
FineEdit: Unlock Instruction-Based Text Editing for LLMs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have signif-001
icantly advanced natural language processing,002
demonstrating strong capabilities in tasks such003
as text generation, summarization, and reason-004
ing. Recently, their potential for automating005
precise text editing tasks across specialized do-006
mains, such as programming code, LaTeX, and007
structured database languages, has gained atten-008
tion. However, current state-of-the-art LLMs009
still struggle with executing precise, instruction-010
driven edits, particularly when structural ac-011
curacy and strict adherence to domain con-012
ventions are required. To address these chal-013
lenges, we introduce InstrEditBench, an au-014
tomated benchmark dataset comprising over015
30,000 structured editing tasks spanning di-016
verse domains, including Wikipedia articles,017
LaTeX documents, source code, and database018
languages. Using this benchmark, we develop019
FineEdit, a specialized editing model explicitly020
trained for accurate, context-aware text mod-021
ifications. Experimental evaluations demon-022
strate that FineEdit outperforms state-of-the-art023
models, achieving improvements of approxi-024
mately 10% over Gemini models on single-turn025
edits, up to 30% over Llama-3.2-3B, and ex-026
ceeding Mistral-7B-OpenOrca performance by027
over 40% on direct editing tasks. FineEdit also028
effectively generalizes to realistic multi-turn029
editing scenarios, highlighting its practical ap-030
plicability.031

1 Introduction032

Large Language Models (LLMs) have brought033

transformative progress to the field of natural lan-034

guage processing, demonstrating remarkable ca-035

pabilities in text generation, summarization, and036

reasoning (Brown et al., 2020; Achiam et al., 2023).037

Recently, LLMs have received increasing attention038

for their potential to automate and enhance text039

editing across a variety of domains (Celikyilmaz040

et al., 2020). Such editing capabilities is partic-041

ularly needed under task-specific application sce-042

narios, e.g., code editing (Fan et al., 2024), Wiki 043

editing (Suri et al., 2024), etc. 044

Despite this promise, current LLMs still face 045

notable limitations when applied to tasks that de- 046

mand direct editing, where the model must simulta- 047

neously understand the original text, follow the 048

instruction precisely, and generate semantically 049

aligned, high-quality edits. Even powerful pro- 050

prietary tools like ChatGPT often struggle to fully 051

understand user intent and reliably follow strict 052

editing instructions, especially in long-context sce- 053

narios Castillo-González et al. (2022). Particularly, 054

LLMs’ general editing capabilities in task-specific 055

settings often fall short (Yao et al., 2023; Ma et al., 056

2024). They tend to generate incorrect outputs and 057

stray from the given editing instructions. 058

To address these challenges, we propose a more 059

focused approach to editing with LLMs. Our key 060

insight is that narrowing the model’s attention to 061

two fundamental aspects, the exact location of the 062

edit and the content to be modified, can signifi- 063

cantly improve performance in direct editing tasks. 064

Per this intuition, we propose a dual approach con- 065

sisting of a dedicated benchmark (InstrEditBench) 066

for editing tasks and an editing-specific model (Fi- 067

neEdit). Specifically, we design an automated 068

workflow that focuses on accurately identifying 069

and evaluating structured text edits. This workflow 070

identifies precise differences and ensures correct 071

edits through quality control. By reducing noise 072

and focusing on meaningful modifications, this pro- 073

cess produces a dedicated, high-quality benchmark. 074

It directly addresses limitations in existing meth- 075

ods and aligns better with the practical demands of 076

real-world editing tasks. Notably, our approach is 077

also generalized to multi-turn editing scenarios, a 078

much more realistic user scenario, where instruc- 079

tions arrive iteratively and allow the model to refine 080

its edits step by step. 081

Implementation and evaluation. We train the 082

FineEdit model on InstrEditBench benchmark, ex- 083

1

plicitly designed to optimize performance on di-084

rect, instruction-driven text editing tasks. The085

result shows that FineEdit achieves an improve-086

ment of 10% over Gemini 1.5 Flash and Gemini087

2.0 Flash (DeepMind, 2024) in single-turn editing088

tasks, and up to 30% over Llama-3.2-3B (Meta AI,089

2024) on diverse editing benchmarks, while outper-090

forming Mistral-7B-OpenOrca (Lian et al., 2023;091

Mukherjee et al., 2023; Longpre et al., 2023) over092

40% on direct editing tasks.093

The main contributions of this work include:094

• A high-quality benchmark (InstrEdit-095

Bench)1: We introduce the first systematically096

constructed benchmark that spans four di-097

verse domains and contains more than 30,000098

single-turn and multi-turn structured editing099

tasks, thereby establishing a unified and com-100

prehensive evaluation standard for direct edit-101

ing research.102

• An innovative automated dataset genera-103

tion workflow: We develop a comprehensive104

workflow that ensures the benchmark’s qual-105

ity by accurately identifying line numbers and106

applying rigorous criteria to filter meaningful107

and relevant edits.108

• The FineEdit model: We present a special-109

ized model designed for direct text editing,110

demonstrating superior performance across111

benchmarks compared with existing models.112

2 Background113

2.1 Problem Formulation114

Each data point consists of an original structured115

text, Torig, and an editing instruction, Iedit. The116

objective is to generate an edited text, Tedit, that117

incorporates the modifications specified by Iedit.118

Formally, this process is defined as119

Tedit = f
(
Torig, Iedit; θ

)
(1)120

where θ represents learned parameters and f de-121

notes a function instantiated by a LLM that maps122

the original text Torig and editing instruction Iedit123

to the edited text Tedit.124

The parameters θ are learned from a dataset125

consisting of triples {(T (i)
orig, I

(i)
edit, T

(i)
edit)}Ni=1 during126

training, where the objective is to minimize the127

1We will release all datasets and the code to promote re-
producibility on acceptance.

discrepancy between the generated output and the 128

ground truth edited text. 129

Internally, f concatenates Torig and Iedit into a 130

single prompt and generates Tedit token by token in 131

an autoregressive manner. Specifically, if Tedit = 132

(y1, y2, . . . , yt), the probability of the edited text is 133

factorized as 134

p(Tedit | Torig, Iedit) =

t∏
i=1

p
(
yi | Torig, Iedit,

y1, y2, . . . , yi−1

) (2) 135

For finetuning on the editing task, the prompt 136

tokens (i.e., the original text and the editing instruc- 137

tion) are masked out in the loss function to ensure 138

that the model focuses only on predicting the cor- 139

rect edited tokens. At inference time, the model 140

processes the prompt and subsequently generates 141

Tedit. 142

The parameters θ are fine-tuned on labeled exam- 143

ples (Torig, Iedit, Tedit) by minimizing the negative 144

log-likelihood of the target tokens with the loss: 145

L(θ) = −
|Tedit|∑
t=1

logPθ(yt | Torig, Iedit, y1:t−1) (3) 146

over all training samples in the dataset. 147

2.2 LLM Editing Tasks 148

LLMs are increasingly recognized as versatile tools 149

for automating and enhancing editing tasks across 150

diverse domains. Previous studies have explored 151

LLMs for editing tasks in areas such as natural 152

language (e.g., wiki articles) and code. For in- 153

stance, CoEdIT (Raheja et al., 2023) employs task- 154

specific instruction tuning to achieve precise modi- 155

fications, while other works fine-tune models like 156

T5 (Raffel et al., 2020) on pairs of original and 157

edited texts (Faltings et al., 2021; Reid and Neubig, 158

2022; Mallinson et al., 2022; Du et al., 2022a,b; 159

Kim et al., 2022). However, many of these ap- 160

proaches rely on specialized techniques or focus 161

narrowly on specific tasks, such as grammar cor- 162

rection (Mallinson et al., 2022; Fang et al., 2023), 163

text simplification (Štajner et al., 2022), paraphrase 164

generation (Chowdhury et al., 2022), or style trans- 165

fer (Reif et al., 2022), which limits their generaliz- 166

ability across a broader range of editing scenarios. 167

In the realm of code editing, Fan et al. (Fan et al., 168

2024) examined LLMs for code change tasks and 169

identified weaknesses in generating accurate re- 170

views and commit messages. Beyond single-turn 171

2

editing, iterative or multi-turn editing can further172

improve output quality by allowing incorporation173

of progressive feedback, leading to more accurate174

and context-aligned modifications (Madaan et al.,175

2023; Schick et al., 2022). While these studies offer176

valuable insights, they often fall short in providing177

unified benchmarks and robust solutions to address178

the full spectrum of editing challenges. Our work179

addresses these gaps by introducing a comprehen-180

sive, cross-scenario editing tasks benchmark that181

covers Wiki, code, DSL, and LaTeX.182

3 Method183

3.1 Instruction categories184

We leverage four data sources to cover a wide range185

of representative text application scenarios: Wiki,186

Code, DSL, and LaTeX. The details of each cate-187

gories are described as follows:188

• Wiki: Data is extracted from the WikiText lan-189

guage modeling dataset (Merity et al., 2016),190

which contains over 100 million tokens from191

a dedicated subset of Wikipedia’s Good arti-192

cles (Wikipedia, n.d.b) and Wikipedia’s Fea-193

tured articles (Wikipedia, n.d.a). Specifically,194

sections from these articles are extracted and195

then contiguous segments are randomly se-196

lected to provide data points with various197

lengths.198

• Code: Code samples are extracted from the199

CodeSearchNet corpus (Husain et al., 2019),200

which contains about two million pairs of com-201

ments and code from GitHub projects. To202

make the edit task more challenging, each203

code sample in our benchmark is made up of204

several instead of one code segment because205

one single code segment is too short (about206

10 lines).207

• DSL: Database Domain Specific Language208

(DSL) is also considered in our benchmark.209

It consists of queries and schema defini-210

tions from multiple public repositories (hive,211

2024; b mc2, 2023; cassandra, 2024; Lerocha,212

2024).213

• LaTeX: LaTeX data is extracted from the La-214

tex2Poster dataset (Latex2Poster, 2024) that215

offers the LaTeX source code document of216

research papers along with metadata. Specifi-217

cally, each data point in our benchmark con-218

sists of multiple subsections from each ex- 219

tracted document data. 220

3.2 Instruction Generation 221

Instruction Generation Zero-shot instruction 222

generation is efficient, but often lacks diversity. 223

To address this limitation, we build on the work 224

of (Wang et al., 2022; Taori et al., 2023) by lever- 225

aging ChatGPT-4o mini combined with in-context 226

learning (ICL) (Dong et al., 2024). Our approach 227

is designed to generate specific edit requests tai- 228

lored to the structural characteristics of different 229

data categories, as process ➀ in Figure 1. For Wiki, 230

which primarily consists of clear structural text ele- 231

ments like headings and subheadings, we apply a 232

zero-shot prompting strategy. In contrast, for more 233

complex domains such as LaTeX, code, and DSL, 234

we adopt ICL to improve the diversity and nuance 235

of generated instructions. 236

This category-specific strategy not only enriches 237

the instruction sets but also enhances their ability to 238

capture domain-specific editing challenges without 239

compromising on precision and efficiency. We will 240

describe prompt details in Appendix C. 241

3.3 Instruction filtering 242

After obtaining the edit instructions for each con- 243

tent, we apply them to the original text to produce 244

an edited version as process ➁ in Figure 1. How- 245

ever, ensuring the quality of the edited content re- 246

mains challenging. Although LLM generally fol- 247

lows the edit instructions, errors may occur—for 248

example, targeting incorrect line numbers or mis- 249

interpreting the intended semantics (Wang et al., 250

2025; Cassano et al., 2024). To address this prob- 251

lem and improve data quality, we propose DiffEval 252

Pipeline, which integrates G-Eval (Liu et al., 2023) 253

and Git-Diff as an automatic filter to improve data 254

quality. 255

Besides adopting G-Eval for automated assess- 256

ment (Liu et al., 2023), the DiffEval Pipeline also 257

relies on git (git, 2024), a widely used version 258

control system, to detect and classify textual mod- 259

ifications. Specifically, the command git diff 260

specifies differences between the original and mod- 261

ified texts as process ➂ in Figure 1, categorizing 262

changes into four types: 263

• Replacements: an original segment is 264

transformed into a new form, indicated as 265

[original_text -> modified_text]. This 266

captures cases where an existing text portion 267

3

Figure 1: Workflow of Generating High-quality InstrEditBench. The content difference is highlighted in blue.

is substituted with different content, which268

may alter meaning or style.269

• Deletions: a segment is removed entirely,270

shown as [-original_text-]. Such re-271

movals can simplify the text or eliminate irrel-272

evant or erroneous sections.273

• Insertions: new content is added, denoted as274

[+modified_text+]. Insertions enrich the275

text with extra details, clarifications, or elabo-276

rations.277

• Unchanged Text: labeled as equal:278

unchanged_text. This indicates portions279

that remain identical between the original and280

modified versions, providing a reference for281

what the model has chosen to retain.282

By categorizing changes into these four types,283

the DiffEval Pipeline offers a structured view of284

how text is altered, enabling more precise evalua-285

tions when paired with G-Eval.286

Finally, process ➃ in Figure 1 demonstrates287

that DiffEval carefully reviews the aggregated data288

(marked with red arrows) alongside the edit request289

to fully grasp the context, structure, and nuances290

of the text. It identifies discrepancies between the291

intended edits and the actual modifications, verify-292

ing whether the changes faithfully implement the293

edit instructions. By using the git diff output in-294

stead of the complete edited content, DiffEval can295

precisely locate modifications using supplementary296

information such as line numbers and structured297

differences. Moreover, git diff minimizes unnec-298

essary noise and reduces computational overhead299

by significantly lowering the token count compared300

with the full edited content. Once all required data301

is gathered, the G-Eval analysis process evaluates302

the collected information to further enhance the303

dataset quality.304

Specifically, the analysis process begins by pars- 305

ing the structure of git diff outputs, categorizing 306

changes as replacements, deletions, insertions, or 307

unchanged segments. Next, it evaluates the seman- 308

tic meaning of both the original content and the 309

modifications to ensure that the changes are accu- 310

rate and complete. This involves a thorough review 311

of the original text, the edit request, and the result- 312

ing edits, applying predefined categorization rules, 313

and assessing overall coherence. 314

Based on this analysis process, the DiffEval can 315

assign a coherence score, G-Score, to the edited 316

content, reflecting the semantic integrity and log- 317

ical consistency of the modifications. This score 318

is used to filter out output that does not meet the 319

desired quality threshold α. 320

3.4 Generalize to Multi-turn Editing Task 321

Notably, our proposed framework is easily general- 322

ized to more practical multi-turn editing scenarios. 323

Specifically, given the initial content, we instruct 324

ChatGPT to generate a sequence of multiple dis- 325

tinct editing requests that are explicitly constrained 326

to be non-contradictory with each other. Each gen- 327

erated editing request targets different aspects or 328

details within the same content, ensuring that subse- 329

quent instructions complement rather than conflict 330

with previous edits. This setting reflects real-world 331

editing workflows where users iteratively refine 332

content through consecutive instructions. 333

4 Experiment 334

4.1 Experimental Setup 335

In this section, we detail the experimental setups, 336

including dataset splits, model variants, baselines, 337

evaluation metrics, and implementation specifics. 338

Dataset and Model Variants. We evaluate Fi- 339

neEdit on our proposed InstrEditBench dataset us- 340

ing a 90/10 train-test split. Additionally, we in- 341

4

troduce three FineEdit variants, namely FineEdit-342

L, FineEdit-XL, and FineEdit-Pro, which are fine-343

tuned from the LLaMA-3.2-1B, LLaMA-3.2-3B,344

and Qwen2.5-3B-Instruct base models respectively,345

covering a broad spectrum of model architectures346

and parameter scales.347

Baselines. Our baselines include Gemini 1.5 Flash,348

Gemini 2.0 Flash, LLaMA-3.2-1B, LLaMA-3.2-349

3B, Qwen2.5-3B-Instruct, and Mistral-7B, span-350

ning diverse architectures and sizes. We evaluate351

both zero-shot and few-shot prompting on the Gem-352

ini models, while open-source models are assessed353

using zero-shot prompting.354

Metrics. Following established approaches (Naka-355

machi et al., 2020; Shen et al., 2017), we use BLEU356

and ROUGE-L metrics to assess the vocabulary357

and structural consistency between the edited and358

reference texts.359

Implementation details. Training details are pro-360

vided in Appendix A.361

4.2 Performance of Existing Models362

We evaluated FineEdit against several state-of-the-363

art baselines on the InstrEditBench dataset across364

four data categories as presented in Table 3.365

Comparison with Zero-shot Performance.366

Among all baselines, Gemini 1.5 Flash achieved367

the highest overall scores, while Mistral-7B-368

OpenOrca recorded the lowest BLEU and369

ROUGE-L values. Although model size is370

typically a critical factor, Gemini 2.0 Flash371

did not outperform Gemini 1.5 Flash in terms372

of overall effectiveness. For example, despite373

having more parameters than LLaMA-3.2-1B,374

Mistral-7B-OpenOrca underperformed on both375

metrics, highlighting the importance of model376

architecture and training strategies. Additionally,377

Gemini 2.0 Flash demonstrated superior semantic378

understanding in the Wiki category, with a BLEU379

score of 0.9133 and a ROUGE-L score of 0.9429,380

yet its overall performance remained inferior to381

that of Gemini 1.5 Flash.382

FineEdit, and in particular its FineEdit-Pro vari-383

ant, further outperforms all zero-shot baselines.384

FineEdit-Pro achieves an overall BLEU score of385

0.9245, representing improvements of approxi-386

mately 11.6%, 57.7%, and 184.7% over Gem-387

ini 1.5 Flash (0.8285), LLaMA-3.2-3B (0.5862),388

and Mistral-7B-OpenOrca (0.3246), respectively.389

These gains are consistently observed across in-390

dividual data categories—for example, FineEdit-391

Pro attains BLEU scores of 0.9521 and 0.9538 in392

the DSL and Code domains, respectively. These 393

results underscore the effectiveness of FineEdit’s 394

targeted fine-tuning strategy, which focuses on pre- 395

cise editing of location and content to preserve both 396

structural and semantic integrity. 397

Comparison with Few-shot Performance. We 398

further evaluated few-shot learning on the Gemini 399

models. Although few-shot prompting notably im- 400

proved performance in some categories, such as the 401

LaTeX domain where Gemini 2.0 Flash achieved a 402

20% higher BLEU score compared to the zero-shot 403

setting, the overall few-shot results still remained 404

inferior to FineEdit. In certain cases, such as the 405

SQL category, few-shot learning provided mini- 406

mal improvement, achieving BLEU and ROUGE- 407

L scores of only 0.1600 and 0.1814, respectively. 408

These findings highlight the effectiveness and im- 409

portance of our curated benchmark in driving ad- 410

vancements in editing tasks. 411

4.3 FineEdit: Supervised Finetuning 412

Our FineEdit model is offered in three variants: 413

FineEdit-L, FineEdit-XL, and FineEdit-Pro. Un- 414

der zero-shot conditions, FineEdit-L consistently 415

outperforms all baseline models in BLEU and 416

ROUGE-L scores for LaTeX, DSL, Wiki, and 417

Code tasks. For example, compared to Gemini 1.5 418

Flash, FineEdit-L improves overall BLEU scores 419

by roughly 8%, with even larger gains observed in 420

specific categories. Notably, FineEdit-XL performs 421

similarly to FineEdit-L, suggesting that increasing 422

the parameter count from 1B to 3B using LLaMA 423

does not yield a significant performance boost. 424

By leveraging the superior instruction-following 425

capabilities of Qwen2.5-3B-Instruct, our final vari- 426

ant, FineEdit-Pro, further elevates performance. 427

FineEdit-Pro achieves an overall BLEU score of 428

0.9245, which represents improvements of approx- 429

imately 11.6% over Gemini 1.5 Flash, and gains 430

of around 14.7% and 11.7% in the DSL and Wiki 431

tasks, respectively. These consistent improvements 432

across multiple data categories underscore the ef- 433

fectiveness of our supervised fine-tuning strategy 434

and highlight the importance of a strong instruction- 435

tuned base model over merely increasing model 436

size. 437

We also compared our models with Gemini’s 438

few-shot prompting approach in real-world scenar- 439

ios. Although in-context learning (ICL) improves 440

Gemini’s performance in certain cases, such as an 441

8% increase in BLEU score on the Wiki dataset 442

for Gemini 2.0 Flash, the overall performance re- 443

5

Method Model Open-Source
LaTeX DSL Wiki Code Overall

BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L

Zero-shot

Gemini 1.5 Flash ✗ 0.8665 0.9150 0.8297 0.8555 0.7626 0.8361 0.8551 0.9073 0.8285 0.8819
Gemini 2.0 Flash ✗ 0.7413 0.7951 0.4706 0.4964 0.9133 0.9429 0.1339 0.2737 0.5853 0.6519
Llama-3.2-1B ✓ 0.5088 0.6108 0.5564 0.6596 0.4413 0.5766 0.4742 0.6072 0.4867 0.6069
Llama-3.2-3B ✓ 0.5969 0.6925 0.5747 0.6821 0.5061 0.6384 0.6638 0.7727 0.5862 0.6976
Qwen2.5-3B-Instr ✓ 0.5467 0.6712 0.4107 0.4991 0.4170 0.5699 0.3967 0.5390 0.4492 0.5816
Mistral-7B-Orca ✓ 0.3782 0.5770 0.0361 0.1638 0.3608 0.5840 0.3763 0.6447 0.3246 0.5395

Few-shot
Gemini 1.5 Flash (2 shot) ✗ 0.8742 0.9324 0.0908 0.1190 0.8657 0.9139 0.7412 0.8302 0.7249 0.7845
Gemini 2.0 Flash (2 shot) ✗ 0.9464 0.9723 0.1600 0.1814 0.9380 0.9665 0.8327 0.8698 0.8011 0.8302

FineEdit
FineEdit-L ✓ 0.9311 0.9697 0.9334 0.9615 0.8077 0.9036 0.9296 0.9725 0.8957 0.9504
FineEdit-XL ✓ 0.8867 0.9502 0.9241 0.9552 0.8120 0.9056 0.9295 0.9720 0.8824 0.9441
FineEdit-Pro ✓ 0.9539 0.9821 0.9521 0.9710 0.8521 0.9185 0.9538 0.9836 0.9245 0.9628

Table 1: Comparison of LLMs on BLEU and ROUGE-L for LaTeX, DSL, Wiki, Code. Overall data displays
average performance among all data categories. The best results are highlighted in bold.

Method Model Open-Source
LaTeX DSL Wiki Code Overall

BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L

Zero-shot

Gemini 1.5 Flash ✗ 0.1745 0.3067 0.9643 0.9787 0.7785 0.8908 0.3882 0.5291 0.5764 0.6763
Gemini 2.0 Flash ✗ 0.1304 0.2435 0.4243 0.4328 0.8624 0.9145 0.1426 0.2454 0.3899 0.4591
Llama-3.2-1B ✓ 0.3168 0.4371 0.2593 0.3466 0.2291 0.3584 0.1749 0.3196 0.2450 0.3654
Llama-3.2-3B ✓ 0.3101 0.4374 0.3274 0.4355 0.2871 0.4073 0.2988 0.4177 0.3059 0.4245
Qwen2.5-3B-Instr ✓ 0.5196 0.6344 0.2083 0.2603 0.2845 0.4261 0.3985 0.5138 0.3527 0.4587

Few-shot
Gemini 1.5 Flash (2 shot) ✗ 0.4811 0.5423 0.0511 0.1167 0.7511 0.8462 0.2388 0.3430 0.3805 0.4621
Gemini 2.0 Flash (2 shot) ✗ 0.9099 0.9247 0.0294 0.0406 0.9272 0.9740 0.4719 0.6266 0.5846 0.6415

FineEdit
FineEdit-L ✓ 0.6823 0.8531 0.8071 0.8730 0.4938 0.6588 0.6707 0.7773 0.6635 0.7906
FineEdit-XL ✓ 0.3230 0.4468 0.8050 0.8798 0.4522 0.6333 0.6806 0.7756 0.5652 0.6839
FineEdit-Pro ✓ 0.8461 0.8917 0.8123 0.8902 0.6975 0.8286 0.9499 0.9796 0.8265 0.8975

Table 2: Multi-turn editing results for LaTeX, DSL, Wiki and Code. Overall data displays average performance
among all data categories.

mains inferior to FineEdit-Pro. This superior per-444

formance highlights the effectiveness of our high-445

quality, rigorously validated InstrEditBench dataset446

in enabling more robust and generalizable solutions447

for editing tasks.448

4.4 Multi-turn Editing Evaluation449

We also evaluated the extended benchmark on Fi-450

neEdit in the multi-turn setting. In this extension,451

each data instance contains multiple editing re-452

quests. To simulate real multi-turn scenario, we453

apply these instructions iteratively: each request is454

executed on the output produced by the previous455

one, ensuring that the edits are applied in a cumu-456

lative manner. We then assess the final output to457

determine whether it accurately reflects the cumu-458

lative effect of all editing instructions after the full459

sequence of modifications has been applied. To460

assess the performance of multi-turn, we randomly461

sample 100 multi-turn data for each category, and462

test them on different models.463

Results show that multi-turn editing leads to464

consistent performance drops across all domains.465

Specifically, BLEU scores for LaTeX drop from 466

0.9539 to 0.8461, DSL from 0.9521 to 0.8123, 467

Wiki from 0.8521 to 0.6975, and Code from 0.9538 468

to 0.9499. These results indicate that multi-turn 469

scenarios are substantially more challenging, espe- 470

cially for Wiki and DSL, while code exhibit strong 471

robustness under multi-turn edits. This indicates 472

that the decline is the accumulation of errors across 473

turns. Each instruction is applied to the output of 474

the previous one, which may already contain small 475

deviations. These deviations can propagate through 476

subsequent steps and lead to compounded errors in 477

the final output. 478

Despite the degradation in multi-turn settings, 479

FineEdit-Pro achieves an average BLEU of 0.8265, 480

substantially higher than Gemini 1.5 Flash (0.5764) 481

and Gemini 2.0 Flash (0.3899). This further demon- 482

strates the effectiveness of our dataset design and 483

its extensibility to diverse editing scenarios. 484

4.5 Qualitative Study 485

To qualitatively assess the performance of Find- 486

Edit on single-turn editing tasks, we conduct sev- 487

6

Edit Request 1: Change the brackets in the code to semicolons.
Original: def test(options): options.data = [] ; def test2(options): options.data = []
Gemini (✗) def test(options): options.data = None ; def test2(options): options.data = None
FindEdit Pro (✓) def test(options): options.data = ; ; def test2(options): options.data = ;

Edit Request 2: Change \subsection{Strengths} to \subsection*{Strengths}.
Original: \subsection{Strengths} The topic of responsible AI is ...
Gemini (✓) \subsection*{Strengths} The topic of responsible AI is ...
FindEdit Pro (✗) latex{\subsection{Strengths}} The topic of responsible AI is ...

Edit Request 3: Replace “Falcon” with “Captain America”.
Original: In “Captain America: Brave New World,” Sam Wilson, formerly the Falcon, assumes ...
Gemini (✗) In “Captain America: Brave New World,” Sam Wilson, formerly known as the Falcon, assumes ...
FindEdit Pro (✓) In “Captain America: Brave New World,” Sam Wilson, formerly the Captain America, assumes ...

Edit Request 4: Add column created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP.
Original: CREATE TABLE worker_salaries (employee_id INT, ...)
Gemini (✗) ALTER TABLE community_gardens ADD COLUMN created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
FindEdit Pro (✓) CREATE TABLE community_gardens (..., created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)

Table 3: Colour-coded comparison of Gemini and FindEdit Pro responses to four edit requests. (✗ = incorrect)
stands for incorrect editing, while (✓ = correct) stands for correct editing.

eral studies as shown in Table 3. This table il-488

lustrates eight examples of how FineEdit-Pro and489

Gemini respond to diverse editing requests. In490

several cases, FineEdit-Pro accurately applies the491

required changes. Specifically, it could correctly492

add new columns in DSL or adjust environment493

commands. However, Gemini often restates the494

instruction without actually implementing the in-495

tended modifications. Specifically, both Gemini496

1.5 Flash and 2.0 Flash perform well on LaTeX497

and Wiki tasks, yet they struggle with DSL and498

Code tasks. For example, as shown in Table 3,499

FineEdit-Pro correctly identifies the target table500

and appends a new column named created_at501

with the data type DEFAULT CURRENT_TIMESTAMP.502

In contrast, Gemini misinterprets the instruction,503

merely repeating the edit request rather than ap-504

plying the intended change. These observations505

highlight the qualitative strengths of our proposed506

FineEdit approach.507

Nonetheless, FineEdit is not without short-508

comings. In the LaTeX example depicted509

in Table 3, Gemini accurately locates the510

subsection{Strengths} and updates it as speci-511

fied. However, although FineEdit-Pro also identi-512

fies and modifies the correct location, it generates513

the correct response twice, which deviates from514

the direct editing requirement. This discrepancy515

suggests that FineEdit-Pro, though generally more516

reliable, can overapply modifications in specific517

cases.518

Overall, these results illustrate FineEdit-Pro’s519

capacity to handle more complex edits, particularly520

for DSL and Code, while Gemini often fails to521

implement them. Nevertheless, occasional issues522

like duplicate outputs highlight the need for refine- 523

ment, ensuring FineEdit-Pro consistently adheres 524

to direct editing requirements without introducing 525

redundant content. On the other hand, Gemini oc- 526

casionally performs better in simpler tasks, such as 527

LaTeX updates. 528

FineEdit is also generalized well to the multi- 529

turn editing task scenarios. Table 4 demon- 530

strates an example of how FineEdit-Pro per- 531

form more precisely than Gemini. In this 532

scenario, FineEdit-Pro successfully applies all 533

three requested changes: it removes the du- 534

plicate \begin{abstract}, replaces the inline 535

\footnote{} with a \footnotemark and corre- 536

sponding \footnotetext{} pair, and rewrites the 537

commented \{TODO...} as a finalized, explanatory 538

sentence. 539

In contrast, though Gemini removes the du- 540

plicate \begin{abstract}, it add a duplicate 541

\end{abstract} in the end of this content. Ad- 542

ditionally, Gemini does not follow the instruction 543

to split the \footnote{} into \footnotemark and 544

\footnotetext{}, instead simply retaining the 545

original inline footnote. These errors indicate that 546

Gemini struggles with compound edits that involve 547

structural modifications across multiple locations. 548

4.6 Human Evaluation 549

To assess whether DiffEval improves the over- 550

all quality of the dataset, we carried out a human 551

evaluation. Because the dataset includes Code and 552

DSL categories that require programming exper- 553

tise, we recruited three evaluators, each with at 554

least a bachelor’s degree in computer science or 555

a related discipline. We established the following 556

7

Edit Request 1: Remove the duplicate \begin{abstract} at the beginning of the abstract environment.
Original: \begin{abstract} \begin{abstract} . . .
Gemini (✗) \begin{abstract} . . . \end{abstract} \end{abstract}
FindEdit Pro (✓) \begin{abstract} . . . \end{abstract}

Edit Request 2: Convert \footnote{...} to \footnotemark + \footnotetext{...}.
Original: \footnote{Dataset is available at \url{...}}
Gemini (✗) \footnote{Dataset is available at \url{...}}
FindEdit Pro (✓) \footnotemark . . . \footnotetext{Dataset is available at \url{...}}

Edit Request 3: Remove the ’TODO’ from the ’TODO’ line.
Original: \{TODO: we introduce distractibility as a new metric for evaluating language models.}
Gemini (✓) \{We introduce distractibility as a new metric for evaluating language models.}
FindEdit Pro (✓) \{We introduce distractibility as a new metric for evaluating language models.}

Table 4: Color-coded comparison of Gemini and the FineEdit Pro for a multi-turn task with three edit requests. (✗ =
incorrect) indicates an unsatisfied edit, while (✓ = correct) indicates a satisfied edit.

Threshold Wiki LaTeX DSL Code

G-score ≥ 9 97% 93% 90% 97%
G-score < 9 87% 89% 66% 83%

Table 5: Annotation accuracy across content types under
different G-score thresholds.

guidelines to ensure rigorous assessment: (1) Pre-557

cise Observation: Confirm that the updated content558

exactly corresponds to the segment specified by559

the edit request. (2) No Unintended Modifications:560

Verify that no other sections have been altered; any561

unexpected changes result in failure. (3) Three-562

Round Procedure: Two evaluators independently563

review each item, with a third evaluator resolving564

any discrepancies.565

We examined 100 items per category and found566

that data processed through our DiffEval pipeline567

exhibited noticeably enhanced accuracy, as shown568

in Table 5. The Wiki and Code datasets, in particu-569

lar, demonstrated the most reliable outcomes, with570

edited content precisely matching the requested571

modifications. Notably, the DSL dataset experi-572

enced the greatest improvement, with quality in-573

creasing by over 24% compared to data that did not574

meet DiffEval’s standards.575

4.7 Ablation Study on DiffEval Components576

To better understand the contribution of each com-577

ponent in the DiffEval pipeline, we conducted two578

ablation experiments. Manual annotation followed579

the protocol described in Section 4.6.580

Git diff effectiveness. We evaluated a reduced581

pipeline in which G-Eval judged the alignment be-582

tween the instruction and the edited text without583

access to git diff. From its output, we randomly584

sampled 100 examples whose G-Score was at least585

nine and annotated them. For comparison, we an-586

notated another 100 examples produced by the full 587

DiffEval pipeline, where G-Eval received the git 588

diff instead of the full edited text. 589

Including git diff raised the accuracy from 590

0.85 to 0.94. These results indicate that git diff 591

contributes important structural information for 592

identifying precise alignment between the instruc- 593

tion and the edit. 594

G-score threshold selection. We also examined 595

the effect of the G-score threshold α used in fil- 596

tering. Setting α = 8 results in many examples 597

where the core instruction is followed, but this 598

will sometimes introduce unintended formatting 599

changes. One common issue is the insertion of 600

extra spaces throughout the text. For instance, in 601

a deletion instruction targeting a historical phrase, 602

the phrase was correctly removed, but the resulting 603

diff introduced multiple superfluous spaces across 604

the paragraph. This violates the requirement to pre- 605

serve all formatting outside the instructed change. 606

Such formatting issues were significantly reduced 607

when the threshold was increased to α = 9. 608

5 Conclusion 609

We introduce InstrEditBench, a benchmark of over 610

30k editing tasks spanning Wiki, LaTeX, code, and 611

DSL, aimed at precise instruction-based text edit- 612

ing. To ensure supervision quality, we develop 613

DiffEval, an automated pipeline combining struc- 614

tural and semantic filters. We further validate our 615

benchmark with FineEdit, a model fine-tuned on 616

InstrEditBench, achieving up to 10% gains over 617

leading models. Designed for both single-turn and 618

multi-turn editing, our modular benchmark and 619

pipeline enable broad applicability. We will pub- 620

licly release FineEdit to foster further research in 621

instruction-driven and context-aware text editing. 622

8

6 Limitations623

Limited Deployment Scope. Due to cost and hard-624

ware constraints, our evaluations were limited to625

large proprietary LLMs (e.g., Gemini), rather than626

large open-source models.627

Controlled Context Evaluation. Our benchmark628

focuses on controlled evaluation contexts, where629

it does not yet encompass long-context chain-of-630

thought scenarios, as smaller LLMs are confined631

by limited context windows, even though such tech-632

niques could be effective in proprietary models.633

References634

2024. Git diff: A tool for comparing changes. Git635
Documentation.636

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama637
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,638
Diogo Almeida, Janko Altenschmidt, Sam Altman,639
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.640
arXiv preprint arXiv:2303.08774.641

b mc2. 2023. sql-create-context dataset.642

Tom Brown, Benjamin Mann, Nick Ryder, Melanie643
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind644
Neelakantan, Pranav Shyam, Girish Sastry, Amanda645
Askell, et al. 2020. Language models are few-shot646
learners. Advances in neural information processing647
systems, 33:1877–1901.648

cassandra. 2024. Apache cassandra. GitHub Reposi-649
tory.650

Federico Cassano, Luisa Li, Akul Sethi, Noah651
Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward652
Berman, George Chakhnashvili, Anton Lozhkov, Car-653
olyn Jane Anderson, and Arjun Guha. 2024. Can it654
edit? evaluating the ability of large language mod-655
els to follow code editing instructions. Preprint,656
arXiv:2312.12450.657

William Castillo-González, Carlos Oscar Lepez, and658
Mabel Cecilia Bonardi. 2022. Chat gpt: a promising659
tool for academic editing. Data and Metadata, 1:23–660
23.661

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.662
2020. Evaluation of text generation: A survey. arXiv663
preprint arXiv:2006.14799.664

A. Chowdhury et al. 2022. Enhanced paraphrase gener-665
ation via t5 fine-tuning. In Findings of ACL 2022.666

Google DeepMind. 2024. Google gemini ai update -667
december 2024.668

Qingxiu Dong, Liangming Pan, Duyu Tang, Ming Gong,669
Nan Duan, Heyan Huang, and Xiaoyan Zhu. 2024.670
A survey on in-context learning. arXiv preprint671
arXiv:2301.00234.672

X. Du et al. 2022a. Grit1: A grammar error correction 673
dataset for llm evaluation. In Proceedings of EMNLP 674
2022. 675

X. Du et al. 2022b. Grit2: Extending grammar error cor- 676
rection for multilingual llms. In Findings of EMNLP 677
2022. 678

Isabelle Faltings et al. 2021. Leveraging fine-tuned t5 679
for knowledge-based text editing tasks. In Proceed- 680
ings of the ACL 2021. 681

L. Fan, J. Liu, Z. Liu, D. Lo, X. Xia, and S. Li. 2024. 682
Exploring the capabilities of llms for code change 683
related tasks. arXiv preprint arXiv:2407.02824. 684

J. Fang et al. 2023. Hierarchical editing for grammar 685
correction tasks. In Proceedings of COLING 2023. 686

hive. 2024. Apache hive. GitHub Repository. 687

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 688
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 689
and Weizhu Chen. 2021. Lora: Low-rank adap- 690
tation of large language models. arXiv preprint 691
arXiv:2106.09685. 692

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 693
Allamanis, and Marc Brockschmidt. 2019. Code- 694
SearchNet challenge: Evaluating the state of seman- 695
tic code search. arXiv preprint arXiv:1909.09436. 696

J. Kim et al. 2022. Towards general-purpose text editing 697
with t5. In Findings of ACL 2022. 698

Latex2Poster. 2024. Latex2poster dataset. Hugging 699
Face. 700

Lerocha. 2024. Chinook database. GitHub Repository. 701

Wing Lian, Bleys Goodson, Guan Wang, Eu- 702
gene Pentland, Austin Cook, Chanvichet Vong, 703
and "Teknium". 2023. Mistralorca: Mistral-7b 704
model instruct-tuned on filtered openorcav1 gpt-4 705
dataset. https://huggingface.co/Open-Orca/Mistral- 706
7B-OpenOrca. 707

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, 708
Ruochen Xu, and Chenguang Zhu. 2023. G-eval: 709
Nlg evaluation using gpt-4 with better human align- 710
ment. In Proceedings of the 2023 Conference on 711
Empirical Methods in Natural Language Processing, 712
pages 2511–2522. 713

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, 714
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. 715
Le, Barret Zoph, Jason Wei, and Adam Roberts. 716
2023. The flan collection: Designing data and 717
methods for effective instruction tuning. Preprint, 718
arXiv:2301.13688. 719

Xinbei Ma, Tianjie Ju, Jiyang Qiu, Zhuosheng Zhang, 720
Hai Zhao, Lifeng Liu, and Yulong Wang. 2024. On 721
the robustness of editing large language models. In 722
Proceedings of the 2024 Conference on Empirical 723
Methods in Natural Language Processing, pages 724
16197–16216, Miami, Florida, USA. Association for 725
Computational Linguistics. 726

9

https://git-scm.com/docs/git-diff
https://huggingface.co/datasets/b-mc2/sql-create-context
https://github.com/apache/cassandra
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2312.12450
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://arxiv.org/abs/2301.00234
https://github.com/apache/hive
https://huggingface.co/datasets/jd445/latex2poster
https://github.com/lerocha/chinook-database
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://arxiv.org/abs/2301.13688
https://arxiv.org/abs/2301.13688
https://arxiv.org/abs/2301.13688
https://doi.org/10.18653/v1/2024.emnlp-main.906
https://doi.org/10.18653/v1/2024.emnlp-main.906
https://doi.org/10.18653/v1/2024.emnlp-main.906

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler727
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,728
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,729
et al. 2023. Self-refine: Iterative refinement with730
self-feedback. Advances in Neural Information Pro-731
cessing Systems, 36:46534–46594.732

J. Mallinson et al. 2022. Edit5: Fine-tuning t5 for multi-733
domain editing tasks. In Findings of ACL 2022.734

Stephen Merity, Caiming Xiong, James Bradbury, and735
Richard Socher. 2016. Pointer sentinel mixture mod-736
els. Preprint, arXiv:1609.07843.737

Meta AI. 2024. Llama 3.2: Advancing vision and edge738
ai for mobile devices. Accessed: 2025-01-06.739

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-740
har, Sahaj Agarwal, Hamid Palangi, and Ahmed741
Awadallah. 2023. Orca: Progressive learning from742
complex explanation traces of gpt-4. Preprint,743
arXiv:2306.02707.744

Akifumi Nakamachi, Tomoyuki Kajiwara, and Yuki745
Arase. 2020. Text simplification with reinforcement746
learning using supervised rewards on grammaticality,747
meaning preservation, and simplicity. In Proceedings748
of the 1st Conference of the Asia-Pacific Chapter of749
the Association for Computational Linguistics and750
the 10th International Joint Conference on Natural751
Language Processing: Student Research Workshop,752
pages 153–159.753

Colin Raffel et al. 2020. Exploring the limits of transfer754
learning with a unified text-to-text transformer. Jour-755
nal of Machine Learning Research, 21(140):1–67.756

Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop757
Kang. 2023. Coedit: Text editing by task-specific758
instruction tuning. arXiv preprint arXiv:2305.09857.759

S. Reid and G. Neubig. 2022. Learning to edit text with760
transformers. In Proceedings of NAACL 2022.761

M. Reif et al. 2022. Style transfer in text editing with762
transformers. In Findings of ACL 2022.763

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio764
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,765
Christoforos Nalmpantis, Edouard Grave, and Sebas-766
tian Riedel. 2022. Peer: A collaborative language767
model. arXiv preprint arXiv:2208.11663.768

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi769
Jaakkola. 2017. Style transfer from non-parallel text770
by cross-alignment. Advances in neural information771
processing systems, 30.772

Manan Suri, Puneet Mathur, Franck Dernoncourt, Rajiv773
Jain, Vlad I Morariu, Ramit Sawhney, Preslav Nakov,774
and Dinesh Manocha. 2024. Docedit-v2: Docu-775
ment structure editing via multimodal llm grounding.776
arXiv preprint arXiv:2410.16472.777

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann778
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,779
and Tatsunori B Hashimoto. 2023. Stanford alpaca:780
An instruction-following llama model.781

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al- 782
isa Liu, Noah A Smith, Daniel Khashabi, and Han- 783
naneh Hajishirzi. 2022. Self-instruct: Aligning lan- 784
guage models with self-generated instructions. arXiv 785
preprint arXiv:2212.10560. 786

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, 787
Shengmai Chen, Lei Ma, and Tianyi Zhang. 2025. 788
Towards understanding the characteristics of code 789
generation errors made by large language models. 790
Preprint, arXiv:2406.08731. 791

Wikipedia. n.d.a. Wikipedia: Featured articles. 792
https://en.wikipedia.org/wiki/Wikipedia: 793
Featured_articles. Accessed: 2025-02-14. 794

Wikipedia. n.d.b. Wikipedia: Good articles. 795
https://en.wikipedia.org/wiki/Wikipedia: 796
Good_articles. Accessed: 2025-02-14. 797

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, 798
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu 799
Zhang. 2023. Editing large language models: Prob- 800
lems, methods, and opportunities. In Proceedings 801
of the 2023 Conference on Empirical Methods in 802
Natural Language Processing, pages 10222–10240, 803
Singapore. Association for Computational Linguis- 804
tics. 805

S. Štajner et al. 2022. Simpleedit: A toolkit for text 806
simplification with llms. In Findings of ACL 2022. 807

10

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2406.08731
https://arxiv.org/abs/2406.08731
https://arxiv.org/abs/2406.08731
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://en.wikipedia.org/wiki/Wikipedia:Good_articles
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632

A Additional Implementation Details808

For existing models, we strictly adhere to configu-809

rations from their original papers. To manage fixed810

maximum token lengths L, if the combined Torig811

and Iedit exceed L, we partition Torig into chunks of812

size ≤ L, process each chunk independently with813

the same edit instruction, and concatenate the out-814

puts to form the complete edited text. We fine-tune815

models using Low-Rank Adaptation (LoRA) (Hu816

et al., 2021) with r = 8, α = 32, and a dropout817

rate of 0.05, employing the AdamW optimizer with818

a learning rate of 2× 10−5, training for 2 epochs,819

an effective batch size of 1, and 4 gradient accumu-820

lation steps.821

Chunking long context: Many large language822

models impose a fixed maximum token length L823

on their input (and sometimes output) sequences.824

Consequently, if the combination of Torig and Iedit825

exceeds this limit, we divide the Torig into smaller826

chunks of size ≤ L. Each chunk is then processed827

independently—paired with the same edit request828

and later concatenated to form the complete edited829

text. This approach ensures that every chunk fits830

within the model’s token budget, preventing over-831

flow and reducing memory usage while preserving832

the overall structured editing behavior.833

Fine-Tuning Configuration: We use a LoRA rank834

of r = 8 and LoRA alpha α = 32, following the835

original LoRA paper (Hu et al., 2021). This com-836

bination (r = 8, α = 32) and a learning rate of837

2 × 10−5 are widely used in practice, including838

in the default settings of the HuggingFace PEFT839

library. It produces a scaling factor of α/r = 4,840

which balances training stability and memory effi-841

ciency, enabling the model to learn meaningful842

updates without destabilizing training. We set843

lora_dropout = 0.05, a typical value that helps844

regularize LoRA updates and reduce overfitting.845

Training and Generation Settings are as follows:846

• Epochs: 2 epochs, which is generally suffi-847

cient for convergence in our editing task.848

• Gradient Accumulation Steps: 4 (necessary849

due to a small batch size of 1 and GPU con-850

straints).851

• Max Chunk Tokens: 2048.852

• Max Length: 4096.853

• Generation Settings: temperature = 0.2,854

top-p = 0.95.855

The token constraints ensure no exceeding of the 856

model’s context window and maintain consistent 857

training across models. These parameters reduce 858

randomness while keeping the generated text rele- 859

vant to the task. 860

Decoding and Inference: During generation, we 861

set the temperature to 0.2 and used top-p sampling 862

with a probability of 0.95, then merging outputs 863

from all chunks to produce the final edited text. 864

The temperature and top-p settings follow previous 865

editing task studies (Cassano et al., 2024) to ensure 866

minimal changes rather than creative expansions as 867

our editing tasks require precise. 868

B Data Example 869

Table 6 presents representative examples from 870

our benchmark, covering four distinct data cat- 871

egories—WikiText, LaTeX, Code, and Database 872

DSL. Each example includes the original content, 873

the user-issued edit request, the resulting edited 874

content, the line-level difference, and the associ- 875

ated G-score indicating edit difficulty. 876

We make a concrete instance using data in the 877

LaTeX category in Table 6. If the edit request is 878

to “Remove the duplicate \begin{abstract} at 879

the beginning of the abstract environment," the diff 880

output might display on Line 1: 881

\begin{abstract}[-\begin{abstract}-] 882

This indicates that the duplicate has been success- 883

fully removed. 884

C Dataset Generation Prompts 885

We use the following prompts for dataset genera- 886

tion on each domain. 887

11

user_prompt = r”’Task: Generate one
precise editing request for the given
LaTeX code, focusing exclusively on one
detailed LaTeX-specific aspect.
1. Analyze LaTeX Components: Examine
the LaTeX code thoroughly, identifying
elements such as commands, environments,
packages, mathematical expressions,
figures, tables, references, labels, and
syntax structures.
2. Target a Single LaTeX Issue: The editing
request must address only one specific
LaTeX-related issue such as commands,
environments, packages, mathematical
expressions, figures, tables, references,
labels, and syntax structures.
3. Clearly define the exact edit
needed. The action should be definitive
and unambiguous, avoiding any form of
suggestion, optional language, or choices.
Do not include reasons for the edit or any
additional information beyond the request.
4. Do not include reasons for the edit or
any additional information beyond the edit
request. The request should be a direct
instruction.
The request examples are:
[Example 1]
<Edit Request>
Replace the \begin{equation} ...
\end{equation} environment with a \[
...\] display math environment to present
the equation.
</Edit Request>
[Example 2]
<Edit Request>
Remove the \centering command inside the
figure environment and insert \centering
immediately after \begin{figure}.
</Edit Request>
[Example 3]
<Edit Request>
Change the citation command \cite{einstein}
to \parencite{einstein} to display the
citation in parentheses.
</Edit Request>
[Example 4]
<Edit Request>
Change the column specification in the
tabular environment from {l l l} to {l c
r} to adjust the alignment of the data
columns.
</Edit Request>
[Example 5]
<Edit Request>
Replace the placeholder ??? in the
reference text with \ref{sec:relwork} to
properly reference the “Related Work”
section.
</Edit Request>
[Example 6]
<Edit Request>
Rename the macro \vect to \vecbold in
both its definition and throughout the
document.
</Edit Request>

888

[Example 7]
<Edit Request>
Add the optional width argument to
\includegraphics{example-image} as
\includegraphics[width=0.5\textwidth]
{example-image} to scale the image.
</Edit Request>
[Example 8]
<Edit Request>
Remove the \usepackage{epsfig} line and
replace it with \usepackage{graphicx} to
handle graphics
</Edit Request>

I will give you the content and then
the editing request.
Please Edit the content based on the
editing request.
While Editing, don’t add other words like
modified or something. Just Edit directly.

Content: {original_context}
Editing Request: {edit_request}
Please return the complete content after
editing.
Don’t skip the empty line and keep the
original
apart from the editing part.

889

We use the following prompts for G-Eval. 890

I will give you the content and then the
editing request.
Please Edit the content based on the
editing request.
While Editing, don’t add other words like
modified or something.
Just Edit directly.

Content: {original_context}
Editing Request: {edit_request}
Please return the complete content after
editing.
Don’t skip the empty line and keep the
original apart from the editing part.

891

12

Data Category Original Content Edit Request Edited Content Difference G-
score

WikiText ...As with previous <unk> Chroni-
cles games, Valkyria Chronicles III
is a tactical role @-@ playing game
where players take control of a mili-
tary unit...

Replace “\<unk>\” with “Valkyria”
where it appears in the text.

...As with previous Valkyria Chroni-
cles games, Valkyria Chronicles III
is a tactical role @-@ playing game
where players take control of a mili-
tary unit...

Line 2 differs: Differences: ...As with
previous [<un -> Val]k[> -> yria] Chron-
icles games, Valkyria Chronicles III is a
tactical role @-@ playing game where
players take control of a mili- tary unit...

9

LaTex \begin{abstract}\n\begin{abstract}\n
%\mika{}, \guandao{}, \leo{}\n
\vspace{-0.2cm}\n Neural radiance
fields (NeRF) rely on volume
rendering to...

Remove the duplicate \be-
gin{abstract} at the beginning
of the abstract environment.

\begin{abstract}\n %\mika{}, \guan-
dao{},\leo{}\n \vspace{-0.2cm}\n
Neural radiance fields (NeRF) rely
on volume rendering to...

Line 1 differs: Differences: \be-
gin{abstract}[- \begin{abstract}-]

9

Code ...def yield_nanopub(assertions, an-
notations, line_num):\n """Yield
nanopub object""" if not asser-
tions:...

Change the function definition from:
def yield_nanopub(assertions, anno-
tations, line_num)
to include type annotations as:
def yield_nanopub(assertions: list,
annotations: dict, line_num: int) ->
dict

...def yield_nanopub(assertions: list,
annotations: dict, line_num: int) ->
dict: """Yield nanopub object""" if
not assertions:...

Line 1 differs: Differences: def
yield_nanopub(assertions[+: list+],
annotations[+: dict+], line_num[+:
int+])[+ -> dict+]:

10

Database DSL ...CREATE TABLE DB_PRIVS\n
(\n DB_GRANT_ID NUMBER
NOT NULL,\n CREATE_TIME
NUMBER (10) NOT NULL,\n
DB_ID NUMBER NULL,\n)...

Rename the column
"CREATE_TIME" in the DB_PRIVS
table to "CREATION_TIMESTAMP"

...CREATE TABLE DB_PRIVS\n
(\n DB_GRANT_ID NUM-
BER NOT NULL,\n CRE-
ATION_TIMESTAMP NUMBER
(10) NOT NULL,\n DB_ID NUM-
BER NULL,\n)...

Line 4 differs:
Differences: CREATE[E
->ION]_TIME[+STAMP+] NUM-
BER (10) NOT NULL,

9

Table 6: Data examples of different data categories with all attributes (content, edit request, edited content, difference,
and G-score).

13

	Introduction
	Background
	Problem Formulation
	LLM Editing Tasks

	Method
	Instruction categories
	Instruction Generation
	Instruction filtering
	Generalize to Multi-turn Editing Task

	Experiment
	Experimental Setup
	Performance of Existing Models
	FineEdit: Supervised Finetuning
	Multi-turn Editing Evaluation
	Qualitative Study
	Human Evaluation
	Ablation Study on DiffEval Components

	Conclusion
	Limitations
	Additional Implementation Details
	Data Example
	Dataset Generation Prompts

