
Reinforcement Learning Conference (August 2024)

Human-Machine Cooperation through Human-Like
Visual Search Model

Aditya Acharya
a.acharya.1@bham.ac.uk
School of Computer Science
University of Birmingham

Chris Baber
c.baber@bham.ac.uk
School of Computer Science
University of Birmingham

Leonardo Stella
l.stella@bham.ac.uk
School of Computer Science
University of Birmingham

Andrew Howes
andrew.howes@exeter.ac.uk
Department of Computer Science
University of Exeter

Abstract

Human-machine teaming is a challenging and important problem that requires de-
signing autonomous agents that can effectively cooperate with humans in complex
and dynamic scenarios. This paper explores multi-agent dynamics in a reinforce-
ment learning (RL) framework in a Stag Hunt scenario, where interactions can be
either cooperative or independent. We design a system involving two agents: Agent
A, which follows a mixed strategy based on predefined probability distributions, and
Agent B, an RL agent with human-like visual constraint that learns an adaptive
strategy to selectively sample information from the environment to infer Agent A’s
intent. Our results indicate that Agent B adapts its policy effectively, exhibiting
adaptive gaze strategies tailored to Agent A’s policy. We discuss the implications
of our findings and the design of RL agents capable of interacting with human-like
agents.

1 Introduction

Most Multi-Agent Reinforcement Learning (MARL) approaches do not consider the presence and
influence of human teammates. This limits the applicability of RL to those real-world scenarios
in which humans and machines collaborate to achieve common goals, e.g., in search and rescue
missions (Moosavi et al., 2024), autonomous robots work alongside human rescuers, adapting to
their intentions while communicating their own plans and actions.

Human-machine teaming is a crucial challenge for developing effective and trustworthy autonomous
systems (McNeese et al., 2018). Designing agents that can interact with humans naturally and
flexibly requires the agents to use models that reflect human decision-making. Our approach to
creating such models is based on the assumption that people search for information that is relevant to
their decisions. This assumption parallels the work of (Gigerenzer, 2002) and requires information on
the policy governing information search and use. From this, our models use visual search parameters
that are drawn from human performance and defined in terms of resource rationality (Howes et al.,
2009; Lieder & Griffiths, 2020), i.e., constrained by the assumption that the information search is
performed to seek sufficient (not complete) information from an environment.

In a static environment, this task involves determining the location of targets that relate to a specific
goal (Xiuli et al. (2017); Howes et al. (2018); Cheema et al. (2020); Chen et al. (2021); Jokinen et al.
(2021)). When the environment is dynamic or contains other agents, the model needs to track the
movement of potential targets and infer the possible intent of the other agents. Such intent could
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relate to their goal state, e.g., based on their history of movements or physical proximity to targets.
In this paper, we demonstrate that extending the resource rational approach to information search
makes it possible to create a human-like model that responds to dynamic environments containing
other agents.

To evaluate our model, we draw inspiration from game theory, which provides formal models and
empirical studies of how humans and animals behave in situations where the outcome depends
not only on their own actions but also on the actions of others. In particular, the Stag Hunt game,
originally proposed by Rousseau (1755), is a classic example of a coordination dilemma, where agents
must choose between cooperating for a higher collective payoff or acting independently for a lower
but safer individual payoff. Unlike the prisoner’s dilemma, where defection is always the dominant
strategy, Stag Hunt has two Nash equilibria: both agents cooperate or both agents defect. However,
the former equilibrium is Pareto-efficient, meaning that no agent can improve their payoff without
making the other agent worse, while the latter is not. Therefore, the optimal strategy depends on the
preferences and beliefs of the agents and the information available to them. In a one-shot version of
Stag Hunt, the only information available to the decision-maker is the payoff matrix. The intention
of the opponent is unknown. In an iterative version of the game, the opponent’s intention could be
inferred from the history of their previous choices. In a grid-world version, the opponent’s intention
could be inferred from their location and movement. This paper proposes an RL framework for
studying human-machine teaming in a grid-world Stag Hunt scenario. Our main contributions and
objectives are as follows:

• We introduce an RL framework for human-machine teaming in a Stag Hunt scenario to
model the interaction between two agents with different characteristics and abilities.

• We design and implement an RL agent with human-like visual constraint that learns to
selectively sample information from the environment to infer the intent of another agent
and to cooperate or defect accordingly.

2 Related Work

Computational modelling of human eye movements has a rich history, marked by diverse theoret-
ical frameworks. Heuristic models, such as those proposing salience maps Itti & Koch (2000) and
activation maps Wolfe (2007), suggest that saccades bring the fovea, the area of sharpest vision,
into alignment with regions that stand out. Approaches rooted in Bayesian theory Myers et al.
(2013); Najemnik & Geisler (2008) assume that saccades target regions where visual acuity is low,
effectively gathering additional information to update a Bayesian estimation of the visual environ-
ment. This framework implies that eye movements are strategic, aiming to optimise the information
gained from each saccade. Optimal control models Butko & Movellan (2008); Nunez-Varela & Wyatt
(2013); Hayhoe & Ballard (2014); Mnih et al. (2014); Howes et al. (2018); Chen et al. (2021) regard
saccades as actions taken to maximise task-specific utility or reward. These models incorporate a
cost-benefit analysis, suggesting that the programming of saccades is influenced by the task demands
and the potential rewards of focusing on different areas of the visual field. This paper extends the
optimal control framework to a more challenging setting where the world is dynamic and the task
involves interacting with an opponent.

3 Task

We adopt the stag hunt environment from (Peysakhovich & Lerer, 2018). In this environment, two
agents can choose to either cooperate or defect in each round. If both agents cooperate, they receive
a high reward (R = 5), representing hunting a stag together. If both agents defect, they receive a
low reward (R = 1), representing foraging a plant alone. However, if one agent cooperates and the
other defects, the cooperator receives a penalty reward (R = −5) for hunting a stag alone, and the
defector receives a low reward (R = 1) for ignoring the stag and foraging a plant alone. The payoff
matrix for this environment is shown below in Table 1.
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cooperate defect
cooperate (5, 5) (-5, 1) p = 0.8

defect (1, -5) (1, 1) 1-p

Table 1: Stag hunt environment payoff matrix

3.1 Implementation Details

We implement our environment in Python using the open-source code base by (Nesterov-Rappoport,
2022). The environment consists of a grid world with 5 x 5 cells (see ‘Game Environment’ in Figure
1), each representing a possible location for the agent or the prey, and displayed as an image of size
160 x 160 pixels or 4 x 4 degrees visual angle.

At the beginning of each game episode, the stag is randomly placed in one of the unoccupied cells.
The stag remains stationary for the duration of the episode. The agents are initialised at fixed
locations near the top corners of the grid. The plants are randomly distributed over the remaining
cells, with a fixed density of 2.

The agents have five possible actions: MOVE UP, MOVE DOWN, MOVE LEFT, MOVE RIGHT,
or STAND. Each action moves the agent to an adjacent cell or keeps it in the same cell unless the
target cell is out of bounds. In that case, the action has no effect, and the agent stays in the same
cell. Each action incurs a small negative reward of Rmove = −0.1 (Rstand = 0) to encourage efficient
behaviour.

Agent A follows a predefined mixed policy of pursuing the stag or the nearest plant with probabilities
p = (0.8, 0.2), respectively. An initial model had a 50:50 distribution, but this resulted in the Agent
only ever selecting a plant. The policy is implemented as a heuristic decision using the shortest path
to the closest plant or stag. We also deploy a human-like agent (agent B) that learns its policy from
scratch using reinforcement learning. Although our approach involves multiple agents, it primarily
focuses on the reinforcement learning of a single agent (Agent B) with the other Agent’s behaviour
predefined. Therefore, this work is rooted in a single-agent RL framework. However, it incorporates
stochastic environmental influences from the other agent.

The reward function is as defined in Table 1: if agent B captures a plant (moves to a cell occupied by
a plant), it receives a positive reward of Rplant = 1. If two agents capture the stag (simultaneously
move to the cell occupied by the stag), they both receive a positive reward of Rstag = 5. The episode
ends when either the stag or a plant is captured by agent B or a maximum number of steps T is
reached. We set T = 30 for all experiments.

4 Theory

In this paper, we propose that visual search and target selection (stag or plant) strategies emerge
as an adaptation to the environmental factors (i.e., spacing between objects; behaviour of the other
agent) and the limitations of human visual and motor system (including the imprecision of peripheral
vision and the inherent variability in eye movement control). We approach gaze selection as a problem
of sequential decision-making, modelling it as a POMDP and using reinforcement learning to derive
nearly optimal visual search and selection strategies. For an overview and broader background of
this approach, see (Oulasvirta et al., 2022). In the following paragraphs, we report the theoretical
assumptions.

Saccade duration Human eye movements alternate between saccades and fixations. Fixations
are periods of relative eye stability, albeit with slight involuntary movements (jitter) (Duchowski,
2018), during which the eyes gather visual information. Saccades are rapid eye movements linking
these fixations. For movements up to 20 degrees of visual angle, there is a consistent formula relating
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saccade amplitude to its duration: Duration = 2.7 × Amplitude + 37 (Baloh et al., 1975), where
the saccade amplitude is in degrees, and the duration is in milliseconds (ms).

Spatial visual uncertainty Human vision is sharpest at the fovea, covering about 1 - 2 degrees
of visual angle, with sharpness decreasing significantly as one moves away from this central point
(Duchowski, 2018). Peripheral vision experiences marked declines in the perception of colour, shape,
and size (Kieras & Hornof, 2014). Studies have shown that the variability in estimating the location
of a target in peripheral vision increases linearly with its eccentricity (Michel & Geisler, 2011), a
fact we incorporate into our model.

Ocular motor noise The ocular motor noise is a major source of variability in saccadic eye
movements and can lead to either overshooting or undershooting of targets (Wolf & Lappe, 2021).
A Gaussian noise has been previously used for modelling uncertainty in target localisation (Guadron
et al., 2022; Chen et al., 2021)

5 Model

As stated above, we formalise the strategies for visual search and target selection (stag or plant)
using the framework of a POMDP (Spaan, 2012). The formulation can be represented as a tuple
(S, A, O, T, Z, R, γ), where S is a set of states representing possible configurations of the environment.
A is a set of actions available to the agent, such as moving towards the stag or the plant and choosing
where to look next. O is a set of observations that the agent can perceive, subject to the constraints
of the human visual system. T : S × A → δ(S) is the transition function. Z : S × A → δ(O) is the
observation function, dictating the probability of observing each possible observation given a state
and action. R : S × A → R is the reward function, specifying the reward received after taking an
action in a given state. γ is the discount factor, representing the difference in importance between
future rewards and immediate rewards. The agent’s objective is to learn a policy π(at|o1:t) at each
step t. The policy is represented by a recurrent neural network (RNN), which maps the observation
history o1:t to a hidden state ht. Consequently, at each time step, the agent samples the game
environment integrates the sampled information over time and makes two choices: (a) whether to
move closer to the plant or the stag and (b) where to look next for the subsequent time step. A
formal description of the POMDP is given below.

State: At each time step t, the environment is occupied at a state st, (st ∈ S). A state is
represented as an RGB image of the game environment of size 160x160x3 pixels (Figure 1). The
image consists of two agents of the same shape but differ in colour, two plants and a stag placed in
different grid cells. Within each episode, only the position of the two agents can change.

Action: An action, at , is taken at each time step t . On each step, the agent decides where
to saccade in the grid world and where to move the agent it controls (agent B). We use an action
composition, considering an action composed of some smaller independent discrete actions. Namely,
at is composed of a set of smaller actions D = {amove

t , agaze
t }, the gaze action space agaze

t (the space
of possibilities for where to saccade next) and the player action space amove

t (the space of possibilities
for issuing a movement action for the controlled agent). The player action space is a 5-dimensional
vector of discrete values for moving the agent as described in section 3. The gaze action space is a 25-
dimensional vector of discrete values representing the centre of each 5x5 grid cell. Each discrete value
is then mapped to the x,y coordinate where x, y ∈ [−1, 1] with -1 and 1 being the edge of the image.
The aim saccade is corrupted by the ocular motor noise. Specifically, the actual landing position
after the saccade is sampled from agaze

t ∼ N(agaze
t , σoccular(t)). The ocular motor noise is linearly

dependent on the saccadic amplitude (Harris & Wolpert, 1998): σoccular(t) = ρoccular×amplitude(t),
where ρoccular is a hyper-parameter of the model set to ρoccular = 0.01 (Chen et al., 2021).

Reward: At each time step t , the environment (in one of the states st) generates a reward
r(st, at), in response to the action taken at. The reward function used in the model is r(st, at)
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= task reward(t)− movement cost(t)− 0.1×(saccade duration(t) + fixation duration)/1000. Where
task and movement reward is defined in section 3, saccade duration in section 4 and fixation duration
set to 200ms.

Observation: At each step t, the agent receives an observation of the environment in the form
of an image st. The agent cannot access this image fully but can sample information from st via
a glimpse sensor. We reuse the implementation as described by Mnih et al. (2014). The sensor
extracts a retina-like image pyramid (Geisler & Perry, 1998) representation gt = f(st, agaze

t−1 ) around
location agaze

t−1 from image st. It encodes the region around agaze at a high resolution but uses
a progressively lower resolution for pixels further from agaze, resulting in a vector of much lower
resolution than the original image. Another source of uncertainty in the human visual system is
the localisation error (Levi, 2008), where information in the periphery may erroneously combine
features from one location with adjacent locations. In the model, spatial smearing is represented
by a weighting function (Gaussian blur) with σ = ρsmear ∗ 2i where i is the glimpse sequence and
ρsmear = 0.3. The observation space is a tuple representing the glimpse view and the location the
glimpse is extracted from, ot = (gt, agaze

t−1 ).

5.1 Internal State

The state of the environment is not directly known to the model. For this reason, the agent main-
tains an internal representation of the environment, summarising information extracted from past
observation history. The agent uses this summarised representation to control the glimpse sensor,
decide where to next sample information from, and move the agent. Specifically, at each time step
t, the agent takes an action at and observes ot+1, the internal state representation is formed by the
hidden units ht+1 of the recurrent neural network (LSTM) and updated over time.

5.2 Intent Classification Task

Auxiliary tasks have previously been adopted to facilitate representation learning (Jaderberg et al.,
2016; Lin et al., 2019). In our model, we introduce an auxiliary task head to classify the intent of the
policy the opponent is pursuing. The classification layer takes the summarised observed history ht as
input and outputs a softmax function to predict the opponent’s intent, with the output probabilities
indicating different intent classes c ∈ (stag, plant). The model is trained using the cross-entropy
loss, where M = 2 represents the number of classes, y is the binary indicator (0 or 1) if class label c
is the correct classification given ht, and p is the predicted probability parameterised by a parameter
vector δ given ht is of class c.

Lintent =
M∑

c=1
yht,clog(pδ

ht,c)

5.3 Training

Network Architecture. The architecture supports dynamic interaction with a game environment
by focusing on localised sensing and memory-driven decision-making optimised by rewards. Figure 1
represents an agent architecture designed for a game environment comprising several interconnected
components. A Glimpse Sensor (Mnih et al., 2014) captures specific portions of the environment to
produce glimpse patches, which are then processed by the Encoder that integrates glimpse patches
through a convolution neural network stack and the xy location where the patches are extracted
from through a linear transformation. This encoded data is stored in a Memory system, utilising
the LSTM layer. Decision-making is further refined by a Gaze Controller, which directs the agent’s
attention, and the Movement Controller dictates the agent’s physical actions within the game based
on internal rewards and stored memories. Appendix A provides each component’s specific param-
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Figure 1: An overview of the Modelling approach. The control problem is modelled as deciding
where to look next and where to move the agent next. The agent does not have direct access to the
state of the game scenario – it must rely on selective glimpses from the glimpse sensor. There are
three internal modules: the gaze controller moves the gaze and controls the gaze sensor to observe
the game from pixels through foveated and peripheral vision; the movement controller moves the
agent in the game based on the observations; and the memory module maintains a history of what
has been seen thus far. The reward is defined as an information gathering and movement trade-off:
gathering information helps achieve higher rewards but at a cost.

eters. The value network shares the Memory and the Encoder layer to learn the value of the state
V (ht).

Policy Optimisation. We use the policy gradient method to train the RL agent, specifically the
PPO algorithm (Schulman et al., 2017) using the CleanRL implementation (Huang et al., 2022).
The goal is to learn a stochastic policy πθ(amove

t , agaze
t |o1:t), parameterised by a parameter vector

θ, assigns a probability value to an action given the observation history. The model optimises the
policy by maximising the expected discounted return of the policy:

J = Eτ

[
T −1∑
t=0

γtrt

]
where τ is the trajectory (s0, a0, r0, o0, ..., sT −1, aT −1, rT −1, oT −1). The core idea behind policy
gradient algorithms is to obtain the policy gradient ∇θJ of the expected discounted return with
respect to the policy parameter vector θ. By performing a gradient optimisation step θ = θ + ∇θJ ,
such that the expected discounted rewards are maximised. We use the following objective function
to optimise:

∇θJ =
T −1∑
t=0

∇θ

 ∑
ad

t ∈D

logπθ(ad
t |o1:t)

 At, At =
∞∑

k=0
γkrt+k

6 Results

The results presented in this section are aggregated across 100 episodes after training for 17,000,000
time steps. The model achieved a cumulative episode reward of 2.7 (see Appendix B).

In the presented figure 2, the gaze distance (measured in visual degrees) to the Stag, Plant, Agent
A (opponent), and Agent B (self) is analysed under two different pursuit policies by Agent A within
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(a) Agent A Pursuit Plant Policy (b) Agent A Pursuit Stag Policy

Figure 2: The plots show Agent B’s gaze strategy as a function of the distance between its gaze
position (agaze) and the game objects in visual degrees.

a game context. These policies are the Plant Policy (Figure 2a) and the Stag Policy (Figure 2b),
evaluated across varying levels of uncertainty in the opponent’s target pursuit policy. The figures
delineate two regions based on visual angle: the foveal region (1-1.5 degrees) and the parafoveal
region (1.5-3 degrees).

Plant Policy Observations: The Plant target refers to the plant closest to Agent B. The plot
shows Agent B’s clear strategy to consider the Plant as a significant target when there is high
certainty about the opponent’s strategy. As uncertainty increases, the distance to the Plant remains
relatively stable, indicating that the Plant maintains its salience even with increasing uncertainty
about the opponent’s strategy.

Stag Policy Observations: In comparison with the plant policy, Agent B’s attention is drawn
towards the stag and itself under moderate uncertainty. Under high certainty about the opponents’
pursuit policy, the stag policy might confirm that the plant is not salient (because the model has
sufficient information from Agent A and stag, any further visual sampling is to gather additional
information to confirm its policy rather than commit to a policy change).

These findings indicate that Agent A’s chosen pursuit policy significantly influences Agent B’s strate-
gies, affecting how the agent interacts with other environmental elements. The adaptive nature of
Agent B’s gaze behaviour reflects a dynamic strategy that adjusts focus based on the certainty of
the opponent’s actions. The data shows that Agent B reallocates attention to the most relevant
targets (Plant, Stag, Opponent, or Self) depending on the level of uncertainty, indicating a flexible
and context-sensitive approach to decision-making.

7 Discussion

While the results presented here are preliminary, they hint that the agent’s strategic control choices
emerge as an adaptation to the constraints imposed by the human visual information processing
system and the other agent’s intent.

These results imply two contributions to MARL. The first is the insights into the human-machine
dynamics that arise in cooperative settings, such as the effects of different pursuit policies on the
agents’ interactions, the trade-offs between sampling information and pursuing targets, and the role
of visual attention in coordinating or disrupting joint action. Second, the design of RL agents for
exploring the resource rational (Howes et al., 2009; Lieder & Griffiths, 2020) adaptation of strategies
to known information processing constraints and dynamic environments. This framing is important
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because it helps make the crucial link between cognitive mechanism and rationality (Lewis et al.,
2014) that supports deep explanations of behaviour.

One implication of these results is that the design of RL agents in multi-agent teams that could
include humans should consider the human-like characteristics of their potential partners or oppo-
nents, such as their visual attention, pursuit policies, and adaptive strategies. By incorporating
these factors into the agent’s learning process, the agent could achieve a higher level of performance
and coordination in cooperative settings and better understand the human’s intentions and actions.
These results show that they provide insights into the human-machine dynamics that emerge in
cooperative scenarios, such as the effects of different pursuit policies on the agents’ interactions, the
trade-offs between sampling information and pursuing targets, and the role of visual attention in
coordinating or disrupting joint action. These insights could help researchers and practitioners eval-
uate and improve the quality and efficiency of human-machine cooperation and identify and address
potential challenges or risks. For example, the results could inform the design of feedback mecha-
nisms, reward structures, or intervention strategies that could enhance human-machine collaboration
or prevent conflicts or errors. Furthermore, the results could contribute to the theoretical under-
standing of human cognition and behaviour in complex and dynamic environments, such as how
humans adapt to different agents and how they balance exploration and exploitation in uncertain
and competitive situations.

There is a substantial amount of work to be done. First, we need to run experiments for more
random seeds; second, we need to compare these results with human participants; and third, we
need to systematically explore the cognitive parameter space in the model. For example, the effect of
ocular motor and smearing noise on strategy, different peripheral representations for acuity decline
(Lukanov et al., 2021), memory decay rate, and microsaccade within a fixation to simulate user
fatigue.
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A Model Hyperparameters

A.1 Hyperparameters used for training the policy

Parameter Names Parameter Values
Ntotal Total Time Steps 17000000

Nmb Number of Mini-Batches 4
Nenvs Number of Environments 4

Nsteps Number of Steps per Environment 256
γ Discount Factor 0.99

λ for GAE 0.95
ϵ PPO clipping coefficient 0.2
Maximum Gradient Norm 0.5

K Number of updates per epoch 4
α Learning Rate 0.00025 linearly decreased to 0 over total time steps

Value Function Coefficient 0.5
Entropy Coefficient 0.01

Nupdates Total Updates Ntotal/NmbNenvs

A.2 Hyperparameters used for Glimpse module

Parameter Names Parameter Values
Glimpse Size 40 pixels

Number of Patches 3
Patch Scale 2

A.3 Hyperparameters used for Encoder module

Parameter Names Parameter Values
Number of CNN Layers 3

Output channels [16, 32, 64]
Kernel Size [4, 4, 3]

Stride [4, 2, 1]
Activation function Relu
Linear Layer size 32

A.4 Hyperparameters used for Controller and Memory module

Parameter Names Parameter Values
Controller Number of Linear Layers 2

Controller Hidden Layers size 32
Gaze controller Output Layers size 25

Movement controller Output Layers size 5
Activation function Relu
Memory LSTM Size 64

Layers were initialised using orthogonal initialisation. Final action layers was initialised with stan-
dard deviation 0.01 and value network with standard deviation 1. Bais was initialised with a constant
0.

B Model Convergence
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(a) mean cumulative episode rewards with IQR
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