit gradient updates.
	k-th gradient descent iterate.

	Data generation

	Additional experimental results
	Ablations: linear algebra primitives
	Ablations: high-precision optimization
	k-th iterate GD
	In-context ODE solving

	Theoretical results
	Notation
	Primitives
	1-layer BaseConv can implement linear algebra primitives
	Gradient descent
	Newton's method
	Softmax attention can't implement element-wise squaring.

	Upper and lower bounds with BaseConv for gradient descent
	Upper bounds: BaseConv can implement gradient descent for linear regression
	Lower bounds: BaseConv constructions are asymptotically optimal

	BaseConv and Jackson's Theorem
	Multivariate function approximation
	Notation for D.7
	Training Input Distribution
	A generic partial derivative

	Setting the gradients to 0
	Some partial derivatives are always zero
	Generic form of partial derivatives plus a consequence

	Learning any possible function

