
Initial Steps in Planning under Qualitative Uncertainty

Brandon Rozek, Selmer Bringsjord
Rensselaer Polytechnic Institute (RPI)

Rensselaer AI & Reasoning Lab, Troy New York, USA
{rozekbrandon, selmerbringsjord}@gmail.com

Abstract

Techniques in automated planning under uncertainty capture
whether an agent believes that a ground atomic formula is
true, false, or uncertain; and, in some cases, the exact proba-
bility that it’s true at a given state. Sometimes, however, an
agent does not have access to exact probabilistic informa-5

tion, but is instead able to judge the uncertainty qualitatively.
We take initial but substantial steps towards characterizing a
variant of conformant planning based on qualitative uncer-
tainty. Our framework, QU-STRIPS, introduces levels of be-
lief about ground atomic formulae which stratify uncertainty10

ranging on the negative side from certainly not, to agnostic,
and then on the positive side up to certainly. In order to effi-
ciently find plans, we present a sound compilation into classi-
cal STRIPS. We provide preliminary results on a new escape
domain and show that state-of-the-art planners can effectively15

find plans that achieve the goal at a high positive belief level,
while considering the trade-off between the strength of a plan
and its cost.

Introduction
Suppose that you want to buy a gift for a close friend. This20

friend, however, is known for returning gifts they already
have. A weak plan from the conformant-planning literature
would give this friend a gift, as long as there is one pos-
sible initial state where they don’t already own it. On the
other hand, a strong plan would select a gift that the friend is25

guaranteed not to own, even if the cost of obtaining it is pro-
hibitive. As a close friend, you’re somewhat privy to what
gifts they already received, and you hold various levels of
belief on whether they own certain gifts. For example, per-
haps it is likely but not certain, that they were gifted a box30

of chocolates. What’s desired is a plan where you have a
high level of belief that they won’t return the gift, but also
take into account the trade-off between likelihood of plan
success and the cost of said plan.

We aim to capture in this work how to effectively make35

use of these qualitative beliefs in the initial state when creat-
ing plans. Often, an agent may not have access to probabilis-
tic information concerning a given ground atomic formula,
but can still provide more information than the formula’s
being unknown. This can be useful for example in Human-40

AI teaming, as it is easier for a human to judge uncertainty
qualitatively than to assign a probability distribution.

Prior work in conformant and epistemic planning treats
ground atomic formulae in ternary fashion: semantic values
of true, false, or indeterminate are enabled. 45

On the other hand, probabilistic planning modulate
ground atomic formulae with probabilities. These forms of
reasoning about uncertainty have also been explored in the
logic community and the interested reader is invited to con-
sult (Halpern 2004). The present paper takes early steps in 50

considering the space between ternary values and proba-
bilities, a space in which beliefs are stratified qualitatively
based on their “strengths” for use in automated planning.
More specifically, we employ cognitive likelihoods. Some
informal prior work has been done in AI with a precur- 55

sor to these likelihoods [e.g.(Govindarajulu and Bringsjord
2017b)], but we present here a more formal framework, as
well as one that is more general in its reach. We allow the
user of our framework (and perhaps the AI operating au-
tonomously with it) to specify the stratification of belief lev- 60

els of a planning agent, and to use these levels to determine
a given spectrum of belief operators, and how beliefs change
through state progression.

Belief change is captured through conditional effects and
three principles to guide the progression of belief. We (1) 65

withhold contradictory beliefs; (2) propagate the strongest
belief out of a set of derived beliefs about a given ground
atomic formula; and (3) use the Weakest Link Principle
(WLP) to determine the belief level derived from the op-
erator preconditions, as well as the antecedents of the con- 70

ditional effect. Our framework is a variant of conformant
planning in which there is no sensing, conformant width is
one, and the conditional effects of operators are determinis-
tic. The belief levels of the goals at the end of the plan de-
termine the plan’s strength. A rational agent should seek to 75

maximize the strength of their plan while taking into account
the cost of a plan. We address this by introducing a parame-
ter which captures the action-cost incurred, before the agent
should accept a less-costly plan with a lower strength.

The contribution is encapsulated as follows. We (1) for- 80

malize planning under qualitative uncertainty for a single
agent using our QU-STRIPS framework. This allows for lev-
els of belief in the initial state, and the three principles of be-
lief progression are used when computing the next state. We
(2) provide a compilation to STRIPS, a classical planning 85

model, and show that plans generated by an optimal planner



Figure 1: An Instance of the Escape Domain. The agent
initially holds a belief at level certain that it’s at the A lo-
cation and that the connectivity between nodes is as shown.
Meanwhile, the agent holds beliefs at various levels concern-
ing whether a given location has a trap. The level of such
a belief is indicated under the location name. If the agent
moves to a location with a trap, they’ll get caught. The goal
is for the agent to move to the J location without getting
caught.

are not only sound but also respect the preference ordering
defined by the plan strength and the cost of the plan; and
(3) provide preliminary empirical evaluation of our frame-
work, and show how a small optimization can help avoid the90

worst-case complexity in the number of compiled operators.
To illustrate our framework, we introduce the Escape

domain. In problems faced in this domain, an agent starts at
an initial location and its goal is to navigate to a specified
location through a series of connected locations. Unfortu-95

nately, each location potentially has a trap installed; it will
catch the agent if it moves to that location. The agent holds
qualitatively modulated belief as to whether each location
has a trap. A small instance of this problem is shown picto-
rially in Figure 1.100

Background
STRIPS Planning A STRIPS problem Π′ is the tuple
⟨P ′, O′, I ′, G′⟩ where P ′ is the finite set of ground atomic
formulae. O′ the finite set of operators, I ′ ⊆ P ′ the initial
state, and G′ ⊆ P ′ are the goals. An operator o′ ∈ O′ is the105

tuple ⟨Pre′, Add′, Del′, C ′⟩ where Pre′ ⊆ P ′ are the pre-
conditions, Add′ ⊆ P ′ the add effects, Del′ ⊆ P ′ the delete
effects, and C ′ ∈ N is the cost of the operator. Given a state,
s′ ⊆ P ′, an operator o′ is applicable iff Pre′(o′) ⊆ s′. Af-
ter applying an operator o′ on state s′, the next state will be110

(s′ −Del′) ∪ Add′. A plan π = (o1, . . . , on) is a sequence
of operators. Such plan is valid for a STRIPS problem Π′ iff
(1) o1 is applicable for the initial state I ′; (2) oi+1 is appli-
cable at si+1, which is the state that is the result of applying
oi to si; (3) at the last state sn, the goal set G′ is a subset of115

sn. For a more complete treatment of STRIPS planning, see
(Lifschitz 1987) for more details.

Cognitive Likelihoods One approach to qualitative uncer-
tainty within multi-value epistemic logic is that of cognitive

likelihoods (Giancola et al. 2022). Specifically, the authors 120

define 11 levels of cognitive likelihood B11 ranging from
certain to certainly not and justify each value with
an appeal to rational human-level cognition (about which
more will be said below). For example, within B11, the
formula B3(a, t, ϕ) states that an agent a at time t be- 125

lieves beyond reasonable doubt that ϕ holds. Let
Φ = {ϕ1, . . . , ϕm} and Γ be the set of formulae at the
current state. The authors provide the following inference
schema (ISB ) for reasoning about beliefs.

Bσ1(a, t1, ϕ1), . . . ,Bσm(a, tm, ϕm),Φ ⊢ ϕ,Φ ̸⊢ ⊥,Γ ⊢ ti < t

Bmin(σ1,...,σm)(a, t, ϕ)
(ISB )

In (Giancola 2023), Giancola further elaborates that this 130

schema makes use of WLP. The schema states that as long
as the assumptions used don’t derive a contradiction ⊥, the
agent can infer a belief at the weakest belief level among
the beliefs used. Note that the inference schema implicitly
allows for belief forwarding through time as long as it does 135

not derive a contradiction.
We are not convinced that all 11 likelihood values are nec-

essary to reason qualitatively about uncertainty, or that we
should fix the number of levels to be used for all problems.
Instead, we hone in on WLP for planning under qualitative 140

uncertainty, and keep generic the exact number of belief lev-
els used.

Related Work
Uncertainty problems, or planning with incomplete informa-
tion, is well-covered in the automated-planning literature. 145

Conformant planning, coined by (Smith and Weld 1998),
takes an incomplete description of the initial state and finds
a sequence of operators to achieve the goal. It was formu-
lated as a heuristic-search problem in (Bonet and Geffner
2000), where the incomplete initial state gets represented as 150

a belief state or a finite set of states that satisfy the initial
description. A compilation technique was later developed in
(Palacios and Geffner 2009); it takes a conformant planning
problem with bounded width, and converts it to an equiva-
lent classical planning problem. They do this through a tech- 155

nique called knowledge compilation. This technique maps
literals t and L to KL/t, which expresses that if t is true
in the initial situation, then L must be true. The conformant
width of the problem is defined as the maximum number of
uncertain state variables that interact through conditional ef- 160

fects. Given a deterministic conformant problem of width 1,
(Bonet and Geffner 2014) defines a compilation technique
to classical planning that is linear. In our work presented
herein, it is assumed the problem is of conformant width
1. Assumption-based planning (Davis-Mendelow, Baier, and 165

McIlraith 2013) is an extension to conformant planning
which includes a set of ground atomic formulae U that are
unknown in the initial state, but that the agent is allowed to
assume. They introduce preferred assumption-based plans,
where a plan is preferred to another if it makes more reason- 170

able assumptions.
Epistemic logic is the formalization of such propositional



attitudes as knowledge and belief in suitable logics, and
formal exploration thereof. Epistemic planning originated
from the dynamic epistemic logic (DEL) community. These175

works (Bolander and Andersen 2011; Bolander et al. 2020)
largely focused on theoretical decidability results from ap-
plying DEL to planning. There is a sustained line of research
dedicated to compilation techniques of epistemic planning
(for logics including but not limited to: DEL, KD45, BBL)180

to classical planning (Muise et al. 2015, 2022; Hu, Miller,
and Lipovetzky 2022). The primary focus of epistemic plan-
ning has been in the multi-agent setting with nested beliefs.
This allows for reasoning about other agents’ beliefs and for
implicit coordination or even deceptive goals. A closely re-185

lated paper in this space considers planning under plausi-
bility models (Andersen, Bolander, and Jensen 2015). This
work extends DEL planning to include a partial order over
states and the outcomes of operators with non-deterministic
effects. They define a weak plausible plan to be a sequence190

of actions in which the goal is reached in some of the most
plausible terminal states. Strong plausible plans are defined
similarly but with the goal reached in all of the most plausi-
ble terminal states as defined by the partial orders.

Probabilistic planning in its most general form is for-195

mulated as a POMDP. Within this, the initial state is de-
fined as ground atomic formulae with probabilistic infor-
mation attached, and the effects of operators may be non-
deterministic at various probabilities. Three well-studied
subclasses of probabilistic planning are stochastic shortest200

path (SSP), MaxProp, and probabilistic conformant plan-
ning. The first two assume that the initial state is known;
however, a probability distribution is defined over the effects
of operators. A solution for both these classes is a policy that
maps states to operators. SSP and MaxProp differ in their205

objectives. The former concerns itself with reaching the goal
(within a probabilistic threshold) at the minimum expected
cost; the latter focuses on maximizing the probability that
the goal is reached. Recent papers and techniques for those
problems can be seen in (Kolobov et al. 2011; Trevizan,210

Thiébaux, and Haslum 2017; Klößner et al. 2022). Confor-
mant probabilistic planning (like the prior two classes) has
a probability distribution over the effects of operators, but
it additionally defines a probability distribution over the ini-
tial state. A solution to the conformant planning problem is215

a linear sequence of operators which when applied satisfy
the goal within a probabilistic threshold. Examples of work
in this area include (Bryce, Kambhampati, and Smith 2006;
Domshlak and Hoffmann 2007; E-Martı́n, R-Moreno, and
Smith 2014).220

Returning briefly to the work of Halpern and collaborators
cited above, i.e. (Halpern 2004), and elaborating a bit: As we
have pointed out, this work weaves together Kolmogorovian
probability with epistemic operators; as such, this approach
stands outside, and bounds, qualitative measures of likeli-225

hood.1 Interesting work along the same line that is some-
what relevant to ours involves plausibility measures (Fried-

1For a particular example, the language of the logic LKQU per-
mits formulae saying that agents know/K that a formula ϕ has a
probability p.

man and Halpern 1995). But such measures, instead of map-
ping constructions built from possible worlds into the inter-
val [0, 1], map to partially ordered sets. Generally speaking, 230

probabilities are not independently justifiable by considering
rational, human-level cognition. An example is beyond rea-
sonable doubt, which has a centuries-old, independent-of-
probability status in Occidental legal reasoning, and which
can clearly support the search for and finding of a plan (such 235

as a verdict in a trial).
And a final point re. related work: Our use of qualita-

tively modulated belief as part of the basis for planning un-
der uncertainty could be fairly viewed as harnessing a space
of multi-valued epistemic logics for AI purposes. There are 240

precious few such logics, and none of them to our knowl-
edge are computational, but two versions of a multi-valued
modal logic are presented in (Fitting 1991). However, nei-
ther version includes anything like levels of likelihood, in
any sense of the term; and the modal operators are not 245

epistemic in nature. Likewise, while (Santos 2020) gives a
(non-computational) 4-valued epistemic logic built out of
the logic BK, the four values — applied to a proposition
p: true, false, both, none — are not in any way likelihood-
modulated belief operators. 250

Formalisms
In order to express qualitative uncertainty, we will take in-
spiration from cognitive likelihoods to define the conditions
for a set Bi to hold levels of belief.
Definition 1. A totally ordered finite set Bi represents levels 255

of belief provided that the following properties hold:

• There exists a null element b0 which represents a lack of
belief for or against a given atomic ground formula.

• There exists an element bc which denotes that the agent
is certain that an atomic ground formula holds. 260

• A total bijective inverse function inv exists such that
inv(b0) = b0 and for bx ̸= b0 ∈ Bi if bx > b0 then
a corresponding bx̄ exists such that bx̄ < b0 and there
are the same number of elements between both bx and b0
as well as bx̄ and b0. Similarly for all elements bx < b0. 265

From Definition 1, note that the following properties must
hold. First, Bi must have a length greater than or equal to 3.
Secondly, Bi must be of odd length.
Example 1. Let B5 = {bc̄, b1̄, b0, b1, bc} be a totally or-
dered set. Then B5 corresponds to levels of belief. 270

With Bi defined, we can modify the classical STRIPS rep-
resentation to assign levels of belief to atomic ground formu-
lae.
Definition 2. A QU-STRIPS model Π is the tuple
⟨Bi, P, P

†, O, I,G⟩ where: 275

• Bi correspond to the levels of belief;
• P is the finite set of atomic ground formulae;
• P † = {B(p, σ) | p ∈ P, σ ∈ Bi} is the finite set of

beliefs for each belief level σ ∈ Bi and each p ∈ P ;
• I ⊆ P † is the initial state; 280

• G ⊆ P is the set of goals; and
• O is the finite set of operators.



Let pσ = B(p, σ). We define ground(pσ) = p and
strength(pσ) = σ. One important thing to note about the
QU-STRIPS framework is that since the agent operates un-285

der uncertainty, we do not assume the closed world. That
is, instead let s ⊆ P † be a state and p ∈ P be an atomic
ground formula. If there does not exist a pσ ∈ s such that
ground(pσ) = p and strength(pσ) ̸= b0, then it is as-
sumed that the agent lacks a belief for or against p (i.e.290

B(p, b0) ∈ s.) We say that a state s is consistent iff for every
pi, pj within s, if pi ̸= pj then ground(pi) ̸= ground(pj).
A state s satisfies a ground atomic formula p iff there exists
pσ ∈ s such that ground(pσ) = p and strength(pσ) > b0.
A state s satisfies a partial state sp ⊆ P iff for all p ∈ sp, s295

satisfies p.

Definition 3. An operator o ∈ O is the tuple
⟨Pre,AddP , AddN , C⟩ where

• Pre ⊆ P is a partial state representing the precondition;
• AddP is the set of conditional-effect tuples ⟨cp, lp⟩ where300

cp ⊆ P and lp ⊆ P ;
• AddN is the set of conditional-effect tuples ⟨cn, ln⟩

where cn ⊆ P and ln ⊆ P ; and
• C ∈ N is the operator cost.

In QU-STRIPS, state progression is captured by the sets305

AddP and AddN . The former corresponds to the condi-
tional effects that result in positive beliefs for a given atomic
ground formula. Meanwhile, the later results in negative be-
liefs.

Example 2. The following o = (moveAgent A B) is an op-310

erator in the escape domain.

• Pre(o) = {(atAgent A), (CONNECTED A B)}
• AddP (o) = {⟨⊤, (atAgent B)⟩}
• AddN (o) = {⟨⊤, (atAgent A)⟩,
⟨(atTrap B), (notCaught)⟩}315

• C(o) = 1

Note that belief levels are not taken into account when
defining an operator. Instead, the belief levels are used for
applicability and state progression. An operator o ∈ O is
applicable at state s iff s satisfies Pre(o).320

For state progression, we make use of three principles to
determine the level of belief for a given ground atomic for-
mula. The first principle comes directly from cognitive like-
lihoods and is called WLP.2 In this context, when a condi-
tional effect fires, the weakest (minimum in this case) belief325

level of all the prerequisite beliefs is assigned to the conse-
quent ground atomic formulae. Given a state s ⊆ P † and the
prerequisite ground atomic formulae conds ⊆ P , the fol-
lowing equation returns the belief level according to WLP.

wlp(s, conds) = min({strength(si) | ∀si ∈ s

if ground(si) ∈ conds})

For the next two principles, let us capture the set of posi-330

tive and negative beliefs derived from the conditional effects
after applying an applicable operator o to the state s.

2Space constraints preclude discussing WLP versus probability.

Add†P ⊆ P † = {B(li, σ) | ∀⟨c, l⟩ ∈ AddP ,∀li ∈ l

if s satisfies c where σ = wlp(s, Pre ∪ c)}
Add†N ⊆ P † = {B(li, σ) | ∀⟨c, l⟩ ∈ AddN ,∀li ∈ l

if s satisfies c where σ = inv(wlp(s, Pre ∪ c))}
Consider the cases in which multiple beliefs about some

ground atomic formula p are derived from the conditional
effects. First, suppose B(p, σ1) ∈ Add†P and B(p, σ2) ∈ 335

Add†N . This comes about when ⟨cp, lp⟩ ∈ AddP (o) and
⟨cn, ln⟩ ∈ AddN (o) with both cp and cn satisfied and p
within both lp and ln. In this situation, we take an agnostic
approach and discard those positive and negative beliefs for
a belief of B(p, b0). This withholding principle has the agent 340

take a belief neither for or against a ground atomic formula
in the face of contradictory belief levels. In order to deter-
mine whether this situation holds, we define the following
predicate:

withinBoth(p) ⇐⇒ (∃pi ∈ Add†P , pj ∈ Add†N ,

ground(pi) = ground(pj) = p)

We then use this formula to determine the ground atomic 345

formulae the agent does not hold a belief for or against in
the successive state.

Add†1 = {B(p, b0) | ∀B(p, σi) ∈ Add†P ∪Add†N
if withinBoth(p)}

Secondly, consider the cases when multiple beliefs are de-
rived about p but not withinBoth(p). The last principle
which captures this is the strongest belief principle. When 350

this occurs, as the name suggests, the agent adopts the
strongest belief. This principle also applies when B(p, σi) ∈
s and σi shares the same sign. Another way of looking at this
is that if B(p, σ) is in the successive state, then there does
not exist a stronger belief. 355

strongestP (p, σi) ⇐⇒ ¬∃B(p, σj) ∈ Add†P ∪ s

such that σj > σi

strongestN (p, σi) ⇐⇒ ¬∃B(p, σj) ∈ Add†N ∪ s

such that σj < σi

We take this into account when collecting the strongest
positive and negative beliefs that aren’t withheld.

Add†2 = {B(p, σ) | ∀B(p, σ) ∈ Add†P
if ¬withinBoth(p) and strongestP (p, σ)}

Add†3 = {B(p, σ) | ∀B(p, σ) ∈ Add†N
if ¬withinBoth(p) and strongestN (p, σ)}

With the three principles in place, we define state progres-
sion given an applicable operator o at a state s.
Definition 4. The function apply : (O × S) → S takes an 360

applicable operator o ∈ O and a state s ∈ S to produce a
new state sn.

apply(o, s) = sn = (s−Del†) ∪ (Add†)

where



• Add† = Add†1 ∪Add†2 ∪Add†3
• Del† ⊆ P † = {B(l, σ) | ∀l′σ ∈ Add†,∀σ ∈ Bi where365

l = ground(l′σ) and σ ̸= strength(l′σ)}.

Example 3. Consider the escape domain with the belief set
B5 from Example 1, operator o from Example 2, and the
following state:

s = {B((atAgent A), bc),B((atAgent B), bc̄),

B((CONNECTED A B), bc),B((atTrap B), b1),

B((notCaught), bc)}

We can see that o is an applicable operator since the agent370

holds each of the preconditions at a belief level greater than
b0. Applying o to s will result in the following state:

sn = {B((atAgent A), bc̄),B((atAgent B), bc),

B((CONNECTED A B), bc),B((atTrap B), b1),

B((notCaught), b1̄)}

Lemma 1 (Operator application preserves state consis-
tency). Let o be an applicable operator for a consistent state
s. Then sn = apply(o, s) is consistent.375

Proof. Let pi and pj be elements of sn where pi ̸= pj . Re-
call that, sn = (s−Del†) ∪Add†. We will prove that sn is
consistent through cases of membership on pi and pj .

• Assume that pi and pj are elements of s. We know that
s is consistent, therefore ground(pi) ̸= ground(pj).380

Hence, sn is consistent.
• Suppose that pi and pj are elements of Add†. Let pi =

B(li, σi). Recall that Add† = Add†1 ∪Add†2 ∪Add†3. Let
us do a proof by cases on membership of pi.
– Assume that pi ∈ Add†1. Then, pi = B(li, b0) and385

withinBoth(li) holds. For sake of contradiction, let
ground(pi) = ground(pj). Then, pj = B(li, σ2).
Since withinBoth(li) holds, pj ∈ Add†1. Hence, pj =
B(li, b0). This is a contradiction, because pi ̸= pj .
Hence, ground(pi) ̸= ground(pj) and sn is consis-390

tent.
– Suppose that pi ∈ Add†2. Then, pi = B(li, σ1)

and ¬withinBoth(li). For sake of contradiction,
assume that ground(pi) = ground(pj). Then,
pj = B(li, σ2). We have pj ∈ Add†2 since395

¬withinBoth(li). Then both strongestP (li, σ1) and
strongestP (li, σ2) holds. Therefore, σ1 = σ2. This is
a contradiction since pi ̸= pj . Hence, ground(pi) ̸=
ground(pj) and sn is consistent.

– A similar argument can be made for pi ∈ Add†3.400

• Without loss of generality, assume that pi ∈ s and pj ∈
Add†. Let pj = B(lj , σj). Then,

{B(lj , σx) | ∀σx ∈ Bi where σx ̸= σj} ⊆ Del†

For indirect, let ground(pi) = ground(pj). Then since
pi ̸= pj , pi ∈ Del†. Therefore, pi ̸∈ sn. This is a con-
tradiction; hence ground(pi) ̸= ground(pj), and sn is405

consistent.

We have shown in all the cases sn is consistent; that is,
sn is consistent after applying an applicable operator o to
a consistent state s. Hence, operator application preserves
state consistency. 410

Let us define a plan π to be a sequence of operators
(o1, . . . , on). Let si be the state that results from applying
o1, . . . , oi−1 sequentially from some initial state I . Then π is
a valid plan for a QU-STRIPS problem Π if for each oi ∈ π, 415

oi is applicable at si, and for all g ∈ G, sn satisfies g. The
solution to Π is the set of all valid plans for Π. The cost of
a plan π is the sum of the cost of all the operators oi ∈ π.
That is cost(π) =

∑
oi
cost(oi). The strength of a plan π

is the lowest level of belief for a given g ∈ G within the 420

terminal state sn. That is, min({strength(pσ) | pσ ∈ sn
if ground(pσ) ∈ G}). A rational agent should prefer plans
with a higher level of belief, while also taking into account
the costs of those plans.

Lemma 2 (Plans preserve state consistency). Given a plan- 425

ning problem Π and a valid plan π, if I ∈ Π is consistent,
then a valid plan will result in a terminal state sn that is
consistent.

Proof. We show this by induction on si. The base case
holds since I is consistent. For the inductive step, let sn 430

be consistent with an applicable operator on. Then sn+1 =
apply(sn, on). In turn, sn+1 is consistent by Lemma 1.

Compilation
To make use of efficient modern automated planners, we
present an initial compilation that takes a QU-STRIPS prob- 435

lem Π and converts it to a STRIPS problem Π′. For this, let
XP take a belief proposition B(p, σ) within Π and convert it
to a unique ground atomic formula within Π′ and let XP

−1

do the inverse.

Definition 5. For a QU-STRIPS problem Π = 440

⟨Bi, P, P
†, O, I,G⟩ the following compilation XΠ outputs

a classical STRIPS problem Π′ = ⟨P ′, O′, I ′, G′⟩ where

• P ′ = {XP(pσ) | ∀pσ ∈ P †} ∪ {goal}
• O′ = O′

A ∪O′
G

• I ′ = {XP(pσ) | ∀pσ ∈ I} 445

• G′ = {goal}
Recall that a valid plan for Π may satisfy a goal g ∈ G

within the terminal state at any strength greater than b0. In
order to account for this, the compilation creates a new goal
operator for every possible satisfiable belief configuration 450

for all the goals. The preconditions of these new goal opera-
tors fixes the belief level for every g ∈ G and the only effect
is the addition of the ground atomic formula goal which
satisfies the goal in the compiled problem. The strength of a
plan induces a preference relation over the set of valid plans 455

for the QU-STRIPS problem Π. Recall that a valid plan of
higher strength is preferable to a valid plan of lower strength,
as long as the trade-off in plan costs aren’t too high. The
exact value of this trade-off is problem-dependent. One ap-
proach to encoding this preference relation in the compiled 460



problem is to define a non-negative cost c∗ of dropping a
belief level. This assumes that the other operators have non-
negative costs. Then, the cost of a goal operator will be c∗
multiplied by the number of belief levels dropped from bc.
We introduce an abuse of notation and define bc − bx as465

the number of levels of belief bx below bc within the order-
ing Bi. Finding an optimal plan within the compilation then
amounts to finding one of the most preferable valid plans.

More formally, let B+
i = {bσ | ∀bσ ∈ Bi if bσ > b0}.

The set G† fixes a satisfiable belief level for each g ∈ G, i.e.470

G† = {B(g, σg) | ∀g ∈ G} for potentially distinct σg ∈
B+

i . Then, o′ ∈ G′
G where

• Pre′(o′) = {XP(gσ) | gσ ∈ G†}
• Add′(o′) = {goal}
• Del′(o′) = ∅475

• C ′(o′) = c∗(bc −min({strength(gσ) | gσ ∈ G†}))
In order to compute O′

A, for every operator we will cre-
ate a new set of operators which capture every possible pos-
itive belief level for each of the preconditions as well as
every possible belief level for each of the antecedents and480

consequents within conditional effects. Consider an opera-
tor o ∈ O and let So be the set of ground atomic formulae
that appear anywhere in the preconditions and conditional
effects of o. We then construct So,σ to fix arbitrary belief
levels for each of these ground atomic formula.485

So,σ = {B(p, σp) | ∀p ∈ So, σp ∈ B+
i

if p ∈ Pre(o) else σp ∈ Bi}
The compilation then takes the work which happens dur-

ing the run-time of state progression under QU-STRIPS and
performs the work ahead of time by constructing operators
for every possible instantiation of So,σ . We define Add′P and
Add′N to be subsets of P † which are similar to Add†P and490

Add†N respectively except that the state s is substituted with
So,σ . Similarly, we define new predicates withinBoth′(p),
strongest′P (p, σ), and strongest′N (p, σ) for some p ∈ P
and σ ∈ Bi to be similar to their non-primed versions except
that it ranges over the newly defined Add′P and Add′N in-495

stead. Finally, the sets Add′1, Add′2, Add′3, which are subsets
of P †, are similar with respect to Add†1, Add†2, and Add†3 ex-
cept that it uses our newly created sets and predicates.
Then an operator o′ ∈ O′

A where:
• Pre′(o′) = {XP(pσ) | ∀pσ ∈ So,σ}500

• Add′(o′) = {XP(pσ) | ∀pσ ∈ Add′1 ∪Add′2 ∪Add′3}
• Del′(o′) = {XP(B(l, σ)) | ∀σ ∈ Bi,∀pσ ∈ Add′1 ∪
Add′2 ∪Add′3, where l = ground(pσ) and
σ ̸= strength(pσ)} ∪ {goal}

• C ′(o′) = C(o)505

Note from the compilation that an arbitrary operator o′ ∈
O′

A gets computed from an unique operator o within the
original problem Π. Let us define XO

−1 to be the function
which takes a o′ ∈ O′

A and determines o.
For this naı̈ve compilation, the total number of ground510

atomic formulae (|P ′|) within the compiled problem XΠ(Π)
is

|P ′| = |Bi||P | (1)

As for the operators, since the compiled problem considers
different belief levels for every construction of So,σ for a
given operator o, the number of operators is exponential with 515

respect to the size of So.3 Let CL(o) be the set of ground
atomic formulae within the conditional effects of o that are
not within the preconditions. Then

|O′| = Σo∈O(|B+
i ||Pre(o)||Bi||CL(o)|) + |B+

i ||G| (2)

To help reduce the number of operators generated we can
depend on the following lemma. 520

Lemma 3 (Ground atomic formulae that do not appear in
the consequent of any conditional effect only needs to get
compiled to the level of belief specified in the initial state
I). Let B(p, σp) ∈ I and let p not appear in the consequent
of any conditional effect in O. Then (1) XP(B(p, σp2)) for 525

any σp2 ̸= σp may be safely discarded from P ′; and (2) any
operator o′ with XP(B(p, σp2)) ∈ Pre′(o′) may be safely
discarded from O′.

Proof. Given that p does not appear in the consequent of
any conditional effects, the belief level for p will never 530

change. Hence, B(p, σp2) where σp2 ̸= σp will never oc-
cur in any reachable state. This means that XP(B(p, σp2))
will never be within the compiled version of any reachable
state. Therefore, it’s safe to remove XP(B(p, σp2)) from
P ′ and any operator o′ ∈ O′ whose precondition contains 535

XP(B(p, σp2)).

Lemma 4 (Applicability in Π′ is sound with respect to Π).
Let o′ ∈ O′

A be an operator within Π′ which is applicable at
s′. Then, o = XO

−1(o′) is applicable at s = {XP
−1(pσ) |

∀pσ ∈ s′}. 540

Proof. By the definitions of applicability and the compila-
tion, we know:

s′ ⊇ Pre′(o′)

⊇ {XP(pσ) | ∀pσ ∈ So,σ}
⊇ {XP(B(p, σp)) | σp ∈ B+

i ,∀p ∈ Pre(o)}

Then, s ⊇ {B(p, σp) | σp ∈ B+
i ,∀p ∈ Pre(o)}. Hence,

s is applicable at o.

Lemma 5 (Operator application in Π′ is sound with respect 545

to Π). Let o′ ∈ O′
A be an applicable operator for state s′

within Π′ and let s′n be the state resulting from applying o′

to s′. Additionally, let s = {XP
−1(p′) | ∀p′ ∈ s′} discard-

ing the ground atomic formula goal and o = XO
−1(o′).

Assume s is consistent. Then, if XP(B(l, σl)) ∈ s′n then 550

B(l, σl) ∈ apply(o, s).

Proof. Let sn = apply(o, s) and XP(B(l, σl)) ∈ s′n. We
know that s′n = (s′ −Del′)∪Add′. Let us show B(l, σl) ∈
sn using proof by cases on membership of XP(B(l, σl)).

3We are in general aware that some readers will presuppose that
the exponential case is unreasonable. We have discussed this issue
in connection with automated reasoning as the basis for automated
planned elsewhere at some length (Rozek and Bringsjord 2024),
and recapitulation here is beyond scope.



• Assume that XP(B(l, σl)) ∈ Add′. Then, B(l, σl) ∈555

{pσ | ∀pσ ∈ Add′1 ∪ Add′2 ∪ Add′3}. Since o′ is ap-
plicable at s′, Pre′ ⊆ s′. Therefore, So,σ ⊆ s. This
means that we can safely substitute So,σ with s and de-
rive that B(l, σl) ∈ Add†1 ∪Add†2 ∪Add†3. Which means
that B(l, σl) ∈ Add†. Hence, B(l, σl) ∈ sn.560

• Suppose that XP(B(l, σl)) ∈ s′. Since XP(B(l, σl)) ∈
s′n, we know that XP(B(l, σl)) ̸∈ Del′. This leads to
one of two cases, either B(l, σ) ∈ Add′1 ∪Add′2 ∪Add′3
or there does not exist a σi ∈ Bi such that B(l, σi) ∈
Add′1 ∪Add′2 ∪Add′3.565

– Assume that B(l, σ) ∈ Add′1 ∪ Add′2 ∪ Add′3. This
subcase follows directly from the first case we’ve con-
sidered.

– Suppose that there does not exist a σi ∈ Bi such that
B(l, σi) ∈ Add′1 ∪ Add′2 ∪ Add′3. This means that570

there does not exist a σi ∈ Bi such that B(l, σi) is in
either Add′P or Add′N . Due to the fact that Sσ ⊆ s
and s is consistent, we know that there does not exist
a σi ∈ Bi such that B(l, σi) in either Add†P or Add†N .
Hence, B(l, σl) ̸∈ Del†. From XP(B(l, σl)) ∈ s′, we575

know that B(l, σl) ∈ s. Therefore, B(l, σl) ∈ sn.

Lemma 6 (Operator application in Π′ is complete with re-
spect to Π). Let o be an applicable operator for some con-
sistent state s. and s′ = {XP(pσ) | ∀pσ ∈ s}. Additionally,580

let o′ ∈ XO(o) such that Pre′(o′) ⊆ s′ and s′n be the re-
sult of applying o′ to s′. Then, if B(l, σl) ∈ apply(o, s) then
XP(B(l, σl)) ∈ s′n.

Proof sketch. For economy, we forego the details; however,
the proof is similar to that of Lemma 5 and is shown by585

a proof by cases on membership of B(l, σl). An important
point is that if s satisfies c for some ⟨c, l⟩ within AddP (o)∪
AddN (o), then So,σ satisfies c since (1) s is consistent, (2)
So,σ ⊆ s, and (3) c ⊆ So.

Lemma 7 (Operator application in Π′ is correct with respect590

to Π). Let o′ ∈ O′
A be an applicable operator for state s′

within Π′ and let s′n be the state resulting from applying o′

to s′. Additionally, let s = {XP
−1(pσ) | ∀pσ ∈ s′} after

dropping the goal predicate and o = XO
−1(o′). Assume s

is consistent. Then, {XP
−1(pσ) | ∀pσ ∈ s′n} = apply(o, s)595

after dropping the goal predicate within s′n.

Proof. This is evident from Lemma 5 and 6.

Lemma 8 (The translation is sound where plans produced
via Π′ (discarding operators in O′

G) are valid for Π). Let
π′ = (o′1, . . . , o

′
n) be a valid plan for Π′ = ⟨P ′, O′, I ′, G′⟩.600

Then, π = (XO
−1(o′1), . . . ,XO

−1(o′n−1)) where o′i ∈ π′

and o′i ̸∈ O′
G is a valid plan for the original problem Π.

Proof. Note that by consequence of the compilation, o′n ∈
O′

G since the other operators delete the goal ground atomic
formula. For π to be valid for the problem Π, G must be a605

subset of sn and each oi ∈ π must be applicable. At the

|P | |O| |P ′| |O′| Compile Search

65 10 98 504 0.049 0.000165
2810 75 3023 3754 1.549 0.000276
16642 168 17159 8404 38.568 0.000361
26570 200 27223 10004 113.076 0.000453

Table 1: Results for Instances of the Escape Problem.
Compile shows the number of sec. it takes to get from
Π = ⟨Bi, P, P

†, O, I,G⟩ to Π′ = ⟨P ′, O′, I ′, G′⟩. Search
is the reported time in sec. to search for a solution within
Fast Downward.

state s′n−1 after following each o′i from π′ starting from I ′,
we know from the preconditions of operators in O′

G that

{XP(B(p, σp)) | ∀p ∈ G, σp ∈ B+
i } ⊆ s′n−1

Hence for the first condition, it suffices to show that sn−1 =
{XP

−1(pσ) | ∀pσ ∈ s′n−1}. To show both conditions, we’ll 610

perform a proof by induction on s′i which signifies the state
at each step in π′.

• For the base case, consider the initial state s′1. By defini-
tion of the translation s1 = {XP

−1(pσ) | ∀pσ ∈ s1}. By
Lemma 4, o1 is applicable at s1. 615

• For the inductive case, assume that si = {XP
−1(pσ) |

∀pσ ∈ s′i} and that oi is applicable at si. We want to
show that si+1 = {XP

−1(pσ) | ∀pσ ∈ s′i+1} and oi+1

is applicable at si+1. By Lemma 7, we know that si+1 =
{XP

−1(pσ) | ∀pσ ∈ s′i+1}. Then by Lemma 4, oi+1 is 620

applicable at si+1.

Hence, by induction each oi ∈ π is applicable and sn−1 =
{XP

−1(pσ) | ∀pσ ∈ s′n−1}.

Preliminary Evaluation
We implemented QU-STRIPS and its compilation to 625

STRIPS.4 For our initial evaluations, we look at instances
of the Escape domain parameterized by n. The n denotes
the number of locations between the starting location and
the goal location at all branches. Each branch in the problem
will have a different configuration of levels of belief that a 630

trap is present at each location within the branch. For our
experiments, we used B5 from Example 1 as our levels of
belief. As such, for n = 1 and n = 2 there are 5n branches.
In order to keep the size of the experiments manageable, we
pruned the number of branches for n = 3 and n = 4. In 635

Escape-3, we pruned by a factor of 3 while for n = 4,
we pruned by a factor of 16. Recall that if we do not make
use of the optimization from Lemma 3, then we can com-
pute the number of compiled ground atomic formulae and
operators directly through Equations 1 and 2. Therefore, for 640

our experiments we decided to use the optimization for di-
rect comparison in the size of |P ′| and |O′|. Our results are

4The codebase along with the benchmark scripts can
be found at https://github.com/Brandon-Rozek/Planning-Qu/tree/
af91c4e209d8025b16d6a943841f3e02c5dcc6d2.



shown in Table 1. In our results, we can see that the size
of |O′| is far from the worst case. For example, without the
optimization, the first row will have |O′| = 25004. To see645

how long it takes an automated planner to find a solution,
we used Fast Downward (Helmert 2006). The table shows
that search times grow more slowly than the time it takes to
compile the problem to STRIPS. We hypothesize two rea-
sons for this. The first and likely reason is that the search650

space for the Escape instances are more wide than it is deep.
Plans for Escape instances of size n are n+2 deep. The sec-
ond reason is that for problems with consistent initial states,
only one operator from XO(o) will be applicable at a reach-
able compiled state.655

Discussion
We presented an initial framework for solving planning
problems under qualitative uncertainty. However, this frame-
work does not solve the problem in general. In the following
paragraph, we present a few limitations present in our frame-660

work for the domain modeler to keep in mind, as well as to
guide future work.

First, we do not reference any levels of belief in the op-
erator descriptions. Additional ground atomic formulae can
be added to the initial state to adjust the level of belief com-665

puted during state progression. However, in problems of eth-
ical control, the domain modeler may want to require a cer-
tain level of belief to ethically permit an operator. For ex-
ample, one may only want a prohibition operator to be ap-
plicable provided that evidence of the preconditions are at a670

level of beyond reasonable doubt or higher. We respectfully
note that in prior work devoted to giving artificial agents
themselves an “ethical compass” [e.g. (Govindarajulu and
Bringsjord 2017a)], uncertainty is nowhere to be found. That
work exploits computational logic to determine whether cer-675

tain actions available to the AI are morally prohibited. But
in “real life,” an action is often prohibited not because some
future consequence of that action is believed to be certain
should that action be performed, but only that this conse-
quence is (say) highly likely to ensue. Secondly, the QU-680

STRIPS framework is restricted to reasoning about quali-
tative uncertainty of a single agent. We do not capture epis-
temic reasoning over multiple agents with nested belief. This
entails that our framework does not natively support certain
tasks such as deception. Lastly, our framework does not han-685

dle probabilistic information. One can increase gradations of
the levels of belief used in this framework; however, the be-
lief updating we describe does not operate exactly like prob-
abilistic updating.

Building atop the prior work of others, we have above
generalized and extended the formal machinery of cogni-
tive likelihoods for use in planning under uncertainty. While
the increased flexibility and reach of this machinery in turn
extends automated planning built upon it, a non-trivial ques-
tion arises: How would an agent (perhaps a human AI en-
gineer, or perhaps an AI agent given meta-control of sub-
sidiary artificial agents under its oversight) go about decid-
ing between the options in our generalization? For example,
one option, presented by us above in encapsulated form, is

that σ ranges over 11 levels (five positive, one neutral/ag-
nostic, and five negative). However, our formal generaliza-
tion, and corresponding design and implementation, means
that planning with qualitative uncertainty can work just as
smoothly, at least formally and computationally speaking,
with, say, a five-level ordering; i.e. (with negative belief lev-
els omitted):

B2(a, t, ϕ) where σ = 2 = certain
B1(a, t, ϕ) where σ = 1 = likely
B0(a, t, ϕ) where σ = 0 = agnostic

Conclusion 690

We have presented a new framework, namely QU-STRIPS,
for solving planning problems under qualitative uncertainty.
This framework, while in its initial stages, provide a sub-
stantial step toward deriving plans with epistemic strengths.
It takes an initial state of qualitative beliefs, and from it 695

defines whether operators are applicable and how beliefs
change throughout state progression. We presented a prov-
ably sound compilation technique into classical STRIPS
which allows for the use of state-of-the-art automated plan-
ners to find solutions to QU-STRIPS problems that maxi- 700

mize belief in achieving the goal while taking into account
plan costs.

We see future work along both theoretical and applied
trajectories. On the theory side, the formalism must be ex-
tended to consider conformant problems of width greater 705

than one. This approach will benefit from ideas in the
conformant-planning literature as referenced in the related
work. On the applications front, the authors believe that
reasoning under qualitative uncertainty has applications in
goal recognition. Currently, in many algorithms (Ramırez 710

and Geffner 2009; Sohrabi, Riabov, and Udrea 2016; Smith
et al. 2015) plan costs are the driving force for deriving in-
tent of the acting agent. However, the authors believe that
not only plan cost should be considered, but additionally the
level of belief the actor holds with respect to the achievabil- 715

ity of their plan.

Acknowledgments
The authors thank the anonymous reviewers for their in-
sightful feedback. This paper was supported in part by a
fellowship award to Rozek under contract FA9550-21-F- 720

0003 through the National Defense Science and Engineering
Graduate (NDSEG) Fellowship Program, sponsored by the
Air Force Research Laboratory (AFRL), the Office of Naval
Research (ONR), and the Army Research Office (ARO).

References 725

Andersen, M. B.; Bolander, T.; and Jensen, M. H. 2015.
Don’t plan for the unexpected: Planning based on plausi-
bility models. Logique et Analyse, 145–176.
Bolander, T.; and Andersen, M. B. 2011. Epistemic planning
for single-and multi-agent systems. Journal of Applied Non- 730

Classical Logics, 21(1): 9–34.
Bolander, T.; Charrier, T.; Pinchinat, S.; and Schwarzentru-
ber, F. 2020. DEL-based epistemic planning: Decidability
and complexity. Artificial Intelligence, 287: 103304.



Bonet, B.; and Geffner, H. 2000. Planning with incomplete735

information as heuristic search in belief space. In Proceed-
ings of the Fifth International Conference on Artificial In-
telligence Planning Systems, AIPS’00, 52–61. AAAI Press.
ISBN 1577351118.
Bonet, B.; and Geffner, H. 2014. Flexible and scalable par-740

tially observable planning with linear translations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 28.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Se-
quential Monte Carlo in Probabilistic Planning Reachability745

Heuristics. In ICAPS, 233–242.
Davis-Mendelow, S.; Baier, J. A.; and McIlraith, S. A.
2013. Assumption-Based Planning: Generating Plans and
Explanations under Incomplete Knowledge. In desJardins,
M.; and Littman, M. L., eds., Proceedings of the Twenty-750

Seventh AAAI Conference on Artificial Intelligence, July
14-18, 2013, Bellevue, Washington, USA, 209–216. AAAI
Press.
Domshlak, C.; and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-755

ing. Journal of Artificial Intelligence Research, 30: 565–
620.
E-Martı́n, Y.; R-Moreno, M. D.; and Smith, D. E. 2014. Pro-
gressive heuristic search for probabilistic planning based on
interaction estimates. Expert Systems, 31: 421–436.760

Fitting, M. 1991. Many-Valued Modal Logics I. Funda-
menta Informaticae, 15: 235–254.
Friedman, N.; and Halpern, J. 1995. Plausibility Relations:
A User’s Guide. In Proceedings of the Eleventh Conference
on Uncertainty in AI, 175–184.765

Giancola, M. 2023. Reasoning With Cognitive Likelihood
for Artificially-Intelligent Agents: Formalization & Imple-
mentation. Ph.D. thesis, Renssealer Polytechnic Institute.
Giancola, M.; Bringsjord, S.; Govindarajulu, N. S.; and
Varela, C. 2022. Making Maximally Ethical Decisions770

via Cognitive Likelihood and Formal Planning. In To-
wards Trustworthy Artificial Intelligent Systems, 127–142.
Springer.
Govindarajulu, N.; and Bringsjord, S. 2017a. On Automat-
ing the Doctrine of Double Effect. In Sierra, C., ed., Pro-775

ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI-17), 4722–4730. Interna-
tional Joint Conferences on Artificial Intelligence. ISBN
978-0-9992411-0-3.
Govindarajulu, N. S.; and Bringsjord, S. 2017b. Strength780

Factors: An Uncertainty System for Quantified Modal
Logic. In Belle, V.; Cussens, J.; Finger, M.; Godo, L.; Prade,
H.; and Qi, G., eds., Proceedings of the IJCAI Workshop on
“Logical Foundations for Uncertainty and Machine Learn-
ing” (LFU-2017), 34–40. Melbourne, Australia.785

Halpern, J. 2004. Reasoning About Uncertainty. Cambridge,
MA: MIT Press.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.

Hu, G.; Miller, T.; and Lipovetzky, N. 2022. Planning with 790

Perspectives–Decomposing Epistemic Planning using Func-
tional STRIPS. Journal of Artificial Intelligence Research,
75: 489–539.
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