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Abstract001

In this study, we propose a novel asset pric-002
ing approach, LLM Agent-based Asset Pric-003
ing Models (AAPM), which fuses qualitative004
discretionary investment analysis from LLM005
agents and quantitative manual financial eco-006
nomic factors to predict excess asset returns.007
The experimental results show that our ap-008
proach outperforms machine learning-based009
asset pricing baselines in portfolio optimiza-010
tion and asset pricing errors. Specifically,011
the Sharpe ratio and average |α| for anomaly012
portfolios improved significantly by 9.6% and013
10.8% respectively. In addition, we conducted014
extensive ablation studies on our model and015
analysis of the data to reveal further insights016
into the proposed method.017

1 Introduction018

The pricing of financial assets, such as stocks, has019

been a focal point in empirical financial economics020

research. It has a significant impact on social good021

by moving towards Pareto efficiency in capital allo-022

cation. Current asset pricing methods rely on care-023

fully crafting manual macroeconomic indicators024

or company-specific factors as predictors of future025

excess returns (Fama and French, 1992, 2015). De-026

spite its great success in the real-world market, they027

have been challenged by the Efficient Market Hy-028

pothesis (EMH) that manual factors will ultimately029

lose their predictive power in an efficient market030

when these predictors are fully discovered and used031

by market participants.032

Due to this rationale, linguistic data, which are033

the primary sources of traditional discretionary in-034

vesting, become essential. This is because the dy-035

namics of society and the market are largely driven036

by the information flow of language. This is also037

evident in the real financial world, where discre-038

tionary portfolio management remains significant039

today (Abis, 2020). Such investment decisions are040

mainly shaped by the manager’s experience and041

intuition, as they evaluate assets and determine 042

their value based on information from news, in- 043

vestigations, reports, etc., instead of depending on 044

quantitative models. 045

This phenomenon highlights two key points. 046

First, qualitative discretionary analysis can uncover 047

valuable pricing insights that are absent in eco- 048

nomic indicators or market data. Second, even 049

with the integration of current NLP and semantic 050

analysis methods, quantitative factor models have 051

not fully captured these insights. Achieving the 052

synergy between both remains a complex yet ap- 053

pealing objective (Cao et al., 2021). Nonetheless, 054

leveraging linguistic information is complicated as 055

it requires financial reasoning and long-term mem- 056

ory of tracking events and company impressions to 057

interpret. Furthermore, suboptimal interactions in 058

model design between linguistic and manual fac- 059

tors can end up as noise (Bybee et al., 2023). 060

In this study, we introduce a novel asset pricing 061

approach, LLM Agent-based Asset Pricing Mod- 062

els (AAPM), which fuses discretionary investment 063

analysis simulated by an LLM agent and quanti- 064

tative factor-based methods. AAPM employs the 065

LLM agent to iteratively analyze the latest news, 066

supported by a memory of previous analysis reports 067

and a knowledge base comprising books, encyclo- 068

pedias, and journals. The embedding of analysis 069

reports is merged with manual factors to predict 070

future excess asset returns. Besides offering a per- 071

formance edge, our method also provides enhanced 072

interpretability through generated analysis reports. 073

We evaluate our approach with a dataset consisting 074

of two years of news and approximately 70 years 075

of economic and market data. The experimental 076

results show that our approach surpasses machine 077

learning-based asset pricing baselines, achieving 078

a 9.6% increase in the Sharpe ratio and a 10.8% 079

improvement in the average |α| for asset pricing 080

errors in character-section portfolios. Our primary 081

contributions are summarized as follows: 082
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Figure 1: The LLM agent produces analysis report from the latest news through a multi-step refinement, incorporat-
ing past reports and domain knowledge from memory. For simplicity, the filter for irrelevant news is excluded. A
macro and micro note, continuously updated by the latest analysis report, is used to provide additional context. The
average embedding of daily analysis reports will be input into the pricing network along with daily manual factors.

• Introduced a novel LLM agent architecture083

to analyze business news for discretionary in-084

vestment insights as pricing signals.085

• Proposed a hybrid asset pricing framework086

combines qualitative discretionary analysis087

and quantitative manual factors.088

• Performed comprehensive experiments to as-089

sess the effectiveness of the proposed ap-090

proach with in-depth analysis of components.091

Our code and data are provided in the supplemen-092

tary material and will be made public after the093

double-blind review process.094

2 Related Work095

2.1 Asset Pricing for Security096

Asset pricing aims to search for the fair price of097

financial assets, such as securities. Sharpe (1964)098

introduced the groundbreaking Capital Asset Pric-099

ing Model (CAPM), which breaks down the ex-100

pected return of an asset into a linear function101

of the market return. Various extensions of the102

CAPM have been developed. Merton (1973) incor-103

porated wealth as a state variable, while Lucas Jr104

(1978) considered consumption risk as a pricing105

factor. The single-factor CAPM was later expanded106

into multi-factor models. Fama and French (1992)107

proposed the Fama-French 3-factor (FF3) model,108

which explains returns by size, leverage, book-to- 109

market equity, and earnings-price ratios. They later 110

revised it to a 5-factor model (Fama and French, 111

2015). Furthermore, Carhart (1997) identified mo- 112

mentum as an additional factor. Ross (1976) formu- 113

lated the Arbitrage Pricing Theory (APT), which 114

considers asset pricing as an equilibrium in the 115

absence of arbitrage opportunities. The Stochas- 116

tic Discount Factor (SDF) calculates the price by 117

discounting future cash flows using a stochastic 118

pricing kernel (Cochrane, 2009). 119

2.2 Financial Machine Learning 120

The application of machine learning techniques has 121

been introduced to explore the non-linear interac- 122

tions among the growing “factor zoo” (Feng et al., 123

2020). Instrumented Principal Component Anal- 124

ysis (IPCA) was developed by Kelly et al. (2020) 125

to estimate latent factors and their loadings from 126

data. Gu et al. (2020) introduced a deep neural 127

network to model interactions. Gu et al. (2021) 128

proposed a conditional autoencoder that considers 129

latent factors and asset characteristics as covariates. 130

Chen et al. (2024) utilized Generative Adversar- 131

ial Networks to train a neural SDF based on the 132

methods of moments. Additionally, Bybee et al. 133

(2021) conducted an analysis of the Wall Street 134

Journals (WSJ) to gauge the state of the economy. 135

Based on this analysis, Bybee et al. (2023) fur- 136

ther suggested using Latent Dirichlet Allocation 137
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(LDA) to analyze monthly news topics from WSJ138

as pricing factors. Recent NLP methods (Xu and139

Cohen, 2018; Xie et al., 2022) have been employed140

to forecast stock movements, in contrast to asset141

pricing, they do not aim to find interpretable factors142

that explain anomalies in excess asset returns. Our143

LLM-based approach offers an alternative interpre-144

tation through analysis reports.145

2.3 Large Language Model Agents146

LLM agents possess powerful emergent capabili-147

ties, such as reasoning, planning, and tool-using148

(Achiam et al., 2023). The core of LLM agent149

programming lies in prompting, which employs150

contextual hinting text to regulate the output of151

LLM (Liu et al., 2023). Several prompting strate-152

gies have been proposed. Chain-of-Thoughts (CoT)153

(Wei et al., 2022) encourages the agent to reason154

in a step-by-step manner. Yao et al. (2022) intro-155

duced the ReAct prompt, enabling the agent to156

refine its output based on the results of previous157

attempts. It allows the agent to use external tools,158

such as databases and search engines. Memory is159

another crucial component of LLM agents. Hu et al.160

(2023) introduced databases as symbolic memories.161

Packer et al. (2023) stores dialogues in both long-162

and short-term memory, analogously to operating163

systems. Cheng and Chin (2024) developed an164

agent capable of making “investment” decisions165

on social science time series based on input news,166

reports, etc., and knowledge base, as well as the167

Internet. We focus on using the agent to simulate168

discretionary investment decision-making to syner-169

gize qualitative and quantitative asset pricing.170

3 Method171

Given a state vector Vτ,a at a time point τ ∈172

{0, 1, 2, ...}, which represents the current status173

of the market, society, and an asset a, an asset174

pricing model predicts the excess returns rτ+1,a of175

the asset at the subsequent time point, expressed176

as P (rτ+1,a|Vτ,a). In our study, each time point177

corresponds to one day. In traditional factor-based178

methods, the state Vτ,a ∈ NF
N is a vector com-179

posed of NF factors that are manually derived from180

economic indicators, market data, asset character-181

istics, etc. For instance, the market excess return,182

the performance disparity between small and large183

firms, and the difference between high and low184

book-to-market companies in the Fama-French 3-185

factor model (Fama and French, 1992). Recently,186

Bybee et al. (2021) demonstrated that a collection 187

of business news can serve as an alternative rep- 188

resentation of macroeconomic conditions, while 189

Bybee et al. (2023) employs LDA to extract news 190

characteristics as economic predictors for pricing. 191

Building on this idea, we use the average embed- 192

ding of analysis reports that mine values from the 193

news as a proxy for the society, economic, and 194

market states. 195

Figure 2: Visualization of the key words in the titles
of news articles on the days when the market return is
positive (left) and when it is negative (right).

Business news in major media outlets like the 196

WSJ carries important market information, how- 197

ever they typically restrict their interpretations and 198

opinions, leaving room for discretionary analysis. 199

It is crucial to understand that business events are 200

often interrelated. 201

As visualized in Figure 2 about the keywords 202

found in the titles of the news articles on days 203

with positive and negative market returns. It cor- 204

responds well with human intuition about how the 205

market trend was driven, long-term events like the 206

FED rate hike, COVID, and inflation worries have 207

had the most significant negative effects on the 208

market over the two-year span from Sep. 2021 to 209

Sep. 2023 of our dataset, whereas elements such as 210

technology, Twitter, and inflation control measures 211

have driven market growth. Interpreting business 212

news about such key events requires an extrapola- 213

tion process that depends on extensive background 214

knowledge and historical events. 215

Based on these observations, we introduce 216

AAPM, utilizing an LLM agent with long-term 217

memory of domain knowledge and historical news 218

analysis to iteratively analyze the input news and 219

generate the analysis report, as detailed in Section 220

3.1. Subsequently, we combine these qualitative 221

analysis reports and quantitative manual factors 222
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Figure 3: The demonstration of our hybrid asset pricing
network. The purple boxes mark the computational
components. Yellow boxes are data, the circled plus
symbol means contatenation. The MSE loss computed
with predicted returns feedback to update the network.

to feed into our hybrid asset pricing network in223

Section 3.2.224

3.1 Discretionary Analysis with LLM Agent225

The agent utilizes the latest news xt at time t (e.g.,226

a WSJ article published at 9:32 AM on 6 June227

2020), along with a note nt on macroeconomics228

and market trends, to generate an analysis report229

Rt. The note nt is initalized with a macroeco-230

nomics summary n0 produced by GPT-3.5-Turbo-231

1106 (Brown et al., 2020), the LLM used in our232

study, prior to its knowledge cut-off date dk. It233

offers necessary macroscopic context on economic234

and societal trends not directly available from the235

news or the memory. The note is then iteratively236

updated to nt′ with the new analysis report Rt to237

keep the context up-to-date, and we also prompt238

the agent to document investment ideas and mar-239

ket thoughts in the notes to provide a short-term240

background such as the trends on the market, long-241

term research oppurtunities to watch. To ensure the242

note is continuously updated without missing infor-243

mation while preventing information leakage, the244

dataset in our study starts from dk+1, immediately245

following the knowledge cut-off date.246

The analysis process begins with generating a247

refined news item x′t that summarizes key informa-248

tion from the raw input xt. This step helps control249

the input length and standardizes the format and250

style. The refined news x′t and the note nt are251

then combined to form an input It for the agent.252

The agent will determine if the news contains in-253

vestment information: if not, it will be skipped;254

otherwise, an initial analysis report R0
t will be cre- 255

ated. The report undergoes iterative refinement 256

over N rounds. In each round i, the report Ri−1
t 257

is used to query an external memory M t, a vector 258

database initialized with the SocioDojo knowledge 259

base (Cheng and Chin, 2024), which includes text- 260

books, encyclopedias, and academic journals in 261

fields such as economics, finance, business, poli- 262

tics, and sociology. We use BGE (Xiao et al., 2023) 263

as the embedding model fe, which maps text to a 264

vector e ∈ Rdemb for querying the memory. This 265

choice is based on the MTEB leaderboard (Muen- 266

nighoff et al., 2022), where we selected the best 267

retrieval model considering performance, model 268

size, and embedding vector length. In each round 269

i, the top-K most relevant items {mt,i
j }Kj=1 ⊂ M t 270

are retrieved and provided to the agent along with 271

the report Ri−1
t to produce the refined report Ri

t. 272

The report RN
t generated after the N -th round is 273

used as the final analysis report Rt for the news xt 274

and to update the note as nt′ . Then it is inserted into 275

the memory M t for future reference and pricing, 276

updating the memory to M t′ . 277

The pricing network will utilize the analysis re- 278

ports {Rtdi
}Nd
i=1 of all filtered news {xtdi }

Nd
i=1 for a 279

given day d, where Nd represents the number of 280

filtered news items on day d. Figure 1 provides 281

an overview of the entire analysis process. The 282

prompts employed in our agent are detailed in Ap- 283

pendix E. In Section 4.4, we conduct experiments 284

on our agent design and the impact of N and K. 285

3.2 Hybrid Asset Pricing Network 286

We use the embedding model fe to transform each 287

report Rtdi
into an embedding etdi

, where tdi rep- 288

resents the timestamp of the i-th news on day d. 289

The average embedding of the analysis reports on 290

a given day d is calculated as ed =
∑Nd

i=1 etdi
/Nd. 291

According to Bybee et al. (2023), a single day’s 292

news is insufficient to fully capture the broader eco- 293

nomic and market conditions. Therefore, we em- 294

ploy a sliding window of LW to derive a smoothed 295

daily embedding sd using the average embed- 296

dings of the most recent L = min(LW , d) days 297

{ed−L+1, ed−L+2, ..., ed} as follows: 298

sd =
L∑
i=1

κ(L, i)ed−L+i 299

where κ(L, i) is an exponential decay kernel de- 300

fined as ηL−i∑L
j=1 η

L−j
. The decay coefficient is de- 301

noted as 0 < η < 1. We form a raw hy- 302
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brid state hd,a = [sd; vd,a] by concatenating the303

smoothed daily state sd with a vector vd,a ∈ RNF304

of NF manual-constructed financial economic fac-305

tors. The asset a is indexed by a permanent number306

(permno) from the Center for Research in Secu-307

rity Prices (CRSP) 1 database. The hybrid state is308

subsequently downsampled by h′d,a = σ(WShd,a),309

where σ denotes the ReLU function and WS ∈310

Rdmodel×(demb+NF ) is a parameter matrix.311

To capture the asset-specific loading to the hy-312

brid state especially to the asset-agnostic sd, we de-313

fine an asset embedding E ∈ RNA×dmodel , which314

can be looked up via the permnos of the assets.315

Here, NA denotes the total number of assets and316

dmodel is the dimension of the embedding. We then317

concatenate the asset embedding Ea with the down-318

sampled hybrid state to form ĥd,a = [h′d,a;σ(Ea)],319

the asset-specfic hybrid state for a.320

The excess return of asset a for the next321

day is predicted by rd+1,a = fP (ĥd,a), where322

fP = fPinp ◦ fH1 ... ◦ fPout represents a multi-323

layer fully connected prediction network. Specif-324

ically, fPinp(·) = σ(WPinp ·), with WPinp ∈325

R2dmodel×dmodel , and fPout(·) = WPout ·, where326

WPout ∈ Rdmodel×1. Additionally, fHk
, for k ∈327

[1, 2, 3, ...], denotes hidden layers parameterized328

by WHk
∈ Rdmodel×dmodel . For simplicity, batch329

normalizations, residual connections, and dropout330

layers are not included. Figure 3 illustrates the331

prediction network.332

The hybrid asset pricing network, represented as333

fH and parameterized by θ, comprises the embed-334

ding table E, the downsampling matrix WS , and335

the prediction network fP . We train fH using the336

Mean Square Error (MSE) criterion, which mini-337

mizes the average squared difference between the338

predicted return rd+1,i and the ground truth r̂d+1,a339

over the training set, written as340

argmin
θ

1

NAND

∑
d,a

(rd+1,a − r̂d+1,a)
2,

where rd+1,a = fH(hd,a; θ)

341

Where ND denotes the number of days in the train-342

ing set. The model is trained for T episodes with a343

batch size of B. We initially pre-train this hybrid344

asset pricing network fH to make use of the histor-345

ical factor data available before the beginning of346

the news dataset. During this pre-training phase, a347

placeholder embedding (such as the embedding for348

the word "Null") is utilized.349

1https://www.crsp.org/

4 Experiment 350

We conduct experiments to assess the asset pricing 351

efficacy of the proposed AAPM. The experimental 352

setup is detailed in Section 4.1. Subsequently, we 353

present the outcomes of the portfolio optimization 354

experiments in Section 4.2 and the asset pricing 355

error in Section 4.3. An extensive ablation study of 356

our method is provided in Section 4.4. Furthermore, 357

we explore the predictive capabilities of refined 358

news on economic indicators and stock movements 359

in Appendix C. 360

4.1 Experiment Setting 361

We build a dataset comprising two years of WSJ 362

articles spanning from September 29, 2021, to 363

September 29, 2023, following the knowledge cut- 364

off of the version of GPT we used. This approach 365

mitigates potential information leaks while main- 366

taining continuity in note n. Besides the LLM 367

filtering described in Section 3.1, we also manually 368

excluded articles on unrelated topics like travel, 369

lifestyle, and puzzles, based on their WSJ cate- 370

gories. Visualizations of our news dataset can 371

be found in Appendix B. The daily asset returns 372

are sourced from CRSP, while daily risk-free re- 373

turns and market returns are obtained from Kenneth 374

French’s data library 2. 375

We construct financial economic factors follow- 376

ing Jensen et al. (2023). In line with Chen et al. 377

(2024), we duplicate the values from the previous 378

time step for factors that are not updated in the cur- 379

rent step to handle discrepancies in the update fre- 380

quencies of the factors. Additionally, we imputed 381

the missing data values using the cross-sectional 382

median. The data split remained consistent across 383

all our experiments: the initial 9 months of data 384

were utilized as the training set, the following 3 385

months served as the validation set, and the last 1 386

year was reserved for testing. 387

We select five recent asset pricing baselines from 388

highly reputed financial economics journals, val- 389

idated under current empirical finance standards, 390

as indicated by Jensen et al. (2023), to assess our 391

approach: NN (Gu et al., 2020) introduced a deep 392

neural network for asset pricing; IPCA (Kelly et al., 393

2020) developed an instrumental PCA to identify 394

hidden factors and loadings; CA (Gu et al., 2021) 395

proposed to use a conditional autoencoder; NF 396

(Bybee et al., 2023) employs LDA for the WSJ 397

news as hidden factors similar to ours; and CPZ 398

2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french
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SR ↑ MDD (%) ↓

TP EW VW TP EW VW

NN 3.82 2.83 2.36 4.82 8.12 9.12
IPCA 4.07 2.96 2.66 3.77 5.77 8.63
CA 4.03 2.85 2.55 3.79 6.31 4.66
NF 3.73 2.76 2.34 5.12 7.91 6.31
CPZ 4.10 3.02 2.61 4.32 6.27 5.71
Ours 4.38 3.29 3.01 3.66 5.64 5.17
w/ G.4 4.45 3.43 3.09 3.82 5.57 4.77

Table 1: Sharpe Ratio (SR) and Maximal Drawdown
(MDD) for Tengency Portfolio (TP), Equal-Weighted
(EW) and Value-Weighted (VW) long-short portfolio
built based on NN (Gu et al., 2020), IPCA (Kelly et al.,
2020), CA (Gu et al., 2021), NF (Bybee et al., 2023),
CPZ (Chen et al., 2024), and our method with the default
GPT-3.5 or GPT-4. We bolded the best results and
underlined the second bests.

(Chen et al., 2024) utilized GAN to address stochas-399

tic discount factors. We replicated these models400

using the configurations from their respective pa-401

pers with their carefully chosen factor sets. For402

both our method and the baselines, we performed a403

hyper-parameter search to compare the best results.404

The hyper-parameter optimization setting for our405

method is detailed in Appendix A.406

4.2 Portfolio Optimization407

We begin by testing the Sharpe ratio for portfo-408

lios built on the predicted returns of individual as-409

sets. The Sharpe ratio (SR) (Sharpe, 1998) quan-410

tifies the risk-adjusted performance of a portfo-411

lio as Sp =
r̄p−r̄f
σ(rp)

, where rf stands for the risk-412

free return, rp represents the portfolio return and413

σ indicates the standard deviation. Furthermore,414

we evaluate the maximum drawdown, which is415

the largest decrease in the total value of the port-416

folio up to time T , expressed as MDD(T ) =417

maxτ∈(0,T )[maxt∈(0,τ)X(t)−X(τ)]. Here, X(τ)418

is the highest value and X(t) is the lowest value of419

the portfolio within the time interval (0, τ).420

We evaluate three prevalent methods for port-421

folio construction. The Tangency Portfolio (TP),422

where the asset weights are calculated as wt =423

Et[R
e
t+1R

e
t+1

T ]−1Et[R
e
t+1], with Re

t+1 denoting424

the predicted excess returns of all assets. Provides425

a theoretical portfolio in an ideal market without426

trading frictions. Next, we examine the more practi-427

cal long-short decile portfolios, which involve rank-428

ing assets by their expected returns, going long on429

avg |α| avg |t(α)| #|t(α)|>1.96
#test assets GRS

NN 0.83 2.89 0.64 6.89
IPCA 0.76 2.45 0.55 6.38
CA 0.77 2.63 0.52 6.42
NF 0.89 2.77 0.62 7.32
CPZ 0.74 2.44 0.49 6.77

Ours 0.66 2.40 0.46 6.34
w/ G.4 0.64 2.36 0.46 6.28

Table 2: Asset pricing errors for anomaly portfolios with
NN (Gu et al., 2020), IPCA (Kelly et al., 2020), CA (Gu
et al., 2021), NF (Bybee et al., 2023), CPZ (Chen et al.,
2024), and our method with GPT-3.5 and GPT-4. We
bolded the best results and underlined the second bests.

the top decile, and shorting the bottom decile. The 430

assets in these portfolios can be either “Equally- 431

Weighted” (EW) or weighted by their market capi- 432

talization, known as “Value-Weighted” (VW). 433

The experiment results are presented in Table 1. 434

Our approach achieved the highest SR across all 435

three portfolios, with SR improvements of 6.8%, 436

8.9%, and 13.2% respectively over the best base- 437

line methods (CPZ for TP and EW, IPCA for VW), 438

averaging a 9.6% increase. Additionally, it secured 439

the best or second-best MDD in TP and EW com- 440

pared to the leading baseline IPCA, with gains of 441

2.9% and 2.3% respectively. In VW, the MDD un- 442

derperforms the top baseline CA by 10.9%. How- 443

ever, substituting GPT-3.5 in our model with GPT- 444

4-0613 which has the same knowledge cutoff, re- 445

sulted in SR improvements of 8.5%, 13.6%, and 446

16.2% across the three portfolios, and improved 447

MDD levels to gains of 1.3%, 3.5%, and -2.4% 448

relative to the best baselines. 449

4.3 Asset Pricing Error 450

We further analyze the asset pricing errors of the 451

proposed method. Following Bybee et al. (2023), 452

we chose 78 anomaly portfolios as test assets. 453

These portfolios were constructed using 78 char- 454

acteristics, including typical anomaly characteris- 455

tics such as idiosyncratic volatility, accruals, short- 456

term reversal, and others, as identified by Gu et al. 457

(2020). We applied multiple metrics. The average 458

absolute alpha avg.|α| is computed by dividing 459

the expected value of the estimated error term ˆϵt,i 460

by the square root of the average squared returns 461

E[Rt,i] for all quantile-sorted portfolios. This nor- 462

malization was performed to account for variations 463
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in average returns between portfolios. To measure464

statistical significance, we calculated the average465

t-value for the results and analyzed the proportion466

of t-values exceeding 1.96. Moreover, we con-467

ducted a Gibbons, Ross, and Shanken (GRS) test468

(Gibbons et al., 1989) to determine if the regres-469

sion intercepts, represented by α1, α2, ..., αn, are470

collectively zero. This test helps to evaluate the471

overall significance of the intercepts in the regres-472

sion analysis.473

Table 2 displays the results. Our method secured474

either the top or second-best performance among475

all benchmarks. It demonstrates a 10.8% and 13.5%476

reduction in average |α| for GPT-3.5 and GPT-4477

respectively when compared to CPZ, the leading478

benchmark, along with a 1.6% and 3.3% increase479

in t-value. Additionally, there is a 6.1% reduction480

in the proportion of pricing results with a t-value481

exceeding 1.96 compared to CPZ for both GPT-3.5482

and GPT-4, as well as a 0.6% and 1.6% enhance-483

ment in the GRS test compared to IPCA.484

Figure 4: Cumulative excess return for decile portfolios.

We move forward to assess the proposed method485

by applying it to the pricing of decile portfolios.486

This process includes sorting the assets according487

to their predicted returns and then forming portfo-488

lios for each decile. Figure 4 shows the cumulative489

excess return over time. The figure clearly demon-490

strates that each decile creates a distinct ranking491

of returns in the right position, suggesting that the492

proposed approach effectively predicts returns at493

various levels.494

4.4 Ablation Study495

We conduct ablation studies to examine the in-496

fluence of various components in our approach.497

Initially, we evaluate the performance of different498

modules in our agent design in Section 4.4.2, fol-499

lowed by an examination of the depth and width500

of the analysis, which are controlled by N and K 501

respectively, in Section 4.4.2. 502

SR MDD avg |α| avg |t(α)|

NF 2.76 7.91 0.89 2.77
+ Factors 2.66 8.82 0.97 2.86

Naive 2.82 6.03 0.88 2.72
+ RAG 2.94 5.89 0.83 2.66
+ Emb. 2.88 6.42 0.86 2.71

Memory 2.99 6.99 0.81 2.64
+ Factors 3.03 7.12 0.79 2.62

Hybrid 3.14 5.59 0.73 2.49
+ Refine 3.26 6.31 0.70 2.46
+ Notes 3.18 6.91 0.74 2.55

Ours 3.29 5.64 0.66 2.40

Table 3: Ablation study of AAPM and comparison with
NF (Bybee et al., 2023). “Naive” directly produce the
analysis report given news and only daily embeddings
are inputted to the pricing network. “+ RAG” introduces
the external memory and retrieves Top-K items when
performing analysis. “+ Emb.” introduces the asset em-
beddings. “Memory” baseline incorporate both “+ RAG”
and “+ Emb.” “+ Factors” introduces the daily manual
factors into the pricing network in “Memory”. “Hy-
brid” baseline pretrained the pricing network of “Mem-
ory”. “+ Refine” refines the analysis report iteratively
in N rounds for “Hybrid”. “+ Notes” introduces the
macro economics and micro market notes. “Ours” is
our method that combines “+ Refine” and “+ Notes” in
“Hybrid”.

4.4.1 Agent Architecture Design 503

We analyze our architecture in a reverse manner, 504

beginning with a "Naive" agent that generates the 505

analysis report directly from the refined news with- 506

out any supplementary information or iterative anal- 507

ysis, while the pricing network solely uses the daily 508

embeddings as input. We then incrementally add 509

components to develop stronger baselines until ar- 510

riving at our method. The results are shown in 511

Table 3, and the baseline illustrations are provided 512

in Appendix D. 513

Furthermore, we contrast these methods with the 514

news-based asset pricing baseline NF (Bybee et al., 515

2023), along with an NF model incorporating man- 516

ual factors, akin to our full model. It is important 517

to highlight that NF employed WSJ news over a pe- 518

riod of 33 years, whereas we utilized only 2 years 519

of news data. 520

Owing to the analytical capabilities and feature 521
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Figure 5: The Sharpe ratio of equal-weighted portfolios
given different number of K and N .

extraction proficiency of LLMs, the “Naive” base-522

line enhances the SR by 2.2% with comparable523

pricing errors to NF. Incorporating external mem-524

ory further boosts the SR by 4.3% and decreases the525

average |α| by 5.7% over “Naive”, highlighting the526

significance of additional contextual information527

when interpreting business news. Moreover, asset528

embedding contributes to a 2.1% increase in SR529

and a 2.3% reduction in average |α| by introducing530

asset-specific loadings.531

By combining both, the “Memory” baseline en-532

hances the SR of “Naive” by 6.0% and decreases533

the average |α| by 8.0% with a lower t value. In-534

corporating the manual factors, the SR saw a slight535

increase of 1.3%, while the average |α| decreased536

by 2.5%. In comparison, the performance of NF537

declined after the introduction of manual factors,538

which is consistent with the findings of Bybee et al.539

(2023), where the inclusion of Fama-French fac-540

tors reduces the SR, which may due to suboptimal541

interactions between factors and news features.542

After pretraining the pricing network with his-543

torical factor data, the performance of the “Hybrid”544

baseline saw a notable enhancement of 5.0% in545

SR and a 9.9% reduction in the average |α| when546

compared to the “Memory” baseline. This demon-547

strates the synergy between manual factors and548

LLM-generated reports, resulting in a successful549

non-linear interaction. The improvements from our550

iterative refinement and long-term notes over the551

“Hybrid” baseline are 3.8% and 1.3% in SR, 4.1%552

and a slight negative -1.4% in average |α|, respec-553

tively with a lower t value and a similar level of554

MDD. These enhancements collectively yield 4.8%555

and 9.6% gains in SR and average |α| respectively556

in our full method compared to a “Hybrid” base-557

line, underscoring the effectiveness of our agent558

architecture design.559

4.4.2 Analysis Depth and Width560

We further investigate the depth of the analysis,561

which is controlled by the number of iterations562

N to refine the analysis report, and the width,563

which is determined by K, the amount of rele- 564

vant information to check. The results are shown 565

in Figure 5. We keep one variable constant and 566

test the other. We observe that the agent benefits 567

from more rounds of analysis and a broader range 568

of relevant information overall with a sharp de- 569

cline in marginal gain after a certain point around 570

K ×N = 15, likely due to the sufficiency of the 571

provided information. Thus, we test an extreme 572

case where N = 1 and K = 15, resulting in the 573

SR dropping to 3.12. This indicates that iterative re- 574

finement is necessary, as items retrieved in different 575

rounds of refinement provide diverse information 576

as the query evolves. In contrast, a single retrieval 577

leads to items falling into the same topic, with the 578

value of additional items decreasing rapidly and 579

potentially introducing noise. 580

5 Discussion 581

Our proposed approach presents a promising 582

method to fuse qualitative discretionary investment 583

with quantitative factor-based strategies through 584

the use of LLM agents. Nonetheless, there is still 585

much to investigate regarding additional capabil- 586

ities of LLM agents that could further enhance 587

asset pricing power. Firstly, internet access and 588

a broader range of information sources, including 589

those available in SocioDojo, may enable the agent 590

to generate more in-depth analyses, as discretionary 591

investment relies on information beyond just news 592

or domain knowledge. Secondly, employing spe- 593

cialized financial LLMs like FinGPT (Yang et al., 594

2023) could further improve the agent’s financial 595

analytical capabilities. Finally, it is crucial to con- 596

sider multimodal information, such as diagrams 597

and figures, which are frequently presented in fi- 598

nancial documents. 599

6 Conclusion 600

In this research, we introduced AAPM, a model 601

that combines qualitative analysis from the LLM 602

agent with quantitative factors in asset pricing. 603

AAPM surpassed established asset pricing meth- 604

ods in multiple evaluations, including portfolio op- 605

timization and asset pricing error. Additionally, 606

we performed an in-depth analysis of each com- 607

ponent in our agent design. We believe that our 608

study can improve the comprehension of the inter- 609

action between discretionary investment and quan- 610

titative factor-based models, toward a society with 611

increased economic efficiency. 612
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Limitations613

Our experiments only focus on the US market and614

English news, which may potentially impact model615

performance in lower-resources languages. In or-616

der to exclude the information leak, we can only617

apply news data after September 2021 which re-618

stricts our study to a 2 years period after this time,619

however, we use a large test split where half of the620

dataset was applied as the test set to best evaluate621

how well the proposed method can be generalized622

beyond the training period. Finally, public infor-623

mation in the stock market includes not only news,624

but also reports, reports from social networks, aca-625

demic journals, opinions from experts, etc.; we626

do not cover these information nor consider multi-627

modal inputs as discussed in Section 5.628

Ethics Statement629

We do not identify any ethical concerns in our ap-630

proach. Our study does not involve any human631

participation. Furthermore, the application area of632

our method is not directly related to humans, reduc-633

ing the risk of abuse or misuse. In fact, considering634

a wider range of information, our method has the635

potential to enhance market efficiency, resulting in636

economic benefits for society.637
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A Hyperparam Search 766

Parameter Distribution

Learning rate {1e-3,1e-4,5e-4,5e-3}
dmodel {128,256,512,768,1024}
demb {128,256,512,768,1024}
Epochs {50,100,150,200}
Hidden Layers {0,1,2,3,4,5}
Dropout rate U(0, 0.3)
Batch size Ulog(32, 1024, 8)
η U(0.9, 1)
LW {1,7,15,30,45,60,90,180}
N {1,2,3,4,5}
K {1,2,3,4,5}

Table 4: Distributions for the key hyperparameters in
the hyperparameter search.

For our approach, we conduct hyperparameter 767

searches using Weights & Biases Sweep (Biewald, 768

2020). Table 4 shows the distribution of empiri- 769

cally significant parameters used for our hyperpa- 770

rameter search. Here, U(a, b) signifies a uniform 771

distribution between a and b, while Ulog(a, b, r) 772

indicates a logarithmic uniform distribution with 773

base r between a and b. The evaluation criteria 774

of our method are based on the Sharpe ratio of an 775

equal-weight long-short portfolio. 776

We conducted our experiments on our clusters, 777

the major workload has the following configura- 778

tion: 779

• 2 × Intel Xeon Silver 4410Y Processor with 780

12-Core 2.0GHz 30 MB Cache 781

• 512GB 4800MHz DDR5 RAM 782

• 2 × NVIDIA L40 Ada GPUs (no NVLink) 783

We employed PyTorch Lightning (Falcon and The 784

PyTorch Lightning team, 2019) for parallel train- 785

ing. 786

B Dataset visualizations 787

Figure 6 illustrates the variations in the number of 788

articles and assets over time. We analyze the pri- 789

mary topics discussed in the news articles within 790

our dataset across different periods. The topics 791

were determined based on the titles of the news 792

articles for each season. Common words such as 793

"US," "Stock," and "Market" were excluded as they 794

did not effectively represent the event’s topic. The 795
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Figure 6: The number of filtered WSJ articles and active
assets per day.

resulting word cloud is shown in Figure 7. It is clear796

that the economy is mainly influenced by various797

long-term events. It begins with a gradual decline798

in the emphasis on COVID. Then, the focus shifted799

towards managing inflation and the decisions made800

by the FED. The banking crisis at the start of 2023801

soon became the new central point, followed by802

the acknowledgment of AI as a key driver for the803

economy, mainly due to the success of LLMs. This804

indicates that these event trends have the potential805

to serve as strong predictors of economic indicators806

and the market. This is also reflected in Appendix807

C, where we evaluated that news articles have sig-808

nificant predictive power for economic indicators809

and market trends.810

We then use GPT to analyze the relevant tickers811

for each news item in our dataset with the following812

prompt:813

You are a helpful assistant designed to analyze
the business news. You need to extract the stock
tickers of the companies most closely related to
the news. If there is no relevant ticker, return an
empty list. You should never make up a ticker
that does not exist. Now, analyze the following
news: {input}

The stock tickers linked to the news in our814

dataset are displayed in Figure 8. Over the two-815

year span, technology stocks have evidently been816

the market’s primary focus, aligning with our im-817

pression and the actual robust performance of these818

stocks over the period.819

C News as Financial Economic Predictor820

To explore the predictive capability of business821

news on financial and economic dynamics, we con-822

duct an experiment using refined news features to 823

forecast the economic indicators in Appendix C.1 824

and market movements in Appendix C.2. We em- 825

bed the refined news directly and use the daily aver- 826

aged embeddings of the refined news as predictors 827

in our experiments. 828

C.1 Economic Indicators 829

We assess the capability of news features to fore- 830

cast the daily percentage changes in typical and 831

most popular macroeconomic indicators in differ- 832

ent topics sourced from the FRED database3. These 833

indicators encompass the stock market (SP500), 834

the market yield on U.S. Treasury Securities at 835

a 10-Year constant maturity (DGS10), Moody’s 836

seasoned Baa corporate bond minus the federal 837

funds rate (BAAFF), the 10-year breakeven infla- 838

tion rate (T10YIE), Brent crude oil prices (DCOIL- 839

BRENTEU), and the 30-year fixed-rate conforming 840

mortgage index (OBMMIC30YF). The findings are 841

illustrated in Figure 9. The forecasted results ex- 842

hibit a high degree of accuracy, as evidenced by 843

the high R2 score. This implies that news provides 844

valuable insights for predicting macroeconomic in- 845

dicators. 846

C.2 Stock Price Predictor 847

We further investigate the predictive power of 848

news features to the price movements of individ- 849

ual stocks. We chose 8 typical stocks that has 850

been frequently mentioned in the new from our 851

analysis in Appendix 8, and used refined news 852

features as predictors to estimate their daily per- 853

centage price changes. The results are displayed 854

in Figure 10, with the corresponding R2 scores 855

given in brackets. We note high accuracy and R2 856

scores for all selected stocks, suggesting that news 857

can significantly help in forecasting stock prices. 858

However, it is important to recognize that due to 859

non-stationarity and the risk of overfitting, stock 860

price prediction cannot be directly applicable as 861

asset pricing (Kelly et al., 2023), but it provides 862

insights into the value of the news in the pricing of 863

individual stock. 864

D Illustration of the Ablation Baselines 865

We progressively developed three baselines, start- 866

ing with a naive agent, followed by a memory agent 867

enhanced with an external vector base, and culmi- 868

nating in a hybrid agent that incorporated manual 869

3https://fred.stlouisfed.org/
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Figure 7: The word cloud of topics of the WSJ business news over time in our dataset (Bottom) compared to the
corresponding risk adjusted market return (Top).

Figure 8: The most frequent mentioned stock tickers in
the news.

factors as discussed in Section 4.4. Figure 11 illus-870

trates an example of how a hybrid agent generates871

an analysis report from raw news input without it-872

erative refinement. The analysis report is generated873

directly using the Top-5 relevant items from the874

memory with the following prompt:875

You are a helpful assistant designed to analyze
the business news to assist portfolio management.
Now, read this latest news and summarize it
in one single paragraph, preserving data, date-
time of the events, and key information, and in-
clude new insights for investment using the rec-
ommended relevant information:

{news}

The architecture of the agent for the memory876

baseline mirrors that of the hybrid baseline. In the877

naive baseline, external memory is omitted, and the 878

analysis report is produced directly from the refined 879

news. The pricing network for the hybrid agent is 880

identical to our method depicted in Figure 3, while 881

the memory baseline omits the middle branch of 882

manual factors. The naive baseline additionally 883

removes the asset embedding branch. 884

E Prompts 885

In this section, we will present the prompts utilized 886

by the agent, covering the refinement of the raw 887

news input, the iterative refinement of the analysis 888

report, the initial macroeconomic note, and the 889

updating of notes. 890

E.1 News refinement 891

This refinement of the raw news input discussed 892

in Section 3.1 is achieved through the following 893

prompt: 894

You are a helpful assistant designed to analyze
business news. You need to use brief language to
describe key information and preserve key data
in the news. Now, analyze the following news:
{input}

E.2 Iterative analysis 895

In the first iteration, the analysis begins with the 896

following prompt: 897
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Figure 9: Use news features as the predictor to predict daily percentage change of the economic indicators.

Figure 10: Predict the price movement of stocks in focus using augmented news features as predictors.

Figure 11: Example of the Hybrid agent baseline analyze a raw news without iterative refinement of analysis report
as well as the macroeconomic and market trend notes.

You are a helpful assistant designed to analyze898
the business news to assist portfolio management. 899
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You will help me analyze this latest news from
The Wall Street Journal and provide an analysis
report, then I will search the relevant news or
articles from the knowledge base based on your
analysis report to help you refine it iteratively in
multiple rounds. Let’s start with this latest news,
provide your analysis report, and I will help you
refine it with the relevant information later, if
you think this news is completely not helpful for
investment now or future, call skip function to
skip it, do not skip it if it may contain helpful
information to future investment:

{inputs}
Here is a summary of the macroeconomics by

today and the investment notes:
{macro}900

After the first iteration, the agent will be901

prompted as follows to continue the analysis:902

Based on your current analysis report, I found
those potentially relevant news and excerpts from
the knowledge base, please refine your analysis
report with this information:

{inputs}

In the last iteration, the agent will end the analy-903

sis with this prompt:904

Based on your current analysis report, I found
those potentially relevant news and excerpts from
the knowledge base, now finish your analysis re-
port with them:

{inputs}

E.3 Update of note905

The macroeconomic and market trend note is up-906

dated with the new analysis report by the following907

prompt:908

Here is the current summary of the macroe-
conomic landscape and investment notes as of
{date}:

{macro}
Now, given the latest news and the analysis re-

port, update the macroeconomic summary with
the new insights and impacts from the news. In-
clude any relevant information that could influ-
ence the global economic outlook, such as geopo-
litical events, policy changes, or economic indica-
tors. You should also take note of any important
notes about investment trend and chances. Here
are the latest news and the analysis report:

{news}
Now, update the macroeconomic summary

with the new insights and impacts from the news
as well as the investment notes.

E.4 Initial Macroeconomic Summary 909

We use the LLM to summary the macroeconomic 910

status before the beginning time of the dataset, the 911

summarization generated by GPT-3.5-Turbo-1106 912

is as follows: 913

By September 2021, the global macroeconomic
landscape was heavily influenced by the ongoing
impacts of the COVID-19 pandemic. Many coun-
tries were in various stages of recovery, grappling
with challenges such as disrupted supply chains,
inflationary pressures, and shifts in employment
patterns. Key points include: 1. **Economic Re-
covery**: Different regions experienced uneven
recovery, with some economies bouncing back
faster due to successful vaccination campaigns
and substantial fiscal stimuli. For instance, the
U.S. and China showed signs of robust economic
rebound, whereas many European countries were
still struggling with economic output below pre-
pandemic levels. 2. **Inflation Concerns**: Ris-
ing inflation became a significant concern in many
countries, partly due to supply chain disruptions
and increased demand as economies reopened.
This led to higher prices for commodities, goods,
and services. 3. **Monetary Policy**: Central
banks, including the U.S. Federal Reserve and the
European Central Bank, maintained accommoda-
tive monetary policies, with low interest rates to
support economic growth. However, there was
growing discourse about when and how to start
tapering these measures. 4. **Employment Fluc-
tuations**: While some sectors and countries
saw a rapid recovery in employment levels, oth-
ers faced ongoing job losses, highlighting the pan-
demic’s uneven impact across different industries.
5. **Supply Chain Disruptions**: Global supply
chains were strained, impacting everything from
consumer electronics to automobile manufactur-
ing, leading to shortages and delays. 6. **Shifts
in Consumer Behavior**: The pandemic acceler-
ated trends like online shopping and remote work-
ing, reshaping economic activities and consumer
behaviors in lasting ways. Overall, the state of
global macroeconomics by September 2021 was
defined by recovery efforts amidst ongoing chal-
lenges, with significant variability between differ-
ent countries and regions.
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