
Calibrated Language Models and How to Find Them with Label Smoothing

Jerry Huang ♯ 1 2 Peng Lu ♯ 1 Qiuhao Zeng 3

Abstract
Recent advances in natural language processing
have enabled the fine-tuning of large language
models (LLMs) into powerful interactive agents
with improved instruction-following ability. How-
ever, this can impact confidence calibration for
reliable model output, which has not been re-
searched in full. In this work, we examine various
open-sourced LLMs, where we identify signifi-
cant calibration degradation after instruction tun-
ing. Seeking a practical solution, we look towards
label smoothing, which has been shown as an
effective method to regularize for overconfident
predictions but has yet to be widely adopted in the
supervised fine-tuning (SFT) of LLMs. We pro-
vide insight into why label smoothing can main-
tain calibration throughout the SFT process, but
identify settings remain where the effectiveness
of smoothing is severely diminished. We posit
the cause to stem from the ability to become over-
confident, which has a direct relationship with
the hidden and vocabulary size of models, which
we justify theoretically and experimentally. Fi-
nally, we address an outstanding issue regarding
the memory footprint of the cross-entropy loss
computation with label smoothing, designing a
customized kernel to dramatically reduce memory
consumption without sacrificing speed or perfor-
mance in comparison to existing solutions.

1. Introduction
Tremendous progress has been made in building models that
follow natural language instructions (Ouyang et al., 2022;
Sanh et al., 2022; Chung et al., 2024) through the use of
LLMs pre-trained on large amounts of data as well as high-
quality datasets that enable them to learn to interact in a
human-like manner (Bach et al., 2022; Wang et al., 2022;

*Equal contribution 1Université de Montréal 2Mila - Quebec AI
Institute 3University of Western Ontario. Corresponding author:
Peng Lu <peng.lu@umontreal.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2023). However, such models have demonstrated a propen-
sity for over-confidence in their predictions (Zhao et al.,
2021; Jiang et al., 2021; Xiong et al., 2024), eliciting con-
cerns over their use in more high-stakes decision-making
scenarios. Such observations are not new with respect to
neural networks, which have consistently been shown to
suffer from over-confident predictions and over-estimate the
likelihood of their correctness (Guo et al., 2017; Szegedy
et al., 2016; Müller et al., 2019; Naeini et al., 2015; Minderer
et al., 2021). To improve this, methods such as tempera-
ture scaling (Guo et al., 2017) and label smoothing (Müller
et al., 2019) have been proposed as solutions with varying
effectiveness, spurring additional work in ensuring that pre-
dictions and confidence remain matching (Lin et al., 2017;
Mukhoti et al., 2020; Pereyra et al., 2017; Liu et al., 2022).

In this work, we focus on label smoothing (LS) for calibra-
tion in SFT settings. Motivated by previous works showing
the effectiveness of LS for calibration in different settings,
we first verify its effectiveness. We demonstrate that while
it can be effective, problems begin to emerge in the case
of large vocabulary LLMs (LV-LLMs). To explain this
phenomenon, we attempt to establish a link between the pre-
dictive abilities of such LLMs and their size. We show that
in such settings, an explicit link between the lower bound of
the model entropy and the hidden size of the model causes
models to fail to become overconfident (Zhao et al., 2021),
negating the potential benefits and use of label smooth-
ing. We further show how alternative techniques, such as
temperature scaling and logit capping, explicitly act as a
mechanism to steer models toward overconfidence, allowing
the benefits of label smoothing to once again emerge.

Nevertheless, a problematic setting still remains. Growing
vocabulary sizes cause large amounts of memory to be con-
sumed to materialize the relevant logits and probabilities,
making training difficult. While efficient methods (Wijmans
et al., 2025; Hsu et al., 2024; PyTorch, 2024) have been
proposed by implementing hardware-level optimization that
significantly reduces this memory bottleneck, they often
cannot support label smoothing. To address this, we iden-
tify specific optimizations that can be made in computing
matrices in GPU memory, allowing for the support of label
smoothing with minimal increases in memory or computa-
tional speed. Thus we introduce a new kernel that enables
us to use label smoothing more efficiently as a whole.

1

mailto:peng.lu@umontreal.ca

Calibrated Large Language Models and How to Find Them with Label Smoothing

To summarize our contributions, we: 1) We point out
that common SFT practices significantly degrade LLM
model calibration. 2) We demonstrate and justify why la-
bel smoothing is an appropriate approach to mitigating this
concern. 3) However, we further identify specific issues
where label smoothing remains prohibitive, particularly with
large vocabulary LLMs, and why existing methods fall short.
4) We demonstrate that optimizations exist, which we in-
corporate in custom kernels which enable us to perform
label smoothing with significant memory and throughput
improvements without performance sacrifices.

2. Related Work
Model Calibration (Brier, 1950; Murphy, 1972; DeGroot
& Fienberg, 1983) is a concept of matching the prediction
probabilities yielded for different inputs to the expected ac-
curacy on these inputs. In a K-way classification setting,
let X ∈ RD and Y ∈ {γk}Kk=1 indicate the input and label
space, respectively. Let f be a classifier and f (ŷ|x) = ĉ be
the confidence of prediction, i.e., the maximum of probabil-
ities among K dimensions corresponding to its prediction ŷ.
A model is perfectly-calibrated when

P (ŷ = y|ĉ = c) = c ∀c ∈ [0, 1]. (1)

Qualitatively, model calibration can be derived as
E [|P (ŷ = y|ĉ = c)− c|]. One metric that has been widely
used for measuring calibration is the expected calibration er-
ror (ECE) (Naeini et al., 2015), which is a weighted average
of bin-wise mis-calibration. The ECE divides the confi-
dence score of N samples into M uniform confidence bins
{Bm}Mm=1 and takes the mean of the gap between accuracy
(acc) and confidence (conf) over the bins weighted by the
number of samples in the bins.

ECE =

M∑
m=1

|Bm|
N
|acc (Bm)− conf (Bm)| . (2)

Additional metrics that have been proposed include the Root
Mean Square Calibration Error (RMS-CE)(Hendrycks et al.,
2019), which places greater emphasis on large calibration
deviations, and the Static and Adaptive Calibration Errors
(SCE/ACE)(Nixon et al., 2019), which measure miscali-
bration over fixed and data-dependent binning schemes,
respectively. These metrics offer complementary perspec-
tives to standard calibration error measures, enabling a more
comprehensive assessment of model confidence alignment.

Label Smoothing (LS) has been demonstrated to be a
promising paradigm in settings to prevent models from be-
coming overconfident (Szegedy et al., 2016; Müller et al.,
2019) or when noise exists in the provided labels (Lukasik
et al., 2020; Wei et al., 2022b; Lu et al., 2023). Consider

a model parameterized by θ to model a conditional distri-
bution P (·|x;θ), where the final operation is a softmax.
Consider the model to apply a function f(·;θ) on x and
σ̂(x;θ) ∈ [0, 1]K to be the post-softmax output. Then

P (γi|x;θ) = σ̂(x;θ)i =
exp(ℓ(x)i)∑K

k=1 exp(ℓ(x)k)
, (3)

where ℓ(x) ∈ RK is the pre-softmax output of the model,
commonly referred to as the logits or log-probabilities. Mod-
els are usually trained by minimizing a cross-entropy (CE)
loss on a dataset D = {xn, yn}Nn=1 sampled from an un-
known distribution p(x, y) in order to learn the true condi-
tional distribution py|x(y|x), computed as

LCE
D (θ) = − 1

N

N∑
i=1

K∑
k=1

δγk
yn

logP (γk|x;θ)

≈ −Ep(x,y)

[
K∑

k=1

p(γk|x) logP (γk|x;θ)

]
= −Ep(x,y)[KL [σ(x)∥σ̂(x;θ)]] + c

= LCE
p(x,y)(θ),

(4)

where δji is the Kronecker delta with value 1 only when
i = j. Label smoothing mixes the original distribution with
a discrete uniform distribution U = [1/K]

K ∈ RK using a
smoothing rate β ∈ [0, 1]. The loss then becomes

LLS
D (θ) = − 1

N

N∑
i=1

[
K∑

k=1

[
(1− β)δγk

yn
+

β

K

]
logP (γk|x;θ)

]

= (1− β)LCE
D (θ) +

β

K

N∑
i=1

KL[u∥σ̂(xn;θ)] + c

≈ −Ep(x,y) [KL [(1− β)σ(x) + βu∥σ̂(x;θ)]] + c

= LLS
p(x,y)(θ).

(5)

Thus, label smoothing can be understood to a regularization
term that encourages a uniform distribution over the output
labels, hence preventing it from over-fitting to the training
data and encouraging a model to be less confident on all
samples by smoothing the true conditional being learned.

3. Smoothing and Calibration in LLMs
Preliminaries. Define an auto-regressive LLM to be pa-
rameterized by parameters θ. A model represents an embed-
ding function g(·;θe) : RN → RD×N where L is the length
of a discrete input sequence x and D is the hidden size of
the model that produces an embedding E ∈ RD×N . This
is followed by a classifier C(θc) ∈ RD×|V | and a softmax
operation to produce a probability distribution over V .

2

Calibrated Large Language Models and How to Find Them with Label Smoothing

A common practice is to tune θ = [θe,θc] on a dataset
through supervised fine-tuning (SFT), or instruction tun-
ing (Wei et al., 2022a; Ouyang et al., 2022; Chung et al.,
2024; Dubois et al., 2023). During SFT of an LLM, an input
sequence x of length L consists of a sequence of discrete
vocabulary tokens xi ∈ V ∀i ∈ [N]. The first m tokens in
x consist of the instruction, while the rest is considered the
target output. The goal of SFT is to minimize a CE objective
over the output portion of the sequence xm+1:N , computed
as a loss over the individual elements of the sequence

Lx(θ) =
∑
j,v

δvxj
log
(
C(θc)

⊤g(v|x1:j−1;θe)
)
. (6)

In essence, the learning problem is a |V |-class classification
problem for each element in the target portion of the input
sequence, where the prediction for any specific position is
influenced by all previous elements in the sequence.

This procedure transforms the original parameter set θ into
a new set, denoted θSFT, which often enables the model
to follow human-provided instructions with remarkable ac-
curacy and fluency. However, this fine-tuning process can
also lead to a deterioration in the model’s calibration, as
illustrated in Figure 1, potentially reducing its reliability in
estimating uncertainty or confidence.

Why does Instruction Tuning Lead to Mis-calibration?
Our results raise a question: Why does instruction tuning
degrade calibration? To better understand this, SFT can be
viewed through the lens of out-of-distribution (OOD) gen-
eralization and calibration error. In particular, we assume
that the SFT data consists of an in-distribution (ID) dataset
whereas the downstream dataset on which generalization
and calibration are tested constitutes an OOD dataset.

Suppose we have an ideal parameter set θ∗ that minimizes
calibration error on an unknown dataset D, defined as
E(x,y)∼D[∥f(x;θ) − c(x)∥22] where c(x) = Ey∼f(x;θ)[y]
is the expected label given a prediction f(x;θ). In other
words, f(·;θ) always produces the calibrated prediction for
the label given an input x such that the output confidence
matches the expected label over the subset of samples with
the same confidence value. Thus the goal of SFT is to learn
a set of parameters θ∗ that outputs reliable prediction proba-
bility on samples from both an unseen OOD domain, which
is defined by a distribution pOOD(x, y), as well as the ID
distribution pID(x, y). Thus the goal is to minimize

Lp(θ) = Ep[∥f(x;θ)− f(x;θ∗)∥22], (7)

for p ∈ {pOOD(x, y), pID(x, y)}.

Oh et al. (2024) demonstrate that under such a setting, si-
multaneously maintaining accuracy and calibration of the

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Un
de

rc
on

fid
en

t

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Un
de

rc
on

fid
en

t

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Un
de

rc
on

fid
en

t

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Un
de

rc
on

fid
en

t

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Un
de

rc
on

fid
en

t

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Un
de

rc
on

fid
en

t

Overconfident

Confidence

A
cc

ur
ac

y

Gemma-2B LLaMA2-7B

LLaMA3.1-8B Mistral-7B

Qwen2-7B Qwen2.5-7B

SFT False True

Figure 1. Reliability diagrams of open-sourced pre-trained models
with (red) and without instruction-tuning (blue) on the MMLU
dataset (Hendrycks et al., 2021). The horizontal axis represents
the model’s confidence in each answer choice for each ques-
tion, while the vertical axis shows the accuracy on each question.
The solid diagonal indicates perfect calibration, separating areas
where predictions are deemed over-confident or under-confident.
Instruction-tuning visibly leads to over-confidence, regardless of
the instruction-tuning dataset (which differs between models).

final classifier (in the case of an auto-regressive LLM, this
is the language modeling head) has a direct relationship to
the diversity of the feature embeddings as follows:

Lemma 3.1 (Oh et al. 2024). Let f(·;θ) : X →
[0, 1]K be a real-valued function of the form f(x;θ) =∑d

i=1 fi(x[i];θ) where fi(·;θ) is an arbitrary one-
dimensional function, and f is in a hypothesis class F
that has pseudo dimension Pdim(F) = df . Let DID ={(

x
(n)
ID , y

(n)
ID

)}N

n=1
be a dataset sampled from the ID dis-

tribution. If (x[1], . . . ,x[d]) have matching marginals for
ID and OOD, and (x[i],x[j]) is a bi-variate Gaussian for

3

Calibrated Large Language Models and How to Find Them with Label Smoothing

RMS ECE SCE ACE TACE Avg. CE
0

3

6

9

RMS ECE SCE ACE TACE Avg. CE
0

10

20

30

RMS ECE SCE ACE TACE Avg. CE
0

3

6

9

RMS ECE SCE ACE TACE Avg. CE
0

2

4

6

8

RMS ECE SCE ACE TACE Avg. CE
0.0

2.5

5.0

7.5

RMS ECE SCE ACE TACE Avg. CE
0

5

10

Metric

Va
lu

e

Gemma-2B Gemma2-2B LLaMA2-7B

LLaMA3-8B LLaMA3.2-3B Mistral-7B

Smoothing
0.0

0.1

0.2

Figure 2. Effects of instruction-tuning on calibration, presented under a number of different calibration error metrics (where lower is
better). Values can range from 0 to 100. Models are all fine-tuned on a Tulu3 (Wang et al., 2023) SFT dataset and evaluated on MMLU.
We can observe that across all models, which have various structural differences, the use of label smoothing is capable of reducing
calibration error while having negligible effects on downstream performance accuracy on the task.

every i, j ∈ [d], then for any δ ∈ (0, 1) and for all f , the
following bounds hold with probability at least 1− δ:

LpOOD(θ) ≤ LDID(θ) +
d

σmin

(
Σ̃pID(x)

) +∆

+O

√log

(
N

dh

)dh
(

1

Nδ

) ,

(8)

EpOOD(x,y)

[
∥f (x;θ)− y∥22

]
+ EpOOD(x,y)

[
∥c (x)∥22

]
− 1

≤LDID(θ) +
d

σmin

(
Σ̃pID(x)

) +∆

+O

√log

(
N

dh

)dh
(

1

Nδ

) ,

(9)

where

θ∗ = argmin
θ∈Θ

LpOOD(x,y)(θ) + LpID(x,y)(θ),

∆ = LpOOD(x,y)(θ
∗) + LpID(x,y)(θ

∗),
(10)

and Σ̃pID(x) = EpID(x)[x̃x̃
⊤] is a covariance matrix with a

strictly positive minimum singular value of d-dimensional
normalized input x̃ = (x̃[1], ..., x̃[d]), where x̃[i]=(x[i]−
E[x[i]])

√
Var(x[i]) and σmin(M) is the smallest singular

value of a matrix M ∈ Rd1×d2 .

The dependence of the bound on the minimal singular value
of the covariance matrix indicates that as the set of learnt

feature embeddings (the embedding of the context in this
scenario) becomes less mutually dependent, both calibration
error and classification error can be minimized. However,
prior works have shown that fine-tuning can significantly
reduce the diversity of such features (Mukhoti et al., 2024;
Kumar et al., 2022; Huh et al., 2024), justifying why stan-
dard SFT can significantly degrade calibration (Figure 2).

The Effects of Label Smoothing. To understand the ef-
fects of label smoothing from a model calibration perspec-
tive, we provide an optimization perspective of the con-
straints that are imposed from the regularization penal-
ties (Bertsekas, 1999). First, define

Definition 3.2. The logit distance vector for x, d(x), is

d(x) =

[
max

1≤i≤K
ℓ(x)i − ℓ(x)k

]K
k=1

∈ RK . (11)

One way of ensuring that a model does not over-estimate a
specific class is to enforce this as a hard constraint, which
results in equal logits among all classes and a softmax
output of o = f(x;θ) = [1/K]K . As such, it is often
preferable to enforce this as a soft-penalty function P :
RK → R into the objective function minimized during
training. Recalling Equation (5), we can relate this soft-
penalty to the additional KL-divergence introduced by the
label smoothing objective.

Proposition 3.3. A linear penalty (or a Lagrangian term)
for the hard constraint d(x) = 0 is bounded from above

4

Calibrated Large Language Models and How to Find Them with Label Smoothing

and below by KL (u∥σ̂ (x;θ)), up to additive constants

KL[u∥σ̂ (x;θ)]−logK ≤
K∑
i=1

d (x)i
K

≤ KL [u∥σ̂ (x;θ)] .

(12)

The proof (in Appendix A.1) indicates that label smoothing
approximately minimizes, for a linear penalty, the constraint
d(x) = 0, encouraging equality among the logits for each
class to ensure that over-confidence is penalized. More
importantly, however, it is noted that
Proposition 3.4. Define a likelihood model p (y|x;θ) =
Cat (softmax (f (x;θ))), a categorical distribution with
parameters z = softmax (f (x;θ)) ∈ ∆(Θ) where ∆(Θ)
denotes a probability simplex over the parameter space Θ.
The label smoothing objective is equivalent to Maximum
A Posteriori (MAP) estimation on the softmax probability
vector under the independence assumption p (z|x) = p (z).

A proof is provided in Appendix A.2. This MAP formula-
tion above relies on the provided label y for each sample
x, without exploiting the potential similarities among dif-
ferent samples in the empirical training dataset for more
accurate estimation. Łukasz Rajkowski (2019) showed that
using MAP estimation can lead to greater separability and
diversity of individual samples, under the assumption that
the sample is sampled from a normal distribution. Chi et al.
(2024) further prove this to be the case with Transformer-
based language models. In conjunction with prior claims
from Oh et al. (2024), this proposition indicates that label
smoothing can in fact learn more diverse input features,
further explaining the improvement in calibration.

4. Label Smoothing for Large Vocabularies
We conduct SFT training with and without LS on a Tulu3
dataset (Wang et al., 2023) for different pre-trained language
model families, including Llama (Grattafiori et al., 2024),
Gemma (Gemma Team, 2024) and Mistral (Jiang et al.,
2023). While we can note the usefulness of label smooth-
ing for model calibration shown in Figure 2, it becomes
clear that its effectiveness is much less visible in some cases.
Take for instance three LLaMA3 models of sizes 1B, 3B and
8B, which we fine-tune on the same instruction dataset (Fig-
ure 3). While label smoothing shows an improvement in
calibration for the 8B-sized model, this diminishes signifi-
cantly to the 3B model and 1B model, both in the baseline
model (where no SFT procedure has been performed) as
well as SFT with multiple different datasets. Thus, we at-
tempt to delve deeper into why our empirical results occur,
shedding light on a previously unexplained phenomenon.

In this section, we study the concentration behavior of the
LM head by analyzing its relationship between entropy and
model size, which provides an explanation of diminishing

1B 3B 8B
LLama 3

0.00

0.01

0.02

0.03

0.04

0.05

Calibration Improvement
RMS
ECE
SCE
ACE
TACE
Avg CE

Figure 3. Calibration of different LLaMA3 models fine-tuned on
the same SFT dataset. As the size of the model decreases, the
calibration of the model sees less improvement from the use of LS.

10 20 30 40 50 60
D

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
nt

ro
py

 G
ap

 (lo
g(

|V
|)

lo
g(

|V
|)

)

Entropy Gap relative to dimension size D
|V| = 10000
|V| = 32000
|V| = 128256
|V| = 151936
|V| = 256000

Figure 4. Relative entropy bound for different LLM vocabulary
sizes with varying hidden sizes (D). Our visualization shows
the normalized entropy gap for varying hidden sizes of the LM
head. This gap is calculated by taking the difference between
the entropy upper and lower bounds and dividing by the upper
bound (log |V |). A lower ratio indicates the model is restricted to
producing concentrated predictions.

returns of label smoothing. We start by providing the follow-
ing lemma, which establishes a bound on the LLM logits
prior to the language modeling head.

Lemma 4.1. Let C ∈ RD×|V | be a matrix with ∥C∥2 =
σC , and let h ∈ RD be a vector such that each entry of h
satisfies |hi| ≤ σh. The upper bound for

∥∥C⊤h
∥∥
2

is:

∥∥C⊤h
∥∥
2
≤ σC · σh ·

√
D. (13)

Thus the norm of the final logit vector is also bounded,
which can be used to provide an entropy analysis of the
prediction of the language modeling (LM) head.

Theorem 4.2. (LM head Entropy Lower Bound). Let ρ =

σCσh, u = C⊤h and γ = exp
(
−ρ
√

D|V |
|V |−1

)
, then the

5

Calibrated Large Language Models and How to Find Them with Label Smoothing

entropyHu of prediction of the LM head holds that:

Hu ≥ log (1 + (|V | − 1) γ) +
ρ · γ

√
D |V | (|V | − 1)

1 + (|V | − 1) γ
. (14)

Intuitively, the above lemma and theorem (proofs in Ap-
pendix A.3) indicates that for large |V |, the minimum en-
tropy is lower bounded by Ω

(
|V | e−ρ

√
D
)

, thus increasing
linearly with the vocabulary size |V | and decreasing ex-
ponentially with

√
D. We illustrate how this changes in

Figure 4, where the normalized entropy gap for different
|V | is shown. Given the same |V |, the concentration be-
havior of the LM head is primarily influenced by the size
of the hidden dimension. As the hidden size increases, the
model is increasingly capable of attaining a lower entropy,
while the bound is smaller for larger |V | at the same D,
highlighting why large vocabulary LLMs at smaller sizes
are less prone to overconfidence during tuning.

Remark 4.3. Models with smaller D with large vocabulary
size |V | suffer from a lack of concentration ability due to
their limited hidden size. By consequence, label smooth-
ing cannot help with calibration, as it serves to only pe-
nalize overconfidence while having no specific benefits for
under-confidence due to mixing with the maximum entropy
(uniform) distribution.

However, we note that from this analysis, the entropy bound
is influenced by |V | and D through the distribution of h.
However, as h are the logits of the model, these can be
manipulated before the softmax directly. Thus it follows
that under-confidence in models can be attained through
manipulation of the

∥∥C⊤h
∥∥:

Remark 4.4. Fix |V | and D. Using a temperature τ < 1
will modify ρ, leading to a decreased lower bound.

We note that various methods can serve to manipulate this
bound. The above remark notes the effects of tempera-
ture scaling, which directly uses a constant temperature T
to scale the logits before the softmax. This enables the
manipulation of σh in Lemma 4.1 without changing any
additional values, thereby increasing or decreasing the en-
tropy bound based on the choice of T . This explains how
temperature scaling can enable better model calibration, es-
pecially through the choice of a T > 1 used to divide the
logits, thereby decreasing σh which has the downstream
effect of increasing the minimum entropy bound of the
model. This can (for smaller label class sizes) significantly
improve calibration, as the initial model has the potential
for over-confidence which temperature can serve to mitigate.
Similarly, the use of logit softcapping, as in the Gemma2

family of models, applies a similar change in σh, reducing
the lower bound and thereby enabling models of smaller
size to become over-confident.

RMS ECE SCE ACE TACE Avg. CE
0

3

6

9

RMS ECE SCE ACE TACE Avg. CE
0

10

20

30

RMS ECE SCE ACE TACE Avg. CE
0

2

4

6

Metric
Va

lu
e

Gemma-2B

Gemma2-2B

LLaMA3.2-1B

Smoothing 0.0 0.1 0.2

Figure 5. Effect of label smoothing on large vocabulary models
with a smaller hidden size (2048). Gemma-2B observes a smaller
change compared to LLaMA3.2-1B, due to having the largest vo-
cabulary size. However, Gemma2-2B observes a large change in
part thanks to the softcapping of logits.

5. Efficient Smoothed Cross-Entropy
Despite our analysis on the effectiveness of label smoothing
for calibrating LLMs, areas of concern still exist regarding
practical applicability. In this section, we introduce such
limitations and how the label smoothing setting is distinct
from existing solutions that attempt to mitigate them.

When the vocabulary V is large, the final cross-entropy
begins to consume a significant amount of memory, as a
D × |V | matrix must be materialized to compute the loss.
While optimizations have been implemented to manage
other model components (Dao et al., 2022; Dao, 2024), this
logit matrix begins to constitute the vast majority of this foot-
print when the vocabulary is large (Grattafiori et al., 2024;
Gemma Team, 2024; Yang et al., 2024). In this section, we
introduce an efficient smoothed cross-entropy computation,
with its core implementation and results that demonstrate
its effectiveness.

5.1. Limitations of Existing Solutions

Efficient implementation of cross-entropy computation (Wi-
jmans et al., 2025; Hsu et al., 2024; PyTorch, 2024) often
makes use of the fact that for a non-smoothed loss, comput-
ing the entire logit matrix is unnecessary. Instead, only the

6

Calibrated Large Language Models and How to Find Them with Label Smoothing

relevant row from the classifier head C is needed, as this
is the only raw logit value that is relevant to the loss. Such
approaches therefore store into an output only this single
logit, reducing overhead by a factor of nearly 1

|V | . However,
this is not feasible for smoothed losses. Reusing notation
from Section 3, consider an LS loss on a sequence

LLS
x =

N∑
i=1

LLS
xi

=

N∑
i=1

[
(1− β)C⊤

xi
Ei︸ ︷︷ ︸

(1)Target Loss

+
β

|V |
∑
v∈V

C⊤
v Ei︸ ︷︷ ︸

(2)Smoothing Loss

− log
∑
v∈V

exp
(
C⊤

v Ei

)
︸ ︷︷ ︸

(3)LSE

]
,

(15)

(2) in the above equation indicates that it must be the case
that all logits need to be explicitly added to the loss, leaving
existing solutions unfeasible for this specific setting. How-
ever, we demonstrate that we can indeed compute these in
a manner that limits memory consumption usage, without
influencing the throughput and applicability of the proposed
solution to other scenarios such as no label smoothing.

5.2. Implementation

Algorithm 1 Memory-efficient forward pass

Inputs: E ∈ RD×N ,C ∈ RD×|V |,x ∈ RN .
Block sizes NB , VB , and DB .
Smoothing β ∈ [0, 1].

Outputs: LSE = log
∑

v exp(C
⊤
v E) ∈ RN .

o = (1− β)
(
C⊤Ei

)
x
+ β

|V |
∑

v C
⊤
v E ∈ RN .

LSE,o = −∞N ,0N

for all pairs of blocks En, Cv , xn do
Anv = 0VB×NB

for blocks En,d, Cv,d do
Anv += C⊤

v,dEn,d

M = (Cxn,d == Cv,d)
if M ̸= 0NB×VB

then

on += (1− β) ·
∑[(

C⊤
m,dEn,d

)⊤
⊙M

]
end if

end for
LSEnv = log

∑
exp

(
A⊤

nv

)
LSEn = log (exp (LSEn) + exp (LSEnv))
if β ̸= 0 then

on += β
|V |
∑

A⊤
nv

end if
end for

5.2.1. FORWARD PASS

To naively compute a CE loss as in Equation (15), one
could individually compute each loss component. However,

we notice that many of these computations can be reused,
such as the computation of C⊤

v Ei in both (2) and (3). As
such, for more efficient computation, we can compute all
components in parallel in on-chip shared memory (SRAM)
while making the best use of the GPU cache structure.

Our forward pass (Algorithm 1) fuses the computation of
all three components of Equation (15) to minimize memory
and indexing costs, rendering the computation efficient on
modern GPUs (Kerr et al., 2017). First, the embeddings
E and classifier C are divided into chunks En of E with
size D ×NB and Cm of C with size D × VB , operated on
independently. The standard output O = C⊤E ∈ R|V |×N

is divided into blocks of size VB × NB which store the
products Onv = C⊤

mEn. Cm and En are further split
along the D dimension into d chunks of size DB . Thus
chunks En,d and Cm,d of size DB × NB and DB × VB

can be used to accumulate Onv =
∑

d C
⊤
m,dEn,d directly

in SRAM before being written into global memory.

To compute (3) or the LSE, the above strategy is sufficient
by having each block first compute a matrix multiplication,
then the log-sum-exp along the vocabulary dimension m for
its block, and finally update the LSE with this result. We
make use of a trick introduced by Wijmans et al. (2025),
where blocks along the same N dimension range but differ-
ent |V | dimension range are written in the same location,
in order to reduce memory usage on SRAM. This is im-
plemented directly using a lock mechanism, where blocks
exchange a single lock per group and update the LSE online.

Similar to the above, if the label smoothing parameter β
is not 0 (indicating that smoothing is used), (2) in Equa-
tion (15) can be computed through reuse of intermediate
results for (3), by summing over the vocabulary dimension
m of Onm and updating an output o ∈ RN with the result.

To understand how to fuse the computation of (1) into this
matrix multiplication, we can first consider that the input
sequence x can also be split into chunks xn of size NB .
Because xn contains information about the target labels,
xn can be directly used to compute the memory addresses
of the target classifier chunk Cxi,d. Because content from
an address for each Cm,d must be loaded into SRAM to
compute Onv, this means that a direct address comparison
can be used to create a mask M ∈ RNB×VB , which has
value 1 only where the rows in Cxi,d matches Cm,d and 0
otherwise. This enables us to add (1) to o by only adding
the label-corresponding rows to the loss

on += (1− β)
∑
m

[(
E⊤

n,dCm,d

)
⊙M

]
, (16)

where ⊙ is the element-wise matrix multiplication.

Thus for inference, we can directly compute the entire loss
efficiently without directly needing to materialize the com-
plete logit matrix in global memory.

7

Calibrated Large Language Models and How to Find Them with Label Smoothing

Table 1. Results of different models w/ or w/o LS on different datasets. All models are performed with a 5-shot evaluation. We report the
reliability of models with expected calibration error (ECE) and root mean square calibration error (RMS).

SFT Dataset Model MMLU HELLASWAG ARC-EASY

Acc. ↑ ECE ↓ RMS ↓ Acc. ↑ ECE ↓ RMS ↓ Acc. ↑ ECE ↓ RMS ↓

Alpaca

Mistral-7B + SFT (β = 0) 0.579 0.134 0.120 0.302 0.127 0.160 0.803 0.099 0.154
Mistral-7B + SFT (β = 0.1) 0.590 0.094 0.104 0.304 0.087 0.124 0.806 0.071 0.131

LLaMA3-8B + SFT (β = 0) 0.638 0.113 0.113 0.375 0.162 0.085 0.863 0.070 0.127
LLaMA3-8B + SFT (β = 0.1) 0.636 0.073 0.094 0.374 0.087 0.037 0.864 0.037 0.098

Gemma2-2B + SFT (β = 0) 0.528 0.343 0.180 0.302 0.127 0.160 0.773 0.131 0.174
Gemma2-2B + SFT (β = 0.1) 0.532 0.125 0.121 0.304 0.087 0.124 0.764 0.069 0.127

Tulu3Mixture

Mistral-7B + SFT (β = 0) 0.600 0.096 0.105 0.369 0.044 0.085 0.843 0.078 0.135
Mistral-7B + SFT (β = 0.1) 0.603 0.028 0.071 0.375 0.021 0.067 0.840 0.030 0.094

LLaMA3-8B + SFT (β = 0) 0.651 0.050 0.080 0.361 0.049 0.091 0.857 0.058 0.114
LLaMA3-8B + SFT (β = 0.1) 0.646 0.012 0.061 0.356 0.025 0.064 0.858 0.035 0.097

Gemma2-2B + SFT (β = 0) 0.533 0.341 0.177 0.273 0.082 0.128 0.758 0.086 0.142
Gemma2-2B + SFT (β = 0.1) 0.531 0.020 0.064 0.271 0.041 0.087 0.755 0.029 0.101

OpenHermes

Mistral-7B + SFT (β = 0) 0.602 0.071 0.094 0.546 0.041 0.071 0.867 0.066 0.100
Mistral-7B + SFT (β = 0.1) 0.602 0.014 0.059 0.552 0.021 0.042 0.857 0.036 0.076

LLaMA3-8B + SFT (β = 0) 0.654 0.038 0.077 0.552 0.063 0.074 0.880 0.065 0.112
LLaMA3-8B + SFT (β = 0.1) 0.646 0.016 0.059 0.554 0.038 0.037 0.880 0.041 0.089

Gemma2-2B + SFT (β = 0) 0.541 0.353 0.180 0.364 0.125 0.143 0.816 0.131 0.175
Gemma2-2B + SFT (β = 0.1) 0.542 0.016 0.063 0.362 0.077 0.096 0.813 0.038 0.096

5.2.2. BACKWARD PASS

To implement a backward pass, borrowing logic from Wij-
mans et al. (2025) is sufficient to produce a backward pass
that is significantly faster than existing alternatives. As Wi-
jmans et al. (2025) do not consider label smoothing, their
backward implementation requires some modification. As
the gradient with respect to LSE is

∇LSE
LLS E =

(
(softmax(C⊤E) · ∇LLSLSE)C

)⊤
,

∇LSE
LLS C =

(
(softmax(C⊤E) · ∇LLSLSE)⊤E

)⊤
,

(17)

incorporating the derivative with respect to (1)/(2) only
requires adding a constant to softmax(C⊤E) depending
on whether the element is the true label or not.

While the forward and backward pass can be further fused
to compute both the output and gradient simultaneously,
this requires computing LSEn before any softmax value
Snv, otherwise the computed Snv will use an incomplete
log-sum-exp scaling factor (each row Sn depends on LSEn

to have been computed in its entirety). This thus requires
a barrier to block subsequent execution code until all pre-
ceding computations have been completed by all workers.
While can save memory, we observe that specific tricks such
as average logit sorting and gradient filtering, introduced by
Wijmans et al. (2025), enable faster computation through
standalone forward and backward passes with minimal in-
creased memory utilization (2MB overhead).

5.3. Experiments

Setup. For all models trained on the Alpaca (Dubois
et al., 2023), Tulu3Mixture (Wang et al., 2023) and
OpenHermes (Teknium, 2023) SFT datasets, we adhere
to the recommended training configuration outlined by
Wang et al. (2023). We employ the AdamW optimizer
for training and conduct a grid search over the learning rates
{5e− 6, 2e− 5, 5e− 5, 2e− 4} to determine the optimal
setting for each model. To facilitate stable training and pre-
vent over-fitting, we use a batch size of 128 and apply a
dropout rate of 0.1.

Calibration Results. Table 1 provides a comprehensive
comparison of the accuracy and calibration performance
of various large language models (LLMs) with and with-
out label smoothing (LS) across different supervised fine-
tuning (SFT) datasets. The evaluation is conducted on three
widely used benchmark datasets: MMLU, HellaSwag, and
ARC-Easy, ensuring a robust assessment of model perfor-
mance. Across all experimental settings, applying LS with a
smoothing factor of β = 0.1 consistently leads to improved
calibration, as indicated by lower Expected Calibration Er-
ror (ECE) and Root Mean Square (RMS) calibration er-
ror, while preserving model accuracy. Notably, LLaMA3-8B
and Mistral-7B achieve the best calibration results, par-
ticularly when trained on OpenHermes and Tulu3Mixture.
These findings underscore the effectiveness of LS as a sim-
ple yet powerful technique for enhancing model reliability
without sacrificing predictive accuracy.

8

Calibrated Large Language Models and How to Find Them with Label Smoothing

Table 2. Memory and time to compute losses and gradients. Re-
sults are computed on a batch size of 8192 tokens in a single
sequence, generated from a Gemma2-2B model (vocabulary size
of 256K and hidden size 2304). Experiments are conducted using
PyTorch 2.4.0 and CUDA 12.1. Further see Table 3 in Appendix B.

Method fwd bwd fwd+bwd

Memory Time Memory Time Memory Time

Smoothing β > 0

Ours 1.1MB 24.2ms 1,163MB 49.3ms 1,164MB 72.9ms

torch.compile 4,000MB 22.8ms 12,000MB 38.3ms 16,000MB 62.3ms
Baseline 24,000MB 41.4ms 16,000MB 62.5ms 28,000MB 104.9ms

Smoothing β = 0

Ours 1.1MB 24.0ms 1,163MB 49.2ms 1,164MB 72.9ms

Cut-Cross Entropy1 1.1MB 23.6ms 1,163MB 49.2ms 1,164MB 72.4ms
torch.compile 4,000MB 20.6ms 4,000MB 33.9ms 8,000MB 55.0ms
Baseline 24,000MB 38.7ms 16,000MB 55.8ms 28,000MB 96.0ms

5.4. Benchmarking and Testing

Benchmarking. Table 2/3 provides the primary compari-
son of our custom kernel against existing alternatives, both
with and without label smoothing. We compare in terms
of both memory and time. First, in terms of memory, mea-
sured as the peak amount of GPU storage necessary for
the computation, our kernels surpass other options, beating
the next closest competitor (Liger Kernels) by requiring
over 75% less memory. Time-wise, we trail a compiled
torch implementation by less than 10 ms while utilizing
only ≈7% the amount of memory as they use. Furthermore,
our method can be applied in more general settings. Under
such circumstances, we have two observations. First, we
can match Cut-Cross-Entropy (CCE) with a very minimal
increase in computation speed (less than 0.5% overhead
for a forward pass and less than 1% for a combined for-
ward/backward). Furthermore, while an efficient compiled
torch implementation remains slightly more efficient, la-
bel smoothing causes an increase in running time as well
as memory consumption for this specific implementation,
factors that are not observed with our method. Accordingly,
we can conclude that overall, our method provides a more
robust and efficient alternative.

Training Results. We further compare models trained
with our custom kernel and to those using a base-
line/reference torch implementation in Figure 6. We
demonstrate here that both methods are indistinguishable in
terms of loss curves as well as gradient norms, indicating
the correctness and stability of the kernel.

6. Conclusion
In this paper, we present a novel perspective regarding the
use of label smoothing as a functional mechanism to retain

1This method does not support label smoothing.

0

1

2

3

0 200 400 600 800
0

1

2

3

Step

Va
lu

e

Grad Norm

Loss

Method Baseline Ours

Figure 6. Training curves comparing our implementation against
torch.nn.CrossEntropyLoss with β = 0.1. Training uses a
LLaMA3.2-3B model using the Alpaca dataset.

calibration after the supervised fine-tuning process (SFT)
that is commonly used to train LLMs. We first identify why
SFT can degrade calibration from a statistical standpoint
before showing how label smoothing can help alleviate this
concern. However, we also identify a setting where the
use of label smoothing appears ineffective, particularly in
the case of large language models with large vocabularies
but smaller hidden sizes, demonstrating how such model
construction implicitly impacts the entropy of predictions
and leads to difficulty in becoming over-confident during
SFT. Finally, we demonstrate a practical issue regarding the
computational concerns of label smoothing in these settings.
To further address this issue, we identify GPU accelerator
level optimizations and provide a custom computational
kernel, written in Triton, that enables us to maximize the
use of accelerator memory/bandwidth and train models,
improving both training/inference speed as well as memory
consumption without sacrifices in stability.

Acknowledgements
Jerry Huang was supported by the NSERC Canada Graduate
Scholarships — Doctoral (CGS-D) program (funding refer-
ence number 589326) as well as the Bourse d’Éxcellence
Hydro-Québec program.

Impact Statement
This paper proposes a method to improve calibration in
large-vocabulary language models. We anticipate minimal
societal impact from this work.

9

Calibrated Large Language Models and How to Find Them with Label Smoothing

References
Bach, S. H., Sanh, V., Yong, Z. X., Webson, A., Raffel, C.,

Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Févry, T.,
Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David,
S., Xu, C., Chhablani, G., Wang, H., Fries, J. A., Al-
Shaibani, M. S., Sharma, S., Thakker, U., Almubarak, K.,
Tang, X., Radev, D. R., Jiang, M. T., and Rush, A. M.
Promptsource: An integrated development environment
and repository for natural language prompts. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics, ACL 2022 - System Demon-
strations, Dublin, Ireland, May 22-27, 2022, pp. 93–104,
2022.

Bertsekas, D. P. Nonlinear Programming. 1999.

Brier, G. W. Verification of forecasts expressed in terms of
probability. Monthly Weather Review, 78(1):1–3, 1950.

Chi, T., Fan, T., and Rudnicky, A. Attention alignment
and flexible positional embeddings improve transformer
length extrapolation. In Findings of the Association for
Computational Linguistics: NAACL 2024, Mexico City,
Mexico, June 16-21, 2024, pp. 132–148, 2024.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K.,
Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V. Y.,
Huang, Y., Dai, A. M., Yu, H., Petrov, S., Chi, E. H.,
Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and
Wei, J. Scaling instruction-finetuned language models.
Journal on Machine Learning Research, 25:70:1–70:53,
2024.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024, 2024.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022,
2022.

DeGroot, M. H. and Fienberg, S. E. The comparison and
evaluation of forecasters. Journal of the Royal Statistical
Society. Series D (The Statistician), 32(1):12–22, 1983.

Dubois, Y., Li, C. X., Taori, R., Zhang, T., Gulrajani, I.,
Ba, J., Guestrin, C., Liang, P., and Hashimoto, T. B. Al-
pacafarm: A simulation framework for methods that learn

from human feedback. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Gemma Team. Gemma 2: Improving open language models
at a practical size, 2024.

Grattafiori, A. et al. The llama 3 herd of models, 2024.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In Proceedings of
the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research,
pp. 1321–1330, 2017.

Hendrycks, D., Mazeika, M., and Dietterich, T. G. Deep
anomaly detection with outlier exposure. In 7th Inter-
national Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Hsu, P.-L., Dai, Y., Kothapalli, V., Song, Q., Tang, S., Zhu,
S., Shimizu, S., Sahni, S., Ning, H., and Chen, Y. Liger
kernel: Efficient triton kernels for llm training, 2024.

Huh, M., Cheung, B., Wang, T., and Isola, P. Position:
The platonic representation hypothesis. In Forty-first
International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.,
Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T.,
and Sayed, W. E. Mistral 7b, 2023.

Jiang, Z., Araki, J., Ding, H., and Neubig, G. How can we
know When language models know? on the calibration of
language models for question answering. Trans. Assoc.
Comput. Linguistics, 9:962–977, 2021.

Kerr, A., Merrill, D., Demouth, J., and Tran, J. Cutlass: Fast
linear algebra in cuda c++, December 2017.

Kumar, A., Raghunathan, A., Jones, R. M., Ma, T., and
Liang, P. Fine-tuning can distort pretrained features and
underperform out-of-distribution. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022, 2022.

10

Calibrated Large Language Models and How to Find Them with Label Smoothing

Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollár, P. Fo-
cal loss for dense object detection. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pp. 2999–3007, 2017.

Liu, B., Ayed, I. B., Galdran, A., and Dolz, J. The devil is
in the margin: Margin-based label smoothing for network
calibration. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pp. 80–88, 2022.

Lu, P., Rashid, A., Kobyzev, I., Rezagholizadeh, M., and
Langlais, P. LABO: towards learning optimal label reg-
ularization via bi-level optimization. In Findings of the
Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 5759–5774, 2023.

Lukasik, M., Bhojanapalli, S., Menon, A. K., and Kumar,
S. Does label smoothing mitigate label noise? In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pp. 6448–6458, 2020.

Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai,
X., Houlsby, N., Tran, D., and Lucic, M. Revisiting
the calibration of modern neural networks. In Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
15682–15694, 2021.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr,
P. H. S., and Dokania, P. K. Calibrating deep neural
networks using focal loss. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Mukhoti, J., Gal, Y., Torr, P., and Dokania, P. K. Fine-tuning
can cripple your foundation model; preserving features
may be the solution. Transactions on Machine Learning
Research, 2024, 2024.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 4696–
4705, 2019.

Murphy, A. H. Scalar and vector partitions of the probability
score: Part i. two-state situation. Journal of Applied
Meteorology and Climatology, 11(2):273–282, 1972.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. Obtaining
well calibrated probabilities using bayesian binning. In

Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pp. 2901–2907, 2015.

Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G., and
Tran, D. Measuring calibration in deep learning. In IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops 2019, Long Beach, CA,
USA, June 16-20, 2019, pp. 38–41, 2019.

Oh, C., Lim, H., Kim, M., Han, D., Yun, S., Choo, J.,
Hauptmann, A. G., Cheng, Z.-Q., and Song, K. Towards
calibrated robust fine-tuning of vision-language models.
In Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, December 10-15, 2024,
Vancouver, BC, Canada, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Advances
in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and Hin-
ton, G. E. Regularizing neural networks by penalizing
confident output distributions. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings,
2017.

PyTorch. torchtune: Pytorch’s finetuning library, April
2024.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika,
L., Alyafeai, Z., Chaffin, A., Stiegler, A., Raja, A., Dey,
M., Bari, M. S., Xu, C., Thakker, U., Sharma, S. S.,
Szczechla, E., Kim, T., Chhablani, G., Nayak, N. V.,
Datta, D., Chang, J., Jiang, M. T., Wang, H., Manica, M.,
Shen, S., Yong, Z. X., Pandey, H., Bawden, R., Wang, T.,
Neeraj, T., Rozen, J., Sharma, A., Santilli, A., Févry, T.,
Fries, J. A., Teehan, R., Scao, T. L., Biderman, S., Gao,
L., Wolf, T., and Rush, A. M. Multitask prompted train-
ing enables zero-shot task generalization. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pp. 2818–2826, 2016.

11

Calibrated Large Language Models and How to Find Them with Label Smoothing

Teknium. Openhermes 2.5: An open dataset of synthetic
data for generalist llm assistants, 2023.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Naik, A., Ashok, A., Dhanasekaran, A. S.,
Arunkumar, A., Stap, D., Pathak, E., Karamanolakis, G.,
Lai, H. G., Purohit, I., Mondal, I., Anderson, J., Kuz-
nia, K., Doshi, K., Pal, K. K., Patel, M., Moradshahi,
M., Parmar, M., Purohit, M., Varshney, N., Kaza, P. R.,
Verma, P., Puri, R. S., Karia, R., Doshi, S., Sampat, S. K.,
Mishra, S., A, S. R., Patro, S., Dixit, T., and Shen, X.
Super-naturalinstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pp. 5085–5109,
2022.

Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu,
K. R., Wadden, D., MacMillan, K., Smith, N. A., Beltagy,
I., and Hajishirzi, H. How far can camels go? exploring
the state of instruction tuning on open resources. In
Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022a.

Wei, J., Liu, H., Liu, T., Niu, G., Sugiyama, M., and Liu,
Y. To smooth or not? when label smoothing meets noisy
labels. In International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning
Research, pp. 23589–23614, 2022b.

Wijmans, E., Huval, B., Hertzberg, A., Koltun, V., and
Krähenbühl, P. Cut your losses in large-vocabulary lan-
guage models. In The Thirteenth International Confer-
ence on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025, 2025.

Xiong, M., Hu, Z., Lu, X., Li, Y., Fu, J., He, J., and Hooi,
B. Can llms express their uncertainty? an empirical
evaluation of confidence elicitation in llms. In The Twelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5
technical report, 2024.

Zhai, S., Likhomanenko, T., Littwin, E., Busbridge, D.,
Ramapuram, J., Zhang, Y., Gu, J., and Susskind, J. M.
Stabilizing transformer training by preventing attention
entropy collapse. In International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 40770–40803, 2023.

Zhang, Z. and Sabuncu, M. R. Self-distillation as instance-
specific label smoothing. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S.
Calibrate before use: Improving few-shot performance
of language models. In Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceed-
ings of Machine Learning Research, pp. 12697–12706,
2021.

Łukasz Rajkowski. Analysis of the Maximal a Posteri-
ori Partition in the Gaussian Dirichlet Process Mixture
Model. Bayesian Analysis, 14(2):477 – 494, 2019.

12

Calibrated Large Language Models and How to Find Them with Label Smoothing

A. Proofs
A.1. Proof of Proposition 3.3

Proposition 3.3. A linear penalty (or a Lagrangian term) for the hard constraint d(x) = 0 is bounded from above and below
by KL (u∥σ̂ (x;θ)), up to additive constants

KL[u∥σ̂ (x;θ)]− logK ≤
K∑
i=1

d (x)i /K ≤ KL [u∥σ̂ (x;θ)] . (18)

Proof. We adapt the proof of Liu et al. (2022). Given the KL divergence

KL [u∥σ̂ (x;θ)] = − 1

K

K∑
k=1

logP (γi|x;θ) + const

we have that

KL [u∥σ̂ (x;θ)] =− 1

K

K∑
k=1

log

(
eℓ(x;θ)i∑K
j=1 e

ℓ(x;θ)j

)
+ const

=− 1

K

K∑
k=1

log

 K∑
j=1

eℓ(x;θ)j − ℓ (x;θ)i

+ const

(19)

Considering the property of the LogSumExp (LSE) function, it follows that

max
j

ℓ (x;θ)j ≤ log

K∑
j=1

eℓ(x;θ)j ≤ max
j

ℓ (x;θ)j + log (K)

and

KL [u∥σ̂ (x;θ)]− logK ≤ − 1

K

K∑
k=1

(
max

j
ℓ (x;θ)j − ℓ (x;θ)k

)
≤ KL [u∥σ̂ (x;θ)] (20)

and given the definition of d (x), then the additional penalty KL [u∥σ̂ (x;θ)] imposed by LS in addition to the standard
cross-entropy loss LCE is approximately optimizing a linear penalty (or a Lagrangian) for the constraint

d (x) = 0

to encourage equality of the logits.

A.2. Proof of Proposition 3.4

Proposition 3.4. Define a likelihood model p (y|x;θ) = Cat (softmax (f (x;θ))), a categorical distribution with parame-
ters z = softmax (f (x;θ)) ∈ ∆(Θ) where ∆(Θ) denotes a probability simplex over the parameter space Θ. The label
smoothing objective is equivalent to Maximum A Posteriori (MAP) estimation on the softmax probability vector under the
independence assumption p (z|x) = p (z).

Proof. This proof is an adaptation of Zhang & Sabuncu (2020). Suppose a provide set of examples D = {(xn, yn)}Ni=1

sampled from X × Y . The goal is to find a set of parameters θ to parameterize a function f that maps inputs x ∈ X to
corresponding labels y ∈ Y . Suppose that the likelihood p (y|x, z) = Cat(z) be a categorical distribution with parameter
z ∈ ∆(Θ) and the conditional prior p (z|x) = Dir (αx) be a Dirichlet distribution with instance-specific parameter αx.

Due to conjugacy of the Dirichlet prior, a closed-form solution of ẑi =
Ci+αxi

−1∑
j Cj+αxj

−1 , where Ci corresponds to number of
occurrences of the i-th category, can be easily obtained.

13

Calibrated Large Language Models and How to Find Them with Label Smoothing

Thus the MAP estimation ẑi ≈ softmax (fw (xi)) can be amortized with a given training set, resulting in an optimization
problem of:

max
θ

1

N

N∑
n=1

log p (z|xn, yn;θ,αx) (21)

=max
θ

N∑
n=1

log p (y = yn|z,xn;θ) + log p (z|xn;θ,αx)

=max
w

1

N

N∑
n=1

log [softmax (f (xn;θ))]yn︸ ︷︷ ︸
Cross Entropy

+
1

N

N∑
n=1

K∑
k=1

([αxn
]k − 1) log[z]k︸ ︷︷ ︸

Instance-specific Regularization

(22)

where [·]k denotes the k-th element of a vector. Using the assumption that p (z|x) = p (z), a sensible choice of prior would
be a uniform distribution across all possible labels. Choosing [αx]k = [α]k = β

k + 1 for all k ∈ {1, . . . ,K} for some
hyper-parameter β, the MAP objective becomes

LLS =
1

N

N∑
n=1

− log[z]yn
+

β

N

N∑
n=1

K∑
k=1

− 1

K
log[z]k. (23)

With some simple rearrangement of terms,

LLS =
1

N

N∑
i=1

− log[z]yn
+

β

N

N∑
n=1

K∑
k=1

− 1

K
log[z]k

= − (1 + β)

N

N∑
n=1

 K + β

K(1 + β)
log[z]yn +

∑
K ̸=yn

β

K(1 + β)
log[z]K

Thus the above objective is equivalent to the label smoothing regularization with 1− ϵ = k+β

k(1+β) , up to a constant factor of
(1 + β).

A.3. Proof of Lemma 4.1

Lemma 4.1. Let C ∈ RD×|V | be a matrix with ∥C∥2 = σC , and let h ∈ RD be a vector such that each entry of h satisfies
|hi| ≤ σh. The upper bound for ∥Ch∥2 is:

∥Ch∥2 ≤ σC · σh ·
√
D.

Proof. For any vector h ∈ RD, it follows that:

∥Ch∥2 ≤ ∥C∥2 · ∥h∥2 .

Substituting ∥C∥2 = σC , we obtain:
∥Ch∥2 ≤ σC · ∥h∥2 .

And

∥h∥2 ≤

√√√√ D∑
i=1

σ2
h =
√
D · σh.

Substituting the bound on ∥h∥2 into the inequality for ∥Ch∥2, we have the norm of logit vector u ∈ RV :

∥u∥2 = ∥Ch∥2 ≤ σC · ∥h∥2 ≤ σC ·
√
D · σh.

14

Calibrated Large Language Models and How to Find Them with Label Smoothing

A.4. Proof of Theorem 4.2

Proof. We begin our analysis of the entropy of the prediction distribution of LM head p ∈ RV .

pi =
exp(ui)∑V
j=1 exp(uj)

. (24)

The entropy of p is then:

H(p) = −
V∑

j=1

pi log(pi). (25)

Without loss of generality, we assume ∥u∥2 =≤ ρ
√
D, where ρ = σcσh. Then we aim to address the following constrained

optimization problem:

min
u
H(u), s.t ∥u∥ ≤ ρ ·

√
D, (26)

We derive the global minimum for it with a Lagrangian multiplier and set the corresponding gradients equal to 0 then follow
the analysis of Zhai et al. (2023):

L(u, λ) = H(u) + λ(∥u∥2 − ρ2D), (27)

∂L(u, λ)
∂u

= 0,
∂L(u, λ)

∂λ
= 0. (28)

Then we get:

λui =

V∑
j=1

exp(uj)

Z

[
δi,j −

exp(ui)

Z

] [
1 + log

(
exp(uj)

Z

)]
, (29)

= pk[log(pk) +H(u)].
∥u∥ = ρ2D. (30)

Assume that for the minimizer u∗ there exists an index i such that u∗
i = 0, we have:

log(p∗i) +H(u) = −
|V |∑
j=1

pj log

(
pj
p∗i

)
= −

|V |∑
j=1

pj log(e
uj) = −Eu. (31)

∀um ̸= 0, un ̸= 0, pm
log(pm) +H(u)

um
= pn

log(pn) +H(u)
un

(32)

−→ pm +
Eu
um

= pn +
Eu
un
←→ pm = pn.

which contradict to ∥u∥ = ρ2D. Instead, assume ∀nun ̸= 0, based on Equation (30), we have:

∀un ̸= um,
pm
um

[log(pm) +H(u)] = pn
un

[log(pn) +H(u)] (33)

−→ eum

(
1− E (u)

um

)
= eun

(
1− E (u)

un

)
. (34)

We could assume that a solution u must contain at least one negative component. To illustrate this, consider u where
ui > 0 component-wise and ∥u∥ ≤ ρ

√
D. We can always shift u by a vector v, where vm = vn for all m,n, ensuring that

∥u− v∥ ≤ ρ
√
D and that u− v has at least one negative component. Since all components of v are equal and softmax is

shift-invariant, it follows that softmax(u) = softmax(u− v). Additionally, without loss of generality, we assume Eu > 0
based on the same reasoning. Let um, un < 0, then based on Equation (34):

eum

(
1− E(u)

um

)
= eun

(
1− E(u)

un

)
> 0 (35)

15

Calibrated Large Language Models and How to Find Them with Label Smoothing

As f(x) = ex
(
1− α

x

)
is monotonously increasing in x ∈ (−∞, 0) and x ∈ [α,∞) for α > 0, it is easy to see um = un.

If un < 0 and um > 0, then um > Eu. As f(x) is monotonous in x for both x < 0 and x > α, we have a solution that u
must have 2 unique values, one positive and one negative. Let the different elements be a, b. The minimizer u contains
|V | − 1 b and one a. Based on ∥u∥ = ρ2D, we have:

a = ρ
√
D

√
1− 1

|V |
, b = −ρ

√
D

√
1

|V | (|V | − 1)
(36)

The corresponding entropy of the minimizer u:

log

(
1 + (|V | − 1) exp

(
−ρ

√
D |V |
|V | − 1

))
+

ρ
√

D |V | (|V | − 1) exp
(
−ρ
√

|V |
|V |−1

)
1 + (|V | − 1) exp

(
−ρ |V |

|V |−1

) (37)

16

Calibrated Large Language Models and How to Find Them with Label Smoothing

B. Additional Results
B.1. Calibration Metrics

RMS ECE SCE ACE TACE Avg. CE
0.0

2.5

5.0

7.5

10.0

RMS ECE SCE ACE TACE Avg. CE
0.0

2.5

5.0

7.5

10.0

RMS ECE SCE ACE TACE Avg. CE
0.0

2.5

5.0

7.5

10.0

Metric

Va
lu

e

LLaMA3-8B

LLaMA3.2-1B

LLaMA3.2-3B

Smoothing 0.0 0.1 0.2

Figure 7. Calibration of different LLaMA3 models fine-tuned on the same SFT dataset. As the size of the model decreases, the calibration
of the model sees less improvement from the use of LS.

17

Calibrated Large Language Models and How to Find Them with Label Smoothing

B.2. Reliability Diagrams

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt
Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt
Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

Confidence

A
cc

ur
ac

y

Names: Gemma-2B
Smoothing: 0.0

Names: Gemma-2B
Smoothing: 0.1

Names: Gemma-2B
Smoothing: 0.2

Names: Gemma-2B
Smoothing: 0.3

Names: Gemma-2B
Smoothing: 0.4

Names: Gemma2-2B
Smoothing: 0.0

Names: Gemma2-2B
Smoothing: 0.1

Names: Gemma2-2B
Smoothing: 0.2

Names: Gemma2-2B
Smoothing: 0.3

Names: Gemma2-2B
Smoothing: 0.4

Names: LLaMA2-7B
Smoothing: 0.0

Names: LLaMA2-7B
Smoothing: 0.1

Names: LLaMA2-7B
Smoothing: 0.2

Names: LLaMA2-7B
Smoothing: 0.3

Names: LLaMA2-7B
Smoothing: 0.4

Names: LLaMA3-8B
Smoothing: 0.0

Names: LLaMA3-8B
Smoothing: 0.1

Names: LLaMA3-8B
Smoothing: 0.2

Names: LLaMA3-8B
Smoothing: 0.3

Names: LLaMA3-8B
Smoothing: 0.4

Names: LLaMA3.2-1B
Smoothing: 0.0

Names: LLaMA3.2-1B
Smoothing: 0.1

Names: LLaMA3.2-1B
Smoothing: 0.2

Names: LLaMA3.2-1B
Smoothing: 0.3

Names: LLaMA3.2-1B
Smoothing: 0.4

Names: LLaMA3.2-3B
Smoothing: 0.0

Names: LLaMA3.2-3B
Smoothing: 0.1

Names: LLaMA3.2-3B
Smoothing: 0.2

Names: LLaMA3.2-3B
Smoothing: 0.3

Names: LLaMA3.2-3B
Smoothing: 0.4

Names: Mistral-7B
Smoothing: 0.0

Names: Mistral-7B
Smoothing: 0.1

Names: Mistral-7B
Smoothing: 0.2

Names: Mistral-7B
Smoothing: 0.3

Names: Mistral-7B
Smoothing: 0.4

Smoothing 0.0 0.1 0.2 0.3 0.4

Figure 8. Reliability diagrams of models fine-tuned on the Tulu3 SFT Dataset and tested on the MMLU dataset.

18

Calibrated Large Language Models and How to Find Them with Label Smoothing

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
U

nd
er

co
nfi

de
nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

U
nd

er
co

nfi
de

nt

Overconfident

Confidence

A
cc

ur
ac

y

Names: Gemma-2B
Smoothing: 0.0

Names: Gemma-2B
Smoothing: 0.1

Names: Gemma-2B
Smoothing: 0.2

Names: Gemma2-2B
Smoothing: 0.0

Names: Gemma2-2B
Smoothing: 0.1

Names: Gemma2-2B
Smoothing: 0.2

Names: LLaMA2-7B
Smoothing: 0.0

Names: LLaMA2-7B
Smoothing: 0.1

Names: LLaMA2-7B
Smoothing: 0.2

Names: LLaMA3-8B
Smoothing: 0.0

Names: LLaMA3-8B
Smoothing: 0.1

Names: LLaMA3-8B
Smoothing: 0.2

Names: LLaMA3.2-1B
Smoothing: 0.0

Names: LLaMA3.2-1B
Smoothing: 0.1

Names: LLaMA3.2-1B
Smoothing: 0.2

Names: LLaMA3.2-3B
Smoothing: 0.0

Names: LLaMA3.2-3B
Smoothing: 0.1

Names: LLaMA3.2-3B
Smoothing: 0.2

Names: Mistral-7B
Smoothing: 0.0

Names: Mistral-7B
Smoothing: 0.1

Names: Mistral-7B
Smoothing: 0.2

Names: Qwen2.5-0.5B
Smoothing: 0.0

Names: Qwen2.5-0.5B
Smoothing: 0.1

Names: Qwen2.5-0.5B
Smoothing: 0.2

Smoothing 0.0 0.1 0.2

Figure 9. Reliability diagrams of models fine-tuned on the OpenHermes-2.5 SFT Dataset and tested on the MMLU dataset.

B.3. Efficient Smoothed Cross-Entropy

B.3.1. TRAINING

0 200 400 600 800

0

1

2

3

0 200 400 600 800

Step

Va
lu

e

Grad Norm Loss

Method Baseline Ours

Figure 10. Training curves for LLaMA3.2-1B.

19

Calibrated Large Language Models and How to Find Them with Label Smoothing

B.3.2. BENCHMARKING

Table 3. Memory footprint and time to compute losses and gradients. Results are computed on a batch size of 8192 tokens in a single
sequence, generated from a Gemma2 with 2 billion parameters (vocabulary size of 256K and hidden size 2304). Experiments are conducted
on an H100-SXM5 GPU with 80GB of RAM, PyTorch 2.4.0 and CUDA 12.1.

Method fwd bwd fwd+bwd

Memory Time Memory Time Memory Time

Lower Bound 0.004MB 1,161MB 1,161MB

Smoothing β > 0

Ours 1.1MB 24.2ms 1,163MB 49.3ms 1,164MB 72.9ms
+ (No Vocab Sorting) 0.09MB 24.1ms 1,162MB 62.8ms 1,162MB 86.8ms
+ (No Grad. Filter) 0.09MB 24.0ms 1,162MB 177.1ms 1,162MB 201.5ms

Fused Version 0.09MB 100.5ms 1,162MB 0.2ms 1,162MB 100.6ms
+ (No Grad. Filter) 0.09MB 200.5ms 1,162MB 0.2ms 1,162MB 200.5ms

Liger Kernels (Hsu et al., 2024)2 NA NA NA NA 5,349MB 155.0ms
torch.compile 4,000MB 22.8ms 12,000MB 38.3ms 16,000MB 62.3ms
Baseline (torch.nn.CrossEntropyLoss) 24,000MB 41.4ms 16,000MB 62.5ms 28,000MB 104.9ms

Smoothing β = 0

Ours 1.1MB 24.0ms 1,163MB 49.2ms 1,164MB 72.9ms
+ (No Vocab Sorting) 0.09MB 23.9ms 1,162MB 62.4ms 1,162MB 85.2ms
+ (No Grad. Filter) 0.09MB 23.9ms 1,162MB 177.3ms 1,162MB 201.4ms

Fused Version 0.09MB 100.5ms 1,162MB 0.2ms 1,162MB 100.6ms
+ (No Grad. Filter) 0.09MB 200.5ms 1,162MB 0.2ms 1,162MB 200.5ms

Cut-Cross Entropy (Wijmans et al., 2025)3 1.1MB 23.6ms 1,163MB 49.2ms 1,164MB 72.4ms
+ (No Vocab Sorting) 0.09MB 23.5ms 1,162MB 62.5ms 1,162MB 85.0ms
+ (No Grad. Filter) 0.09MB 23.5ms 1,162MB 177.1ms 1,162MB 201.4ms

Liger Kernels (Hsu et al., 2024)4 NA NA NA NA 5,349MB 154.8ms
Chunked Cross Entropy (torchtune) (PyTorch, 2024) (8 chunks) 13,000MB 30.4ms 2,000MB 51.0ms 13,000MB 82.8ms
torch.compile 4,000MB 20.6ms 4,000MB 33.9ms 8,000MB 55.0ms
Baseline (torch.nn.CrossEntropyLoss) 24,000MB 38.7ms 16,000MB 55.8ms 28,000MB 96.0ms

B.4. Experimental Details

Training. We conducted a learning rate sweep over learning rates [5e-6, 2e-5, 5e-5, 2e-4] with a summing reduction.
We further tested label smoothing hyperparameters [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], where 0.0 is no smoothing. We used the
open-instruct repository at commit e363290 for our training setup,5 with modifications to account for our kernel as well as
specific experimental hyper-parameter settings and baselines.

Evaluation. Our implementation is based on the MMLU official repository.6 We first evaluate our models on MMLU and
then modify the files here to directly adapt the evaluation dataset to the other tasks at hand. We follow MMLU and use the
following prompt for all tasks: ’The following are multiple choice questions (with answers) about .\n\n’.format(query).

5https://github.com/allenai/open-instruct
6https://github.com/hendrycks/test

20

https://github.com/allenai/open-instruct
https://github.com/hendrycks/test

