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Abstract

Recent advances in generative modeling with diffusion processes (DPs) enabled
breakthroughs in image synthesis. Despite impressive image quality, these models
have various prompt compliance problems, including low recall in generating
multiple objects, difficulty in generating text in images, and meeting constraints
like object locations and pose. For fine-grained editing and manipulation, they
also require fine-grained semantic or instance maps that are tedious to produce
manually. While prompt compliance can be enhanced by addition of loss functions
at inference, this is time consuming and does not scale to complex scenes. To
overcome these limitations, this work introduces a new family of Factor Graph
Diffusion Models (FG-DMs) that models the joint distribution of images and
conditioning variables, such as semantic, sketch, depth or normal maps via a
factor graph decomposition. This joint structure has several advantages, including
support for efficient sampling based prompt compliance schemes, which produce
images of high object recall, semi-automated fine-grained editing, text-based
editing of conditions with noise inversion, explainability at intermediate levels,
ability to produce labeled datasets for the training of downstream models such as
segmentation or depth, training with missing data, and continual learning where
new conditioning variables can be added with minimal or no modifications to
the existing structure. We propose an implementation of FG-DMs by adapting a
pre-trained Stable Diffusion (SD) model to implement all FG-DM factors, using
only COCO dataset, and show that it is effective in generating images with 15%
higher recall than SD while retaining its generalization ability. We introduce an
attention distillation loss that encourages consistency among the attention maps
of all factors, improving the fidelity of the generated conditions and image. We
also show that training FG-DMs from scratch on MM-CelebA-HQ, Cityscapes,
ADE20K, and COCO produce images of high quality (FID) and diversity (LPIPS).
Project Page: FG-DM

1 Introduction

Diffusion models (DMs) (44; 15; 10; 41) have recently shown great promise for image synthesis and
popularized text-to-image (T2I) synthesis, where an image is generated in response to a text prompt.
However, T2I synthesis offers limited control over image details. Even models trained at scale, such
as Stable Diffusion (SD) (41) or DALL·E 2 (37), have significant prompt compliance problems, such
as difficulty in generating multiple objects (7; 34), difficulty in generating text in images (26; 46), or to
consistently produce images under certain spatial constraints, like object locations and poses (56; 6; 1).
These limitations have been addressed through two main lines of research. One possibility is to
use inference-based prompt-compliance (IBPC) methods (7; 34; 40), which use loss functions that
operate on the cross-attention maps between image and prompt tokens to improve prompt compliance
38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: Comparison of FG-DM (bottom) against Stable Diffusion (top) for sampling images with high object
recall by modeling the joint distribution of images and conditioning variables. FG-DM supports creative,
controllable, interpretable and faster (4x) image synthesis than Stable Diffusion to achieve the desired object
recall. Note that the conditions y1 or y2 can be null due to classifier-free guidance training.

at inference. While these methods are effective for prompts involving a small number of objects, they
tend to underperform for prompts involving complex scenes. Furthermore, because their complexity
grows linearly with the number of scene objects, they tend to be prohibitively time-consuming for
such scenes. A second possibility is to rely on DMs that support visual conditioning, in the form of
sketches (33), bounding boxes (9), scene graphs (53), reference images (52), etc. Visually conditioned
DMs (VC-DMs) are usually extensions of T2I-DMs trained at scale. For example, ControlNet
(58), T2I-Adapter (29) and Uni-ControlNet (60) use a learnable branch to modulate the features
of a pre-trained SD model according to a visual condition. Despite their success, VC-DMs have
important limitations, inherent to models of the conditional distribution P (x|{yi}) of image x given
conditions yi: the need for user supplied conditions. The manual specification of visual conditions,
like segmentation masks or normal maps, requires users with considerable time and skill. While,
as illustrated in Figure 1 (top), conditions yi can be extracted from existing images, this requires
additional vision models (e.g. segmentation or edge detection), which is time-consuming.

In this work, we consider an alternative framework that attempts to mitigate all these problems
using a simple but unexplored prompt compliance scheme that we denote as sampling-based prompt
compliance (SBPC). The idea, illustrated in the top of Figure 1 is to sample a batch of N images
using different DM seeds, relying on an external model (e.g. segmentation) to measure prompt
compliance (e.g. by measuring object recall) and choosing the image that best complies with the
prompt. While this strategy is frequently successful, generating multiple high resolution images
significantly increases the inference time, rendering the approach impractical even for small values
of N as we will show in section 4. Furthermore, it does not address the need for specification
of the conditions yi required by the VC-DM. We address these problems by introducing a new
family of Factor Graph-DMs (FG-DMs). As illustrated in the bottom of Figure 1, a FG-DM is a
modular implementation of the joint distribution P (x, {yi}) by decomposing the image synthesis
into two or more factors, that are implemented by jointly trained VC-DMs. The figure shows an
example decomposition of the distribution P (x, {yi}2i=1|y3) of image x, pose y1, and segmentation
y2, given prompt y3, into three factors: P (y2|y3) for the synthesis of segmentation given prompt,
P (y1|{yi}3i=2) for pose y1 synthesis conditioned on both, and P (x|{yi}3i=1) for image synthesis
given all conditions.

The FG-DM framework has several advantages. First, prompt compliance can usually be measured
(e.g. by computing object recall) by inspecting the conditions yi (e.g. segmentation map). The
gain is that these can be generated with less diffusion steps and resolution than the final image x.
For example, we have observed no loss of image quality by sampling segmentation maps of quarter
resolution. This increases the speed of SBPC by 4x, making it a practical prompt compliance scheme.
We show that sampling with N = 10 different seeds and choosing the image of maximum recall
increases prompt compliance (object recall) by 15% as compared to sampling with one seed. For
complex scenes, it is also much faster and more effective than using IBPC methods (see Table 4).
Second, as illustrated on the bottom of Figure 1, the modular nature of the FG-DM offers image
editing capabilities. New objects can be added by synthesizing them separately while existing objects
can be resized and/or moved to the desired spatial location. In Figure 1 (also in Figure 2 with more
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Figure 2: FG-DM-based controllable image generation via editing segmentation, depth and sketch maps. Top:
generated conditions and images. Bottom: edited ones. Note that only the segmentation map is edited, pose and
images are conditionally generated given edited map.

Figure 3: Synthesized segmentation/depth/sketch/normal maps and corresponding images by an FG-DM adapted
from SD using COCO. The FG-DM generalizes to prompts beyond this dataset such as porcupine, chimp and
other creative prompts shown.

detail), an airplane is added to the background while the person is resized, moved to the left of
the image, and pose flipped. We introduce a simple image editing tool for performing these edits.
Figure 2 shows other examples of fine-grained image editing with FG-DM for semantic, depth, and
sketch maps factors. In the center, the dog is placed behind the sandcastle (and some objects are added
to the foreground) by manipulation of a depth map, and in the right the desired text “Hello FG-DM”
is scribbled on the sketch map produced by the model. Third, the FG-DM can reuse factors in the
literature. For example, the ControlNet is used to implement the image synthesis factor P (x|{yi}3i=1)
in Figures 1 and 2. Fourth, the FG-DM can produce labeled datasets for the training of downstream
systems (e.g. image segmentation), and naturally supports continual learning schemes, where image
synthesis and manipulation are gradually enhanced by the progressive addition of new VC-DMs to
the factor graph, with limited or no retraining of existing ones.

Since FG-DM models the joint distribution P (x, {yi}), it is a variant of joint DMs (JDMs) and
training a FG-DM from scratch requires large scale datasets of (condition, image) pairs, which are
expensive to obtain. However, we show that this difficulty can be overcome by adapting existing
foundation VC-DMs, such as SD, to implement each factor of the FG-DM. We propose a joint
prompting scheme to implement this adaptation and introduce an attention distillation loss that
distills the attention maps from a pre-trained SD model to implement the condition synthesis factors
P (yk|{yi}k−1

i=1 ), by minimizing the KL divergence between the two and show that this improves the
fidelity of the generated conditions. This greatly reduces the training costs and enables much greater
generalization ability than would be possible by training on existing (condition,image) datasets alone.
Figure 3 shows that FG-DM exhibits robust generalization by synthesizing depth, normals and their
corresponding images for novel objects not present in the training data. This approach also facilitates
cross-model information transfer, enhancing explainability and showcasing the FG-DM’s versatility
in complex synthesis tasks. In summary, this paper makes the following contributions

• We propose a new framework for T2I, the FG-DM, which supports the modeling of the
joint distribution of images and conditioning variables, while maintaining access to all their
conditional relationships

• We show that FG-DMs enable practical SBPC, by leveraging fast condition synthesis and
filtering by object recall, and allow both fine-grained image editing with minimal effort and
data augmentation.

3



• We show that FG-DMs can be implemented by adapting pre-trained T2I models (e.g., SD)
using efficient prompt-based adaptation on relatively small datasets (e.g. COCO) while
exhibiting interesting generalization, e.g. generalizing to prompts involving concepts not
covered by these datasets.

• We introduce an attention distillation loss that improves the fidelity of the synthesized
conditions and enables transfer of information from SD to all factors of the FG-DM.

• We show that FG-DMs trained from scratch on domain-specific datasets such as MM-
CelebA-HQ, ADE20K, Cityscapes and COCO consistently obtains high quality images
(lower FID scores) with higher image diversity, i.e. higher LPIPS scores, than standard
JDMs.

2 Related Work

Text-to-Image (T2I) Diffusion models(16; 30; 37; 38) learn to synthesize images from noise
conditioned by a text encoder, usually CLIP (36). Latent DMs (LDMs) (41) implement DMs in the
latent space learned by an autoencoder trained on a very large image dataset, to reduce inference
and training costs. T2I models typically employ classifier-free guidance (17) to balance prompt
compliance with sample diversity. However, they often struggle with complex prompts, which led
to the development of conditional DMs. They model the distribution P (x|{yk}) of image x given
a set of K conditions yk. VC-DMs, such as ControlNet (58), T2I-Adapter (29), and HumanSD
(19), use adapters to condition image generation on visual variables yi, such as depth, semantic,
pose, or normal maps. However, these methods are limited to conditions yk generated from existing
images or by manual sketching, which can be hard to obtain, especially for K > 1 (e.g. simultaneous
segmentation and surface normals), and may be inconsistent. Instead, the proposed FG-DM enables
the automated joint generation of all conditions while still allowing users the ability to edit them.

Joint Models model the distribution P (x, {yk}), frequently by concatenating all variables during
image generation. For example, SemanticGAN (2) and GCDP (32) use a single model to generate
pairs of images x and semantic maps y, while Hyper Human (24) uses a single model to generate
depth maps, normal maps, and images from human pose skeletons. These models lack access to the
conditional distribution P (x|y), which is critical for fine-grained image editing. 4M (27) trains an
autoregressive generalist model using all conditioning variables jointly. However, it is not modular,
requires large paired datasets to train and does not support continual learning of new classes. FG-DMs
are more closely related to methods like Semantic Bottleneck GAN (2), Make-a-Scene (12) and
Semantic Palette (21), which model the joint distribution as the composition of a semantic map
distribution P (y) and a conditional model P (x|y) for generating image x given synthesized layout
y. ”Make a Scene” (12) learns a VAE from segmentation maps and samples segmentation tokens
from its latent space. A transformer then combines those with tokens derived from text, to synthesize
an image. All joint models above have important limitations: they are trained from scratch, only
consider semantic (discrete) conditioning variables and do not scale to the generation of high-fidelity
images of complex natural scenes, involving a large number of semantic classes (32), such as those in
COCO (23) without access to large-scale datasets.

Inference-Based Prompt Compliance (IBPC) methods(7; 34; 40) attempt to improve prompt
compliance by optimizing the noise latent at each diffusion iteration with a loss that maximizes
attention to each noun or the binding between prompt attributes and nouns. However, these methods
are time-consuming, require careful hyperparameter fine-tuning and do not work well for multiple
object scenes. The proposed FG-DMs build on the power of VC-DMs and rely on SBPC, which
samples various images and selects the one most compliant with the prompt. Since this only requires
the synthesis of conditions, it can be done efficiently even for complex scenes.

3 The Factor-Graph Diffusion Model

3.1 Diffusion Models

DMs: DMs (44; 15) are probabilistic models based on two Markov chains. In the forward direction,
white Gaussian noise is recursively added to image x, according to

zt =
√
αtz0 +

√
1− αtϵt, ϵt ∼ N (0, I), (1)
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Figure 4: Left: Training of FG-DM for distribution P (x,y1,y2|y3) of image x, segmentation mask y2,
and pose map y1, given text prompt y3. Each factor (conditional probability written at top of each figure)
is implemented by adapting a pretrained SD model to generate a visual condition. The SD model is frozen
and only a small adapter is learned per factor. The final (image generation) factor uses ControlNet without
adaptation. The encoder-decoder pair and SD backbone are shared among all factors, reducing the total number
of parameters. Conditional generation chains are trained at lower resolution for better inference throughput.
Right: The FG-DM offers a flexible inference framework due to classifier-free guidance training, where only a
desired subset of the factors are run, as shown in the highlighted green area.

where z0 = x, N is the normal distribution, I the identity matrix, αt =
∏t

k=1(1 − βk), and βt a
pre-specified variance. In the reverse process, a neural network ϵθ(zt, t) recurrently denoises zt to
recover x. This network is trained to predict noise ϵt, by minimizing the risk defined by the loss
L = ||ϵt − ϵθ(zt, t)||2. Samples are generated with zt−1 = f(zt, ϵθ(zt, t)) where

f(zt, ϵθ) =
1

√
αt

(
zt −

βt√
1− αt

ϵθ

)
+ σξ, (2)

with ξ ∼ N (0, I), zT ∼ N (0, I). The network ϵθ(zt, t) is usually a U-Net (42) with attention (47).

3.2 The FG-DM model

The FG-DM is a conceptually simple generalization of the DM to support K conditioning variables
yi. Rather than the conditional distribution P (x|{yi}) it models the joint P (x, {yi}). Prior joint
models (32; 24) use a single joint denoising U-Net in the pixel or latent space to jointly synthesize
x and {yi}. This limits scalability to multiple conditions, increases the difficulty of editing the
synthesized x, and requires retraining the entire model to add new conditions y. The FG-DM
instead leverages the decomposition of the joint into a factor graph (11) composed by a sequence of
conditional distributions, or factors, according to

P (x, {yi}) = P (x|{yi}Ki=1)P (y1|{yi}Ki=2) · · ·P (yK), (3)

where there are usually conditional independence relations that simplify the terms on the right hand
side. In any case, (3) enables the implementation of the joint DM as a modular composition of
conditional DMs. This is illustrated in Figure 4, which shows the FG-DM discussed in Figure 1.

Synthesis of conditioning variables. We convert all conditioning variables to 3-channel inputs and
use the pre-trained E-D pair from the SD model to map them into the latent codes for efficient training.
See appendix section A.1.1 for more details on this process.

Sampling: The FG-DM samples yi and x as follows. Let ϵθx be a DM for P (x|{yi}), and ϵθi a
DM for P (yi|yi+1, · · · ,yK). In the forward direction, zxt and zit, the noisy versions of x and yi,
respectively, are generated by using (1) with zx0 = x and zi0 = yi. In the reverse process, each
denoising step is implemented with

zKt−1 = f(zKt , ϵθK (zKt , t)), (4)

zit−1 = f(zit, ϵθi(zit, . . . , z
K
t−1, t)),∀i < K (5)

zxt−1 = f(zxt , ϵθx(zxt , z
1
t−1, . . . , z

K
t−1, t)) (6)

where f(.) is the recursion of (2). All conditions are sampled at each denoising step.
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3.3 Adaptation of pretrained DM

Architecture: To adapt a pretrained SD model into a FG-DM factor, we modify the T2I-Adapter (29)
to be conditioned on the current timestep t and use encoded latent features of the condition(s) from
previous factors as input to the adapter of the current factor. Figure 4 shows how the conditioning of
(4)-(6) is implemented: noisy latent feature zKt is fed to the first adapter, and the denoised latents zit−1

of each VC-DM are fed to the adapters of the subsequent VC-DMs (denoising of zkt , k < i). The
adapter consists of four feature extraction blocks with one convolution layer and two timestep-residual
blocks for each scale. The encoder features F enc

i,t at the output of U-Net block i are modulated as
F̂ enc
i,t = F enc

i,t + F c
i,t, i ∈ {1, 2, 3, 4}. where F c

i,t are the features produced by an adapter branch
associated with F enc

i,t at timestep t. The SD model is kept frozen, only the adapter branches are learned
per factor model.

Training with Classifier-Free Guidance (CFG): Given a training example with all the conditioning
variables (xj ,y

1
j , . . . ,y

K
j ), we randomly select 1, · · · ,K−1 conditioning variables as null condition

for CFG, 20% of the training time. This facilitates unconditional training of each factor model which
supports flexible inference. As a result, only a desired subset of the conditions of the FG-DM are run,
as illustrated in the right of Figure 4 (highlighted in green).

Attention Distillation. The synthesis of conditions like semantic or normal maps requires learning
to precisely associate spatial regions with object identities or geometry, which is a difficult task. To
encourage the binding of these properties across conditions and image, we ground them on the SD
attention maps, which are known to encode prompt semantics (13). The intuition is that the attention
dot-products between word tokens and image regions should remain approximately constant for all
factor models. Ideally, a given text prompt word should elicit a similar region of attention in the
VC-DM that synthesizes each condition. To encourage this, we introduce an attention distillation
loss, based on the KL divergence between the self and cross attention maps of the pretrained SD
model and those of the adapted models. This can be viewed as using the pretrained DM as a teacher
that distills the knowledge contained in the attention maps to the adapted student. This distillation
also helps the adapted model retain the generalization to unseen text prompts, such as the examples
of Fig. 1. Formally, the attention distillation loss is defined as

LKL(f
t, fs) =

∑
j∈{0,1}

KL

 Lj∑
i=1

gij(F
t
ij(Q

t
ij ,K))

∥∥∥ Lj∑
i=1

gij(F
s
ij(Q

s
ij ,K))

 =
∑

j∈{0,1}

Lj∑
i=1

gij(F
t
ij(Q

t
ij ,K)) log

(∑Lj

i=1 gij(F
t
ij(Q

t
ij ,K))∑Lj

i=1 gij(F
s
ij(Q

s
ij ,K))

)
(7)

where superscript t (s) denotes SD-teacher (SD-student), g implements a bilinear interpolation
needed to upscale all maps to a common size, F is the softmax of the products between query noise
feature matrix (Q) and key CLIP text feature (K), Lj number of attention layers, and index j = 0, 1
denotes self and cross attention layers respectively. The overall loss is the sum of distillation losses
between teacher t (pre-trained SD model) and all students LKL =

∑K
i=1 LKL(f

t, fsi), where si

is the student model adapted to condition yi. For multi-condition FG-DMs, the distillation loss is
only required for the synthesis of the first condition, which is conditioned by text alone. For the
subsequent factors, which are already conditioned by a visual condition (e.g. pose conditioned by
segmentation in Figure 4), the attention distillation loss is not needed.

Loss: Since the noise introduced in the different factors is independent, the networks are optimized
to minimize the risk defined by the loss

LFG = ||ϵxt − ϵθx(zxt , z
1
t−1, . . . , z

K
t−1, t)||2 +

K∑
i=1

||ϵit − ϵiθ(z
i
t, . . . , z

K
t−1, t)||2 + λKLLKL (8)

Training from scratch: The FG-DM can also be trained from scratch by simply concatenating the
latent representation of the previous condition(s) and noise to generate the next condition instead of
using adapters. Please refer to the appendix section A.1.2 for a detailed discussion.

4 Experimental Results

Datasets and models: We consider four conditioning variables in this paper: segmentation, depth,
normal and sketch maps. The pretrained SD v1.4 model is adapted using the COCO-WholeBody
dataset(23; 18), with 256 input resolution, to train all condition factors. Groundtruth (GT) is as
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Figure 5: More qualitative results of FG-DM to synthesize segmentation, depth, normal and sketch maps and
their corresponding images. See appendix Figure. 14 for the higher resolution version.

follows: COCO GT segmentations, HED soft edge (51) for sketch maps, and off-the-shelf MIDAS
(39; 3) detector for depth and normal maps. We also present results for an FG-DM trained from
scratch on MM-CelebAMaskHQ (22), and for other datasets in appendix, where implementation
details are also given.

Evaluation: Visual quality is evaluated with Frechet Inception Distance (FID) (14), image diversity
with LPIPS (59). We also report the Precision/Recall Values of (20) and evaluate prompt alignment
with CLIP score (CLIP-s) (36). All speeds are reported using a NVIDIA-A10 GPU.

Qualitative and Quantitative results: Figure 5 shows additional qualitative results of synthesized
segmentation (columns 1-3), depth (columns 4-6), normal (columns 7-8), sketch (columns 9-10) maps
and their corresponding images for the prompts shown below each image. The FG-DM leverages
the generalization of the pre-trained SD model to synthesize segmentation maps for object classes
such as rhino and squirrel, beyond the training set (COCO). The semantic maps are colored with
unique colors, allowing the easy extraction of both object masks and class labels. This shows the
potential of the FG-DM for open-set segmentation, e.g the synthesis of training data for segmentation
models. Note that these results demonstrate a ”double-generalization” ability. While the FG-DM was
never trained on squirrels or rhinos, SD was never trained to produce segmentation masks. However,
FG-DM adapted from SD produces segmentations for squirrels and rhinos. The fourth column shows
the depth map and image synthesized for the prompt ”A picture of a volcanic eruption”. In the
fifth column the same caption is used to create the depth map, while the image is created with the
prompt ”A picture of a sungod”. This shows that even when there is a mismatch between the prompts
used for different factors, the FG-DM is able to produce meaningful images. This is a benefit of
the FG-DM modularity. Table 5 compares the text-to-image synthesis quality of SD, 4M-XL (28)
and four FG-DM models. Despite using a bigger model and training from scratch, 4M-XL model
generates lower quality images than SD and FG-DM as seen from the higher FID score. The FG-DM
has higher image quality than SD for the segmentation and normal map conditions and higher clip
score for sketch condition showing the effectiveness of adaptation.

User Study: We conducted a human evaluation to compare the qualitative performance of the FG-
DM (adapted from SD) with N = 1 to the conventional combination of SD+CEM, where CEM
is an external condition extraction model (CEM), for both segmentation and depth conditions. We
collected 51 unique prompts, composed by a random subset of COCO validation prompts and a
subset of creative examples. We sampled 51 (image,condition) pairs - 35 pairs of (image,depth map),
16 pairs of (image,segmentation map) - using the FG-DM. For SD+CEM, images were sampled with
SD for the same prompts, and fed to a CEM implemented with MIDAS (3) for depth and OpenSeed
(57) for segmentation. The study was performed on Amazon Mechanical Turk, using 10 unique
expert human evaluators per image. These were asked to compare the quality of the pairs produced
by the two approaches and vote for the best result in terms of prompt alignment and visual appeal.
Table 1 shows that evaluators found FG-DM generated images (masks) to have higher quality 61.37%
(63.13%) and better prompt alignment 57.68% (60.98%) of the time. These results show that the
FG-DM produces images and masks that have higher quality and better prompt alignment.

Qualitative Image Editing Results: Figure 6 shows additional examples of synthetic image editing
using the FG-DM. Diffusion models have well known difficulties to perform operations such as
switching people’s locations (5) or synthesizing images with text (26; 46). The first four columns
show that the FG-DM is a viable solution to these problems. The first column shows the image
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Table 1: User study on the qualitative preference of
images/condition pairs generated by the FG-DM and
SD+CEM, using 10 unique human evaluators. A. de-
notes (prompt) Adherence and Q. denotes Quality.

Model Img A.↑ Cond A.↑ Img Q.↑ Cond Q.↑

No clear winner 4.11 4.70 2.90 3.33
SD+CEM 37.84 34.31 35.49 33.52
FG-DM 57.84 60.98 61.37 63.13

Table 2: Ablation of attention distillation loss for T2I
synthesis on COCO validation for FG-DM. FID re-
ported for Images/Conditions.

Model Distill FID ↓ P ↑ R ↑ CLIP-s ↑

Seg 20.9/164.8 0.54 0.49 28.5
Seg ✓ 19.6/159.2 0.56 0.52 28.5
Normal 20.60/126.7 0.56 0.49 28.6
Normal ✓ 19.30/123.9 0.59 0.55 28.7

Table 3: Object recall statistics for sampling FG-DM with
different seeds and timesteps on the ADE20K validation
set prompts.

Samples/ Avg. Min. Avg. Max.↑ Avg. Med.↑ Avg. # Imgs Time↓
Batch Recall (%) Recall (%) Recall (%) 0.5 0.75 0.9 (s)

t=10,N=1 69 69 69 0.9 0.4 0.1 0.45
t=20,N=1 68 68 68 0.9 0.4 0.1 0.81
t=10,N=5 60 74 70 4.5 1.9 0.6 1.10
t=10,N=10 55 75 70 9.0 3.6 1.2 1.75
t=20,N=10 55 75 70 8.9 3.6 1.1 3.3

Table 4: Quantitative comparison of Object Recall
for different models and configurations on the
ADE20K validation set prompts.

Model Clip-S↑ Avg. Recall↑ Time (s) ↓

SD (N=1,t=20) 0.301 59.8 3.25
A-E (N=1,t=20) 0.295 63.6 36.0
FG-DM (N=1,t=20) 0.295 67.8 4.81
SD (N=10,t=20) 0.301 75.1 23.0
FG-DM (N=10,t=10) 0.294 75.1 5.75 (4x↓)
FG-DM (N=10,t=20) 0.296 75.0 7.35 (3x↓)

Figure 6: Examples of images generated by FG-DM after editing and comparison with popular text-to-
image models. Editing is shown for flipping persons (columns 1-2), writing the desired text (columns 3-4) or
realizing a difficult prompt (columns 5-6). Images generated by Stable Diffusion v1.4 and v1.5 for the same
prompt are shown in the last two columns.

Figure 7: Attribute recall verification with FG-DM
on MM-CelebA-HQ. Left: Semantic Attribute Recall.
Right: Histogram of the number of trials needed to
reach the specified recall.

Table 5: Quantitative results of Text-to-Image synthe-
sis on COCO for FG-DM with segmentation, depth,
sketch and normal conditions.

Model FID ↓ P ↑ R ↑ CLIP-s ↑

SD 20.5 0.50 0.69 28.5
4M-XL Seg 39.1 0.49 0.30 28.8

FG-DM Seg 19.6 0.56 0.52 28.5
FG-DM Depth 27.0 0.45 0.52 27.6
FG-DM Sketch 25.3 0.39 0.61 30.3
FG-DM Normal 19.3 0.59 0.55 28.7

generated by FG-DM for two men shaking hands while the second shows the edited version where the
two men are flipped, so as to face away from each other, and combined with a different background.
The 3rd and 4th columns show an example where the user scribbles ”DIFF” in the synthesized sketch
map, which is then propagated to the image. The last four columns show examples of a difficult
prompt, “An image of a giant squirrel beside a small rhino”, unlikely to be found on the web, for
which existing T2I Models (SD v1.4/1.5) fail (columns 7-8). The FG-DM generates meaningful
images (5th and 6th column) by simply editing the masks sampled by the segmentation factor, as
discussed in Figure 1. In this example, the animal regions shown in Figure 5 (columns 1-2) were
resized, flipped and pasted onto a common segmentation. Note how FG-DM allows precise control
over object positions and orientations, which differ from those of Figure 5.

SBPC (Object Recall): Table 3, ablates the influence of noise seeds (batch size N ) and number of
sampling timesteps t on the prompt adherence (measured by object recall) of images synthesized
by the FG-DM for ADE20K validation set prompts (8.5 objects per prompt on average). Avg.
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Max Recall is the average, over the 2000 prompts, of the maximum per image recall in each batch.
Similar definitions hold for Avg.Min and Avg. Median. The top part of the table (columns 2-4)
shows that for N = 1 recall saturates at 69% for t = 10 timesteps. The bottom part shows that
increasing N maintains the Avg. Median recall at this value but produces images with a significant
variation of recall values. The Avg. Max recall is 6 points higher (75%) and fairly stable across
configurations of N and t. The fifth column shows the number of images in a batch that satisfy
the object recall thresholds of 0.5,0.75 and 0.9, averaged over 2000 prompts. While this number
decreases for higher thresholds, a batch size of N = 10 can produce at least one image with even
higher prompt compliance, on average.

The FG-DM is particularly well suited to implement SBPC, because recall can be computed as soon
as segmentations are sampled. Since the segmentation factor can be run with a smaller number of
timesteps and at lower resolution, this is much faster than sampling the images themselves. The
image synthesis factor is run only once, for the segmentation mask of highest recall. On the contrary,
an SD-based implementation of SBPC requires synthesizing N images and then feeding them to an
external segmentation model (we used Segformer-B4 (50) in our experients) to compute recall. Table
4 compares the object recall of different sampling configurations of SD and FG-DM for ADE20K
validation prompts. The objects in the groundtruth masks are considered to compute recall. In
appendix section A.2.1, we show that the object classes can be automatically extracted from the
prompt using an LLM. The top part of the table compares single run (N = 1) implementations of
SBPC by SD and the FG-DM to the popular IBPC Attend & Excite (A-E) method (7). The table
shows that the FG-DM images have 8% and 4% higher recall than those of SD and A-E respectively,
even though SD has higher clip score. This illustrates the deficiencies of clip score to evaluate prompt
adherence. The IBPC method underperforms the FG-DM by 4 points while drastically increasing
inference time to 36 seconds per prompt. This is because A-E computation scales linearly with the
number of objects and it fails in multiple object scenarios. While SBPC achieves good results for
N = 1, the bottom half of the table shows that its true potential is unlocked by larger batch sizes.
Both the SD and FG-DM implementations of SBPC achieved the much higher average recall of 75%.
However, for SD, the sampling of a batch of N = 10 high resolution images requires an amount of
computation (23 seconds per prompt) prohibitive for most applications. The FG-DM is 4x (3x) faster
when using 10 (20) DDIM steps for the segmentation mask and 20 steps for image synthesis.

Besides object recall, the FG-DM can also improve the recall of semantic attributes. We illustrate
this with an experiment in face synthesis for FG-DM trained from scratch on MM-CelebA-HQ(49).
We compute the recall of semantic attributes such as bald, necklace, and pale skin etc. using the
generated segmentation masks on validation prompts. Fig. 7 (left) compares the attribute recall
of FG-DM to those of prior methods for N = 1. The FG-DM has average recall of 75% over all
semantic attributes, outperforming competing methods (32). Figure 7 (right) shows an histogram
of the number of trials (N ) required by the FG-DM to achieve 70% and 80% recall1. The FG-DM
generates ≈ 90% of its samples with the specified 70% recall in five trials.

Attention distillation loss: Table 2 ablates the adaptation of SD with and without attention distilla-
tion loss. The FG-DM with attention distillation improves the image quality by 1.29/1.3 points for
segmentation/normal map conditions respectively. The effect is more pronounced when comparing
the fidelity of the conditions which improves the quality by 5.6/2.8 points for segmentation/normal
synthesis showing the effectiveness of the loss in adapting SD to different conditions. Appendix
Figure 9 shows the qualitative comparison of ablating the attention distillation loss.

Real Image Editing with FG-DM: We show the results of editing of both real images and their
segmentation masks with FG-DM. The top of Figure 8 refers to inversion of the segmentation mask.
We use an off-the-shelf OpenSEED (57) model to extract the segmentation map of a real image
(shown on the bottom left of the figure) and apply the FG-DM segmentation factor model for inversion
and editing using LEDITS++ (4), a recent method for text based image editing. We apply LEDITS++
to the segmentation factor to 1) replace the mask of the woman by that of a chimp (third image of the
top row) and 2) to delete the mask of the umbrella (fifth image). New images (fourth and sixth) are
then generated by the image synthesis factor conditioned on the edited segmentation masks. We have
found that the inversion and editing of segmentation masks is quite robust. The synthesized masks
usually reflect the desired edits. However, because the final image synthesis is only conditioned on
these masks, the synthesized image does not maintain the background of the original image. The

110 runs includes samples that required 10 or more trials.
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synthesized image is a replica of the original image at the semantic level (similar objects and layout)
but not at the pixel level. From our experiments, this method has high robustness and quality for
semantic-level editing.

We next investigated pixel level inversion and editing, which is harder. The bottom part of Figure
8 shows the comparison of LEDITS++ editing with inversion by SD and by the image synthesis
factor of the FG-DM. For the latter, we apply inversion to the ControlNet image generation factor
using the real image and the segmentation mask extracted from it. Then we perform the LEDITS++
edit using the edited mask from the top part of Figure 8 (inverted with the FG-DM segmentation
factor) to produce the edited image as shown in columns 4 and 5. This pixel-level inversion and
editing tends to maintain the background of the original image but is much less robust than mask-level
editing in terms of editing quality. This can be seen from the images in columns 2 and 3, which show
the inversion using SD, which fails to produce a realistic chimp and turns the woman into a stone
sculpture. The FG-DM produces much more meaningful edits, as shown in columns 4 and 5. The last
column of the bottom part of the Figure 8 shows an added advantage of FG-DM where the chimp
generated in the top portion can be pasted to the original image due to availability of the segmentation
mask. In this example the pasting is rough around the object edges since we have made no attempts
to beautify it. It can be improved by denoising the generated image with one forward pass of SD at a
higher timestep.

Extracted Mask Inverted Mask Edited Mask

‘+’  Edit: chimp ‘-’ Edit: umbrella

Edited MaskGenerated Image

a chimp holds an 
umbrella

Generated Image

a woman in a floral 
swimsuit

Inversion with Stable Diffusion Inversion with FG-DM

‘+’  Edit: chimp ‘-’ Edit: umbrella ‘+’  Edit: chimp ‘-’ Edit: umbrella Paste edit with maskReal Image

Figure 8: Top: Inverting segmentation masks with FG-DM segmentation factor using the LEDITS++ method.
Edits to replace the woman by a chimp or eliminate the umbrella. The FG-DM enbables text-based edits to
modify or delete objects in a given mask. The image generated with the edited mask as condition is shown to the
right of each edited masks. Bottom: Original image, LEDITS++ edited image for stable diffusion and for the
image synthesis factor of the FG-DM. Please Zoom in for details.

5 Limitations, Future Work and Conclusion

Although, the FG-DM uses low resolution synthesis for the conditions, runtime increases for chains
with more than two factors. Since, the attention maps generated per factor must be consistent
according to the joint model, sharing them across different factors and timesteps is a promising
direction for further reducing the runtime. Furthermore, while the FG-DM allows easier control over
generated images for operations like deleting, moving, or flipping objects, fine-grained manipulations
(e.g. changing the branches of a tree) can still require considerable user effort. Automating the
pipeline by using an LLM or methods like Instructpix2pix (5) to instruct the edits of the synthesized
conditions is another interesting research direction. See A.3 for a discussion on broader impact.

In this work, we proposed the FG-DM framework for efficiently adapting SD for improved prompt
compliance and controllable image synthesis. We showed that an FG-DM trained with relatively
small datasets generalizes to prompts beyond these datasets, supports fine-grained image editing,
enables improved prompt compliance by SBPC, allows adding new conditions without having to
retrain all existing ones, and supports data augmentation for training downstream models. It was
also shown that the FG-DM enables faster and creative image synthesis, which can be tedious or
impossible with existing conditional image synthesis models. Due to this, we believe that the FG-DM
is a highly flexible, modular and useful framework for various image synthesis applications.
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A Appendix

Figure 9: Comparison of FG-DM with attention distill loss (bottom) against FG-DM without attention distill
loss (center) and the recent 4M-XL model (top) for the prompts shown at the top of the figure. The two versions
of the FG-DM use the same seed. Both versions of the FG-DM produce images of higher quality than 4M-XL.
Attention distillation helps improve the quality of the generated segmentations. For example, the model without
distillation has inaccurate masks/missing cart/less realistic zebras from left to right.

Figure 10: Qualitative results of Depth map/Image pairs synthesized by FG-DM.

A.1 Experimental Results

A.1.1 FG-DMs Adapted from Stable Diffusion (SD)

We start by the discussion of additional results for FG-DMs obtained by adaptation of Stable Diffusion
model, as shown in Figure 4 of the paper.

Qualitative comparison of attention distillation loss

Figure 9 shows some qualitative results of the ablation for the impact of the attention distillation
loss. There is a clear qualitative benefit in introducing this loss. Without it, the model generates
less accurate masks, leading to an unrealistic pizza making depiction/ cart-person relationship/ zebra
pair from left to right. This confirms the qualitative ablation showing the benefits of the attention
distillation loss in Table 2 but provides a stronger illustration of the advantages of the loss, which
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Figure 11: Qualitative results of Normal map/image and Sketch map/image pairs synthesized by FG-DM.
FG-DM generalizes well across conditions and is able to generate condition-image pairs that are not seen during
training.

Figure 12: Qualitative results of Segmentation map/image pairs synthesized by FG-DM. The second column
shows the benefit of explainability with FG-DM which allows verifying intermediate conditions to understand
the hallucinations (mixup of a chimp and a person) of SD which are opaque otherwise. Here, FG-DM correctly
generates the chimp and the person mask with different colors while ControlNet confuses between the two
showing that the ControlNet needs to be corrected.

tends to produce more ”plausible” scenes. Such plausibility is difficult to measure with qualitative
metrics. For example, the CLIP score is not sensitive to the fact that the cart and the person are not
interacting in a normal way, or that the pizza making activity is unrealistic.

We also compared with the recent 4M model (28), an autoregressive model trained from scratch on
both discriminative and generative tasks. In this case, we use the largest model (4X-ML) released
by the authors. Figure 9 shows a qualitative comparison between FG-DM and 4M. It can be seen
that 4M generates images of weaker quality (distorted hands, missing person’s head, deformed zebra
bodies) as compared to FG-DM with/without the attention distillation loss.

Additional Qualitative Results for Segmentation, Depth, Normal and Sketch conditions

Figure 10 shows qualitative results of synthesized depth maps and images for the creative prompts
shown on top/bottom of each image. The FG-DM framework is able to generate high quality images
and normal maps for prompts that are not seen in the training setleveraging the generalization of SD.

Figure 11 (first three columns) shows qualitative results of synthesized normal maps and images for the
creative prompts shown on top/bottom of each image. Figure 11 (last three columns) shows qualitative
results of synthesized sketch maps and images for the creative prompts shown on top/bottom of each
image.
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A bathroom 
with an 
artificial light, a 
mirror, a white 
sink and a vase 
with red 
flowers 

MAS FG-DMInputs

A black 
elephant near a 
lake

a mug and a 
white plate 
with cookies on 
a table

FG-DMSpaText

Figure 13: Qualitative comparison of FG-DM with prior works such as Make-a-Scene and SpaText for the
prompts shown on the left. Note that FG-DM generates both the map and the image while for MAS and SpaText,
the condition was manually sketched and fed to the model.

Figure 12 shows qualitative results of synthesized segmentation maps and images for the creative
prompts shown on top/bottom of each image. As shown in the main paper, the FG-DM is able
to synthesize segmentation maps for object classes beyond the training set and the semantic maps
are colored with unique colors, allowing the easy extraction of both object masks and class labels.
This shows the potential of the FG-DM for open-set segmentation, e.g the synthesis of training sets
to generate training data for segmentation models. Further, a number of interesting generalization
properties emerge. Although the FG-DM is only trained to associate persons with black semantic
maps segments, it also assigns the chimp of Figure 1, a class that it was not trained on, to that color.
This shows that the FG-DM can integrate the prior knowledge by SD that “chimps and persons are
similar” into the segmentation task, which receives supervision from COCO alone. Conversely, the
similarity between chimps and people might induce SD to synthesize a chimp in response to a prompt
for people, or vice-versa. This is shown in the bottom left of Figure 12 where the FG-DM correctly
synthesizes different colors for the chimp and the person, but the ControlNet fails. While the black
box nature of SD makes these errors opaque, the FG-DM allows inspection of the intermediate
conditions to understand these hallucinations and make corrections accordingly. For example, in the
above example ControlNet has to be corrected by either finetuning or using inference optimization
methods like A-E (7). This illustrates its benefits in terms of explainability.

Comparison with prior works

Figure 13 shows the qualitative comparison of FG-DM with prior works such as Make-a-Scene (12)
or SpaText (1) in addition to 4M model compared in Figure 9. Note that FG-DM generates both the
segmentation and the image while for the other methods, it is manually sketched and fed to them. It
is seen that FG-DM generates high quality images that adhere well to the prompts as compared to the
prior works.

Comparison of generated conditions by FG-DM to conditions recovered by off-the-shelf models

Figure 15 shows a qualitative comparison of the conditions synthesized by FG-DMs to those recov-
ered from the synthesized image using off-the-shelf pretrained models for segmentation and depth
estimation. The qualitative results corroborate with the user study as the generated conditions are
better than extracted ones for depth while they are similar for segmentation conditions.

Synthesis of Conditioning Variables with SD Autoencoder
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Figure 14: Zoomed version of Figure 5 Qualitative results of FG-DM to synthesize segmentation, depth,
normal and sketch maps and their corresponding images.

High-quality image synthesizes requires DMs trained from large datasets. A common solution is to
adopt the LDM (41) architecture, where an encoder (E)-decoder (D) pair is used to map images into
a lower dimensional latent space. Using a pre-trained E-D pair, e.g. from the SD model, guarantees
that latent codes map into high quality images, making it possible to train high-fidelity DMs with
relatively small datasets. However, it is unclear that this approach will work for the synthesis of
conditioning variables, such as segmentation maps, which SD is not trained on. For example, (21; 32)
explicitly address training DMs to produce the discrete outputs required by many conditioning
variables. Somewhat surprisingly, our experiments show that off-the-shelf foundation DMs are quite
effective at synthesizing visual conditioning variables. All our results use the following procedure: 1)
visual conditioning variables are converted to 3 channel inputs. For discrete variables, a different
color is simply assigned to each variable value (e.g. each semantic label of a segmentation map). 2)
All VC-DMs in the FG-DM re-use the pre-trained encoder-decoder pair of SD (41), as illustrated
in Figure 4. 3) At the decoder output, discrete values are recovered with a hashmap that matches
image colors to their color prototypes. This is done by simple thresholding, with a margin threshold
empirically set to 28 for each pixel. To test this procedure, we measured the mean squared pixel
reconstruction error of the segmentation maps from 2,000 validation images of the ADE20K dataset.
This was 0.0053 (normalized) or 1.34 pixel error showing that the pretrained SD autoencoder is
highly effective in reconstructing discrete maps. Figure 16 compares the auto-encoder reconstructed
maps against the groundtruth maps for different conditioning variables such as segmentation, depth,
sketch and normal. This shows that simply representing the conditioning variables as 3-channel
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inputs allows the faithful reconstruction of all conditions. Further, we also trained a lightweight
segmentation model to recover the labels from the RGB semantic maps but observed no improvement
over this simple heuristic.

(a) Segmentation maps. (Middle: Generated, Top: Extracted)

(b) Depth maps. (Middle: Generated, Top: Extracted)
Figure 15: Qualitative comparison of generated conditions for FG-DM vs extracted conditions using SD (Stable
Diffusion) + CEM (Condition Extraction Model) for segmentation and depth maps. The generated conditions
for depth maps are superior to the extracted ones.

Computation-Performance Tradeoff:

The image generation chain (final factor) of FG-DM has the same computation as existing VC-DMs
since it re-uses existing conditional models such as ControlNet. The only additional computation
comes from the condition synthesis factor and a faithful comparison of complexity must include
the condition synthesis step. For existing DMs, generating/editing conditions for segmentation
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(a) Segmentation maps. (Left: Groundtruth, Right: Reconstructed)

(b) Depth maps. (Left: Groundtruth, Right: Reconstructed)

(c) Sketch maps. (Left: Groundtruth, Right: Reconstructed)

(d) Normal maps. (Left: Groundtruth, Right: Reconstructed)
Figure 16: Visualization of groundtruth (left) and reconstructed (right) maps by applying the pretrained stable
diffusion autoencoder to segmentation, depth, sketch and normal maps.

Table 6: Comparison of segmentation mask quality and throughput of FG-DM trained on ADE20K dataset
against state-of-the-art conventional segmentation models of similar size. The FG-DM samples higher quality
masks with only 10 DDIM steps, comparable to the throughput of Segformer-B5 but with superior quality as
shown in the FID, Precision and Recall metrics.

Model (ADE20K) Params (M) FID↓ LPIPS↑ Precision↑ Recall↑ T (imgs/s)↑
SegFormer-B5 (50) 85 112.6 0.781 0.61 0.04 6.4
FG-DM-Seg (10 DDIM steps) 53 86.1 0.788 0.72 0.04 6.4
FG-DM-Seg (20 DDIM steps) 53 84.0 0.776 0.72 0.05 3.7
FG-DM-Seg (200 DDIM steps) 53 83.6 0.768 0.73 0.06 0.4

masks requires the following steps: (1) Generate image with DM. (2) Segment with off-the-shelf
segmentation model. (3) Edit the segmentation. (4) Generate the image conditional on the manipulated
segmentation. The FG-DM eliminates step 1. replaces step 2. with the segmentation synthesis step.
This is much more efficient than running an image generation DM and a segmentation model as
illustrated in Table 4 since FG-DM samples segmentations at a lower resolution. For example, a 20-
step image generation, FG-DM (with ControlNet as the final factor) takes only 4.5s (1.7x speedup) as
compared to 7.5s for the standard pipeline (image generation with SD, Segmentation with SegFormer
(50)(CEM), and conditional image generation with ControlNet).
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Table 7: Ablation study on Image Synthesis by FG-DM trained separately and jointly with segmentation factor.
FG-DM results presented as Images/Semantic maps.
Model #P MM-CelebA CityScapes ADE-20K COCO-Stuff

(M) FID ↓ LPIPS ↑ Pr↑ Re↑ FID ↓ LPIPS ↑ Pr↑ Re↑ FID ↓ LPIPS ↑ Pr ↑ Re ↑ FID ↓ LPIPS ↑ Pr ↑ Re ↑

FG-DM (Separate training) 140 23.2/20.8 0.57/0.54 0.83 0.29 54.7/61.8 0.56/0.54 0.66 0.17 34.0/83.9 0.79/0.77 0.71 0.25 35.3/40.6 0.83/0.8 0.71 0.33
FG-DM (Joint training) 140 21.3/20.3 0.58/0.54 0.81 0.34 47.6/61.8 0.59/0.57 0.69 0.31 29.6/83.6 0.79/0.77 0.72 0.34 33.1/57.4 0.83/0.8 0.69 0.43

Table 8: Ablation study on data augmentation with synthetic data generated by the FG-DM for facial part
segmentation on MM-CelebA-HQ(22) dataset.

Data #Samples mIoU↑ F.W. mIoU↑ F1-score↑
Orig 24993 51.1 85.6 61.5
Orig+Syn +1000 55.1 87.9 65.5
Orig+Syn +2000 55.0 87.1 65.0

Table 9: Ablation study on data augmentation with synthetic data generated by the FG-DM for face landmark
estimation on 300W(43) dataset.

NME #Samples Common↓ Full↓ Challenge↓
Orig 3000 3.21 3.64 5.81
Orig+Syn +1000 3.12 3.54 5.80
Orig+Syn +2000 3.18 3.61 5.81

Next, we evaluate the generated mask quality from FG-DM. Table 6 compares the segmentation
mask quality vs. throughput, for FG-DM and SegFormer (CEM) on the ADE20K dataset. In these
experiments, SegFormer are applied to the validation dataset images and FG-DM masks are obtained
with the validation prompts. Throughput is calculated on a single NVIDIA-TitanXp GPU with batch
size 1 averaged over 2,000 runs. Performance is reported in terms of FID, LPIPS, Precision, and
Recall metrics of the masks. For the FG-DM, results are presented at different sampling steps.
With only 10 timesteps, the FG-DM produces segmentations of quality superior to those of the
CEM segmentation model. This is achieved with a throughput comparable to that of the bigger
SegFormer-B5 model. Beyond 10 steps there are negligible improvements in all performance metrics,
showing that conditions like segmentation masks can be generated much faster than natural images,
due to their lower frequency content. The FG-DM merges the capability to generate segmentation
masks of superior quality compared to current segmentation models, crucial for creative tasks with
unseen images, with a throughput comparable to the latter, which can only segment existing images.

A.1.2 Models trained from scratch: Ablation Studies

We next discuss some results for FG-DMs trained from scratch where the adapter in Fig. 4 is removed
and the intermediate conditions are concatenated to be fed to the subsequent factors.

Joint Synthesis: Table 7 compares end-to-end training of FG-DM to separate training of VC-DM
factors. Jointly training the FG-DM improves the image quality (lower FID) and diversity (higher
LPIPS) on all four datasets.

Table 10 shows the comparison of FG-DM with joint modeling by concatenation, where conditioning
variable(s) are concatenated in the latent space and denoised jointly with the image using a single
DM. The table clearly shows that FG-DM outperforms the concatenation approach by 8 points on the
FID metric despite being smaller in size. Note that joint denoising by concatenation requires a larger
model and forfeits many advantages of the FG-DM, such as higher object recall, image editing, and
computational efficiency.

Order of conditions: Table 11 ablates the order of the conditioning variables for the model with
semantic (S) and pose (P) condition on CelebA-HQ and COCO datasets which shows that the order of
the chain affects final image synthesis quality (see FID). This primarily stems from the misalignment
of the pose map with semantic map and image, where the generated pose maps are inferior for the
alternate order (pose-semantic-image). It shows that the unconditional generation of sparse pose
maps is much more difficult than segmentations, due to the incomplete poses (occlusion) and missing
context in the pose images. Further, Table 11 shows that the extra pose conditioning improves the
image synthesis quality, reducing FID by 3.7/2.33 points on CelebA-HQ/COCO datasets respectively.
This shows that adding more conditions is helpful for improving the image quality.

Data Augmentation

An additional benefit of the FG-DM is that it can be used as a data augmentation technique, synthesiz-
ing data to train models for segmentation, pose estimation, etc. By sampling data from the FG-DM, it
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Table 10: Comparison of FG-DM con-
ditioning vs concatenation approach for
joint synthesis on CelebA-HQ. U-LDM re-
ported for reference.

Model #P (M) FID ↓ LPIPS ↑

U-LDM (41) 87 24.3 0.586
Joint (Concat) 248 29.4 0.618
FG-DM (Ours) 140 21.3 0.578

Table 11: Ablation on the order of generated semantic map
(S) and pose (P) conditions on CelebA-HQ (Top) and COCO
(Bottom). I - Image.

Model FID ↓ LPIPS ↑ P ↑ R ↑

(P→S→I) 23.43 0.616 0.616 0.466
(S→P→I) 17.61 0.594 0.754 0.403
(P→S→I) 31.43 0.855 0.547 0.343
(S→P→I) 30.77 0.857 0.564 0.322

Table 12: Ablation study on Image Synthesis by FG-DM for sequential and joint inference. For the same
segmentation maps, joint inference is superior to sequential inference showing the benefit of joint modeling.

Model #P MM-CelebA Cityscapes ADE-20K COCO
(M) FID ↓ LPIPS ↑ Pr↑ Re↑ FID ↓ LPIPS ↑ Pr↑ Re↑ FID ↓ LPIPS ↑ Pr ↑ Re ↑ FID ↓ LPIPS ↑ Pr ↑ Re ↑

FG-DM (Sequential Inference) 140 34.5/20.3 0.56/0.54 0.79 0.20 57.2/61.8 0.59/0.57 0.44 0.11 31.1/83.9 0.78/0.77 0.71 0.32 35.3/57.4 0.82/0.8 0.67 0.41
FG-DM (Joint Inference) 140 21.3/20.3 0.58/0.54 0.81 0.34 47.6/61.8 0.59/0.57 0.69 0.31 29.6/83.6 0.79/0.77 0.72 0.34 33.1/57.4 0.83/0.8 0.69 0.43

is possible to produce labeled datasets of virtually unlimited size. These could be, in principle, useful
to train downstream models for various vision applications. To investigate this, we start by training
both the FG-DM and the downstream model on a labeled dataset A. We then use the FG-DM to
synthesize an additional dataset B of images and labels and retrain the downstream model on A ∪ B.
We finally compare the performance of the two downstream models. We performed this experiment
for two downstream tasks: part segmentation with the BiSeNet(54) network on MM-CelebAA-HQ,
and pose estimation with the HRNetV2-W18 (48) network on the 300W (43) dataset. In all cases, the
downstream model is initialized with ImageNet pre-trained weights. Tables 8 and 9 show that the
addition of synthetic data always improves downstream model performance. The gains are larger
for the more challenging segmentation task, where 1000 samples of synthetic data significantly
improve the baseline mIOU and F1-score by 4%. For pose estimation, the addition of synthetic data
reduces the already low normalized mean error (NME) of keypoint location by an additional 0.1%.
Performance saturates or decreases slightly when the number of synthetic images is increased to
2000 as compared to using only 1000 images. We conjecture that this occurs from the inclusion of
redundant or noisy images in the enlarged dataset, which are less likely to contribute meaningfully
to the model’s training. Nevertheless, the performance still shows improvement compared to the
baseline model that did not use any synthetic data augmentation. These results suggest that the
FG-DM can be used for data augmentation, enabling significant performance gains by automated
data augmentation.

Figure 17: Unconditional generated semantic, pose masks, and corresponding images using an FG-DM
trained from scratch on MM-CelebA-HQ (256 x 256).

Sequential vs Joint Inference Table 12 shows the comparison of two modes of operation of FG-DM
during inference. Joint inference is the standard mode of operation that samples the condition(s) and
image jointly at each timestep (equations (2)-(4) in the paper). Sequential inference is the alternative
mode of operation where the condition synthesis chain is run fully before feeding it to the conditional
image generation factor. It is observed that the standard mode of joint inference sampling produces
images of higher quality (lower FID) than the alternative mode.

Qualitative results: Unconditional and Conditional Image Generation
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(a) MM-CelebA-HQ 256 x 256 samples (b) ADE-20K 256 x 256 samples

(c) Cityscapes 256 x 512 samples (d) COCO 256 x 256 samples
Figure 18: Segmentation mask/image pairs synthesized by FG-DMs trained from scratch (53 M parame-
ters) on the MM-CelebA-HQ, ADE-20K, Cityscapes and COCO datasets.

(a) MM-CelebA-HQ (b) ADE-20K

(c) Cityscapes (d) COCO
Figure 19: Semantic Guided conditional image synthesis by FG-DM models trained from scratch (53 M
parameters). For conditional synthesis, only the image-synthesis VC-DM factor is used. When conditioned
by the validation dataset segmentation maps shown at the top, this factor synthesizes the images shown at the
bottom.

Fig. 17 shows qualitative results of unconditional synthesis on MM-CelebA-HQ for a model with
factors for semantic map, pose and image synthesis. This improves the overall image quality as
shown in Table 11. It is observed that the generated pose maps are accurate even for hard examples
such as side-view faces.

Figure 18 shows qualitative results of image/segmentation mask pairs generated by FG-DM models
trained from scratch on four popular semantic segmentation datasets. The FG-DM can generate good
quality samples even on complex datasets such as ADE-20K and COCO using only a small model
(53M parameters for each factor).

Figure 19 shows qualitative results of conditional image synthesis with groundtruth maps of validation
set on the four datasets using FG-DMs trained from scratch. For conditional synthesis, only the
image-synthesis factor of the FG-DM is used. In these experiments, the model is conditioned by the
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Table 13: Ablation study on Image Alignment with the segmentation masks by FG-DM trained separately and
jointly.

Model #P MM-CelebA Cityscapes ADE-20K COCO
(M) mIoU ↑ f.w. IoU ↑ mIoU ↑ f.w. IoU ↑ mIoU ↑ f.w. IoU ↑ mIoU ↑ f.w. IoU ↑

FG-DM (Separate training) 140 70.26 85.77 45.38 81.84 18.07 48.65 23.29 37.33
FG-DM (Joint training) 140 70.57 87.79 52.73 86.72 22.22 52.76 23.76 38.64

ground-truth validation segmentation masks of the datasets. It is seen that FG-DM can generate high
quality samples that align with the latter.

Segmentation-Image Alignment

We quantitatively evaluate the alignment of the generated images with the corresponding segmentation
mask using off-the-shelf pretrained models as described in Sec. A.2.5. We compare the image
alignment of FG-DM when training separately and jointly. Table 13 shows the results on four
datasets where the mIoU score is computed using the groundtruth validation samples for each of the
dataset. Once again, FG-DM trained jointly outperforms the FG-DM trained separately indicating the
advantage of joint modeling in following the segmentation conditions accurately.

A.2 Implementation details

A.2.1 Extracting COCO Object classes from the prompt using a LLM

We proposed FG-DM for faster sampling of images with high object recall and validated it by by
using the groundtruth segmentation maps from the ADE20K validation dataset. For practical use, the
object classes can either be manually specified or automatically extracted from the captions which is
useful for images involving cluttered scenes with multiple objects. Here, we show that the object
classes can be extracted from the caption using a LLM (e.g., chatGPT-3.5).

Specifically, we use the following prompt to elicit responses from chatGPT-3.5.

Prompt

You are ObjectGPT. You will list all possible objects in a scene from the caption description
using the set of available classes. The available classes are as follows.
{COCO Classes inserted here as a dictionary mapping the class id to class name.}

Figure 20a shows example outputs for the two prompts shown in the image. Note that this is zero-shot
output where the model is not provided with any example pairs of prompt and corresponding object
classes. The accuracy of the task can be further improved by using few-shot in-context examples as
shown in the in-context learning (ICL) literature. We show an example of one-shot ICL with one
prompt and its corresponding object classes from the COCO validation dataset.

1-shot ICL

”A man is in a kitchen making pizzas”
{Object classes = [ ”person”, ”bottle”, ”cup”, ”knife”, ”spoon”, ”bowl”, ”broccoli”, ”carrot”,
”dining table”, ”oven”, ”sink”, ”branch”, ”cabinet”, ”floor-other”, ”floor-stone”, ”food-other”,
”furniture-other”, ”leaves”, ”light”, ”metal”, ”table”, ”textile-other”, ”wall-other”, ”wall-
stone”]}

Fig. 20b shows the result for the prompt ”The dining table near the kitchen has a bowl of fruit on it.”
using one-shot ICL shown above.

A.2.2 Segmented Image Editor

We introduce a tool, developed using PyQT to edit the segmentation masks synthesized by the
FG-DM, enabling an array of options. As shown in Figure 21, this app has a user-friendly interface
for loading and manipulating objects across two distinct segmented maps, which enables very flexible
image synthesis. Key features include the ability to add, move, resize or remove objects, flip them, or
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(a) Extracting COCO object classes from the prompt using chatGPT-
3.5 in zero-shot manner.

(b) Extracting COCO object classes from the prompt using 1-shot
ICL with chatGPT-3.5

Figure 20: Snapshots of using chatGPT-3.5 to extract the object classes from the input prompt.

replace backgrounds with ease. A unique drawing tool, augmented by a color palette representing
183 objects from the COCO dataset, allows for precise and detailed customization. Furthermore,
the app’s pointer size adjustment slider for drawing and resizing ensures users can achieve the exact
level of size, detail and boldness needed for image editing. Currently, the complexity of these edits is
limited by the simplicity of the image editing tool we developed. More complex images will likely be
possible with further editing tool development.

(a) Loading the generated segmentation masks
into the tool

(b) Resizing the person and moving them to
the left of the image

(c) Final edited mask after resizing and moving
the airplane

Figure 21: Snapshots of editing capabilities using our segmented image editing tool.

Table 14: Hyperparameter Settings for the FG-DMs trained from scratch on MM-CelebA-HQ, ADE-20K,
Cityscapes and COCO datasets. We use an image resolution of 256 × 512 for Cityscapes and 256 × 256 for the
others.

MM-CelebA-HQ ADE-20K Cityscapes COCO

f 4 4 4 4
z-shape 64 × 64 × 3 64 × 64 × 3 64 × 128 × 3 64 × 64 × 3
|Z| 8192 8192 8192 8192
Diffusion steps 1000 1000 1000 1000
Optimizer AdamW AdamW AdamW AdamW
Noise Schedule linear linear linear linear
Nparams 86M 86M 86M 86M
Channels 128 128 128 128
Depth 2 2 2 2
Channel Multiplier 1,4,8 1,4,8 1,4,8 1,4,8
Attention resolutions 32, 16, 8 32, 16, 8 32, 16, 8 32, 16, 8
Head Channels 32 32 32 32
Batch Size 12 12 12 12
Iterations 632k 632k 93k 632k
Learning Rate 1e-6 1e-6 1.0e-4 1e-6

A.2.3 Hyperparameter Settings

Table 14 summarizes the detailed hyperparameter settings of the FG-DMs trained from scratch
reported in the main paper. For FG-DMs adapted from Stable Diffusion, we use the same settings as
Stable Diffusion (41) and train only the adapters for 100 epochs with a learning rate of 1e-6 using
AdamW optimizer.
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A.2.4 Training Details

We train all models using 2-4 NVIDIA-A40 GPUs or 2 NVIDIA-A100 GPUs based on the availability.
For adapting Stable Diffusion, since we reuse existing conditional model such as ControlNet, we first
pretrain the model for 100 epochs to synthesize the conditions (e.g., segmentation, depth, normal
or sketch). We then jointly finetune the condition (e.g., segmentation) factor with the conditional
image synthesis factor (e.g., ControlNet) for an additional 100 epochs by only updating a subset of
parameters of the ControlNet adapter denoted by the input-hint-block in the model while keeping
the rest frozen. Note that the pretrained ControlNet can still be used in FG-DM without finetuning
which results in a slightly lower image quality (also validated in Table 12). For models trained from
scratch, we train all the parameters of the U-Net model from scratch.

A.2.5 Evaluation Details

This section provides additional details on evaluation for the experiments of Sec. 4. We follow
common practice and estimate the statistics for calculating the FID values (14) shown in Table 7
are based on 10k samples between FG-DM generated samples and the entire training set of each of
the datasets. For calculating FID scores we use the torch-fidelity package (31). Following standard
practice, we pre-process all the images by resizing to 256 × 256 for MM-CelebA-HQ, ADE-20K
and COCO datasets and 256× 512 for Cityscapes dataset for calculating the metrics. Samples are
generated with 200 DDIM (45) steps and η = 1.0. For the measuring the semantic alignment, we
use off-the-shelf networks to evaluate the alignment of generated results. We use DRN-D-105 (55)
for Cityscapes, ResNet50Dilated-PPM (61) for ADE-20K, Unet (22; 42) for MM-CelebA-HQ and
DeepLabV2 (8) for COCO dataset. The generated images are fed to these segmentation models to
obtain a pseudo-mask which is compared against the mask which was used to generate the image.
We use mean Intersection-overUnion (mIoU) and frequency weighted mIoU to measure the overlap
between the generated images and the semantic masks. We calculate the mIoU by upsampling the
generated images to the same resolution as default input resolution of the off-the-shelf segmentation
models. For computing the metrics, we use the validation segmentation maps for each dataset (3000
images for MM-CelebA-HQ, 2000 images for ADE-20K, 500 images for Cityscapes and 5000
images for COCO) is used. However, it should be noted that this pseudo metric highly depends on
the capability of the off-the-shelf network. A strong segmentation network measures the semantic
alignment of the generated images more accurately. For all text-to-image synthesis results reported in
the paper, we use classifier free guidance with scale 7.5, η = 0.0 and 20 DDIM steps unless otherwise
stated.

A.3 Broader Impact

We introduce a new framework for controlling diffusion models that offers creative image synthesis
with higher recall, greater flexibility, modularity and explainability. While it offers the benefits of
revealing hidden harmful biases in existing image generative models and offers better interpretability,
it can also be potentially misused to propagate harmful, unlawful or unethical information with
harmful edits. Since, the framework is modular, any harmful edits can be identified before the
image generation step where the segmentation or pose map factor can be filtered (automatically or
manually) before proceeding to the image generation factor. Additionally, recent advancements in
image watermarking (25) can help to identify generated image contents to protect against these risks.

A.4 Future Work

For future work, FG-DM can be extended for Novel View Synthesis by adding a factor for Novel
Views. Further, the Novel View FG-DM with depth/normal factors can be used as a strong prior for
controllable Text-to-3D generation with SDS technique (35). The modular nature of FG-DM also
allows a potential extension for audio/video generation making FG-DM framework to be a strong
candidate for multi-modal content generation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The major claims made by the paper regarding the object recall, image editing
capabilities and data augmentation are justified by experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion section discusses the limitations of the current approach and
possible future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There are no theorems or proofs introduced in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The hyperparameter settings, GPU configurations and auxiliary models em-
ployed by the work are detailed in the appendix which is sufficient to reproduce the results
presented in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and trained models will be released on the project page. FG-DM
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix lists down the detailed hyperparameter configurations for all models
trained for this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following the literature, evaluations are reported consistent with prior works
where the error bars are not shown.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed compute resources and the GPUs used for training islisted in the
Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper followsthe code of ethics listed in the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Limitations and Broader impacts in Appendix discuss this

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Image generators will be released with the safety filters
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All prior works and prior models used in this work are cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subject is involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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