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ABSTRACT

Is deep learning robustness necessarily rooted in optimizing a single objective?
We explore an alternative view: adaptive generalization may emerge from struc-
tured interactions among heterogeneous objectives during training. We propose
an Asymmetric Training Paradigm that temporarily introduces non-competitive,
per-class supervision (sigmoid losses) into networks optimized with competitive
softmax objectives. This is realized through orthogonally initialized auxiliary
pathways, modulated by a scalar coefficient α and present only during training.
This controlled form of temporary topological redundancy creates an ideal probe
for studying objective interactions. Our mechanistic analysis shows that such
redundancy consistently smooths the initial loss landscape, but its performance
impact follows a Principle of Architectural Resonance: auxiliary signals benefit
models only when aligned with architectural inductive biases. A 6-block Vision
Transformer (ViT-6L) exhibits constructive gradient alignment (cosine similarity
+0.19), yielding up to 25% accuracy gains on CIFAR-100 with 20× redundancy;
by contrast, a CNN shows destructive conflicts (cosine similarity -0.26), leading
to degradation. These findings challenge the view of auxiliary supervision as a
universal regularizer. Instead, they reveal robustness as an outcome of structured
internal dialogues between objectives, opening a path toward the design of multi-
objective training systems tuned to architectural biases.

1 INTRODUCTION

A fundamental challenge in deep learning is understanding the complex interplay between a model’s
architectural inductive biases and the training strategies it is subjected to. While auxiliary supervi-
sion is a widely adopted technique for improving model performance(Szegedy et al., 2015; Lee
et al., 2015; Caruana, 1997; Ruder, 2017), its application has been predominantly homogeneous, us-
ing objectives conceptually aligned with the main task. This raises a critical and largely unexplored
question: what happens when auxiliary signals are fundamentally heterogeneous? Specifically, how
does a system designed for “winner-takes-all” competition (via softmax) react to signals that en-
courage “feature coexistence” (via sigmoid)?

To investigate this, we propose the Asymmetric Training Paradigm, a framework designed as a
precise scientific probe. It temporarily introduces non-competitive, sigmoid-based supervision into
a network through orthogonally initialized pathways, allowing us to systematically study the re-
sulting internal dynamics. Our investigation reveals a striking phenomenon that challenges con-
ventional wisdom, which we term the Principle of Architectural Resonance. On CIFAR-100, this
single paradigm produces radically divergent outcomes: Vision Transformers achieve a remarkable
+25.4% performance improvement, driven by a sustained, constructive gradient synergy (cosine sim-
ilarity +0.19), while Convolutional Neural Networks (CNNs) suffer a severe degradation (-22.0%),
caused by a persistent, destructive gradient conflict (cosine similarity -0.26).

Our work makes three key contributions. First, we introduce the Asymmetric Training Paradigm
as a novel and controllable platform for analyzing architecture-objective interactions. Second, us-
ing this probe, we discover and empirically validate the Principle of Architectural Resonance, pro-
viding multi-dimensional evidence that the efficacy of auxiliary supervision is highly architecture-
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dependent. Third, to the best of our knowledge, we provide the first quantitative characterization of
these gradient dynamics, establishing a direct link between the nature of the internal signal dialogue
and the final generalization performance.

2 RELATED WORK

2.1 AUXILIARY SUPERVISION AND MULTI-TASK LEARNING

The use of intermediate supervision, or “deep supervision,” is a well-established technique, orig-
inally pioneered in networks like GoogLeNet to combat vanishing gradients in deep architectures
(Szegedy et al., 2015; Lee et al., 2015). Modern applications leverage auxiliary tasks for repre-
sentation learning, notably in self-supervised learning (Gidaris et al., 2018; Chen et al., 2020) and
Multi-Task Learning (MTL) (Caruana, 1997; Ruder, 2017; Kendall et al., 2018). However, a com-
mon thread in these approaches is the use of homogeneous or synergistic tasks. Our work diverges
by using a deliberately heterogeneous signal (non-competitive vs. competitive) not merely for per-
formance, but as a scientific probe to understand a system’s response to conflicting objectives. This
contrasts with recent trends that leverage auxiliary tasks primarily for representational consistency
and robustness enhancement within homogeneous objective families (Navon et al., 2022; Shamsian
et al., 2023). While these approaches demonstrate effectiveness in traditional multi-task scenar-
ios, they do not explore the fundamental architectural response to qualitatively different supervisory
signals, which constitutes the core contribution of our study.

2.2 ARCHITECTURAL INDUCTIVE BIASES

Our analysis is grounded in the distinct inductive biases of different architectures(Goyal & Bengio,
2022). CNNs enforce strong priors on spatial locality and translation equivariance through weight-
sharing kernels (LeCun et al., 1989; Cohen & Welling, 2016). In contrast, ViTs have weaker spatial
priors, relying on self-attention to dynamically learn global relationships from data (Dosovitskiy
et al., 2021; Vaswani et al., 2017). MLPs, with the weakest biases, serve as a reference (Tolstikhin
et al., 2021). While these individual biases are well-studied, how they govern a model’s response to
heterogeneous supervisory signals remains largely unexplored. This knowledge gap persists despite
recent advances in understanding the subtle differences between CNN and ViT architectures in terms
of optimization landscapes, feature geometries, and inductive bias mechanisms (Lu et al., 2022; Tuli
et al., 2021). Our work directly addresses this unexplored interaction by treating the supervisory
signal as a controlled variable and the architecture as the primary subject of investigation.

2.3 THE INTERPLAY OF ARCHITECTURES AND TRAINING OBJECTIVES

Our research intersects with fields that study the co-design of architectures and training, such as
Neural Architecture Search (NAS) (Zoph & Le, 2016; Liu et al., 2019; Mellor et al., 2021) and
studies on architecture-aware regularization (Srivastava et al., 2014; Ioffe & Szegedy, 2015). How-
ever, our methodology differs fundamentally. Rather than searching for an optimal architecture-
objective pair to maximize performance, we employ an “experimental physics” approach: we fix
the architectures and systematically vary the properties of the external signal (e.g., strength α and
redundancy Nbranches) to map their interaction landscape. This paradigm enables us to uncover a
general principle—Architectural Resonance—rather than a task-specific optimal configuration. To
our knowledge, this is the first study of heterogeneous supervision and architectural bias interaction
with the explicit goal of discovering a fundamental principle that governs this interplay.

3 METHODOLOGY

3.1 THE ASYMMETRIC TRAINING PARADIGM

This paper introduces the Asymmetric Training Paradigm, a novel framework designed to enrich a
model’s learning signals by introducing temporary, learnable auxiliary structures exclusively during
the training phase. This approach aims to improve generalization and reveal underlying learning
mechanisms without incurring any additional inference cost. The paradigm is founded on three core
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Figure 1: The Asymmetric Training Paradigm.

design principles: Asymmetry (different topologies for training vs. inference), Heterogeneity (dis-
similar primary and auxiliary learning objectives), and controllable Redundancy (scalable auxiliary
pathways). As illustrated in Figure 1, our framework serves not only as a performance enhancement
technique but, more importantly, as a principled instrument to uncover a key mechanism for robust
generalization: structured multi-objective dialogue.

3.2 CORE HYPOTHESIS: THE PRINCIPLE OF ARCHITECTURAL RESONANCE

We propose the Principle of Architectural Resonance, which posits that a network’s generalization
ability originates not just from optimizing a single objective, but from the structured interaction
between heterogeneous learning objectives and the architecture’s intrinsic inductive biases. Specifi-
cally, we hypothesize that: (1) When an auxiliary signal is synergistic with an architecture’s induc-
tive bias (e.g., a ViT’s global relational capacity), it produces constructive gradient alignment and
improves generalization. (2) When the two conflict (e.g., a CNN’s strong spatial locality), it leads
to destructive gradient conflicts and impedes learning. Our paradigm provides an ideal testbed for
empirically testing this principle, as we will demonstrate in Section 4.

3.3 CORE MECHANISMS AND DESIGN PRINCIPLES

3.3.1 ARCHITECTURAL DESIGN

To test our hypothesis in a controlled environment, our study is conducted on the CIFAR-10/100
datasets. We employ three lightweight backbone architectures representing a spectrum of inductive
biases: a 6-layer MLP, a 6-conv-layer CNN with spatial downsampling, and a 6-block Vision Trans-
former (ViT-6L). All auxiliary branches consist of a single linear layer and are attached at interme-
diate points of the backbone. To ensure training stability, all auxiliary branch weights are initialized
using Orthogonal Initialization (Saxe et al., 2014). All models are trained using the AdamW opti-
mizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2019). Specific architectural configurations are
detailed in Appendix C.3.

3.3.2 KEY VARIABLES: REDUNDANCY AND DIALOGUE STRENGTH

Our paradigm features two core controllable variables:

• Architectural Redundancy (Nbranches): The number of parallel auxiliary branches at each
attachment point. For example, a redundancy of 20× (Nbranches = 20) means that at each
point where an auxiliary signal is injected, we create 20 separate, parallel linear layers.
Each of these 20 branches takes the exact same intermediate representation as input, and
each is intended to produce an auxiliary loss, though only one is active during backpropa-
gation due to our “single-activation” strategy. In our primary performance experiments, we
evaluate redundancy levels of Nbranches ∈ {1, 7, 10, 20}. For specific mechanistic analysis,
such as the initial loss landscape A.1, our exploration includes levels of {1, 20, 300}. A
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supplementary ablation on an alternative hyperparameter search strategy for Nbranches = 3
is provided in Appendix Table 16.

• Dialogue Strength (α): A scalar hyperparameter that balances the primary and auxiliary
losses. The total training objective is:

Ltotal = Lmain + α

K∑
k=1

L(k)
aux (1)

3.3.3 AUXILIARY BRANCH ACTIVATION: A DETERMINISTIC PROBE FOR LANDSCAPE
EFFECTS

A critical design choice in our paradigm is how the multiple auxiliary branches are utilized. Our
central hypothesis is that the initial geometry of the loss landscape, modulated by topological redun-
dancy, is a key determinant of the final generalization performance. To create the cleanest possible
testbed for this hypothesis, we employ a deterministic fixed-path activation strategy.

Implementation Details. At each of the K attachment points, we initialize Nbranches parallel aux-
iliary branches. However, during the entire training process, for every forward and backward pass,
we consistently and exclusively select only the last branch (the Nbranches-th one) to be active. This
means the first Nbranches − 1 branches are never activated or trained, and their weights remain fixed
at their initial values.

Design Rationale. The rationale for this deterministic choice is to isolate a single key variable:
the impact of the initial loss landscape’s geometry. A core premise of our approach is that increas-
ing the number of static branches reliably smooths the initial loss landscape, a phenomenon we
systematically validate in Appendix A.1. For instance, our analysis shows that for the MLP archi-
tecture, increasing redundancy from 1× to 300× reduces the standard deviation of the loss surface
by over 90% Table 5 in Appendix. Our fixed-path design uses the single active branch as a con-
stant, unchanging probe to measure how different architectures navigate these systematically altered
landscapes.

An alternative, such as stochastically activating different branches, would have introduced a pow-
erful confounding variable—randomized regularization—making it impossible to disentangle the
effects of the landscape’s geometry from the effects of the stochastic training signal. Our determin-
istic approach intentionally removes this randomness. It allows us to ask a precise question: Does
the initial smoothness provided by static redundancy directly translate into a dynamic optimization
advantage?

Interpreting the Effects. The observed performance divergence must be interpreted through this
lens. The starkly different outcomes for CNNs and ViTs are a direct answer to our research ques-
tion. The results suggest that Architectural Resonance is a fundamental principle governing how
an architecture’s inductive bias determines its ability to exploit the properties of a given optimiza-
tion landscape. For ViTs, initial smoothness is a benefit they can leverage; for CNNs, under the
same conditions, it becomes a detriment. This finding highlights a deeper, more geometric level of
interaction between model architecture and the optimization process.

3.3.4 HETEROGENEOUS LEARNING OBJECTIVES

The core of our paradigm is an “internal dialogue” between two qualitatively different objectives:

• Primary Objective (Lmain): The standard, class-competitive softmax cross-entropy loss.

Lmain = −
C∑
i=1

yi log(softmax(zfinal)i) (2)

• Auxiliary Objective (Laux): An independent, non-competitive sigmoid-based binary cross-
entropy loss applied per class.

Laux = − 1

C

C∑
i=1

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] (3)
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3.4 METHODOLOGICAL RIGOR: THE PRINCIPLE OF FAIR COMPARISON

Our experiments are predicated on the principle of fair comparison. For each baseline (Plain) model,
we first perform a comprehensive grid search to identify the best-performing learning rate and weight
decay on the validation set. We then freeze these hyperparameters and conduct a wide-range search
for the best α for our Asymmetric variant. We term this the “Pragmatic Gold Standard” strategy, as it
isolates the specific effect of our module and mirrors a realistic plug-and-play application scenario.

4 EXPERIMENTS AND ANALYSIS

This section provides a rigorous empirical validation of the Principle of Architectural Resonance.
Our analysis follows a clear logical chain: we first establish a universal geometric effect (Sec-
tion 4.2), then present the core puzzle of performance divergence (Section 4.3), unpack the puzzle
with multi-faceted mechanistic analysis (Section 4.4), conduct a quantitative dose-response analysis
(Section 5), and finally, explore the principle’s applicability boundaries (Section 5.1).

4.1 EXPERIMENTAL SETUP

Datasets and Architectures. Our experiments are conducted on CIFAR-10 and CIFAR-100. We
employ the three architectures (MLP, CNN, and ViT) as specified in Section 3.3.1. The 50,000
training images are split into an 80%/20% ratio for training and validation subsets.

Implementation Details. For all comparisons, we follow the “Pragmatic Gold Standard” hyperpa-
rameter search strategy detailed in Section 3.4. Further details on the specific hyperparameter search
spaces are provided in Appendix C.1. To ensure reliability, all reported results are the mean ± stan-
dard deviation over 10 independent runs. Statistical significance is evaluated using a two-tailed
paired t-test (p < 0.05). Experiments were conducted on a server with 8 NVIDIA A100 GPUs. Our
code will be made public upon acceptance.

4.2 FOUNDATIONAL PHENOMENON: UNIVERSAL SMOOTHING EFFECT OF ARCHITECTURAL
REDUNDANCY

Before investigating final performance, we analyzed the impact of our paradigm on the initial ge-
ometry of the loss landscape. As detailed in Table 5 and 6, we observe a universal trend across all
architectures: as the degree of temporary topological redundancy increases, the initial loss landscape
becomes demonstrably smoother 6. This indicates that our paradigm provides a better-structured
starting point for the optimizer, consistent with literature suggesting that smoother landscapes facil-
itate better generalization (Li et al., 2018; Keskar et al., 2017; Garipov et al., 2018).

Table 1: Architecture performance comparison across different configurations on CIFAR-100

Nbranches Arch Plain Asymmetric Improvement p-value

1×
MLP 0.232 ± 0.003 0.243 ± 0.003 (α = 100.0) +4.9% 0.0001
CNN 0.395 ± 0.004 0.308 ± 0.003 (α = 100.0) -22.0% 0.0000
ViT-6L 0.358 ± 0.010 0.359 ± 0.005 (α = 4.642) +0.3% 0.7773

7×
MLP 0.234±0.005 0.221±0.003 (α = 0.1) -5.5% 0.0001
CNN 0.398 ± 0.006 0.317 ± 0.029 (α = 0.1) -20.2% 0.0000
ViT-6L 0.359 ± 0.008 0.400 ± 0.021 (α = 4.642) +11.3% 0.0000

10×
MLP 0.233 ± 0.003 0.217 ± 0.002 (α = 0.1) -6.9% 0.0000
CNN 0.397 ± 0.006 0.2431 ± 0.021 (α = 1.0) -38.7% 0.0000
ViT-6L 0.360 ± 0.009 0.418 ± 0.022 (α = 4.642) +15.9% 0.0000

20×
MLP 0.232 ± 0.003 0.211 ± 0.003 (α = 0.1) -9.0% 0.0000
CNN 0.397 ± 0.006 0.336 ± 0.012 (α = 0.1) -15.3% 0.0000
ViT-6L 0.361 ± 0.010 0.453 ± 0.013 (α = 1.0) +25.4% 0.0000
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4.3 CORE FINDING: PERFORMANCE DIVERGENCE ON A SMOOTHED LANDSCAPE

However, on this consistently simplified optimization environment, we observe a surprising,
architecture-dependent performance divergence. As presented in Table 1, on the challenging
CIFAR-100 dataset, the ViT’s performance scales positively with redundancy, achieving a gain of
up to +25.4% (p < 0.001). In stark contrast, the CNN’s performance catastrophically degrades
by -22.0% (p < 0.001) with just a single auxiliary branch. The MLP exhibits a complex, non-
monotonic pattern. This stark divergence strongly suggests that an architecture’s intrinsic properties,
not landscape smoothness alone, fundamentally determine the utility of the auxiliary signal.

4.4 MECHANISTIC ANALYSIS: MULTI-LAYERED EVIDENCE FOR ARCHITECTURAL
RESONANCE

To unravel this puzzle, we conduct a multi-faceted mechanistic analysis.

Figure 2: Gradient conflict evolution across architectures during training

Table 2: Detailed Gradient Conflict Analysis

Architecture Final Sim Avg Sim Min Sim Max Sim Gradient Interaction

MLP -0.0309 -0.0801 -0.3422 0.0701 Neutral/weak interaction
CNN -0.1926 -0.2574 -0.8210 0.0464 Strong conflict detected
ViT 0.2631 0.1870 -0.1845 0.3654 Constructive synergy

4.4.1 MATHEMATICAL LEVEL: GRADIENT DYNAMICS

To diagnose the mathematical origins of this performance divergence, we directly measured the co-
sine similarity between the primary (gmain) and auxiliary (gaux) gradients throughout training. The
evolution of this gradient alignment, visualized in Figure 2, reveals immediate and persistent archi-
tectural signatures. The ViT’s alignment (green curve) consistently remains in positive territory, in-
dicating a constructive dialogue. Conversely, the CNN’s alignment (red curve) immediately plunges
into and remains in negative territory, signifying a sustained conflict. The MLP (blue curve) hovers
around zero, suggesting a largely uncorrelated or directionless interaction.

To precisely quantify these visual patterns, we provide a detailed statistical summary in Table 2. The
data confirms the visual narrative with high fidelity. The ViT maintains a healthy average positive
similarity of +0.1870, confirming the presence of a “Constructive synergy.” In stark contrast, the
CNN exhibits a strong average negative similarity of -0.2574. More tellingly, the conflict in the
CNN can be extreme, reaching a minimum similarity of -0.8210, which indicates moments of near-
perfect gradient opposition. This finding strongly supports the table’s qualitative conclusion of a
“Strong conflict detected.”
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This direct mathematical evidence provides a clear mechanistic explanation for the divergent learn-
ing outcomes. The success of the ViT and the failure of the CNN are not accidental; they are a direct
reflection of the persistent synergistic or conflicting nature of their internal gradient dialogues.

Figure 3: Architecture-specific learning dynamics reveal the Principle of Architectural Resonance.
Comprehensive learning trajectories comparing Plain (baseline) and Asymmetric training across
three architectures on CIFAR-100. Left column shows accuracy evolution (dashed: training, solid:
validation); middle column displays loss curves; right column presents generalization gaps (train-
val accuracy difference). CNN exhibits catastrophic degradation with massive overfitting under
asymmetric training. MLP demonstrates effective regularization with reduced generalization gap
but limited accuracy gains. ViT achieves substantial performance improvements with superior gen-
eralization. The divergence points (red vertical lines) mark early onset of architecture-dependent
responses to heterogeneous supervision, empirically validating our core hypothesis that auxiliary
signal efficacy depends fundamentally on architectural inductive biases.

Table 3: Architecture-dependent convergence patterns and performance outcomes.

Convergence (Epoch) Final Val Acc
Architecture Plain Asymmetric Plain Asymmetric

MLP 15 21 0.2220 0.2305
CNN 20 5 0.4034 0.1171
ViT-6L 19 30 0.3498 0.4568

Table 4: Generalization Gap Evolution Across Training Phases

Early(epoch10) Middle(epoch50) Late(epoch100)

Architecture Plain Asymmetric Plain Asymmetric Plain Asymmetric

MLP 0.0098 0.0049 0.1039 0.0566 0.2234 0.1225
CNN 0.0073 0.0002 0.4665 -0.0242 0.5253 -0.0365
ViT-6L 0.0334 -0.0270 0.4717 0.0838 0.5543 0.2934

4.4.2 PROCESS LEVEL: LEARNING TRAJECTORIES

This microscopic gradient behavior directly translates into dramatically different macroscopic learn-
ing dynamics, as evidenced by our comprehensive analysis across Figure 3 and Tables 3-4. For CNN,
the persistent gradient conflict drives a catastrophic optimization collapse—the model converges

7
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prematurely in just 5 epochs to a drastically inferior solution with 71% performance degradation.
More tellingly, the generalization gap becomes negative by epoch 50 (-0.0242), indicating the model
performs better on validation than training data—a clear symptom of learning failure. In contrast,
ViT’s constructive gradient synergy guides the optimization along a more exploratory but ultimately
superior trajectory, requiring 11 additional epochs but achieving both 30.6% higher validation accu-
racy and 47% better generalization (gap reduction from 0.5543 to 0.2934). This demonstrates that
beneficial gradient alignment not only improves final performance but fundamentally enhances the
learning process itself.

(a) (b)

Figure 4: Comparison of attention evolution

4.4.3 REPRESENTATION LEVEL: ATTENTION PATTERNS

For the ViT, the synergistic effect manifests in the learned representations. As shown in Figure 4,
the Asymmetric model learns a more holistic attention pattern. Quantitative analysis of attention
patterns on 100 randomly sampled CIFAR-100 test images reveals that the ViT-6L(20×) achieves
significantly higher average object coverage (93.7%) compared to the Plain baseline (87.9%), visu-
ally confirming a more comprehensive understanding of the input (Figure 4).

Figure 5: Architecture-dependent dose-response to auxiliary supervision. Each architecture shows
distinct sensitivity patterns: ViT (synergistic), CNN (destructive), MLP (orthogonal). Performance
improvement plotted against branch redundancy (Nbranches) on CIFAR-100. Error bars represent
standard error (n=10).

5 DOSE-RESPONSE ANALYSIS: DIFFERENTIAL MODULATION BY
REDUNDANCY

To systematically quantify the interaction between our paradigm and architectural biases, we per-
formed a dose-response analysis, treating the level of architectural redundancy (Nbranches) as the
“dose” and the resulting performance gain as the “response.” The results provide compelling quan-
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titative evidence for the Principle of Architectural Resonance, with detailed performance metrics
available in Table 1 and the overall trends visualized in Figure 5, revealing three distinct patterns.

First, the ViT-6L exhibits a clear synergistic resonance. Its performance scales positively and mono-
tonically with increasing redundancy, culminating in a remarkable +25.4% improvement at 20×
redundancy (Table 1). This synergistic trend is clearly depicted by the green curve in Figure 5.

In stark contrast, the CNN demonstrates a destructive conflict. Even a single auxiliary branch (1×)
causes a severe performance degradation of -22.0% (Table 1). As shown by the red curve in Figure 5,
the overall effect remains strongly negative across all redundancy levels, indicating a fundamental
incompatibility between the CNN’s strong spatial priors and the nature of the auxiliary objective.

Finally, the MLP, possessing the weakest inductive bias, shows a complex, non-monotonic profile,
peaking at a +4.9% gain before declining to -9.0% (Table 1). It gains a small benefit at low re-
dundancy (+4.9% at 1×), but this quickly turns into a performance loss as redundancy increases,
declining to -9.0% at 20×. This declining trend, also visible in Figure 5, suggests that while a small
amount of signal diversity can initially help, the MLP’s architecture lacks the structural capacity of
a ViT to productively organize a large volume of heterogeneous signals.

Taken together, these divergent curves form the empirical bedrock of the Architectural Resonance
principle, directly linking an architecture’s intrinsic properties to its ability to benefit from multi-
objective dialogues.

5.1 BOUNDARY CONDITIONS: CONTEXTUAL DEPENDENCIES

Finally, we conducted preliminary investigations into the principle’s applicability under different
conditions, including few-shot and noisy-label scenarios. Initial results (see Appendix B) suggest
the effect may be context-dependent, with dataset properties potentially modulating the resonance
effect. However, comprehensive characterization of these boundary conditions remains an important
direction for future work.

6 DISCUSSION AND CONCLUSION

This work identifies an underlying principle we term Architectural Resonance: the efficacy of an
auxiliary training signal appears to be heavily influenced by its compatibility with a model’s intrinsic
inductive biases. We provided strong empirical evidence for this principle through our Asymmetric
Training Paradigm. This framework revealed a stark performance divergence under identical condi-
tions: a +25.4% gain for Vision Transformers, versus a -22.0% degradation for CNNs, a discrepancy
we traced to their opposing gradient dynamics.

These findings invite a deeper interpretation. The ViT, with its flexible self-attention mechanism,
appears to leverage the auxiliary signal to learn a more comprehensive feature set. In contrast, the
CNN, with its strong spatial priors, experiences a destructive conflict. The MLP’s declining response
is characteristic of its weak inductive bias—while initially benefiting from minimal signal diversity
(+4.9%), it becomes increasingly overwhelmed as redundancy grows, lacking the structural capacity
to productively organize large volumes of heterogeneous signals. Together, these results suggest a
more nuanced perspective than viewing auxiliary supervision as a universal regularizer, pointing
towards the value of co-designing architecture-aware training strategies.

Our study, however, has its boundaries. The empirical validation was conducted in a controlled
setting on CIFAR datasets with lightweight models, a deliberate choice to enable the rigorous mech-
anistic analysis necessary to first identify the principle. A critical open question is the scalability of
our findings to larger benchmarks like ImageNet and standard, pre-trained architectures. Exploring
the manifestations of Architectural Resonance in other domains, such as NLP and graph learning,
presents another valuable direction for future work.

In conclusion, our work points towards a promising avenue for improving model training. It suggests
that rather than pursuing a single, universally optimal objective, a valuable research direction is
the principled engineering of structured, internal dialogues that are carefully tuned to the resonant
properties of each unique architecture.

9
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A APPENDIX

A.1 LOSS LANDSCAPE ANALYSIS

We conducted systematic loss landscape analysis across MLP, CNN, and ViT-6L architectures on
CIFAR-10 and CIFAR-100. Following established protocols (Li et al., 2018), we visualized the
loss surfaces using a 51×51 grid centered at the initialization point, with directions determined by
random Gaussian perturbations normalized to unit variance. To balance computational efficiency
with statistical robustness, we randomly sampled 500 training instances for loss evaluation at each
grid point. This sampling size provides sufficient statistical power while remaining computationally
tractable for systematic analysis across multiple architectures and redundancy levels. The result-
ing visualizations reveal distinct architectural signatures in terms of loss surface smoothness and
optimization landscape complexity. (Figure 6, Table 5 and 6)

B BOUNDARY CONDITIONS AND EXTENDED ANALYSIS

B.1 FEW-SHOT LEARNING ROBUSTNESS

To assess the generalizability of our architectural resonance findings under data-scarce conditions,
we conducted systematic few-shot learning experiments on CIFAR-10 and CIFAR-100. We hypoth-
esize that asymmetric training benefits should be amplified in low-data regimes, where auxiliary
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Figure 6: Loss landscape visualization for MLP on CIFAR-10

Table 5: Progressive loss landscape smoothing in MLP architecture on CIFAR-10. Standard de-
viation (Std), range, and mean gradient magnitude all decrease systematically with increased re-
dundancy, demonstrating that topological modifications consistently flatten the optimization surface
independent of final performance outcomes. Percentages indicate relative change from baseline.

Model Params Std(Loss) Range(Loss) Mean(Grad)

Plain 0.28M 0.0032 0.0152 0.0002
Asymmetric(1×) 0.29M 0.0015 (-52.3%) 0.0064 (-57.6%) 0.0001 (-49.8%)
Asymmetric(20×) 0.40M 0.0011 (-64.4%) 0.0053 (-64.9%) 0.0001 (-65.0%)
Asymmetric(300×) 2.01M 0.0003 (-90.2%) 0.0015 (-90.3%) 0.0000 (-90.4%)

supervision can provide crucial structural guidance when primary signals are sparse (Tables 7, 8,
and 9).

Experimental Design. We systematically varied the number of training samples per class from 5
to 5000, creating a comprehensive data scarcity spectrum. For each data regime, we maintained
the original test set size to ensure consistent evaluation conditions. All experiments were repeated
across 10 random seeds with stratified sampling to ensure class balance. Statistical significance was
assessed using two-tailed paired t-tests.

Theoretical Motivation. Under data scarcity, the auxiliary sigmoid branches should provide par-
ticularly valuable regularization, as the primary softmax objective becomes increasingly prone to
overfitting. This effect should be most pronounced in architectures that exhibit gradient synergy
rather than conflict.

B.2 NOISE ROBUSTNESS ANALYSIS

We evaluated model robustness under label noise by corrupting a fraction of training labels and
measuring performance degradation. Label noise was introduced by randomly flipping labels with
probabilities ranging from 10% to 90%, while maintaining the original test set for consistent evalu-
ation (Tables 11 and 12).
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Table 6: Cross-architecture comparison of loss landscape smoothing on CIFAR-100. Despite univer-
sal landscape flattening effects (up to 90% reduction in surface roughness), architectural differences
emerge: CNN shows the most dramatic smoothing with minimal parameter increase, while ViT-
6L exhibits more modest but consistent improvements. These results demonstrate that landscape
conditioning is architecture-agnostic, yet performance benefits depend critically on architectural
resonance with auxiliary signals.

Model Params Std(Loss) Range(Loss) Mean(Grad)

CNN
Plain 2.43M 0.0008 0.0040 0.0001
Asymmetric(1×) 2.51M 0.0007 (-16.3%) 0.0033 (-17.3%) 0.0000 (-15.9%)
Asymmetric(20×) 4.09M 0.0003 (-66.7%) 0.0013 (-68.0%) 0.0000 (-66.9%)
Asymmetric(300×) 27.4M 0.0001 (-90.2%) 0.0004 (-90.3%) 0.0000 (-90.2%)

ViT-6L
Plain 1.22M 0.0045 0.0212 0.0003
Asymmetric(1×) 1.29M 0.0043 (-3.7%) 0.0204 (-3.7%) 0.0003 (-3.6%)
Asymmetric(20×) 2.75M 0.0028 (-37.7%) 0.0132 (-38.0%) 0.0002 (-37.1%)
Asymmetric(300×) 24.3M 0.0009 (-80.1%) 0.0044 (-79.3%) 0.0001 (-77.6%)

Table 7: Few-shot learning performance of MLP on CIFAR-10.

Samples/Class PlainMLP AsymmetricMLP Improvement p-value

10 0.2290 ± 0.0167 0.2299 ± 0.0171 +0.38% 0.8082
50 0.2870 ± 0.0100 0.2897 ± 0.0082 +0.94% 0.4346

100 0.3199 ± 0.0118 0.3330 ± 0.0093 +4.09% 0.0122
500 0.3893 ± 0.0117 0.3944 ± 0.0105 +1.31% 0.3087
1000 0.4313 ± 0.0039 0.4400 ± 0.0043 +2.02% 0.0043
5000 0.5357 ± 0.0039 0.5374 ± 0.0056 +0.32% 0.4824

C DETAILED EXPERIMENTAL CONFIGURATION

C.1 HYPERPARAMETER SETTINGS

All hyperparameters were determined through systematic grid search following our “Pragmatic Gold
Standard” strategy to ensure fair comparison. This three-stage optimization process isolates the
effect of our asymmetric training paradigm while maintaining scientific rigor.

C.1.1 OPTIMIZATION STRATEGY

For each architecture, we employed a principled three-stage hyperparameter search:

Stage 1: Learning Rate Optimization We fixed weight decay at 10−4 and conducted grid search
over learning rates {10−4, 3 × 10−4, 10−3, 3 × 10−3, 10−2} for the baseline Plain model, training
for 150 epochs and selecting the configuration yielding highest validation accuracy.

Stage 2: Weight Decay Refinement Using the optimal learning rate from Stage 1, we searched
over weight decay values {10−1, 10−2, 10−3, 10−4, 10−5} for the Plain model, again training for
150 epochs.

Stage 3: Auxiliary Weight Search With optimal learning rate and weight decay fixed,
we searched for the optimal auxiliary weight α using logarithmic spacing: α ∈
{0.1, 0.215, 0.464, 1.0, 2.154, 4.642, 10.0, 21.544, 46.416, 100.0} for the Asymmetric model. For
CIFAR-10 MLP specifically, we employed linear spacing α ∈ [0, 50] to accommodate its distinct
optimization characteristics.
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Table 8: Few-shot learning performance of MLP on CIFAR-100.

Samples/Class PlainMLP AsymmetricMLP Improvement p-value

5 0.0406 ± 0.0064 0.0522 ± 0.0025 +28.50% 0.0002
10 0.0727 ± 0.0038 0.0697 ± 0.0039 -4.17% 0.0619
20 0.0936 ± 0.0036 0.0949 ± 0.0029 +1.35% 0.2965
50 0.1298 ± 0.0045 0.1398 ± 0.0048 +7.72% 0.0041

100 0.1595 ± 0.0028 0.1697 ± 0.0029 +6.37% 0.0000
200 0.2131 ± 0.0044 0.2225 ± 0.0022 +4.43% 0.0004
500 0.2594 ± 0.0031 0.2665 ± 0.0032 +2.77% 0.0007

Table 9: Few-shot learning performance of ViT-6L(20×) on CIFAR-100.

Samples/Class PlainViT-6L AsymmetricViT-6L Improvement (%) p-value

5 0.0510 ± 0.0050 0.0559 ± 0.0033 +9.61 0.0022
10 0.0792 ± 0.0052 0.0879 ± 0.0049 +11.06 0.0008
20 0.0967 ± 0.0049 0.1066 ± 0.0068 +10.30 0.0052
50 0.1561 ± 0.0079 0.1558 ± 0.0051 -0.22 0.8687

100 0.2029 ± 0.0058 0.2316 ± 0.0078 +14.13 0.0001
200 0.2800 ± 0.0062 0.3223 ± 0.0179 +15.10 0.0011
500 0.4353 ± 0.0145 0.5328 ± 0.0065 +22.41 0.0000

C.1.2 FINAL HYPERPARAMETER CONFIGURATIONS

The optimal hyperparameters determined through our systematic search are:

C.2 TRAINING CONFIGURATION

Training Duration: All final results were obtained using 200 epochs.

Statistical Validation: Each configuration was evaluated across 10 independent runs with different
random seeds (42-51) to ensure statistical robustness. Performance comparisons used two-tailed
paired t-tests.

Hardware: All experiments were conducted on NVIDIA RTX 3090 GPUs with consistent compu-
tational environments to ensure reproducibility.

C.3 ARCHITECTURE-SPECIFIC DETAILS

MLP: 6 linear layers with ReLU activations. Auxiliary branches attached after the first 4 ReLU
activations.

CNN: 6 convolutional layers, 2 MaxPooling layers, 1 Dropout layer, and 3 linear layers. Aux-
iliary branches are strategically placed after ReLU activations in convolutional blocks. When a
convolutional layer is immediately followed by max-pooling, the auxiliary branch is placed after the
max-pooling operation to maintain spatial coherence.

ViT-6L: 6 Transformer blocks with 4 attention heads each and embedding dimension of 128. Aux-
iliary branches attached after each Transformer block output.

All auxiliary branches consist of a single linear layer with output dimension equal to the number of
classes, initialized using orthogonal initialization for training stability.

D ATTENTION PATTERN EVOLUTION ANALYSIS

D.1 DETAILED ATTENTION VISUALIZATION

( 7)
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Table 10: Architecture Performance Comparison (CIFAR-10)

Architecture Baseline Asymmetric(1×) Improvement P-Value

MLP 0.495 ± 0.003 0.506 ± 0.004 +2.3% 0.0001
CNN 0.770 ± 0.006 0.772 ± 0.010 +0.3% 0.5371
ViT-6L 0.625 ± 0.007 0.636 ± 0.004 +1.7% 0.0068

Table 11: MLP noise robustness on CIFAR-10

Noise Level PlainMLP AsymmetricMLP Improvement P-Value

0.0% 0.5352 ± 0.0053 0.5374 ± 0.0036 +0.42% 0.2025
10.0% 0.5182 ± 0.0047 0.5208 ± 0.0042 +0.50% 0.1785
20.0% 0.4992 ± 0.0055 0.5022 ± 0.0070 +0.59% 0.3667
30.0% 0.4769 ± 0.0036 0.4842 ± 0.0045 +1.54% 0.0007
40.0% 0.4496 ± 0.0062 0.4590 ± 0.0085 +2.09% 0.0067
50.0% 0.4213 ± 0.0109 0.4266 ± 0.0052 +1.24% 0.2633
60.0% 0.3835 ± 0.0057 0.3923 ± 0.0070 +2.29% 0.0530
70.0% 0.3294 ± 0.0085 0.3205 ± 0.0093 -2.70% 0.0291
80.0% 0.2369 ± 0.0161 0.2294 ± 0.0094 -3.17% 0.1580
90.0% 0.1043 ± 0.0053 0.1013 ± 0.0061 -2.87% 0.1081

D.2 QUANTITATIVE ATTENTION ANALYSIS

We measured attention pattern quality using several metrics:

Key findings:

• Peak Strength: Asymmetric training produces more diffuse attention patterns (lower peak
values)

• Map Entropy: Higher entropy indicates more distributed attention across spatial locations

• Sparsity: Lower Gini coefficient suggests more egalitarian attention distribution

• Object Coverage: Asymmetric models achieve near-optimal object coverage much earlier
(Epoch 20 vs 100)

D.3 LAYER-WISE ATTENTION DEVELOPMENT

The layer-wise analysis reveals that asymmetric training guides the development of hierarchical
attention patterns: - Early layers (L1): Both variants show similar low-level feature attention -
Middle layers (L3): Asymmetric variant begins showing more structured patterns - Late layers
(L6): Clear differentiation—asymmetric model develops coherent object-level attention while plain
model remains diffuse

E STATISTICAL VALIDATION

All reported results were validated using appropriate statistical tests. For performance comparisons,
we used paired t-tests with Bonferroni correction for multiple comparisons. Effect sizes were calcu-
lated using Cohen’s d, with the following interpretations: small (0.2), medium (0.5), large (0.8).

All main results show statistical significance (p ¡ 0.001) with large effect sizes, confirming the ro-
bustness of our findings.

To investigate the formation process of the final attention patterns, we visualized the evolution of
attention across different training stages (e.g., 20, 60, 100 epochs), as shown in Figure 7. We observe
that the attention patterns of the Asymmetric model gradually become more holistic and compre-
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Table 12: MLP noise robustness on CIFAR-100

Noise Level PlainMLP AsymmetricMLP Improvement P-Value

0.0% 0.2564 ± 0.0029 0.2600 ± 0.0034 +1.41% 0.0040
10.0% 0.2476 ± 0.0036 0.2536 ± 0.0047 +2.42% 0.0104
20.0% 0.2383 ± 0.0034 0.2429 ± 0.0038 +1.92% 0.0014
30.0% 0.2254 ± 0.0025 0.2309 ± 0.0036 +2.45% 0.0006
40.0% 0.2097 ± 0.0042 0.2182 ± 0.0036 +4.03% 0.0023
50.0% 0.1908 ± 0.0043 0.2015 ± 0.0028 +5.63% 0.0000
60.0% 0.1652 ± 0.0039 0.1797 ± 0.0044 +8.81% 0.0000
70.0% 0.1276 ± 0.0063 0.1496 ± 0.0058 +17.23% 0.0000
80.0% 0.0816 ± 0.0073 0.0956 ± 0.0049 +17.14% 0.0005
90.0% 0.0360 ± 0.0054 0.0349 ± 0.0043 -3.00% 0.4902

Table 13: Optimal hyperparameters for Table 1

Nbranches Architecture Learning Rate Weight Decay α

1×
MLP 0.0001 0.001 100.0
CNN 0.0003 0.01 100.0
ViT-6L 0.001 0.1 4.642

7×
MLP 0.0001 0.001 0.1
CNN 0.0003 0.001 0.1
ViT-6L 0.001 0.01 4.642

10×
MLP 0.0001 0.001 0.1
CNN 0.0003 0.001 1.0
ViT-6L 0.001 0.01 4.642

20×
MLP 0.0001 0.001 0.1
CNN 0.0003 0.001 0.1
ViT-6L 0.001 0.01 1.0

hensive as training progresses. In contrast, the attention of the Plain model saturates earlier and
consistently focuses more on local textures.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Comprehensive attention pattern evolution for ViT-6L on CIFAR-100.

Table 14: Attention pattern quality metrics across training epochs

Metric Plain ViT-6L Asymmetric ViT-6L

Epoch 20 Epoch 60 Epoch 100 Epoch 20 Epoch 60 Epoch 100

Peak Strength 0.092 0.063 0.051 0.053 0.049 0.045
Map Entropy 3.73 3.89 3.97 4.02 4.03 4.05
Sparsity (Gini) 0.471 0.415 0.374 0.254 0.287 0.302
Object Coverage 0.58 0.70 0.84 0.96 0.95 0.94
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Table 15: Gradient Conflict Analysis. Cosine similarity analysis between main (softmax) and aux-
iliary (sigmoid) gradients during training. ViT-6L shows consistent positive similarity (synergy),
while CNN exhibits strong negative similarity (conflict), and MLP demonstrates near-orthogonal
gradients with slight conflict tendency.

Architecture Final Similarity Average Similarity Min Similarity Max Similarity

MLP -0.0309 -0.0801 -0.3422 0.0701
CNN -0.1926 -0.2574 -0.8210 0.0464
ViT-6L 0.2631 0.1870 -0.1845 0.3654

Table 16: To explore the impact of different hyperparameter search strategies, we conducted a sup-
plementary experiment for the Nbranches = 3 configuration, where hyperparameters (learning rate and
weight decay) were independently optimized for both baseline and asymmetric models. The results
are shown in the table, where “all active” indicates that all three auxiliary branches at each connec-
tion point participate in backpropagation, while “one active” means only one auxiliary branch per
connection point is activated during backpropagation. Although this “dual optimization” strategy
can yield benefits in certain cases, we consistently adopted the “Pragmatic Gold Standard” strategy
throughout the main text to isolate the pure effect of our paradigm.

Nbranches Architecture Plain Asymmetric Improvement p-value

3×branches
(all active)

MLP 0.246 ± 0.003 0.207 ± 0.005 -16.0% 0.0000
CNN 0.399 ± 0.006 0.362 ± 0.006 -9.3% 0.0000
ViT-6L 0.362 ± 0.006 0.421 ± 0.027 +16.2% 0.0002

3×branches
(one active)

MLP 0.246 ± 0.003 0.237 ± 0.006 -3.8% 0.0008
CNN 0.400 ± 0.008 0.339 ± 0.009 -15.1% 0.0000
ViT-6L 0.365 ± 0.007 0.440 ± 0.059 +20.7% 0.0045

Table 17: Architecture performance comparison with asymmetric training on CIFAR-10. Results
show differential architectural responses to auxiliary supervision, with statistical significance as-
sessed using two-tailed paired t-tests across 10 independent runs.

Architecture Baseline Asymmetric Improvement p-value Significant

MLP 0.495 ± 0.003 0.506 ± 0.004 +2.3% 0.0001 Yes
CNN 0.770 ± 0.006 0.772 ± 0.010 +0.3% 0.5371 No
ViT-6L 0.625 ± 0.007 0.636 ± 0.004 +1.7% 0.0068 Yes
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Figure 8: Training dynamics comparison across architectures showing loss components and opti-
mization trajectories. Top row: Evolution of main loss (softmax) and auxiliary loss (sigmoid) dur-
ing training. Bottom row: Gradient norm dynamics for plain and asymmetric variants. Asymmetric
training exhibits architecture-specific patterns: MLP shows stable auxiliary loss with reduced gra-
dient norms, CNN demonstrates auxiliary loss divergence with increased gradient instability, while
ViT-6L displays rapid auxiliary loss convergence with improved optimization stability.

Figure 9: ViT-6L attention mechanism analysis comparing plain and asymmetric training. Top left:
Entropy evolution showing asymmetric training maintains higher attention diversity. Top right:
Coverage percentage demonstrating improved spatial attention coverage (+6.8%). Bottom left:
Peak strength indicating more focused attention patterns (-12.6%). Bottom right: Sparsity coef-
ficient revealing attention distribution characteristics (-6.7%). Results suggest asymmetric training
promotes more comprehensive yet focused attention patterns.
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