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ABSTRACT

Is deep learning generalization necessarily rooted in optimizing a single objective?
We explore an alternative view: adaptive generalization may emerge from struc-
tured interactions among heterogeneous objectives. We propose an Asymmetric
Training Paradigm that temporarily introduces non-competitive, per-class super-
vision (Sigmoid losses) into networks optimized with competitive softmax objec-
tives. This is realized through orthogonally initialized auxiliary pathways, modu-
lated by a scalar coefficient « and present only during training. Crucially, we em-
ploy strictly controlled experiments to rule out parameter count as a confounder,
identifying that simple parameter expansion yields zero gain. Our mechanistic
analysis reveals two effects: (1) The proposed topology (but not mere capacity)
consistently smooths the initial optimization landscape. (2) Final performance ex-
hibits an architecture-dependent pattern we term Architectural Resonance, where
auxiliary signals benefit models only when aligned with inductive biases. A 6-
block Vision Transformer (ViT-6L) exhibits constructive gradient alignment (co-
sine similarity +0.19), yielding absolute accuracy gains of +9.2% on CIFAR-
100. By contrast, a CNN shows destructive conflicts (cosine similarity —0.26).
We further corroborate this divergence in hybrid architectures (CoAtNet), high-
lighting a stage-dependent nature: transformer stages benefit from heterogeneity,
while convolutional stages show limited compatibility. We validate scalability on
ImageNet-1k, showing consistent top-1 gains for ViTs (up to +2.25% on ViT-
B/16). Rather than functioning as a universal regularizer, our probe reveals that
heterogeneous signals selectively benefit architectures with weak inductive biases
(e.g., Vision Transformers), exposing a critical dependence between architectural
flexibility and objective compatibility.

1 INTRODUCTION

A fundamental challenge in deep learning is understanding the complex interplay between a model’s
architectural inductive biases and the training strategies it is subjected to. While auxiliary supervi-
sion is a widely adopted technique for improving model performance (Szegedy et al., 2015} [Lee
et al., 2015} |Caruana, [1997; Ruder, 2017)), its application has been predominantly homogeneous,
using objectives conceptually aligned with the main task. This raises a critical question we probe
systematically: how do architectures intrinsically respond to fundamentally heterogeneous super-
vision? Specifically, how does a system designed for “winner-takes-all” competition (via softmax)
react to signals that encourage “feature coexistence” (via sigmoid)?

To investigate this, we propose the Asymmetric Training Paradigm (Figure[I), a framework designed
as a precise scientific probe. It temporarily introduces non-competitive, sigmoid-based supervision
into a network through orthogonally initialized pathways, allowing us to systematically study the re-
sulting internal dynamics. Our investigation reveals an architecture-dependent phenomenon that ex-
tends conventional understanding of auxiliary supervision, which we term Architectural Resonance.
On CIFAR-100, this paradigm produces sharply divergent outcomes: Vision Transformers achieve
an accuracy gain of +9.2%, driven by constructive gradient synergy (cosine similarity +0.19), while
Convolutional Neural Networks (CNNs) suffer a degradation of -8.7%, caused by persistent destruc-
tive gradient conflict (cosine similarity -0.26). Crucially, strict capacity control experiments confirm



Under review as a conference paper at ICLR 2026

that these gains vanish when the auxiliary pathways are excluded from the loss, ruling out simple
parameter expansion as the cause.

Our work makes three key contributions:

(i) We present the Asymmetric Training Paradigm as a controllable framework for analyzing archi-
tecture—objective interactions at both model and stage levels.

(i) Using this probe, we identify Architectural Resonance—a stage-dependent phenomenon
whereby auxiliary supervision efficacy varies with architectural inductive biases. We establish this
exists on a resilience-modulated spectrum through within-model stage differentiation (CoAtNet on
CIFAR-100) and model-level validation across architectures (ResNet/ViT on ImageNet-1k).

(iii) We provide quantitative characterization of the underlying mechanisms: (a) universal landscape
smoothing at initialization, and (b) architecture-specific gradient dynamics during training, revealing
how these jointly influence optimization and generalization.

2 RELATED WORK

2.1 AUXILIARY SUPERVISION AND MULTI-TASK LEARNING

The use of intermediate supervision is a well-established technique to combat vanishing gradients
(Szegedy et al.l 2015} [Lee et al.l|2015)). Modern applications leverage auxiliary tasks for represen-
tation learning (Gidaris et al.| 2018} |Chen et al.l |2020) and Multi-Task Learning (MTL) (Caruana,
1997; Ruder}, 2017 Kendall et al., 2018)). A critical challenge in these settings is gradient conflict,
where competing objectives hinder optimization (Yu et al.,[2020; (Chen et al., 2018)). Prior work has
largely focused on mitigating such conflicts (e.g., Gradient Surgery (Yu et al., 2020)) or enforcing
representational consistency within homogeneous objective families (Navon et al., |2022} |Shamsian
et al.| [2023). In contrast, our study deliberately employs heterogeneous signals (non-competitive
vs. competitive) not merely to enhance performance, but as a scientific probe to analyze how dif-
ferent architectures intrinsically respond to conflicting objectives. This perspective shifts the role
of auxiliary supervision from a Performance-driven optimization aid to a lens for understanding
architecture-specific optimization preferences.

2.2 ARCHITECTURAL INDUCTIVE BIASES

Our analysis is grounded in the distinct inductive biases of architectures (Goyal & Bengiol [2022)).
CNNs enforce strong priors on spatial locality and translation equivariance through weight-sharing
kernels (LeCun et al} [1989; |(Cohen & Welling| 2016)). In contrast, ViTs rely on self-attention for
global relationships (Dosovitskiy et al.,[2021}; [Vaswani et al.,|2017)), but this flexibility often comes
at the cost of trainability, characterized by sharper optimization landscapes and higher sensitivity to
initialization (Xiao et al.l [2021} |Chen et al., [2022). While these biases are well-studied in terms of
optimization landscapes, feature geometries, and inductive bias mechanisms (Lu et al., 2022 Tuli
et al |2021), how they govern a model’s response to heterogeneous supervisory signals remains
largely unexplored. Our work addresses this by treating the supervisory signal as a controlled vari-
able to probe these intrinsic architectural dynamics.

2.3  OPTIMIZATION LANDSCAPES AND REGULARIZATION

Understanding the geometry of the loss landscape is crucial for explaining generalization (Li et al.,
2018 [Keskar et al.,[2017). Flatter minima are generally associated with better generalization, a prin-
ciple leveraged by techniques like Sharpness-Aware Minimization (SAM) (Foret et al.||2021). Our
findings contribute to this domain by identifying a structural mechanism for landscape smoothing.
Following established methods for analyzing landscape geometry (Santurkar et al., 2019), we show
that orthogonal auxiliary branches universally reduce initial gradient norms. However, this geo-
metric benefit translates into performance gains only when auxiliary objectives resonate with archi-
tectural inductive biases. When objectives conflict with rigid spatial priors, gradient misalignment
during training overrides the initial smoothing, leading to degradation despite improved landscape
geometry.
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Figure 1: The Asymmetric Training Paradigm. Schematic overview using a simplified MLP archi-
tecture. Multiple auxiliary branches (orange) inject heterogeneous supervision (Sigmoid) into the
backbone. These branches are removed at inference time, ensuring zero inference overhead.

3 METHODOLOGY

3.1 THE ASYMMETRIC TRAINING PARADIGM

We introduce the Asymmetric Training Paradigm (Figure [I), a controllable framework for probing
architecture—objective interactions through structured gradient modulation. Unlike standard Multi-
Task Learning which seeks to optimize multiple outputs, our paradigm uses auxiliary branches
strictly as training-time scaffolding to analyze how different architectures respond to heterogeneous
supervision. The framework is built on three pillars: Asymmetry (auxiliary branches are discarded
at inference), Heterogeneity (auxiliary objectives differ qualitatively from the primary task), and
Controlled Redundancy (scalable orthogonal pathways enabling systematic characterization of ar-
chitectural resilience).

3.2 CORE HYPOTHESIS: ARCHITECTURAL RESONANCE

We propose the Architectural Resonance Hypothesis: The efficacy of heterogeneous auxiliary su-
pervision depends on the compatibility between auxiliary signal characteristics and architectural
inductive biases. This manifests as a spectrum of gradient interactions during training:

¢ Constructive Interference: When auxiliary signals align with an architecture’s inductive
bias (e.g., spatially-agnostic non-competitive signals for ViTs’ global modeling capacity),
they induce positive gradient alignment, enabling improved trainability and performance.

* Destructive Interference: When signals conflict with rigid structural priors (e.g.,
spatially-agnostic projections for CNNs’ locality bias), they cause persistent gradient mis-
alignment and performance degradation.

This reveals that auxiliary supervision efficacy is architecture-dependent: the degree of resonance
determines whether heterogeneous signals enhance or impair training.

3.3 MECHANISM DESIGN AND CONTROLS
3.3.1 ARCHITECTURAL SETUP

To isolate the impact of inductive biases, we employ three controlled lightweight backbone ar-
chitectures spanning a spectrum of inductive biases: a 6-layer MLP (minimal structural bias), a
6-conv-layer CNN with spatial downsampling (rigid locality bias), and a 6-block Vision Trans-
former (ViT-6L, flexible attention-based bias). To establish scalability, we extend our evaluation to
ImageNet-1k using standard ResNet-18/50 and ViT-Small/B-16 backbones (Section {.1). To val-
idate stage-level mechanisms, we further analyze the hybrid CoAtNet architecture on CIFAR-100
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(Section[4.2)), which combines convolutional and transformer stages within a single model to enable
within-network comparisons. Full architectural details are provided in Appendix

3.3.2 THE GRADIENT MODULATION MECHANISM

A critical innovation in our method is separating parameter capacity from gradient flow. At each
attachment point, we instantiate Nypanches parallel branches. We distinctly categorize them into two
roles to isolate the source of gains: (1) Static Gradient Modulators (¢ = 1... N — 1): These
branches are initialized orthogonally and then frozen (via stop_gradient applied to their projection
weights). Crucially, while their weights W, do not update (V. L = 0), gradients still back-
propagate through these fixed projections into the shared backbone features h (VL # 0). (2) The
Active Probe (k = N): The final branch is fully trainable: unlike the frozen branches, its projection
weights receive gradients and adapt during training. All auxiliary branches contribute Sigmoid/BCE
losses, but only the last branch updates its own weights, while the earlier branches remain fixed
orthogonal projections.

As a result, the backbone is optimized under a combination of rigid geometric constraints (from the
static, orthogonal anchors whose gradients backpropagate through fixed projections) and adaptive
error signals (from the active branch that continuously adjusts to the data). This design transforms
these branches into fixed, structured “lenses” that refract the gradient flow without adding learn-
able capacity. By scaling IV, we can systematically smooth the optimization landscape without the
confounding factor of adding learnable parameters. As we empirically validate in Section [4.4] and
Appendix[A.T] this topology consistently reduces the initial gradient norm, creating a more favorable
geometry for optimization.

3.3.3 CAPACITY CONTROL VARIANT

To address the concern that improvements might stem simply from “adding more parameters” (even
static ones), we define a Capacity Control baseline within our methodology. In this variant, we
instantiate the exact same N branches with identical initialization, but detach them from the loss
graph. This ensures the model has the same parameter count and architecture, but no gradient
modulation occurs. This control allows us to attribute performance gains strictly to the interaction
of gradients, not the existence of parameters. Results are reported in Table[6]

3.3.4 VARIABLES: REDUNDANCY AND DIALOGUE STRENGTH
‘We manipulate two variables to map the resonance landscape:

* Redundancy (/NVpranches): The number of parallel branches per attachment point, denoted
as N x. This hyperparameter modulates the intensity of initial landscape smoothing. We
evaluate performance regimes up to 20x and extend to 300 to probe architectural limits
and analyze landscape mechanics.

* Dialogue Strength (a): A scalar hyperparameter that balances the primary and auxiliary
losses. Let M be the number of attachment points (layers) and N be the redundancy level
(number of branches) at each point. The total training objective is:

M N
Liotat = Liain + @ Y > LER™ (1)

m=1n=1

where L™ denotes the Sigmoid loss of the n-th branch at the m-th attachment point.

3.3.5 HETEROGENEOUS OBJECTIVES
To induce the requisite “signal dialogue,” we enforce heterogeneity between the objectives:

* Primary (Competitive): Standard Softmax Cross-Entropy (Lmain), €ncouraging winner-
takes-all feature discrimination.

* Auxiliary (Coexistent): Sigmoid Binary Cross-Entropy (L,ux), computed independently
per class. This encourages the model to capture non-exclusive features for each class, fun-
damentally differing from the Softmax dynamic. We explicitly choose this heterogeneous
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design because, as shown in our Heterogeneity Control experiments (Section .4), replac-
ing Sigmoid with a homogeneous Softmax objective leads to performance degradation.

3.4 EVALUATION PROTOCOL: BALANCING RIGOR AND SCALABILITY

To ensure that our findings are both scientifically rigorous and practically applicable, we design a
distinct evaluation protocol that adapts to the scale of the problem.

Mechanistic Analysis (CIFAR) For our controlled studies, our priority is isolating the source of
gains. We employ a strict Two-Stage Tuning Protocol to rule out hyperparameter confounding: We
first exhaustively tune the Baseline to find its optimal learning rate and weight decay. We then fix
these backbone hyperparameters and search only for the dialogue strength « for our method.

Large-Scale Validation (ImageNet) For ImageNet-1k, we strictly maintain fixed backbone hy-
perparameters, attaching auxiliary heads only at predefined intermediate points (Table 2T). Opti-
mization follows standard protocols: linear scaling SGD for ResNet (Goyal et al.| 2018]) and AdamW
for ViT (adapted from (Touvron et al., 2021} using a clean baseline protocol). By tuning only o (on
a held-out subset), we assess the method’s scalability in realistic, compute-constrained scenarios.

Crucially, across all experimental settings, including the targeted hybrid verification on CoAtNet
(Dai et al., |2021), backbone hyperparameters are kept strictly identical between the baseline and
our method. This guarantees that any observed performance difference, whether improvement or
degradation, is attributable solely to the proposed topological interaction, ruling out hyperparameter
mismatch as a confounder.

4 EXPERIMENTS

4.1 MAIN RESULTS: THE DIVERGENCE OF VIT AND CNN

We first evaluate the Asymmetric Training Paradigm on CIFAR-100 using three representative ar-
chitectures: MLP, CNN, and ViT-6L across 10 random seeds. As shown in Table E], the impact of
our heterogeneous auxiliary supervision is fundamentally architecture-dependent.

Dose-Response on CIFAR-100 We observe a clear correlation between the level of redundancy
(NVbranches) and performance modulation (Figure @), revealing distinct architectural preferences:

* Vision Transformers (Constructive Synergy): ViT-6L benefits significantly, with accu-
racy improving monotonically as redundancy increases. At 20x redundancy, it achieves a
+9.2% improvement in top-1 accuracy over the baseline. This provides evidence that ViTs
can constructively integrate dense heterogeneous signals.

* CNNs (Destructive Conflict): Conversely, the CNN suffers severe degradation across all
redundancy levels, experiencing up to a -15.4% decrease in accuracy. This indicates a
fundamental incompatibility between spatially-agnostic Sigmoid signals and the CNN’s
strong locality priors.

¢ MLPs (Inconsistent/Noisy Interaction): The MLP exhibits a distinct behavior. While a
single auxiliary branch (1x) provides mild regularization (+1.1%), increasing redundancy
leads to consistent degradation (e.g., -2.1% at 20x). This suggests that without structural
mechanisms such as self-attention to align auxiliary signals, MLPs are destabilized by gra-
dient noise as redundancy scales.

Scalability on ImageNet-1k To confirm that the observed divergence is not limited to small-scale
datasets, we extend our evaluation to ImageNet- 1k using ResNet-18/50 and ViT-Small/B-16 across 4
random seeds (Table[2)). We strictly adhere to established training recipes (SGD for ResNet, AdamW
for ViT) while adopting a “clean baseline” setup—standard augmentation without heavy regulariza-
tion (e.g., Mixup, CutMix). The only structural difference between the Baseline and Asymmetric
models is the addition of orthogonally initialized auxiliary heads. Both share identical backbones,
data pipelines, and optimization hyperparameters, details are provided in Appendix Crucially,
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Table 1: Architecture performance comparison across different configurations on CIFAR-100

Npranches Arch Plain Asymmetric p-value
MLP 232+03 243+£03(+1.1; « =100.0) < 0.001
Ix CNN 395+04 30.8+£0.3(-8.7;a=100.0) < 0.001
ViT-6L 358+ 1.0 359%0.5(+0.1;a =4.642) 0.7773
MLP 23.4+0.5 22.1+03 (-1.3; « =0.1) < 0.001
7x CNN 39.8+0.6 31.7+£29(-8.1; « = 0.1) < 0.001
ViT-6L 359+0.8 40.0+2.1 (+4.1;a =4.642) < 0.001
MLP 23.3+0.3 21.7+£0.2 (-1.6; « = 0.1) < 0.001
10x CNN 307£0.6 243+21(-154;,a=1.0) < 0.001
ViT-6L 36.0+0.9 41.8+2.2(+5.8;a=4.642) < 0.001
MLP 23.2+0.3 21.1+£03 (-2.1; 2 =0.1) < 0.001
20x CNN 39.7+0.6 33.6+£1.2(-6.1; . =0.1) < 0.001
ViT-6L 36.1+£1.0 453+£13(+9.2; = 1.0) < 0.001
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Figure 2: Architecture-dependent dose-response to auxiliary supervision. Each architecture shows
distinct sensitivity patterns: ViT (constructive synergy), CNN (destructive conflict), MLP (inconsis-
tent/noisy interaction). Performance improvement plotted against branch redundancy (Npranches) ON
CIFAR-100.

to rule out hyperparameter hacking, we tuned the dialogue strength o on a 10% held-out train-
ing subset, ensuring the validation set remained strictly unseen during the search. This rigorous
setup guarantees that observed gains stem purely from structural resonance rather than overfitting or
data-level artifacts. Consistent with CIFAR-100, ViT backbones show robust improvements (e.g.,
+2.25% on ViT-B/16 at 20x redundancy, p < 0.001), suggesting that constructive resonance scales
to large-scale benchmarks. In contrast, ResNets remain neutral. This suggests that architectural
resilience mechanisms (e.g., residual connections) may mitigate the gradient conflicts that caused
plain CNNss to collapse, thereby reinforcing the architectural dependence of the phenomenon.

While ViTs consistently benefit from auxiliary resonance, CNNs exhibit either destructive conflict
(Plain CNN) or neutrality (ResNet). Given these distinct architectural preferences, a critical question
arises: how do hybrid architectures behave? We address this in Section 4.2}

4.2 TARGETED VERIFICATION ON HYBRID ARCHITECTURE (COATNET)

To empirically validate the stage-dependent Efficacy of our Architectural Resonance hypothesis, we
extend our analysis to CoAtNet (Dai et al.|[2021)), a hybrid architecture that integrates convolutional
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Table 2: Architecture performance comparison on ImageNet-1k

Architecture Baseline 1x 10x 20x
ResNet-18 68.23+0.20 68.33+0.10 68.29+0.10 68.37+0.13
ResNet-50 73.83+0.09  73.55+0.17%** 73.75+0.11 73.76+0.21

ViT-Small 69.13+0.14  70.16+0.09***  70.27+0.18**  70.35+0.29%**
ViT-B/16 66.75+0.13  68.34+0.64*  68.83£0.27***  69.00£0.19%**

Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

stages (early) and transformer stages (late). This allows us to test whether the observed divergence
is strictly stage-dependent.

We employ a CIFAR-100 adapted CoAtNet-O backbone to strictly preserve the original multi-
stage layout while adapting to the dataset resolution. We apply our asymmetric probe separately
to the Convolutional Stage (S2) and the Transformer Stage (S3) across varying redundancy levels
(Nbranches) to isolate their differential responses.

As presented in Table 3] the results reveal an observable divergence between stages within the same
model: (1) Synergy in Transformer Stages (S3): Consistent with our main ViT results, applying
auxiliary supervision to S3 yields consistent improvements. It achieves a peak accuracy of 77.08%
(+1.74%), showing statistically significant resonance (p < 0.001). (2) Conflict in Convolutional
Stages (S2): In contrast, applying dense probes to S2 shows limited compatibility. While mild
redundancy (20 x) exhibits marginal response, high redundancy (300x) leads to a statistically sig-
nificant tendency toward conflict (-0.80%, p < 0.05).

These findings provide targeted empirical support for our Architectural Resonance Hypothesis.
Comparing CoAtNet S2 with the plain CNN (Table [I)) reveals the role of architectural resilience:
modern components such as residual blocks and batch normalization help buffer against immediate
collapse (S2: neutral at 1x vs. CNN: -8.7%), yet degradation still emerges under extreme redun-
dancy (S2: -0.8% at 300x). This confirms that auxiliary supervision efficacy is not binary but stage-
dependent: attention-based stages benefit consistently from heterogeneity, whereas convolutional
stages exhibit limited compatibility—delayed by modern architectural features but fundamentally
prone to conflict.

Table 3: Stage-Dependent Response on CIFAR-100 adapted CoAtNet-0. Comparison of applying
auxiliary supervision to CNN (S2) vs. Transformer (S3) stages. Results averaged over 5 random
seeds.

Stage 1x 20x 100 x 300
S2 (CNN) 75.26+0.59 75.88+0.14 75.59+0.44  74.54+0.48
(-0.08) (+0.54**) (+0.25) (-0.80%)
S3 (Transformer) 75.91+0.28 76.76+0.37 77.08+£0.27  76.82+0.30
(+0.57**) (+1.42**%) (+1.74**%) (+1.48**)
Baseline 75.34 £0.20
Phenomenon ViT starts gaining  Strong Synergy (S3) Peak (S3)  Conflict (S2)

Statistical significance: *p < 0.05, **p < 0.01, *** p < 0.001.

4.3 UNDERLYING DYNAMICS: LANDSCAPE GEOMETRY AND GRADIENT FLOW

Having confirmed the performance gains, we now investigate the mechanistic cause. We analyze the
training dynamics from two perspectives: the initial geometry of the optimization landscape and the
directional alignment of gradients during training.
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Initial Phase: Landscape Smoothing As hypothesized in Section the static orthogonal
branches are designed to condition the loss landscape. Following (Santurkar et al., 2019), we quan-
tify this by measuring the Initial Gradient Norm of the main loss across 5 random seeds.

¢ Observation: Table [Z_f] presents the results. Increasing redundancy (Npanches) drastically
reduces the gradient norm across all architectures. Notably, for MLP and CNN, 300 x
redundancy reduces the gradient norm by over 90%.

» Implication: This confirms that our static topology acts as a “geometric conditioner,” cre-
ating a smoother initial surface. This is particularly beneficial for ViTs, which are known
to suffer from sharp, ill-conditioned landscapes (Chen et al., [2022]).

Table 4: Landscape Smoothing Effect

\ 1x \ 20% \ 300%
Architecture | Result p-value |  Result p-value |  Result p-value
MLP -29.86£20.35  0.0305 | -65.38+1.95 < 0.001 | -90.40+0.72 < 0.001
ViT-6L -3.40+0.47 < 0.001 | -33.68+3.62 < 0.001 | -68.78+8.85 < 0.001
CNN -16.64+4.79 0.0015 | -67.22+5.52 < 0.001 | -90.18+2.38 < 0.001

Training Phase: Gradient Alignment While landscape smoothing is generally beneficial, why
do CNNs degrade under the same condition? To answer this, we analyze the Cosine Similarity
between the gradients of the main task (Lmnan) and the auxiliary task (L,) throughout training
(Figure[3]and Table[5).

* Constructive Synergy (ViT): ViTs exhibit positive cosine similarity (mean +0.19), indi-
cating that the auxiliary signals point in a direction compatible with the main objective.
This alignment allows the ViT to effectively exploit the smoothed landscape established in
the initial phase, translating geometric potential into performance gains.

* Destructive Conflict (CNN): Despite the smoothed landscape, CNNs show persistent neg-
ative similarity, reaching as low as —0.82 (mean —0.26). This suggests that Sigmoid sig-
nals fundamentally conflict with the CNN’s locality-biased kernels. This intense gradient
conflict overrides the benefits of smoothing, turning the auxiliary signals into destructive
interference.

* Inconsistent / Noisy Interaction (MLP): The MLP trajectory fluctuates without a con-
sistent direction, alternating between weak positive and negative values (e.g., oscillating
between +0.07 and —0.34). Lacking strong inductive biases to orient these auxiliary sig-
nals, the interaction is effectively incoherent. Consequently, as redundancy increases, these
unaligned signals accumulate as gradient noise rather than constructive guidance, explain-
ing the degradation observed in Table[T]

Table 5: Detailed Gradient Conflict Analysis

Architecture  Final Sim  Avg Sim  Min Sim Max Sim  Gradient Interaction

MLP -0.0309 -0.0801 -0.3422 0.0701 Inconsistent / Noisy Interaction
CNN -0.1926 -0.2574  -0.8210 0.0464  Destructive Conflict
ViT 0.2631 0.1870 -0.1845 0.3654 Constructive synergy

Visualizing the Resonance: Attention Maps To visibly corroborate the gradient alignment find-
ings, we visualize the self-attention maps of the final CLS token (Figure ). Compared to the Base-
line, the Asymmetric ViT exhibits significantly sharper attention on the semantic object foreground,
filtering out background noise. This confirms that the constructive gradient synergy translates into
more semantic feature extraction.
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Figure 3: Gradient conflict evolution across architectures during training
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Figure 4: Visualizing Architectural Resonance. Attention maps show that Asymmetric Training
induces sharper focus on the object compared to Baseline (PlainViT-6L), confirming constructive
feature learning.

4.4 MECHANISM VERIFICATION: RULING OUT CONFOUNDERS

A critical question is identifying the source of these gains. Is the improvement in ViTs driven by
the proposed topological interaction, or simply by parameter expansion (capacity) or generic deep
supervision? We address this through strictly controlled ablation studies (10 random seeds).

Capacity Control Is it just adding parameters? We compare against a Capacity Control baseline
where the same N auxiliary branches are instantiated but detached from the loss graph (weights
present but gradients blocked). As shown in Table [6] (Top), mere parameter redundancy yields
zero statistical gain (p > 0.05). For ViT-6L, increasing branches to 20x in the control group
results in negligible fluctuation, whereas our active method achieves +9.2% improvement. This
rigorously rules out implicit regularization from parameter count as the cause. The gain stems from
the interaction of gradients.

Heterogeneity Control Is it just Deep Supervision? We investigate the necessity of Heterogeneity
by replacing our Sigmoid auxiliary loss with a standard Softmax auxiliary loss (Homogeneous).
Table|§| (Middle) reveals that homogeneous supervision degrades performance for ViTs (e.g., —5.3%
drop). This confirms that ViTs specifically benefit from the “non-competitive” nature of the Sigmoid
signal to facilitate capacity exploitation.

Random Init Control Is it just initialization noise? We compare our Orthogonal Initialization
strategy against standard Random Initialization for the auxiliary branches. As shown in Table [6]



Under review as a conference paper at ICLR 2026

(Bottom), using Random Initialization fails to provide consistent gains and often leads to training
instability (high variance). This suggests that the structural orthogonality is a prerequisite for effec-
tive resonance. The auxiliary branches must be geometrically aligned (via orthogonality) to probe
the landscape constructively, rather than injecting unstructured noise.

Table 6: Ablation study results across different control conditions on CIFAR-100. This table investi-
gates potential confounders. Top: Adding parameters without gradient flow yields no gain. Middle:
Replacing Sigmoid with Softmax (Homogeneous) causes degradation. Bottom: Using Random Ini-
tialization instead of Orthogonal leads to instability (e.g., ViT -4.0%). Contrast: Our Asymmetric
method (Sigmoid + Orthogonal) achieves +9.2% absolute improvement on ViT under the same 20 x
condition (Table .

Control Type  Nyranches MLP CNN ViT-6L
Canacit 1% 23.240.3 (-0.1) 39.9+0.7 (+0.7) 36.1+1.1 (+0.1)
o (fmrof’ 10x 23.1+0.4 (-0.0) 39.8+0.8 (-0.1) 35.841.2 (-0.3)
20% 23.120.4 (-0.0) 40.0+1.0 (+0.4) 36.11.1 (-0.0)
Heterosencity 1 24.120.3 (+0.8%%)  37.440.4 (-2.1%%%¥)  36.120.5 (+0.2)
Congtrol Y 1ox 20.4+0.6 (-2.7%%%)  36.2+0.9 (-3.4%%%)  33.9£0.6 (-1.9%%*)
20x 19.04£0.5 (-4.3%%%)  37.9£1.0 (-1.9%%*)  35.740.9 (-0.3)
Random Init. ¥ 24.320.4 (+1.0%%%)  31.6£0.7 (-7.9%%%)  36.320.9 (+0.3)
Control 10x 228403 (-0.3)  30.6£1.0 (-9.6%*%)  35.6£1.1 (-0.5)
20 23.040.2 (-0.3)  30.820.8 (-9.1%%%) 31.84+1.1 (-4.0%%¥)

Statistical significance: *p < 0.05, **p < 0.01, *** p < 0.001.

5 DISCUSSION AND LIMITATIONS

Our Asymmetric Training Paradigm serves as a probe for architecture—objective interactions, yield-
ing measurable gains in the tested ViT backbones and offering mechanistic insights into gradient
dynamics.

Implications Crucially, targeted verification on CoAtNet (Section advances our understand-
ing beyond binary outcomes. It suggests a Stage-Adaptive Strategy for modern model design: het-
erogeneous auxiliary signals may be most effective in attention-based stages, while requiring caution
in convolutional stages to avoid structural conflict. This challenges the assumption that “more su-
pervision is always better.”

Limitations Despite these findings, we acknowledge several limitations: (1) Convolutional Com-
patibility: CNN stages in our experiments show limited compatibility with dense heterogeneous
probes, reflecting the rigidity of spatial inductive biases. This currently restricts applicability to
attention-based backbones; (2) Training Overhead: While incurring zero inference overhead, train-
ing costs scale linearly with redundancy (Np,anches), Creating memory pressure for extremely large-
scale pre-training; (3) Hyperparameter Search: The current approach relies on a grid search to iden-
tify the optimal dialogue strength «, which is time-consuming and may yield sub-optimal config-
urations compared to dynamic schedules; (4) Theoretical Formalism: While we provide empirical
evidence and mechanistic analysis, a closed-form theoretical framework quantifying the relationship
between orthogonality, redundancy, and generalization gap remains an open challenge; (5) Scope:
Whether Architectural Resonance extends to other modalities (e.g., NLP) or loss types requires
verification.

Future Work We envision five key directions: (1) designing spatially-aware signals that respect
CNN locality; (2) developing adaptive modulation strategies for « to eliminate expensive search;
(3) distilling the geometric smoothing effect of redundancy into computationally efficient, analyti-
cally equivalent formulations to reduce memory pressure; (4) mathematically formalizing resonance
conditions; and (5) extending the paradigm to diverse domains to test universality beyond vision.
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A APPENDIX

A.1 Lo0SS LANDSCAPE ANALYSIS

We conducted systematic loss landscape analysis across MLP, CNN, and ViT-6L architectures on
CIFAR-10 and CIFAR-100. Following established protocols 2018), we visualized the
loss surfaces using a 51x51 grid centered at the initialization point, with directions determined by
random Gaussian perturbations normalized to unit variance. To balance computational efficiency
with statistical reliability, we randomly sampled 500 training instances for loss evaluation at each
grid point. This sampling size provides sufficient statistical power while remaining computationally
tractable for systematic analysis across multiple architectures and redundancy levels. The result-
ing visualizations reveal distinct architectural signatures in terms of loss surface smoothness and
optimization landscape complexity. (Figure[5] Table[7]and [8)
ox ranch M ranches) ox branches) (300% branche)

(0x branches e (300 branches)
279,818 params 285,578 params 395,018 params 2,007,818 params

Contour: AsymmetricMLP

= =

02 00 02 E E 00 ~ ~
Direction 1 irection Direction 1

Figure 5: Loss landscape visualization for MLP on CIFAR-10

Table 7: Progressive loss landscape smoothing in MLP architecture on CIFAR-10. Standard de-
viation (Std), range, and mean gradient magnitude all decrease systematically with increased re-
dundancy, demonstrating that topological modifications consistently flatten the optimization surface
independent of final performance outcomes. Percentages indicate relative change from baseline.

Model Params Std(Loss) Range(Loss) Mean(Grad)

Plain 0.28M 0.0032 0.0152 0.0002
Asymmetric(1x)  029M  0.0015 (-52.3%) 0.0064 (-57.6%) 0.0001 (-49.8%)
Asymmetric(20x)  0.40M  0.0011 (-64.4%) 0.0053 (-64.9%) 0.0001 (-65.0%)
Asymmetric(300x)  2.0IM  0.0003 (-90.2%) 0.0015 (-90.3%)  0.0000 (-90.4%)

B BOUNDARY CONDITIONS AND EXTENDED ANALYSIS

B.1 SAMPLE EFFICIENCY AND GENERALIZATION IN LOW-DATA REGIMES

To assess the generalizability of our architectural resonance findings under data-scarce conditions,
we conducted systematic few-shot learning experiments on CIFAR-10 and CIFAR-100. We hypoth-
esize that asymmetric training benefits should be amplified in low-data regimes, where auxiliary
supervision can provide crucial structural guidance when primary signals are sparse (Tables

and [TT).

Experimental Design. We systematically varied the number of training samples per class from 5
to 5000, creating a comprehensive data scarcity spectrum. For each data regime, we maintained
the original test set size to ensure consistent evaluation conditions. All experiments were repeated
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Table 8: Cross-architecture comparison of loss landscape smoothing on CIFAR-100. Despite univer-
sal landscape flattening effects (up to 90% reduction in surface roughness), architectural differences
emerge: CNN shows the most dramatic smoothing with minimal parameter increase, while ViT-
6L exhibits more modest but consistent improvements. These results demonstrate that landscape
conditioning is architecture-agnostic, yet performance benefits depend critically on architectural
resonance with auxiliary signals.

Model Params Std(Loss) Range(Loss) Mean(Grad)
CNN
Plain 2.43M 0.0008 0.0040 0.0001
Asymmetric(1x) 2.51IM  0.0007 (-16.3%) 0.0033 (-17.3%) 0.0000 (-15.9%)
Asymmetric(20x) 4.09M  0.0003 (-66.7%) 0.0013 (-68.0%) 0.0000 (-66.9%)
Asymmetric(300x)  27.4M  0.0001 (-90.2%) 0.0004 (-90.3%) 0.0000 (-90.2%)
ViT-6L

Plain 1.22M 0.0045 0.0212 0.0003
Asymmetric(1x) 1.29M  0.0043 (-3.7%)  0.0204 (-3.7%)  0.0003 (-3.6%)
Asymmetric(20x) 2.75M  0.0028 (-37.7%) 0.0132 (-38.0%) 0.0002 (-37.1%)
Asymmetric(300x)  24.3M  0.0009 (-80.1%) 0.0044 (-79.3%) 0.0001 (-77.6%)

across 10 random seeds with stratified sampling to ensure class balance. Statistical significance was
assessed using two-tailed paired t-tests.

Theoretical Motivation. Under data scarcity, the auxiliary sigmoid branches should provide par-
ticularly valuable regularization, as the primary softmax objective becomes increasingly prone to
overfitting. This effect should be most pronounced in architectures that exhibit gradient synergy

rather than conflict.

Table 9: Few-shot learning performance of MLP on CIFAR-10.

Samples/Class ~ PlainMLP  AsymmetricMLP Improvement p-value
10 22.90 = 1.67 2299 +1.71 +0.09 0.8082

50 28.70 £ 1.00 28.97 £0.82 +0.27 0.4346

100 31.99 £ 1.18 33.30+£0.93 +1.31 0.0122

500 3893 +1.17 39.44 £ 1.05 +0.51 0.3087
1000 43.13 +0.39 44.00 £ 0.43 +0.87 0.0043
5000 53.57 £0.39 53.74 £ 0.56 +0.17 0.4824

Table 10: Few-shot learning performance of MLP on CIFAR-100.

Samples/Class ~ PlainMLP  AsymmetricMLP Improvement p-value
5 4.06 + 0.64 522+025 +1.16 0.0002

10 7.27 +0.38 6.97 +£0.39 -0.30 0.0619

20 9.36 £0.36 9.49 £0.29 +0.13 0.2965

50 12.98 +0.45 13.98 +£0.48 +1.00 0.0041

100 15.95 £ 0.28 16.97 £ 0.29 +1.02 0.0000

200 21.31+£0.44 2225+0.22 +0.94 0.0004

500 2594 +£0.31 26.65 +£0.32 +0.71 0.0007

B.2 GENERALIZATION STABILITY UNDER LABEL CORRUPTION

We evaluated model resilience under label noise by corrupting a fraction of training labels and mea-
suring performance degradation. Label noise was introduced by randomly flipping labels with prob-
abilities ranging from 10% to 90%, while maintaining the original test set for consistent evaluation

(Tables[13]and [T4).
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Table 11: Few-shot learning performance of ViT-6L(20x) on CIFAR-100.

Samples/Class  PlainViT-6L.  AsymmetricViT-6LL  Improvement p-value
5 5.10£0.50 5.59+£0.33 +0.49 0.0022
10 7.92 £0.52 8.79 £ 0.49 +0.87 0.0008
20 9.67 £0.49 10.66 + 0.68 +0.99 0.0052
50 15.61 £0.79 15.58 £ 0.51 -0.03 0.8687
100 20.29 +£0.58 23.16 £0.78 +2.87 0.0001
200 28.00 £ 0.62 3223+ 1.79 +4.23 0.0011
500 43.53+1.45 53.28 £ 0.65 +9.75 0.0000
Table 12: Architecture Performance Comparison (CIFAR-10)
Architecture  Baseline =~ Asymmetric(1x) Improvement P-Value
MLP 495+03 50.6+0.4 +1.1 0.0001
CNN 77.0£0.6 77.2+1.0 +0.2 0.5371
ViT-6L 62.5+0.7 63.6+04 +1.1 0.0068

C DETAILED EXPERIMENTAL CONFIGURATION

C.1 HYPERPARAMETER SETTINGS

All hyperparameters were determined through systematic grid search following our “Pragmatic Gold
Standard” strategy to ensure fair comparison. This three-stage optimization process isolates the
effect of our asymmetric training paradigm while maintaining scientific rigor.

C.1.1 OPTIMIZATION STRATEGY

For each architecture, we employed a principled three-stage hyperparameter search:

Stage 1: Learning Rate Optimization We fixed weight decay at 10~ and conducted grid search
over learning rates {107%,3 x 107%,1073,3 x 1073,10~2} for the baseline Plain model, training
for 150 epochs and selecting the configuration yielding highest validation accuracy.

Stage 2: Weight Decay Refinement Using the optimal learning rate from Stage 1, we searched
over weight decay values {1071,1072,1072,10=%,10~°} for the Plain model, again training for
150 epochs.

Stage 3: Auxiliary Weight Search With optimal learning rate and weight decay fixed,
we searched for the optimal auxiliary weight « using logarithmic spacing: o €
{0.1,0.215,0.464, 1.0, 2.154, 4.642, 10.0, 21.544, 46.416, 100.0} for the Asymmetric model. For
CIFAR-10 MLP specifically, we employed linear spacing o € [0, 50] to accommodate its distinct
optimization characteristics.

C.1.2 FINAL HYPERPARAMETER CONFIGURATIONS

The optimal hyperparameters (CIFAR-100) determined through our systematic search are showed
in Table

C.2 TRAINING CONFIGURATION

Training Duration: All final results were obtained using 200 epochs.

Statistical Validation: Each configuration was evaluated across 10 independent runs with different
random seeds (42-51) to ensure statistical reliability. Performance comparisons used two-tailed
paired t-tests.
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Table 13: MLP performance under label noise on CIFAR-10

Noise Level ~ PlainMLP  AsymmetricMLP Improvement P-Value
0.0% 53.52£0.53 53.74 £ 0.36 +0.22 0.2025
10.0% 51.82+£0.47 52.08 +0.42 +0.26 0.1785
20.0% 49.92 + 0.55 50.22 +0.70 +0.30 0.3667
30.0% 47.69 £0.36 48.42 £ 045 +0.73 0.0007
40.0% 44.96 £+ 0.62 45.90 £ 0.85 +0.94 0.0067
50.0% 42.13 +1.09 42.66 £0.52 +0.53 0.2633
60.0% 38.35 +0.57 39.23 +0.70 +0.88 0.0530
70.0% 32.94 +0.85 32.05+0.93 -0.89 0.0291
80.0% 23.69 £ 1.61 22.94 +0.94 -0.75 0.1580
90.0% 10.43 £0.53 10.13 £ 0.61 -0.30 0.1081

Table 14: MLP performance under label noise on CIFAR-100

Noise Level ~ PlainMLP  AsymmetricMLP Improvement P-Value
0.0% 25.64 £0.29 26.00 £ 0.34 +0.36 0.0040
10.0% 24.76 £ 0.36 25.36 £ 0.47 +0.60 0.0104
20.0% 23.83 £0.34 24.29 £0.38 +0.46 0.0014
30.0% 22.54+£0.25 23.09£0.36 +0.55 0.0006
40.0% 20.97 £0.42 21.82£0.36 +0.85 0.0023
50.0% 19.08 + 0.43 20.15£0.28 +1.07 0.0000
60.0% 16.52 £0.39 17.97 £0.44 +1.45 0.0000
70.0% 12.76 £ 0.63 14.96 £ 0.58 +2.20 0.0000
80.0% 8.16 +£0.73 9.56 £0.49 +1.40 0.0005
90.0% 3.60 £0.54 3.49+043 -0.11 0.4902

Hardware: All experiments were conducted on NVIDIA RTX 3090 GPUs with consistent compu-
tational environments to ensure reproducibility.

C.3 ARCHITECTURE-SPECIFIC DETAILS
MLP: 6 linear layers with ReLU activations. Auxiliary branches attached after the first 4 ReLU
activations.

CNN: 6 convolutional layers, 2 MaxPooling layers, 1 Dropout layer, and 3 linear layers. Aux-
iliary branches are strategically placed after ReLU activations in convolutional blocks. When a
convolutional layer is immediately followed by max-pooling, the auxiliary branch is placed after the
max-pooling operation to maintain spatial coherence.

ViT-6L: 6 Transformer blocks with 4 attention heads each and embedding dimension of 128. Aux-
iliary branches attached after each Transformer block output.

All auxiliary branches consist of a single linear layer with output dimension equal to the number of
classes, initialized using orthogonal initialization for training stability.

C.4 IMAGENET EXPERIMENTS

In this section, we provide documentation for ImageNet-1k. (From Table [I6]to Table[23)

C.5 COATNET EXPERIMENTS

This provides comprehensive details of the experimental setup used in our baseline experiments. All
configurations follow standard practices in modern CIFAR-100 image classification research.
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Table 15: Optimal hyperparameters for Table

Npranches Architecture Learning Rate  Weight Decay o

MLP 0.0001 0.001 100.0
1% CNN 0.0003 0.01 100.0
ViT-6L 0.001 0.1 4.642
MLP 0.0001 0.001 0.1
7x CNN 0.0003 0.001 0.1
ViT-6L 0.001 0.01 4.642
MLP 0.0001 0.001 0.1
10x CNN 0.0003 0.001 1.0
ViT-6L 0.001 0.01 4.642
MLP 0.0001 0.001 0.1
20 CNN 0.0003 0.001 0.1
ViT-6L 0.001 0.01 1.0

Table 16: Optimal alpha values for Random Seed 42

Architecture 1X 10X 20X

ResNet-18 0.0178 0.2371 0.0237
ViT-Small 23.7137 0.0237 0.0237
ResNet-50 0.0750  0.0042 0.0178
ViT-B/16 23.7137 0.0237 0.0042

C.5.1 HYPERPARAMETER CONFIGURATION

Table [24] summarizes the complete set of hyperparameters used in our baseline experiments.

C.5.2 MODEL ARCHITECTURE DETAILS
Our baseline model uses a CIFAR-100 adapted CoAtNet backbone, structurally similar to CoAtNet-
0 but scaled down for the 32 x 32 input resolution. Table[25]details the stage-wise configuration.

The architecture follows the Conv—Conv—Attention—Attention pattern proposed in the original CoAt-
Net paper (Dai et al. [2021)), where early stages use convolutional MBConv blocks and later stages
employ Transformer blocks. The transition from convolution to attention occurs between S2 and S3.

C.5.3 JUSTIFICATION OF CONFIGURATION CHOICES

Training budget: The 200-epoch training with batch size 128 aligns with common practice in
ResNet and ViT works on CIFAR-100, providing sufficient training iterations without excessive
computational cost.

Data augmentation: We employ the standard CIFAR augmentation recipe: random crop with 4-
pixel padding and horizontal flip, combined with per-channel normalization. Notably, we do not use
stronger augmentations such as CutMix, Mixup, or AutoAugment, ensuring the baseline does not
gain unfair advantages from advanced data augmentation techniques.

C.5.4 COATNET-CIFAR RESULTS

Table 26| presents the complete results across all five random seeds (42-46) for each configuration.
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Table 17: Optimal alpha values for Random Seed 43

Architecture 1X 10X 20X

ResNet-18 0.0042 0.5623 0.2371
ViT-Small 31.6228 0.0316 0.0056
ResNet-50 5.6234  0.0750 0.1000
ViT-B/16 23.7137 0.0316 0.0316

Table 18: Optimal alpha values for Random Seed 44

Architecture 1X 10X 20X

ResNet-18 0.0178 0.2371 0.0178
ViT-Small 31.6228 0.0133  0.0042
ResNet-50 0.5623  0.0042 0.0316
ViT-B/16 31.6228 0.0237 0.0178

D ATTENTION PATTERN EVOLUTION ANALYSIS

D.1 DETAILED ATTENTION VISUALIZATION

Figure[6] visualizes the evolution of self-attention maps throughout the training trajectory.

D.2 QUANTITATIVE ATTENTION ANALYSIS

We measured attention pattern quality using several metrics:
Key findings:
* Peak Strength: Asymmetric training produces more diffuse attention patterns (lower peak
values)
* Map Entropy: Higher entropy indicates more distributed attention across spatial locations
» Sparsity: Lower Gini coefficient suggests more egalitarian attention distribution

* Object Coverage: Asymmetric models achieve near-optimal object coverage much earlier
(Epoch 20 vs 100)

D.3 LAYER-WISE ATTENTION DEVELOPMENT

The layer-wise analysis reveals that asymmetric training guides the development of hierarchical
attention patterns: - Early layers (L1): Both variants show similar low-level feature attention -
Middle layers (L3): Asymmetric variant begins showing more structured patterns - Late layers
(LL6): Clear differentiation—asymmetric model develops coherent object-level attention while plain
model remains diffuse

E STATISTICAL VALIDATION

All reported results were validated using appropriate statistical tests. For performance comparisons,
we used paired t-tests with Bonferroni correction for multiple comparisons. Effect sizes were calcu-
lated using Cohen’s d, with the following interpretations: small (0.2), medium (0.5), large (0.8).

All main results show statistical significance (p < 0.001) with large effect sizes, confirming the
reliability of our findings.

To investigate the formation process of the final attention patterns, we visualized the evolution of
attention across different training stages (e.g., 20, 60, 100 epochs), as shown in Figure[6] We observe
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Table 19: Optimal alpha values for Random Seed 45

Architecture 1X 10X 20X

ResNet-18 0.0032  0.0422 0.1778
ViT-Small 31.6228 0.0133  0.0422
ResNet-50 17.7828 0.0042 0.0237
ViT-B/16 31.6228 0.0237 0.0237

Table 20: Training hyperparameters for ImageNet-1k experiments

Parameter ResNet-18  ViT-Small ResNet-50 ViT-B/16
Optimizer SGD AdamW SGD AdamW
Learning Rate 0.2 le-3 0.2 le-3
Momentum 0.9 - 0.9 -
Weight Decay le-4 0.1 le-4 0.3
Batch Size 512 256 512 256
Total Epochs 90 150 90 150
LR Schedule StepLR Cosine StepLR Cosine
Step Epochs 30/60/80 - 30/60/80 -
Warmup - 5% - 5%
Min LR - le-5 - le-5

Note: Learning rate for ResNets uses linear batch scaling from base 0.1. No heavy regularizers (Mixup,
CutMix) used. Gradient clipping and zero-initialized heads applied uniformly.

that the attention patterns of the Asymmetric model gradually become more holistic and compre-
hensive as training progresses. In contrast, the attention of the Plain model saturates earlier and
consistently focuses more on local textures.

E.1 PROCESS LEVEL: LEARNING TRAJECTORIES

This microscopic gradient behavior directly translates into dramatically different macroscopic learn-
ing dynamics, as evidenced by our analysis across Figure [§|and Tables For CNN, the gradi-
ent conflict drives a catastrophic optimization collapse—the model converges prematurely in just 5
epochs to a inferior solution with 71% performance degradation. More tellingly, the generalization
gap becomes negative by epoch 50 (-0.0242), indicating the model performs better on validation than
training data—a clear symptom of learning failure. In contrast, ViT’s constructive gradient synergy
guides the optimization along a more exploratory but ultimately superior trajectory, requiring 11 ad-
ditional epochs but achieving both 30.6% higher validation accuracy and 47% better generalization
(gap reduction from 0.5543 to 0.2934). This demonstrates that beneficial gradient alignment not
only improves final performance but fundamentally enhances the learning process itself.
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Table 21: Detailed Architectural Configurations for ImageNet- 1k Experiments (Table . We sum-
marize the backbone specifications and the exact locations of auxiliary attachment points. For
ResNet, attachments are made at the feature maps of each stage prior to global pooling. For ViT,
attachments are made to the CLS token at evenly spaced block intervals. The redundancy level N
(number of branches per point) is a hyperparameter (e.g., N = 20).

Architecture Backbone Specification Aux. Attach Points Feature Dim (d;)
ety o NS ETSeEn 125 251
R0 e ENN BRS04 2,51, 1024, 208
Vs Gk Lo e o
s U DTS S s o

Auxiliary Head Configuration (Shared):

At each attachment point, we instantiate N parallel branches. The first N — 1 branches are
static (weights orthogonally initialized and frozen/non-trainable), while the /N-th branch is
active (fully trainable). All branches project features to 1000-dim logits for Sigmoid/BCE
supervision.

Table 22: Two-stage hyperparameter search strategy for o in Asymmetric architecture on ImageNet-
1k

Stage Search Range Candidate Values Strategy

a=0.01
_9 1nl a = 0.056 np.logspace (-2, 1, 5)
?éi)iersle) %001 ’11000]} a = 0.316 Log-uniform sampling
e a=1.778 5 candidates
a=10.0
a1
32 np.logspace (
s 1Ogbesl —0.5,
Stage2  [10108ws 05 logpey +0.5, 9)
(Fine) 10198best +O.5] Qpest (center) Local refinement
%6 d best value
an around
9 candidates
ag
Q9

Table 23: An Example of Stage 2 candidates when Stage 1 optimal is o = 0.316

Index « Value

0.100
0.133
0.178
0.237
0.316 (optimal from Stage 1)
0.422
0.562
0.750
1.000

O 00NN A W=
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Table 24: Hyperparameter configuration for CoAtNet baseline experiments on CIFAR-100.

Category Parameter Value
Dataset Dataset CIFAR-100
Split Official train/test

Data Preprocessing

Input resolution
Data augmentation

32 x 32
Random crop (4-pixel padding)
+ Random horizontal flip

Normalization Per-channel mean/std normalization
Type AdamW
Optimizer Base learning rate 1x1073
P Weight decay 0.05
P, B2 0.9, 0.999
Warmup epochs 5
Learning Rate Schedule  Schedule type Cosine decay
Minimum learning rate 1 x 1076
Trainin Total epochs 200
& Batch size 128
o Drop path rate 0.1
Regularization Label smoothing 0.1
Model Architecture CoAtNet-CIFAR (fixed structure)
Auxiliary head None (aux_stage = None, a = 0)

Table 25: Architecture configuration of CoAtNet-CIFAR baseline model.

Stage Block Type Channels Resolution # Blocks Operation
SO Conv Stem 64 32x32—=232x32 1 Conv 3 x 3
S1 MBConv 96 32x32—=16x16 2 + Downsample
S2 MBConv 128 16 x 16 -+ 8 x 8 2 + Downsample
S3 Transformer 256 88X 8 —=8x8 3 Self-Attention
S4 Transformer 384 §x8—=4x4 2 + Downsample

Table 26: Detailed test accuracy results across five random seeds for all configurations (CoAtNet-
CIFAR).

Redundancy Stage Alpha Seed42 Seed43 Seed44 Seedd45 Seed46 Mean Std
1% S2 4.642 75.63 75.34 75.94 75.18 74.21 75.26  0.66

S3 21.544  75.94 76.14 75.64 75.60 76.21 7591 0.28

20% S2 0.215 75.96 75.90 75.79 76.05 75.70  75.88 0.14

S3 4.642 76.85 76.43 77.07 76.31 77.14  76.76 0.36

100 S2 0.1 75.34 75.38 76.32 75.54 75.39 75,59 041

S3 4.642 77.41 77.32 76.95 76.74 76.96  77.08 0.26

300 S2 0.1 74.41 73.97 74.42 75.20 7470 7454 0.49

S3 0.1 76.72 77.22 76.96 76.76 76.44  76.82 0.30

21



Under review as a conference paper at ICLR 2026

PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L
Epoch 20 Epoch 100 Epoch 20 Epoch 60 Epoch 100

Epoch 60

Class_13

po
- '

AsymViT-6L(20x) AsymVIT-6L(20x) ASymVIT-6L(20x)
Epoch 20 Epoch 60 Epoch 100

a) b)

PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L
Epoch 60 Epoch 100 Epoch 20 Epoch 60 Epoch 100

AsymViT-6L(20x) AsymVIT-6L(20x) ASymVIT-6L(20x)
Epoch 20 Epoch 60 Epoch 100

~
~

Class_14

Class_9

ASymVIT-6L(20x) AsymViT-6L(20x) ASYmVIT-6L(20%) ASYmVIT-6L(20%) AsymViT-6L(20x) ASYmVIT-6L(20%)
Epoch 20 och 1 Epoch 20 och 1

o
g
2
2
g

—~
o

~

—~

d)

PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L
Epoch 60 Epoch 100 Epoch 20 Epoch 60 Epoch 100

Class_25 Class 9

B
-2
=
s
o
%

AsymViT-6L(20x) AsymViT-6L(20x) AsymViT-6L(20x) AsymViT-6L(20x) AsymViT-6L(20x) AsymViT-6L(20x)
och 21 och 1 och 21 Epoch 60 Epoch 100

—~

e) f)

PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L PlainViT-6L
Epoch 20 [ Epoch 100 Epoch 20 Epoch 60

~

PlainViT-6L
Epoch 100

Class_16 Class 97

P
H

g
2
2
g

AsymViT-6L(20x) AsymViT-6L(20x) ASymViT-6L(20x) AsymViT-6L(20x) AsymViT-6L(20x) ASymViT-6L(20x)
Epoch 20 Epoch 60 Epoch 100 Epoch 20 Epoch 60 Epoch 100
L

~

h)

(2)

Figure 6: Comprehensive attention pattern evolution for ViT-6L on CIFAR-100.

Table 27: Attention pattern quality metrics across training epochs

Plain ViT-6L Asymmetric ViT-6L
Epoch20 Epoch 60 Epoch 100 Epoch20 Epoch 60 Epoch 100

Peak Strength 0.092 0.063 0.051 0.053 0.049 0.045
Map Entropy 3.73 3.89 3.97 4.02 4.03 4.05
Sparsity (Gini) 0.471 0.415 0.374 0.254 0.287 0.302
Object Coverage 0.58 0.70 0.84 0.96 0.95 0.94

Metric
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Table 28: Gradient Conflict Analysis. Cosine similarity analysis between main (softmax) and aux-
iliary (sigmoid) gradients during training. ViT-6L shows consistent positive similarity (synergy),
while CNN exhibits strong negative similarity (conflict), and MLP demonstrates near-orthogonal
gradients with slight conflict tendency.

Architecture  Final Similarity =~ Average Similarity Min Similarity Max Similarity

MLP -0.0309 -0.0801 -0.3422 0.0701
CNN -0.1926 -0.2574 -0.8210 0.0464
ViT-6L 0.2631 0.1870 -0.1845 0.3654

Table 29: To explore the impact of different hyperparameter search strategies, we conducted a sup-
plementary experiment for the Npnches = 3 configuration, where hyperparameters (learning rate
and weight decay) were independently optimized for both baseline and asymmetric models. The
results are shown in the table, where “all active” indicates that all three auxiliary branches at each
connection point are trainable, while “one active” means only one auxiliary branch per connection
point is trainable. Although this “dual optimization” strategy can yield benefits in certain cases, we
consistently adopted the “Pragmatic Gold Standard” strategy throughout the main text to isolate the
pure effect of our paradigm.

Npranches Architecture Plain Asymmetric Improvement p-value
3 <branch MLP 246+03  20.7+05 -3.9 0.0000
al rat‘?C )es CNN 399+06 36206 3.7 0.0000
all active ViT-6L 362+0.6 42.1+27 +5.9 0.0002
3 branch MLP 246+03 237+06 -0.9 0.0008
( fantc, e)s CNN 40.0+£0.8 33.9+09 -6.1 0.0000
one active ViT-6L 36.5+0.7 44059 +7.5 0.0045

Table 30: Architecture performance comparison with asymmetric training on CIFAR-10. Results
show differential architectural responses to auxiliary supervision, with statistical significance as-
sessed using two-tailed paired t-tests across 10 independent runs.

Architecture  Baseline ~ Asymmetric Improvement p-value Significant

MLP 495+03 506+04 +1.1 0.0001 Yes
CNN 77.0+£06 772+1.0 +0.2 0.5371 No
ViT-6L 625+0.7 63.6x04 +1.1 0.0068 Yes

Table 31: Architecture-dependent convergence patterns and performance outcomes.

Convergence (Epoch) Final Val Acc
Architecture  Plain Asymmetric Plain  Asymmetric
MLP 15 21 0.2220 0.2305
CNN 20 5 0.4034 0.1171
ViT-6L 19 30 0.3498 0.4568

Table 32: Generalization Gap Evolution Across Training Phases

Early(epoch10) Middle(epoch50) Late(epoch100)
Architecture  Plain ~ Asymmetric ~ Plain ~ Asymmetric ~ Plain ~ Asymmetric
MLP 0.0098 0.0049 0.1039 0.0566 0.2234 0.1225
CNN 0.0073 0.0002 0.4665 -0.0242 0.5253 -0.0365
ViT-6L 0.0334 -0.0270 0.4717 0.0838 0.5543 0.2934
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Gradient Norm

Figure 7: Training dynamics comparison across architectures showing loss components and opti-
mization trajectories. Top row: Evolution of main loss (softmax) and auxiliary loss (sigmoid) dur-
ing training. Bottom row: Gradient norm dynamics for plain and asymmetric variants. Asymmetric
training exhibits architecture-specific patterns: MLP shows stable auxiliary loss with reduced gra-
dient norms, CNN demonstrates auxiliary loss divergence with increased gradient instability, while
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ViT-6L displays rapid auxiliary loss convergence with improved optimization stability.

Accuracy

Figure 8: Architecture-specific learning dynamics reveal the Principle of Architectural Resonance.
Comprehensive learning trajectories comparing Plain (baseline) and Asymmetric training across
three architectures on CIFAR-100. Left column shows accuracy evolution (dashed: training, solid:
validation); middle column displays loss curves; right column presents generalization gaps (train-
val accuracy difference). CNN exhibits catastrophic degradation with massive overfitting under
asymmetric training. MLP demonstrates effective regularization with reduced generalization gap
but limited accuracy gains. ViT achieves substantial performance improvements with superior gen-
eralization. The divergence points (red vertical lines) mark early onset of architecture-dependent
responses to heterogeneous supervision, empirically validating our core hypothesis that auxiliary
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signal efficacy depends fundamentally on architectural inductive biases.
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Figure 9: VIiT-6L attention mechanism analysis comparing plain and asymmetric training. Top left:
Entropy evolution showing asymmetric training maintains higher attention diversity. Top right:
Coverage percentage demonstrating improved spatial attention coverage (+6.8%). Bottom left:
Peak strength indicating more focused attention patterns (-12.6%). Bottom right: Sparsity coef-
ficient revealing attention distribution characteristics (-6.7%). Results suggest asymmetric training
promotes more comprehensive yet focused attention patterns.
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