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Abstract

Recent advances in generative artificial intelligence (GenAI) models have enabled
the generation of personalized content that adapts to up-to-date user context. While
personalized decision systems are often modeled using bandit formulations, the
integration of GenAI introduces new structure into otherwise classical sequential
learning problems. In GenAI-powered interventions, the agent selects a query, but
the environment experiences a stochastic response drawn from the generative model.
Standard bandit methods do not explicitly account for this structure, where actions
influence rewards only through stochastic, observed treatments. We introduce
generator-mediated bandit–Thompson sampling (GAMBITTS), a bandit approach
designed for this action/treatment split, using mobile health interventions with large
language model-generated text as a motivating case study. GAMBITTS explicitly
models both the treatment and reward generation processes, using information in the
delivered treatment to accelerate policy learning relative to standard methods. We
establish regret bounds for GAMBITTS by decomposing sources of uncertainty in
treatment and reward, identifying conditions where it achieves stronger guarantees
than standard bandit approaches. In simulation studies, GAMBITTS consistently
outperforms conventional algorithms by leveraging observed treatments to more
accurately estimate expected rewards.

1 Introduction

Bandit algorithms are ubiquitous in the design of personalized interventions as they provide a flexible
framework for learning from context and outcomes over time. Recently, researchers have begun
integrating generative artificial intelligence (GenAI) models into these systems to enable richer
forms of personalization in areas such as healthcare, e.g., patient care and mobile health (mHealth)
[2, 23], personalized education [24], music [48], and marketing [28]. By generating rich, tailored
content on-the-fly, GenAI integration expands the scope of personalization beyond what fixed libraries
can offer, since predefined intervention options are unable to accommodate the full range of user
contexts encountered in practice. While this real-time generative capability opens new possibilities
for intervention design, it disrupts the action/reward feedback loop that underpins traditional bandit
learning. Rather than directly acting on the environment, the agent selects a query—e.g., a prompt
to a large language model (LLM)—and the environment receives the stochastic output generated in
response to that query, which we refer to as the “treatment.” This separation between the agent’s
action and the delivered treatment introduces additional stochasticity into the intervention process
and motivates the need for algorithms that explicitly account for the generative mechanism.

Broadly, we focus on online decision-making problems where the treatment delivered to the envi-
ronment is a random function of the agent’s action. As a motivating case study, we consider the use
of LLMs in sequential mHealth interventions. Traditionally, mHealth systems deliver text-based
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support using data collected from smartphones and wearables, adapting to rapid fluctuations in user
context, physiology, and behavior [39, 50]. Bandit algorithms have become a workhorse for this
sequential personalization, with personalized Just-in-Time Adaptive Interventions (pJITAIs) serving
as a popular setting in which such methods are developed and evaluated [51, 33, 14].

This framework for mHealth intervention has inspired countless recent advances in bandit algorithms;
e.g., allowing partial pooling of information across users [19, 52, 20], accommodating non-stationarity
to adapt to shifting user behavior patterns [33], and integrating high-dimensional covariates [3].
While these advancements further optimize bandit learning within this intervention framework, such
approaches are fundamentally limited by reliance on a fixed library of text intervention options.

Dynamic message generation via LLMs offers a path forward. Throughout our analyses, we assume
access to a generator whose responses are guaranteed to be safe and suitable for delivery (see
Section 7). In this setting, the agent selects a query based on user context, submits both query and
user context to the LLM, and delivers the generated text response as the treatment. The user then
produces a reward signal (e.g., behavior or engagement). Crucially, while the agent selects the query,
it cannot control the LLM’s response.

This setup motivates a bandit framework where the agent’s action affects the environment only
through a high-dimensional, stochastic treatment. Standard bandit algorithms are not designed to
exploit this indirect treatment mechanism, leading to inefficient learning by failing to make use of the
structure linking treatments to rewards. Section 3 more precisely defines this generator-mediated
bandit (GAMBIT) framework.

We develop a Thompson sampling-based framework tailored to this action/treatment split, incorporat-
ing explicit models of the treatment and reward generation processes. This framework serves as the
backbone of our approach due to its central role in pJITAI designs, which often rely on Thompson
sampling both for its theoretical guarantees and for its compatibility with downstream causal analyses
using logged data, a key consideration in mobile health research [33]. We call the proposed approach
generator-mediated bandit–Thompson sampling (GAMBITTS).

GAMBITTS selects actions by reasoning over both the distribution of treatments induced by each
query and the reward those treatments generate, using a two-stage sampling procedure that captures
uncertainty across the intervention process. In settings where the agent has simulation access to the
treatment-generating mechanism, this structure enables offline estimation of the treatment model,
accelerating online adaptation. To address the high dimensionality of treatments in generative
settings (e.g., LLM-generated text), GAMBITTS projects each observed treatment into a fixed
low-dimensional representation, enabling scalable and sample-efficient learning.

This work responds to the core challenge of learning when actions yield stochastic, observed treat-
ments. The primary contributions are: (a) the GAMBITTS framework for bandit learning with
stochastic treatments, (b) algorithmic instantiations of GAMBITTS that vary in their approach to
modeling the treatment-generation process, ranging from fully online updates to approaches that
pretrain the treatment model, as well as ensemble-based variants that support nonlinear reward
modeling, (c) theoretical regret bounds for GAMBITTS, including decompositions that isolate con-
tributions from treatment and reward uncertainty, showing when modeling treatment generation
leads to improved learning efficiency, and extending guarantees to flexible, nonlinear reward models,
(d) empirical results demonstrating the limitations of standard methods and the performance gains
achieved by GAMBITTS-based approaches.

2 Related Work

In the bandit literature, researchers have illustrated how leveraging the causal structure underlying
sequential interventions can improve policy learning [30, 37, 35]. Subsequent work has supported
this conclusion, developing bandit algorithms in a wide variety of causal structures [57, 56]. These
approaches model a set of binary, interconnected random variables X = {X1, . . . , XN} with general
causal pathways to a reward Y . Actions are framed as interventions on subsets of X, and algorithms
are aimed at optimizing reward in settings where the action space corresponds to modifying causally
linked features that influence Y . In parallel, Sen et al. [2017] and Maiti et al. [2022] explore related
environments where unobserved confounding can impact bandit learning [45, 38].
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While the works discussed above emphasize general causal structures with limited treatment represen-
tations, our focus is the inverse: a specific mediation structure, where actions influence reward through
an observed stochastic intermediate, but with rich, high-dimensional treatments (i.e., the intermediate
generative output). This designed mediation, where the effect of the agent’s action operates through
the generator’s stochastic response, parallels the instrumental variable (IV) framework, in which an
instrument affects outcomes only indirectly via a stochastic channel [22]. Recent work has connected
IV estimation and bandit design in classical econometric settings [58, 9], while related research
has explored similar structures under noncompliance, where the realized action may differ from
the one selected by the agent [49, 29]. Kallus [2018] makes this connection explicit through the
instrument-armed bandit framework [25]. Most recently, Zou et al. [2025] study mediated bandit
environments from a psychometric perspective [59].

Appendix A discusses further connections and distinctions between our framework and the methods
discussed above, along with recent work on LLMs and bandits and related, application-focused,
literature from the mHealth community.

3 Problem Formulation and Notation

We consider a sequential decision-making setting in which, at each time t = 1, . . . , T , an agent:
(i) observes a context Xt ∈ X ⊆ RdC , (ii) selects an action At ∈ A, where |A| = K ∈ N, (iii)
sends (At, Xt) to a generator, (iv) receives response Gt ∈ G and delivers Gt to the environment,
and (v) observes reward Yt ∈ R. The goal of the agent is to learn a policy for choosing actions that
maximizes cumulative expected reward over time.

As a concrete example, consider an mHealth intervention designed to encourage physical activity.
At time t, the agent: (i) observes user context/covariates Xt (e.g., steps taken the previous day and
current location), (ii) selects an action At, corresponding to a query from a finite set of options (e.g.,
“Please write a message that encourages the user to walk more; I have attached the user’s current
location and previous day’s step count”), (iii) sends the query, along with the context, to an LLM,
(iv) delivers the LLM’s response, Gt, to the user, and (v) observes reward Yt (e.g., user’s subsequent
step count).

In our motivating example, G represents the output of an LLM, and the treatment space G consists of
natural language text. In such GenAI settings, G is exceedingly high-dimensional, making it natural
to posit the effect of G on Y occurs through a lower-dimensional embedding Z∗ ∈ Z∗ ⊆ Rd∗

,
which serves as a sufficient representation of the treatment for predicting reward. Recent work in
high-dimensional causal inference supports this assumption, showing that such lower-dimensional
embeddings can yield representations sufficient for treatment effect estimation (see, e.g., Veitch et
al. [2019]) [53]. Because Z∗ is not observed in practice, the analyst must instead specify a working
embedding h(G) = Z ∈ Z ⊆ Rd. We discuss strategies for constructing h in Section 4. Furthermore,
in practice, the agent may also restrict which components of Xt are passed to the generator; we
discuss this case in Appendix B.1.

A G

X

Y

Z*

Figure 1: Generator-Mediated Bandit Causal Structure
Notes: (i) Dotted lines represent deterministic relationships.
(ii) Arrows from X to A are omitted to represent the data-generating process rather than the
decision logic.
(iii) A: Action/Query; X: Full Context; G: Generated Response; Z∗: True Response Embedding;
Y : Reward.
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We refer to the resulting learning setup as a generator-mediated bandit (GAMBIT) problem. This
causal structure is summarized in the directed acyclic graph (DAG) in Figure 1.

4 Methodology: Generator-Mediated Bandit–Thompson Sampling

As discussed above, we seek a Thompson sampling-based framework for our bandit agent, in line
with its prevalence in mHealth interventions. We observe two key conditional structures to model:

Z | A,X , and E [Y | Z,X] ,

which correspond to the treatment and reward models. Modeling these two components comprises the
two stages of the proposed Thompson sampler and induces the following parametrized environment:

Treatment model: Zt ∼ f1 (z;At, Xt, θ1) Treatment prior: θ1 ∼ π1 ,
Reward model: E [Yt | Zt, Xt] = m2 (Zt, Xt; θ2) Reward prior: θ2 ∼ π2 .

The construction of working treatment representation Z = h(G) depends on the application domain.
In marketing applications, for instance, G may represent AI-generated images, while in our moti-
vating mHealth setting, G corresponds to LLM-generated text, necessitating different approaches
to representation. For implementation, all algorithmic steps operate on the observed working em-
bedding Z, not the unobserved benchmark Z∗. While the GAMBITTS framework is agnostic to the
form of h, the choice can substantially influence empirical performance. The effectiveness of the
GAMBITTS projection approach depends on how well Z preserves reward-relevant information;
when Y ⊥⊥ Z∗ | Z,X , modeling Y | Z,X captures the full signal in Z∗ (and thus that in G as
well). As the conditional dependence Y | Z,X diverges from Y | Z∗, X , performance may degrade.
We explore this phenomenon empirically in Section 6 and further discuss robustness to embedding
misspecification in Appendix C. In our motivating setting, many projection strategies have been
proposed for natural language-based interventions; see, e.g., [18, 53, 43, 11, 21, 54].

We propose two general approaches for GAMBITTS implementation: a fully online variant that
updates both treatment and reward models sequentially, and a partially online variant that pretrains
the treatment model using offline data and updates only the reward model during deployment. To
improve flexibility and accommodate nonlinear reward relationships, we extend both variants with
the ensemble-based sampling strategies introduced in Lu and Van Roy [2017] [36].

The algorithms below focus on settings where the decision to intervene (e.g., to send the user a text
message) has already been made. In practice, mHealth interventions often include an initial decision
of whether to send a message at all; GAMBITTS can be trivially extended to accommodate this
preliminary selection step, as discussed in Appendix B.2.

4.1 Fully Online Generator-Mediated Bandit–Thompson Sampling

LetDt = {Xs, As, Gs, Ys}t−1
s=1 represent the data collected up to time t. Algorithm 1 below describes

a fully online approach for selecting action At based on Dt.

Algorithm 1 Fully Online GAMBITTS (foGAMBITTS)

Inputs: Data Dt, priors π1, π2, models f1, m2, current context xt.
1: Derive posterior distributions P1 (θ1 | Dt) and P2 (θ2 | Dt).
2: Sample θ1,t ∼ P1 (θ1 | Dt) and θ2,t ∼ P2 (θ2 | Dt).
3: For each a ∈ A, calculate

Eθ1,t,θ2,t [Y | a, xt] =
∫
Z
m2 (z, xt; θ2,t) f1(z; a, xt, θ1,t)dz.

4: Set At = argmax
a′∈A

Eθ1,t,θ2,t [Y | a′, xt].

The integral in Step 3 can often be intractable in closed form, but can be efficiently approximated via
Monte Carlo approaches. Furthermore, because GAMBITTS selects agents via posterior sampling, it
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induces well-defined randomization probabilities that can be used for downstream causal inference or
offline evaluation. Specifically, the probability of selecting action a at time t is

p∗t,a =

∫
Θ2

∫
Θ1

1
a = argmax

a′∈A
Eθ1,θ2 [Y | a′, xt]


P1 (θ1 | Dt)P2 (θ2 | Dt) dθ1dθ2.

In settings where these probabilities are required for post hoc causal analyses (e.g., analysis of
pJITAIs), the full set

{
p∗t,a
}
a∈A,t=0,...,T

can be approximated retrospectively, after the study period,
when additional computational resources are available [4, 33]. Alternatively, if sufficient computing
power is available at deployment time, the agent may compute these probabilities online and sample
from them directly. As with the integral in Step 3, the quantities p∗t,a can be estimated via Monte
Carlo sampling from the posterior distributions over θ1 and θ2.

4.2 Partially Online Generator-Mediated Bandit–Thompson Sampling

In settings where the agent has simulation access to the generator, or access to additional data sources,
it may be possible to learn the treatment model independently of user interactions. For example, in
our motivating application, an mHealth intervention designer could query an LLM multiple times
without sending any generated text to users.

This capability motivates a partially online GAMBITTS (poGAMBITTS). The poGAMBITTS framework
exploits simulation access to the generator to offload learning of the first-stage distribution, Z | A,X
to an offline phase. Empirically, this decomposition can substantially improve online performance, as
discussed in Section 6.

Here, we consider the generator G to be a random function, which the agent can query using
prompt-context pairs (a, x) ∈ A × X . In the poGAMBITTS framework, the agent can obtain an
offline approximation of the treatment distribution f1 by: (i) simulating Moff prompt-context pairs{(
a1, x1

)
, . . . ,

(
aMoff , xMoff

)}
, (ii) using the generator to simulate G(ai, xi), with gi(ai, xi)

denoting the observed output and zi denoting its observed Z embedding, for i = 1, . . . ,Moff ,
and (iii) taking foff1 (z;At, Xt) to be the empirical conditional distribution observed in Doff :={(
ai, xi, zi

)}Moff

i=1
.

In cases where |X | is finite, the agent can repeatedly prompt the generator for each prompt-context
pair (a, x) ∈ A× X and directly use the empirical distribution of Z | A,X in Doff as foff1 . When
|X | is infinite, the agent must instead fit a model to estimate the conditional distribution of Z | A,X
based on Doff , and use this estimate as the treatment model.

Algorithm 2 Partially Online GAMBITTS (poGAMBITTS)

Inputs: Data Dt, prior π2, model m2, current context xt, pretrained model foff1 .
1: Derive the posterior distribution P2 (θ2 | Dt).
2: Sample θ2,t ∼ P2 (θ2 | Dt).
3: For each a ∈ A, calculate

Eθ2,t [Y | a, xt] =
∫
Z
m2 (z, xt; θ2,t) f

off
1 (z; a, xt)dz.

4: Set At = argmax
a′∈A

Eθ2,t [Y | a′, xt].

As in foGAMBITTS, the probability of selecting action a at time t can be written explicitly, here as∫
Θ2

1
a = argmax

a′∈A
Eθ2 [Y | a′, xt]


P2 (θ2 | Dt) dθ2,

which can be computed or approximated retrospectively if randomization probabilities are needed for
post hoc causal analyses. Again, we can approximate Eθ2,t [Y | At = a,Xt = xt] via Monte Carlo.
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Moreover, one may wish to blend the approaches in Algorithms 1 and 2 by using simulated offline
data to form a posterior distribution over the treatment model parameters, P

(
θ1 | Doff

)
. During

online deployment, the agent may either continue updating this posterior online, or fix it and sample
throughout learning (avoiding the computational cost of full online θ1 posterior updates).

4.3 Ensemble-Based GAMBITTS Approaches

Algorithms 1 and 2 require explicit posterior updates for reward model parameters (θ2), restricting the
class of models that can be feasibly used. This restriction can be particularly limiting for two reasons.
First, flexible models are often desirable to avoid strong parametric assumptions on E [Y | Z,X].
Second, when Z is an imperfect proxy for Z∗, flexible models may help capture residual information
and improve the approximation of E [Y | Z∗, X] through m2(Z,X).

To address these challenges, we propose an ensemble-based posterior approximation strategy, drawing
on the ensemble sampling framework introduced in Lu and Van Roy [2017] [36]. This approach
maintains an ensemble of models to approximate the posterior distribution over parameters, making
posterior sampling tractable even for complex or nonlinear models. We present ensemble-based vari-
ants of Algorithms 1 and 2 (ens-foGAMBITTS and ens-poGAMBITTS, respectively) in Appendix D.
In Section 6, we evaluate the performance of ens-poGAMBITTS using a multilayer perceptron (MLP)
model for E [Y | Z,X].

5 Theoretical Guarantees

This section explores regret guarantees for the GAMBITTS algorithms introduced in Section 4.
We revisit the generator-mediated bandit learning problem from Section 3, now from a theoretical
perspective. Throughout, we assume a finite context space (i.e., |X | = C < ∞) and focus on
the correctly specified setting where the working treatment projection matches the true underlying
treatment embedding (i.e., Z = Z∗).

Under these assumptions, treatment and reward generation at time t follows a two-stage stochastic
process. First, given context xt and action at, the generator samples an intermediate treatment
variable zt ∈ Rd from a distribution ξθ1xt,at

(with density f1 (z;xt, at, θ1)) supported on the ball
Bd(B) = {z ∈ Rd : ∥z∥2 ≤ B}. Second, the agent receives a noisy reward yt = m2(zt, xt; θ2)+ηt,
where ηt is σ2-subgaussian noise. Here, θ = {θ1, θ2} are unknown parameters. We also assume that
the mean reward distributionm2 (Z, x; θ2), under Z ∼ ξθ1x,a, is σ1-subgaussian for all (x, a) ∈ X ×A.

The goal of the agent is to minimize the time-T cumulative Bayesian regret, defined as

BRT := E

[
T∑

t=1

(
E
ξ
θ1
Xt,A

∗
t

[m2(Z,Xt; θ2) | Xt, A
∗
t , θ]− E

ξ
θ1
Xt,At

[m2(Z,Xt; θ2) | Xt, At, θ]

)]
,

where the inner expectations are over Z and the outer expectations over X , θ1, θ2, and agent
actions A. The benchmark a∗t denotes the Bayes-optimal action in context xt, defined by A∗

t :=
argmax

a∈A
E
ξ
θ1
xt,a

[m2(Z, xt; θ2) | θ].

As a baseline, we consider a Thompson sampling agent that models the problem as a conventional
multi-armed contextual bandit over X × A, ignoring the generator-mediation structure. We refer
to this as a “standard” Thompson sampling approach, as it captures a natural modeling choice that
treats rewards as a direct consequence of actions. This serves as a point of comparison in both our
theoretical and empirical results. As shown in Appendix E, its Bayesian regret satisfies

BRstandard
T ≤ Õ

(
(σ1 + σ2)

√
CKT

)
(1)

While the regret bound for the standard Thompson sampling agent is tight (i.e., matching known lower
bounds), it becomes unfavorable when either the context or action space is large. This motivates
the GAMBITTS approach, which can exploit shared structure in the treatment space to support
generalization across arms. We begin by analyzing poGAMBITTS, as this approach aligns more closely
with our motivating setting, then turn to the foGAMBITTS variant. Appendix E presents the proofs of
all results discussed below, along with additional theoretical results.
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5.1 Regret Analysis for poGAMBITTS

We begin by analyzing the regret of poGAMBITTS. This algorithm uses empirical conditional distribu-
tions, with densities foff1 (z;x, a), that approximate the true treatment distributions ξθ1x,a and define
the estimated mean reward

m̂2(x, a; θ2) =

∫
Z
m2(z, x; θ2)f

off
1 (z;x, a)dz.

poGAMBITTS can be viewed as a Thompson sampling algorithm operating on the estimated mean
reward function m̂2. More generally, we can consider other traditional bandit algorithms operating in
the “partially online stochastic treatment” setting, where actions are selected based on an estimated
reward model derived from an empirical treatment distribution. Although actions are chosen with
respect to m̂2, rewards are generated according to the true mean m2, introducing a form of model
misspecification. Nevertheless, we show that if the empirical treatment model is sufficiently close to
the true distribution, then running a no-regret contextual bandit algorithm on m̂2 still yields no-regret
guarantees for the original problem.

In the following results, we let ε > 0 and consider empirical treatment models foff1 satisfying

KL
(
foff1 (·;x, a)

∥∥f1 (.;x, a, θ1)) ≤ ε for all (x, a) ∈ X ×A. (2)

As shown in Appendix E, under regularity conditions on ξθ1X,A, foff1 will satisfy (2) given
poly

(
d, ε−1

)
draws from the simulator for each (x, a) ∈ X ×A.

Theorem 1. Let foff1 be an empirical model for the treatment distribution satisfying (2). Let Alg be
a contextual bandit algorithm that selects actions based on the estimated reward function m̂2. Then,
running Alg in the partially online stochastic treatment setting gives T -step Bayesian regret BRAlg

T ,
with

BRAlg
T ≤ O

(
B̂R

Alg
T + T

√
εT
)
,

where B̂R
Alg
T is the T -step Bayesian regret of Alg with respect to m̂2.

Theorem 1 bounds the agent’s true regret in terms of its regret under the estimated reward model
induced by its misspecified treatment distribution. For poGAMBITTS with a linear reward model, we
get the following result.

Corollary 1. Let foff1 satisfy (2). If m2 (z, xt; θ) is linear in z ∈ Rd, then the Bayesian regret of

poGAMBITTS (Algorithm 2) satisfies BRpo:lin
T ≤ Õ

(
σ2d
√
T + T

√
εT
)
.

When ε ≤ (σ2d/T )
2, the regret simplifies to Õ

(
σ2d
√
T
)

. This is sharper than the standard

Thompson sampling bound whenever d <
(
1 + σ1

σ2

)√
CK.

We now consider poGAMBITTS with a nonlinear reward model. In Theorem 2, the complexity
measures dimE(F , T−2) and N (F , T−2, ∥ · ∥∞) denote the eluder dimension and the covering
number of F , respectively. Appendix E provides formal definitions of these measures.

Theorem 2. Let foff1 satisfy (2). For any function class F with m̂2 ∈ F , the Bayesian regret of
poGAMBITTS (Algorithm 2) satisfies

BRpo:F
T ≤ Õ(σ2

√
dimE(F , T−2) logN (F , T−2, ∥ · ∥∞)T + T

√
εT ).

5.2 Regret Analysis for foGAMBITTS

We now present regret guarantees for foGAMBITTS (Algorithm 1) in the linear reward setting, which
applies when the agent does not have simulator access to the distributions {ξx,a}(x,a)∈X×A.

Theorem 3. If m2 (z, xt; θ) is linear in z ∈ Rd, the Bayesian regret of foGAMBITTS (Algorithm 1)
satisfies

BRfo:lin
T ≤ Õ

(
σ1
√
CKT + σ2d

√
T
)
.
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The bound nearly matches the minimax lower bound of Ω(max{σ1
√
CKT, σ2

√
dT}), presented in

Appendix E. Comparing Theorem 3 and Equation 1 shows foGAMBITTS achieves a sharper regret
bound than standard Thompson sampling whenever d ≪

√
CK. When the working treatment

representation is low-dimensional and well-specified, the benefits from generalizing across arms
outweigh the cost of estimating the treatment distribution. Moreover, the advantage grows when
σ2 ≫ σ1, since generalizing across arms helps more when reward noise dominates. In addition, when
σ1 < 1/

√
CK, the regret of foGAMBITTS becomes comparable to that of poGAMBITTS. In such

cases, where the generator is sufficiently concentrated, simulator access offers little improvement.

Having established regret guarantees for the GAMBITTS algorithms, we now turn to their empirical
evaluation in Section 6.

6 Simulation Results

To evaluate GAMBITTS-based algorithms, we designed a simulation study modeled on the 2023
Intern Health Study (IHS) which was aimed at supporting mental health among medical interns [40].
At each decision point, the agent (i) observes user context (location, recent step count), (ii) selects a
prompt from a finite list to submit to an LLM (Llama 3.1 8.0B), and (iii) delivers the generated text
response as the intervention [15]. The environment then generates a reward based on select semantic
dimensions of the generated text (optimism, severity, formality, clarity, and encouragement). The
semantic dimensions were constructed by training one-dimensional variational autoencoders on text
generated to vary along each axis, yielding mappings from text to scores used in the reward model
(see Appendix G.3 for more details).

While no deployed JITAIs currently integrate LLMs for real-time message generation (and thus no
real-world dataset exists for this setting), we calibrate our simulation using empirical distributions
from the 2023 IHS to model realistic conditional reward structures. Details on the compute resources,
generative model, prompt design, and reward specification are provided in Appendix G, with code and
further documentation available on GitHub. Additionally, Appendix F includes further simulations
exploring different first- and second-stage variance decompositions, varying the Z dimensionality
d, altering the level of simulation access available to poGAMBITTS, incorporating direct covariate
influence on reward, and evaluating performance under nonlinear data-generating mechanisms. All
figures are based on 250 Monte Carlo runs per agent, with 95% confidence intervals shown.

6.1 Illustrative Example

We begin with a simple example where the outcome at time t is given by Yt = βZoptimism
t + εt,, with

Zoptimism
t denoting the optimism score of the generated message and εt

IID∼ N (0, σ). As discussed
above, parameters β and σ are derived from IHS data. This setup isolates a single semantic dimension,
where we expect GAMBITTS to outperform standard Thompson sampling by leveraging shared
reward structure. We compare GAMBITTS algorithms to both contextual and non-contextual standard
Thompson sampling agents (StdTS:Contextual and StdTS, respectively); as shown in Figure 2,
StdTS performs better here and is used as the baseline in subsequent simulations. As expected,
GAMBITTS methods achieve lower regret than standard Thompson sampling, with poGAMBITTS
performing especially well in this setting.

StdTS
StdTS:Contextual
foGAMBITTS
poGAMBITTS

Figure 2: Cumulative Regret Under Single-Dimension Reward Model
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6.2 Embedding Misspecification

The assumption that the agent has correctly identified how G influences Y (i.e., that Z = Z∗) is
quite strong. To assess the impact of misspecifying this mechanism, we revisit the illustrative setting
from Section 6.1, but evaluate performance when the agent uses a linear model with an alternative
embedding. As discussed in Section 4, we expect GAMBITTS performance to degrade as the working
embedding departs from the true reward-relevant dimension (optimism).

(a) poGAMBITTS (b) foGAMBITTS

StdTS
Clarity
Encouragement
Formality
Optimism
Severity

Figure 3: Cumulative Regret Under Treatment Embedding Misspecification

Figure 3 confirms this pattern: GAMBITTS performs well when the working embedding is correlated
with the true one, but deteriorates as the correlation declines (see Table G.3.4 in Appendix G). In
low-correlation settings, it can even underperform standard Thompson sampling, as policy learning
fails when working treatment representations are misaligned with rewards.

6.3 Scaling Number of Arms in a More Complex Reward Structure

We next vary the number of treatment arms to test Corollary 1, which predicts poGAMBITTS regret
does not scale with K in linear settings. Furthermore, in this section and throughout Appendix F,
we turn to a more complex linear reward structure based on Zoptimism, Z formality, and Zseverity. As we
move to more complex data-generating environments, we introduce an ens-poGAMBITTS agent with
an MLP reward model.

(a) K = 3 (b) K = 5 (c) K = 15

(d) K = 30 (e) K = 40

StdTS
ens-poGAMBITTS
foGAMBITTS
poGAMBITTS

Figure 4: Cumulative Regret for Varying Across Sizes of Action Space

The simulations varying the size of the action set largely aligned with our expectations: the regret of
the linear poGAMBITTS algorithm was stable across values of K, and the regret of ens-poGAMBITTS
increased slightly with K, but not substantially. This pattern is encouraging, as it suggests that

9



additional intervention options can be incorporated by increasing K without incurring a large regret
penalty, though computational cost scales linearly with K. foGAMBITTS performed noticeably worse
in this setting, which is expected given that it must estimate the distribution of Z for each (x, a)
pair. A more natural comparator for foGAMBITTS is the contextual bandit, and we examine this
comparison in Appendix F.

7 Discussion and Future Work

This paper introduces GAMBITTS for online learning in generator-mediated bandit environments,
showing promise for a synergistic relationship between classical bandit methods and modern advances
in generative modeling. By formalizing settings in which actions (e.g., prompts) produce stochastic
treatments (e.g., generated responses), this framework opens new opportunities for personalization in
domains such as marketing, mHealth, and education, where treatments cannot be easily enumerated
and real-time generation can yield more deeply-tailored interventions.

This work opens up a wide range of directions for future research. One immediate area concerns the
structure and specification of the working treatment embedding. As shown in Section 6, GAMBITTS
can still perform well under embedding misspecification, and flexible reward models can help mitigate
this issue. Still, a natural extension would be to learn the embedding online, (e.g., through online
sufficient dimensionality reduction). Another direction involves moving beyond a static generator.
While this manuscript assumes a fixed model, fine-tuning the generator based on observed outcomes
could offer new opportunities for intervention design. Finally, this manuscript assumes that the
agent always delivers the generated response to the environment. While this may be appropriate in
some applications, in others it may be essential to ensure that any content sent to users is safe. In
such cases, intervention designers may wish to incorporate safety checks or content filters prior to
delivery. Incorporating these constraints into the generator-mediated bandit framework may require
new GAMBITTS variants and accompanying theoretical analysis.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction describe the proposed generator-mediated bandit
framework and the Thompson sampling-based algorithm (GAMBITTS) (these are presented
in Sections 3 and 4, respectively). They also summarize the theoretical regret bounds and
empirical performance improvements over standard baselines, aligning with the theoretical
results in Section 5 and the empirical results in Section 6.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations related to the reliance on a correctly specified working
embedding and examine robustness to misspecification in Section 6.2. Additioanlly, as
noted in Section 5, the performance of poGAMBITTS depends on the quality of the first-stage
treatment approximation, and the theoretical results are derived under simplified conditions,
including a fixed context space and treatment model.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We explain the assumptions for our main body results in Section 5. We include
proofs in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include algorithmic details in Section 4, simulation specifications in
Appendix G, and we include the code necessary to reproduce our results in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code in the supplementary materials with instructions for repro-
ducing the simulation results reported in Section 6 and Appendix F. This code will be
made publicly available on GitHub upon publication; the link is omitted here to preserve
anonymity.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the simulation setup and implementation details in Appendix G,
including data-generating mechanisms and hyperparameters. We also include code in the
supplementary materials to ensure results can be reproduced exactly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: As discussed in Section 6, we report 95% confidence intervals for Monte
Carlo estimates of cumulative reward. These intervals are computed across 250 independent
runs per agent and reflect uncertainty due to randomization in the environment and learning
process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We present this information in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics. We have, to the best
of our ability, followed best practices in licensing, reproducibility, and responsible use of
external models and datasets, and we address potential limitations and risks in Section 7.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes. We discuss broader social impacts in Appendix H, including potential
benefits in areas like education and mHealth. We also note risks associated with deploying
LLM-generated text in sensitive settings and highlight future directions for adapting the
framework to mitigate those risks (see Section 7).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new pretrained models or datasets. However, we
discuss potential risks and implications of deploying algorithms like ours in sequential
decision-making settings in Section 7.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use Llama 3.1 to generate text-based treatments in our simulations and
cite the official technical report. We used the model in accordance with its non-commercial
research license, and all other external assets are properly credited and used within their
stated terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a simulation framework and a pool of LLM-generated
text-based treatments. These are included in the supplementary materials along with code
and documentation describing how they were generated and used in the experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct any experiments involving human subjects or crowdsourc-
ing. However, some simulation parameters were based on prior published studies involving
human participants, which we cite appropriately.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Some simulation parameters were derived from prior published studies with
human subjects, which we cite. This paper does not involve new human subjects research
and did not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are used to generate a pool of text-based treatments, which serve as the
basis for our simulation experiments. While the LLM is not part of the learning algorithm
itself, it plays a role in motivating the problem setup (described in Section 3) and its use in
the simulation experiments is described in Section 6 and Appendix G.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Further Related Work

Eldowa et al. [2024] study bandits with mediator feedback from an information-theoretic perspective,
broadly considering settings where the effect of an action is funneled through a stochastic mediator
[12].2 Among works on bandits with mediator feedback, our approach is most closely related to those
that draw connections to instrumental variables and noncompliance. Zhang et al. [2022] and Della
Vecchia and Basu [2025] adopt an econometric perspective, developing OFUL-based algorithms for
bandit problems with endogenous covariates. While both consider continuous treatments, they do not
focus on high-dimensional treatment spaces or settings in which treatments can be generated offline
without interacting with the environment [58, 9]. Moreover, these works emphasize interpretable
parameter estimation, particularly in the structural model of the reward, whereas our primary focus is
on predictive modeling for policy learning. This distinction is important in generative settings, where
treatments (e.g., LLM-generated text) are difficult to interpret directly, and causal inference is used to
support adaptive decision-making rather than uncover underlying mechanisms.

Other related efforts include Stirn and Jebara [2018], which introduces Thompson sampling in the
context of noncompliance, assuming a shared, discrete action and treatment space [49]. Kveton et
al. [2023] also study noncompliance and employ a Thompson sampling-based approach, aiming to
identify actions with the highest compliance-weighted mean reward, rather than modeling the full
stochastic treatment-generation process [29].

The generator-mediated bandit setup most closely resembles the noncompliance-inspired instrument-
armed bandit (IAB) framework of Kallus [2018], where each arm pull represents the choice of an
instrument, and the mediated bandit environment of Zou et al. [2025] [25, 59]. One key departure in
our setting is the presence of a stochastic generator that produces the treatment, which leads us to
focus on questions of treatment representation, generator access, and nonlinear outcome modeling,
areas not emphasized in the IAB or other mediated bandit frameworks.

In contrast to Kallus’ focus, our setting does not require the treatment space G to match the action
space A. While assuming a shared action and treatment space is natural for modeling noncompliance,
where the intended and realized actions are ideally aligned, our setting explicitly separates the two.
Here, the distinction is fundamental rather than incidental, reflecting the design goal of producing
personalized responses rather than enforcing direct action execution.

Like Zou et al. [2025], we consider a general framework for learning in mediated bandit environments.
However, motivated by the complex nature of generative outputs, we focus on flexible, potentially
nonlinear models for both the mediator and the reward. In contrast, Zou et al. frame their approach
more explicitly as a surrogate-reward method,3 emphasizing linear models and aiming for robustness
in cases where the action may influence the reward directly, outside the mediation pathway.4

The works discussed above present algorithms that can be broadly understood as instances of a
general noisy action framework, where the environment observes a stochastic transformation of the
agent’s chosen action.5 From this perspective, GAMBITTS represents a specific instantiation of a
noisy-action Thompson sampler. While GAMBITTS is motivated by the GAMBIT framework, with
high-dimensional and continuous treatment spaces, taking h = I (as defined in Section 3) recovers
algorithms suited to the econometric and psychometric mediated bandit environments discussed
above. Further taking G = A yields algorithms appropriate for noncompliance settings.

In addition to bandit methods with comparable structure, described above, another line of research
has explored intersections between LLMs and bandits. Although these approaches address different
statistical questions, they nonetheless relate to our setting through their shared focus on combining
LLMs with bandit methods. Within this broader category, the most directly related line of work
concerns using bandits for prompt selection, where prompts are treated as arms and evaluated based
on task-specific performance. In contrast with our approach, much of this literature considers settings
with deterministic rewards once the LLM output is observed, or with white-box access to the model

2Their analysis focuses on discrete mediators and introduces an EXP4-based algorithm.
3We note that GAMBITTS can also be viewed in this way, as discussed in Section 5.
4In our motivating application, the action affects the outcome only through the generated treatment, making

full mediation a reasonable assumption.
5We use the term noisy action to emphasize that, from the environment’s perspective, the observed treatment

is a noisy representation of the agent’s intended action.
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[7, 8, 34, 46]. Another line of recent research examines LLMs themselves as the decision-making
agents in multi-armed bandit [27, 17, 26, 41]. For a broader overview of work at the intersection of
LLMs and bandits, see Bouneffouf and Feraud [2025] [5].

In the mHealth literature, researchers have recently begun exploring how LLMs can support interven-
tion design, motivated by the the parallel rise of mobile interventions interventions and generative
models. Haag et al. [2024] compared the quality of JITAI intervention text generated by GPT-4 to
that authored by both domain experts and non-experts. Their findings showed that LLM-generated
content performed favorably compared with human-authored text [16]. Additionally, James et al.
[2024] conducted a randomized trial comparing LLM- and human-generated goals in a gamified
mHealth application, evaluating their impact on participant engagement. The study found no signif-
icant difference in engagement between the two groups, suggesting that LLMs may offer a viable
and scalable alternative for content generation in such settings [23]. However, as the goals were
pre-written and not personalized in real time; the study did not evaluate the use of LLMs for on-the-fly
message generation or adaptive personalization. Lastly, the IHS-COMPASS studies used LLMs to
generate JITAI intervention text in recent deployments. However, as in James et al. [2024], these
messages were pre-written rather than generated on-the-fly [13].

B Practical Variations

B.1 Restricting Context for the Generator

As discussed in Section 3, in many practical applications, the agent may restrict which features of
Xt are passed to the generator, selecting a subset XG

t ⊆ Xt to include in the query. While some
components of Xt may be useful for outcome modeling, they may not be appropriate for inclusion
in the prompt sent to the generator. For example, a variable like weight could improve reward
prediction but would likely be excluded from the generator input for ethical or design reasons. The
corresponding causal structure is shown in Figure 5.

A G

X

Y

Z*

XG

Figure 5: Generator-Mediated Bandit Causal Structure (Restricted Context in Query)
Notes: (i) Dotted lines represent deterministic relationships.
(ii) Arrows from X to A are omitted to represent the data-generating process rather than the
decision logic.
(iii) A: Action/Query; X: Full Context; XG: Context Sent to Generator; G: Generated Response;
Z∗: True Response Embedding; Y : Reward.

The methods and analyses in this manuscript change only superficially when XG
t ̸= Xt. In this case,

the treatment model introduced in Section 4, f1 (z;At, Xt, θ1), is replaced by f1
(
z;At, X

G
t , θ1

)
.

Additionally, all algorithms that invoke f1 inherit this modification.

B.2 Optional Prompting Extension

As discussed in Section 4, mHealth interventions frequently begin with a decision of whether to
deliver any message at all. GAMBITTS can be naturally extended to incorporate this structure. In this
variant, a primary agent first decides whether to act (e.g., to send a message). A GAMBITTS-based
agent then operates only at the time points where the primary agent chooses to act. Algorithm 3
outlines this extension.
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Algorithm 3 GAMBITTS with Optional Prompting

Inputs: Full history D(1)
t , GAMBITTS history D(2)

t , prompting policy µ(1), GAMBITTS policy
µ(2), context xt.

1: Sample Rt ∼ µ(1)
(
D(1)

t , xt

)
according to Agent 1.

2: If Rt = 1 then
3: Select query At ∼ µ(2)

(
D(2)

t , xt

)
according to Agent 2.

4: Update D(2)
t+1 ← D

(2)
t ∪ {(xt, At, Zt, Yt)}.

5: Update policy µ(2).
6: Update D(1)

t+1 ← D
(1)
t ∪ {(xt, Rt, Yt)}.

7: Update policy µ(1).

C Embedding Misspecification

As discussed in Section 4, GAMBITTS performance hinges on the construction of working embedding
Z = h(G), with the agent modeling Y | Z,X in place of Y | G,X . Section 6.2 supports this notion,
showing GAMBITTS is robust to mild misspecification but suffers under severe misspecification.
With this phenomenon in mind, this appendix discusses two approaches aimed at improving robustness
to embedding misspecification.

One option for promoting robustness is to construct a hedged reward model. In particular, given any
initial embedding construct Z and model m2, an analyst can consider the modified form:

m̃2(At, Zt, Xt;β
·, θ2) =

∑
a∈A

βa
1At=a +m2(Zt, Xt; θ2).

When the goal is online learning of the optimal action A, this structure offers a hedge against
misspecification of Z and m2. In particular, if m2 fails to capture signal, its estimated contribution
to m̃2 will shrink towards zero. In that case, the m̃2 model asymptotically behaves like a standard
Thompson sampling agent that learns a reward distribution over actions directly. Conversely, if Z and
m2 are well-specified, then the action At provides no additional information beyond what is already
captured through m2(Zt, Xt; θ2). In this case, the estimated β· terms will shrink to zero and m̃2 will
converge to m2. However, the agent must first learn that the embedding carries signal, potentially
delaying efficient generalization early in learning.

Figure 6 revisits the analysis presented in Figure 3 of Section 6.2, now including hedged models.
All hedged poGAMBITTS agents perform similarly, as do all hedged foGAMBITTS agents. While
every hedged GAMBITTS variant outperforms standard Thompson sampling in this setting, the well-
specified models no longer exhibit the performance advantage they had in the original (unhedged)
analysis. This supports the hypothesis that hedging reduces downside risk but limits gains under
well-specified embeddings.

(a) poGAMBITTS (b) foGAMBITTS

StdTS
Clarity
Encouragement
Formality
Optimism
Severity

Figure 6: Cumulative Regret Under Embedding Misspecification - Original vs Hedged Approaches
Note: Dotted lines represent cumulative regret under original (unhedged) approaches.
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A second option is to maintain a set of candidate reward models, each potentially using different treat-
ment embeddings. Periodically, the agent can evaluate these models based on predictive performance
and switch to the one that best predicts observed outcomes. This allows the algorithm to recover from
poor initial choices of Z (and m2 more broadly) without requiring strong prior knowledge about
which embedding will perform best.

Improving robustness to embedding misspecification also points to several directions for future work.
For example, extending the candidate model approach by developing a corralling bandit, where a
master algorithm selects among reward models, could allow the agent to adaptively shift across
models and tailor the choice of embedding to the individual. Similarly, as discussed in Section 7,
learning individualized treatment embeddings through methods like online sufficient dimensionality
reduction would mitigate misspecification risk.

D Ensemble-Based Algorithms

As in Lu and Van Roy [2017], given a second-stage reward model parametrized by θ2, ensemble-based
GAMBITTS approaches require initially drawing Mens sets of parameters θ̃12,1, . . . , θ̃

Mens
2,1 from a

pre-determined initialization distribution. Algorithms 4 and 5 then demonstrate how to select action
at for t = 1, . . . , T . As in Algorithms 1 and 2, an analyst may approximate the integrals below via
Monte Carlo.

Steps 5 and 4 in Algorithms 4 and 5 (respectively) require updating model parameters as described
in Lu and Van Roy [2017]. These updates involve perturbations of observed reward to promote
exploration [36].

Algorithm 4 Ensemble-Based Fully Online GAMBITTS (ens-foGAMBITTS)

Inputs: Data Dt, prior π1, models f1, m2, current context xt, reward model parameters{
θ̃m2,t

}Mens

m=1
.

1: Sample θ1,t ∼ P1 (θ1 | Dt)
2: Sample j ∼ U ({1, . . . ,Mens}).
3: For each a ∈ A, calculate

Eθ1,t,θ̃
j
2,t

[Y | a, xt] =
∫
Z
m2

(
z, xt; θ̃

j
2,t

)
f1(z; a, xt, θ1,t)dz.

4: Set At = argmax
a∈A

Eθ1,t,θ̃
j
2,t

[Y | a, xt].

5: Given (zt, xt, yt), update θ̃12,t+1, . . . , θ̃
Mens
2,t+1.

Algorithm 5 Ensemble-Based Partially Online GAMBITTS (ens-poGAMBITTS)

Inputs: DataDt, modelm2, current context xt, pretrained model foff1 , reward model parameters{
θ̃m2,t

}Mens

m=1
.

1: Sample j ∼ U ({1, . . . ,Mens}).
2: For each a ∈ A, calculate

Eθ̃j
2,t

[Y | a, xt] =
∫
Z
m2

(
z, xt; θ̃

j
2,t

)
foff1 (z; a, xt)dz.

3: Set At := argmax
a∈A

Eθ̃j
2,t

[Y | a, xt].

4: Given (zt, xt, yt), update θ̃12,t+1, . . . , θ̃
Mens
2,t+1.
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E Further Theoretical Discussion

In this appendix, we provide proofs for the results discussed in Section 5, along with additional
theoretical developments related to Thompson sampling in the GAMBITTS framework. The appendix
is organized as follows:

• Appendix E.1: Proof of the regret upper bound presented in Section 5 for standard Thompson
sampling in a GAMBIT environment.

• Appendix E.2: Proofs of the regret upper bounds presented in Section 5 for poGAMBITTS-
based algorithms, as well as a bound on the number of samples needed for the offline
(empirical) treatment distribution to approximate the true distribution.

• Appendix E.3: Proof of the regret upper bound presented in Section 5 for foGAMBITTS.

• Appendix E.4: Statement and proof of a regret lower bound for foGAMBITTS.

E.1 Upper Regret Bound for Standard Thompson Sampling

In this section, we present a Bayesian regret bound of a standard Thompson sampling algorithm
that models the problem as a conventional multi-armed contextual bandit over X ×A, ignoring the
generator-mediation structure. Our analysis adapts the proof from Chapter 36.1 of Lattimore and
Szepesvári [2020] [31].

Claim 1. The Bayesian regret of the standard Thompson sampling agent that models the problem as
a multi-armed contextual bandit over X ×A is bounded by

BRstandard
T ≤ O((σ1 + σ2)

√
CKT log T +BCK)

where B is a uniform bound on the mean reward such that |m2(z, x; θ)| ≤ B.

Proof. Recall that the reward received when the agent selects action a ∈ A under context x ∈ X is
given by m2(Z, x; θ2) + η, where η is σ2-subgaussian and Z ∈ Rd is drawn from the distribution
ξθ1x,a.6 As discussed in Section 5, we assume that m2(Z, x; θ2) is σ1-subgaussian. It follows that the
overall reward for a given context-action pair (x, a) is (σ1 + σ2)-subgaussian.

We use m(x, a) to denote the mean reward for the context-action pair (x, a); i.e.,

m(x, a) :=

∫
Z
m2(z, x; θ2)f1(z;x, a, θ1)dz.

Since we assume that the mean reward is bounded by |m2(z, x; θ2)| ≤ B, it follows that |m(x, a)| ≤
B.

Now, we adapt the Bayesian regret analysis for a standard Thompson sampling algorithm for multi-
armed bandit settings to the contextual multi-armed bandit setting where the context is assumed to be
drawn i.i.d. every round.

Well, for each a ∈ A, x ∈ X and t = 1, . . . , T , define

Ut(x, a) := clip[−B,B]

(
m̂x,a(t− 1) + (σ1 + σ2)

√
2 log(1/δ)

1 ∨Nx,a(t− 1)

)
,

where Nx,a(t − 1) =
∑t−1

s=1 1{Xt=x,At=a} is the count of the pair (x, a) up to time t − 1 and
m̂x,a(t − 1) denotes the empirical estimate of the reward of action a under context x based on
observations up to time t− 1. If Nx,a(t− 1) = 0, we set m̂x,a(t− 1) = 0.

Let E be the event that, for all t = 1, . . . , T and (x, a) ∈ X ×A, the empirical estimate satisfies

|m̂t−1(x, a)−m(x, a)| ≤ (σ1 + σ2)

√
2 log(1/δ)

1 ∨Nx,a(t− 1)
.

6Recall ξθ1x,a has density f1(z;x, a, θ1).
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Under this setup, the standard Hoeffding concentration bound gives P [Ec] ≤ 2CKTδ where
C = |X | and K = |A|.
Let Ft = σ(X1, A1, Y1, . . . , Xt, At, Yt, Xt+1) be the σ-algebra generated by the interaction se-
quence by the end of time t (and the following context at time t + 1). Note that Ut(x, a) is
Ft−1-measurable. Using the fact that, under Thompson sampling, the conditional distributions of
A∗

t = argmaxam(Xt, a) and At given Ft−1 are identical, we obtain

BRT = E

[
T∑

t=1

(m(Xt, A
∗
t )−m(Xt, At))

]

= E

[
T∑

t=1

E [m(Xt, A
∗
t )−m(Xt, At) | Ft−1]

]

= E

[
T∑

t=1

(m(Xt, A
∗
t )− Ut(Xt, A

∗
t )) +

T∑
t=1

(Ut(Xt, At)−m(Xt, At))

]
.

On the event Ec, the terms inside the expectation are bounded by 2BT . On the event E, the first sum
is negative and the second sum is bounded by

1{E}

T∑
t=1

(Ut(Xt, At)−m(Xt, At))

= 1{E}

T∑
t=1

∑
x∈X

∑
a∈A

1{Xt=x,At=a}(Ut(x, a)−m(x, a))

≤ (σ1 + σ2)
∑
x∈X

∑
a∈A

T∑
t=1

1{Xt=x,At=a}

√
8 log(1/δ)

1 ∨Nx,a(t− 1)

≤ (σ1 + σ2)
∑
x∈X

∑
a∈A

∫ Nx,a(T )

0

√
8 log(1/δ)

s
ds

= (σ1 + σ2)
∑
x∈X

∑
a∈A

√
32Nx,a(T ) log(1/δ) ≤ (σ1 + σ2)

√
32CKT log(1/δ).

The result follows from choosing δ = 1
T 2 and applying the bound P [Ec] ≤ 2CKTδ.

E.2 Upper Regret Bounds for poGAMBITTS

The contextual bandit environment of interest with the two-stage reward generating process is fully
specified by

E(θ1, θ2) =
(
PX ,

{
ξθ1x,a

}
x∈X ,a∈A , {m2(z, x; θ2)}x∈X ,a∈A , Pη

)
,

where PX is the context distribution, ξθ1x,a is the distribution of the representation Z ∈ Rd given the
context-action pair (x, a), θ2 is the parameter that governs the mean reward function m2(z, x; θ2),
and Pη is the σ2-subgaussian noise distribution.

In the analysis of poGAMBITTS, we consider the Bayesian regret with θ1 fixed to θ∗1 and θ2 is
integrated over the distribution π2. We denote the environment with θ1 fixed to the true parameter θ∗1
by

E(θ2) = E(θ∗1 , θ2) =
(
PX ,

{
ξ
θ∗
1

x,a

}
x∈X ,a∈A

, {m2(z, x; θ2)}x∈X ,a∈A , Pη

)
.

Theorem 1 assumes access to an Alg with the Bayesian regret bound of BRAlg
T under the approximate

environment
Ẽ(θ2) =

(
PX ,

{
ξoffx,a

}
x∈X ,a∈A , {m2(z, x; θ2)}x∈X ,a∈A , Pη

)
,

where ξθ
∗
1

x,a in the definition of E(θ2) is replaced with its offline empirical estimate ξoffx,a (with density
foff1 (·|x, a)), and the same mean reward function m2(z, x; θ2) parameterized by θ2 is used. To be
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more precise, the Bayesian regret of the algorithm Alg under the approximate environment Ẽ(θ2) is
defined as

BRAlg
T = Eθ2∼π2

[
EẼ(θ2)

[
T∑

t=1

(
Eξoff

Xt,Ã
∗
t

[m2(Z,Xt) | Xt]− Eξoff
Xt,At

[m2(Z,Xt) | Xt]

)]]
,

where Ã∗
t = argmax

a
Eξoff

Xt,a
[m2(Z,Xt) | Xt, θ2]; i.e., the optimal action in context Xt under the

environment Ẽ(θ2). Theorem 1 shows that running the algorithm Alg under the true environment
E(θ2) achieves a similar regret bound as long as the approximation of E(θ2) by Ẽ(θ2) is sufficiently
close.
Theorem 1 (Restated). Let foff1 be an empirical model for the treatment distribution satisfying (2).
Let Alg be a contextual bandit algorithm that selects actions based on the estimated reward function
m̂2. Then, running Alg in the partially online stochastic treatment setting gives T -step Bayesian
regret BRAlg

T , with

BRAlg
T ≤ O

(
B̂R

Alg

T + T
√
εT
)
,

where B̂R
Alg

T is the T -step Bayesian regret of Alg with respect to m̂2.

We provide a proof of Theorem 1 below, which relies on Pinsker’s inequality.
Lemma 1 (Pinsker’s inequality). For any pair of measures P and Q on the same probability space
(Ω,F), we have

δ(P,Q) = sup
A∈F

P (A)−Q(A) ≤
√

1

2
DKL (P∥Q),

where DKL denotes KL divergence in nats.

We now turn to the proof of Theorem 1.

Proof of Theorem 1. Let P θ2
x,a be the distribution of the reward given the context-action pair (x, a)

under the environment E(θ2); i.e., the distribution of the random variable m2(Z, x; θ2) + η where
Z ∼ ξθ

∗
1

x,a and η ∼ Pη. Similarly, let P̃ θ2
x,a be the distribution of the reward given the context-action

pair (x, a) under the environment Ê(θ2); i.e., the distribution of the random variablem2(Z̃, x; θ2)+η

where Z̃ ∼ ξoffXt,a
and η ∼ Pη .

Recalling the assumption that foff1 satisfies (2) (i.e., KL
(
foff1 (·;x, a)∥f1(·;x, a, θ1)

)
≤ ε), we

observe

KL
(
P θ2
x,a∥P̃ θ2

x,a

)
= KL

(
L(g(Z, η))∥L(g(Z̃, η))

)
≤ KL

(
L(Z, η)∥L(Z̃, η)

)
= KL

(
L(Z)∥L(Z̃)

)
≤ ε,

where g(z, η) = m2(z, x; θ2) + η and L(W ) denotes the law/distribution of random variable W .
The first inequality is due to the data processing inequality.

The interaction between the algorithm Alg and the environment E(θ2) determines the distribution
of the sequence (X1, A1, Z1, Y1, . . . , XT , AT , ZT , YT ). With a slight abuse of notation, let P (θ2)
be the probability measure on the sequence generated by Alg under the environment E(θ2) and let
P̃ (θ2) be the probability measure on the sequence under the environment Ẽ(θ2). Then, standard KL
divergence decomposition results7 for bandit environments gives

KL
(
P (θ2)∥P̃ (θ2)

)
=
∑
x∈X

∑
a∈A

Nx,a(T )KL
(
P θ2
x,a∥P̃ θ2

x,a

)
≤ εT,

7E.g. Lemma 15.1 in Lattimore and Szepesvári [2020] [31].
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where Nx,a(T ) is the count of the pair (x, a) up to time T , as in Appendix E.1. Hence, the Bayesian
regret of the algorithm Alg under the environment E(θ2) averaged over the prior distribution on θ2 is8

BRT = Eθ2

[
EP (θ2)

[
T∑

t=1

(
E
ξ
θ∗1
Xt,A

∗
t

[m2(Z,Xt; θ2)]− E
ξ
θ∗1
Xt,At

[m2(Z,Xt; θ2)]

)]]

≤ Eθ2

[
EP̃ (θ2)

[
T∑

t=1

(
E
ξ
θ∗1
Xt,A

∗
t

[m2(Z,Xt; θ2)]− E
ξ
θ∗1
Xt,At

[m2(Z,Xt; θ2)]

)]

+ 2TB · δ
(
P (θ2), P̃ (θ2)

)]

≤ Eθ2

[
EP̃ (θ2)

[
T∑

t=1

(
Eξoff

Xt,A
∗
t

[m2(Z,Xt; θ2)]− Eξoff
Xt,At

[m2(Z,Xt; θ2)]

)]

+ 2TB · δ
(
ξ
θ∗
1

Xt,A∗
t
, ξoffXt,A∗

t

)
+ 2TB · δ

(
P (θ2), P̃ (θ2)

)]

≤ Eθ2

[
EP̃ (θ2)

[
T∑

t=1

(
Eξoff

Xt,A
∗
t

[m2(Z,Xt; θ2)]− Eξoff
Xt,At

[m2(Z,Xt; θ2)]

)]

+ 2TB

√
1

2
KL

(
ξ
θ∗
1

Xt,A∗
t
∥ξoffXt,A∗

t

)
+ 2TB

√
1

2
KL

(
P (θ2)∥P̃ (θ2)

)]
≤ BRAlg

T + TB
√
2(T + 1)ε.

Here, we use the notations δ(X,Y ) for the total variation between X and Y , and Ã∗
t =

argmax
a

Eξoff
Xt,a

[m2(Z,Xt; θ2) | Xt, θ2], which is the optimal action in context Xt under the en-

vironment Ẽ(θ2). The first inequality follows from the fact that the absolute value of the expectant
is bounded by 2TB. The third inequality follows from Pinsker’s inequality (Lemma 1). The final
inequality follows from the assumption that the algorithm Alg achieves Bayesian regret BRAlg

T under
the environment Ẽ(θ2), averaged over θ2 ∼ π2. The result follows.

E.2.1 Linear Reward Function

Now, we use the reduction result in Theorem 1 to obtain a Bayesian regret bound for poGAMBITTS
under the environment E(θ2), where the mean reward function m2(z, x; θ2) is linear in z. To apply
the reduction, we first establish a Bayesian regret bound for the Thompson sampling algorithm under
the environment Ẽ(θ2), assuming knowledge of foff1 .

This analysis relies on two standard results from the theory of linear contextual bandits. The first is
the concentration bound for the regression-based estimate of the linear parameter:
Lemma 2 (Theorem 20.5 in [31]). With probability at least 1− δ, we have, for all t = 1, . . . , T , that

∥θ − θ̂t∥Vt
≤ β,

where β := 1 + σ2
√

2 log(1/δ) + d log(1 + T/d).

The second result is a technical lemma commonly used to bound the cumulative sum of upper
confidence bounds in the analysis of optimism-based linear contextual bandit algorithms:
Lemma 3 (Elliptical potential lemma). Let V0 ∈ Rd×d be positive definite and a1, . . . , an ∈ Rd be
a sequence of vectors with ∥at∥2 ≤ L for all t = 1, . . . , n. Furthermore, let Vt = V0 +

∑t
s=1 asa

⊤
s .

Then,
n∑

t=1

(
1 ∧ ∥at∥2V −1

t−1

)
≤ 2 log

(
detVn
detV0

)
≤ 2d log

(
Tr(V0) + nL2

ddet1/d(V0)

)
.

8Here, we use Eθ2 [W ] to denote Eθ2∼π2 [W ].
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Equipped with the two lemmas above, we now derive a Bayesian regret bound for Thompson sampling
in the approximate environment Ẽ(θ2).

Lemma 4. Consider an environment Ẽ(θ2) where the mean reward function ism2(z, x; θ2) = ⟨z, θ2⟩.
The Thompson sampling algorithm run under this environment with a full knowledge of foff1 , and
prior π2 on θ2, achieves a Bayesian regret bound of

BRT ≤ O
(
σ2d
√
T log T

)
,

Proof. We denote by ψx,a = Eξoff
x,a

[Z]. The Bayesian regret can be decomposed as:

BRT = E

[
T∑

t=1

(
Eξoff

Xt,A
∗
t

[m2(Z,Xt; θ2)]− Eξoff
Xt,At

[m2(Z,Xt; θ2]

)]

= E

[
T∑

t=1

⟨ψXt,A∗
t
− ψXt,At , θ2⟩

]

= E

[
T∑

t=1

⟨Z∗
t − Zt, θ2⟩

]
+ E

[
T∑

t=1

⟨ψXt,A∗
t
− Z∗

t , θ2⟩

]
+ E

[
T∑

t=1

⟨Zt − ψXt,At
, θ2⟩

]
,

where A∗
t = argmaxa⟨ψXt,a, θ2⟩ is the best action in context Xt and Z∗

t is a random variable
sampled from ξoffXt,A∗

t
. The second term above can be bounded by

T∑
t=1

⟨ψXt,A∗
t
− Z∗

t , θ2⟩ ≤ O

(
B

√
T log

(
1

δ

))
,

which holds with probability at least 1 − δ by the Azuma-Hoeffding inequality, since the se-
quence {⟨ψXt,A∗

t
− Z∗

t , θ2⟩}Tt=1 forms a martingale difference sequence adapted to the filtra-
tion Ft = σ(θ2, X1, A1, Z1, Y1, . . . , Xt, At, Zt, Yt, Xt+1). Choosing δ = 1

T , we can bound

E
[∑T

t=1⟨ψXt,A∗
t
− Z∗

t , θ2⟩
]
≤ O

(
B
√
T log T

)
. The third term can be bounded similarly. To

bound the first term, we first define an upper confidence bound function Ut : Z → R as

Ut(z) = ⟨z, θ̂t−1⟩+ β∥z∥V −1
t−1
,

where Vt = I+
∑t

s=1 ZsZ
⊤
s and θ̂t = V −1

t

∑t
s=1 YsZs. By the concentration inequality provided in

Lemma 2, we are guaranteed that, for all t = 1, . . . , T , ∥θ2−θ̂t∥Vt ≤ β with probability at least 1− 1
T ,

where we use β defined in the lemma with δ = 1
T . Let Et be the event that ∥θ2 − θ̂t−1∥Vt−1

≤ β

and E = ∩Tt=1Et. Then,

E

[
T∑

t=1

⟨Z∗
t − Zt, θ2⟩

]
= E

[
1{Ec}

T∑
t=1

⟨Z∗
t − Zt, θ2⟩

]
+ E

[
1{E}

T∑
t=1

⟨Z∗
t − Zt, θ2⟩

]

≤ 2 + E

[
T∑

t=1

1{Et}⟨Z
∗
t − Zt, θ2⟩

]
.

By the Thompson sampling algorithm, P [A∗
t = · | Ft−1] = P [At = · | Ft−1], implying

P [Z∗
t = · | Ft−1] = P [Zt = · | Ft−1]. With this observation, the rest of the proof follows the

standard Bayesian regret analysis of linear contextual bandits (e.g., Chapter 36.3 in Lattimore and
Szepesvári [2020]) [31].
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Since Ut(z) for any fixed z ∈ Z is Ft−1-measurable, Et−1 [Ut(Z
∗
t )] = Et−1 [Ut(Zt)].9 Therefore,

it follows that the second term in the display above is bounded by

Et−1

[
1{Et}⟨Z

∗
t − Zt, θ2⟩

]
= 1{Et}Et−1 [⟨Z∗

t , θ2⟩ − Ut(Z
∗
t ) + Ut(Zt)− ⟨Zt, θ2⟩]

≤ 1{Et}Et−1 [Ut(Zt)− ⟨Zt, θ2⟩]

≤ 1{Et}⟨Zt, θ̂t−1 − θ2⟩+ β∥Zt∥V −1
t−1

≤ 2β∥Zt∥V −1
t−1
.

Combining the above with 1{Et}⟨Z∗
t − Zt, θ2⟩ ≤ 2 produces

E

[
T∑

t=1

1{Et}⟨Z
∗
t − Zt, θ2⟩

]
≤ 2β

T∑
t=1

(
1 ∧ ∥Zt∥V −1

t−1

)

≤ 2β

√√√√TE

[
T∑

t=1

(1 ∧ ∥Zt∥2V −1
t−1

)

]
≤ 2β

√
2dT log(1 + T/d)

where the second inequality follows from Cauchy-Schwartz and the last inequality from the elliptical
potential lemma (Lemma 3). Combining the bounds yields

BRT ≤ O
(
σ2d
√
T log T

)
,

as required.

Corollary 1 in the main body provides a Bayesian regret bound for poGAMBITTS in the linear reward
setting. The corollary follows directly by viewing the algorithm as an instance of Thompson sampling
for a linear contextual bandit, and applying the reduction in Theorem 1 along with the regret bound
in Lemma 4.

E.2.2 General Reward Function

In this section, we analyze the Bayesian regret of poGAMBITTS for general reward functions. We
consider function classes F10 that contains the mean reward functionm2(z, x; θ2), and derive a regret
bound that holds for any such class F . Our bound is expressed in terms of the eluder dimension of
F , a complexity measure introduced by Russo and Van Roy [2013] [44]. We begin by recalling the
definition of the eluder dimension.
Definition 1 (ϵ-dependence). A pair (z, x) ∈ Z × X is ϵ-dependent on pairs
{(z1, x1), . . . , (zn, xn)} ⊆ Z × X with respect to F if any pair of functions m, m̃ ∈ F sat-
isfying

√∑n
i=1(m(zi, xi)− m̃(zi, xi))2 ≤ ϵ also satisfies m(z, x) − m̃(z, x) < ϵ. Further,

(z, x) is ϵ-independent of {(z1, x1), . . . , (zn, xn)} with respect to F if (z, x) is not ϵ-dependent
on {(z1, x1), . . . , (zn, xn)}.
Definition 2 (Eluder dimension [44]). The ϵ-eluder dimension of a function class F , dimE(F , ϵ), is
the length d of the longest sequence of pairs in Z × X such that, for some ϵ′ ≥ ϵ, every element is
ϵ′-independent of its predecessors.

The Bayesian regret of an algorithm under the generator-mediated bandit framework measures the
regret of the action At taken in context Xt against the best action A∗

t . As a first step toward bounding
the Bayesian regret, we bound the regret of the embedding Zt generated by the action against the
counterfactual embedding Z∗

t that would have been generated by the best action. The analysis adapts
the proof of Proposition 1 in Russo and Van Roy [2013] ([44]), and expresses the bound in terms of
wCt(Zt, Xt) which measures the maximum variation across the reward functions in the confidence
set Ct at (Zt, Xt), where

wC(z, x) := sup
m,m′∈C

(m(z, x)−m′(z, x)) .

9Where Et [W ] := E [W | Ft] for any random variable W .
10For F consisting of real-valued functions f : Z × X → R.
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Lemma 5. Fix any sequence of confidence sets {Ct}Tt=1 where Ct ⊆ F is measurable with respect to
Gt−1 = σ(X1, A1, Z1, Y1, . . . , Xt−1, At−1, Zt−1, Yt−1, Xt). Then, for any t = 1, . . . , T , we have

E

[
T∑

t=1

(m2(Z
∗
t , Xt; θ2)−m2(Zt, Xt; θ2))

]
≤ E

[
T∑

t=1

(
wCt(Zt, Xt) + 2B · 1{m2(·,·;θ2)/∈F}

)]
.

Proof. For any z ∈ Z and x ∈ X , define the upper and lower bounds

Ut(z, x) := sup {m(z, x) : m ∈ Ct} , Lt(z, x) = inf {m(z, x) : m ∈ Ct} .

Given any θ2, if m2(·, ·; θ2) ∈ Ct, then

E [m2(Z
∗
t , Xt; θ2)−m2(Zt, Xt; θ2)]

≤ E
[
Ut(Z

∗
t , Xt)− Lt(Z

∗
t , Xt) + 2B · 1{m2(·,·;θ2)/∈F}

]
≤ E

[
wCt(Zt, Xt) + 2B · 1{m2(·,·;θ2)/∈F} + (Ut(Z

∗
t , Xt)− Ut(Zt, Xt))

]
,

By the definition of Thompson sampling, we have P [At = · | Gt−1] = P [A∗
t = · | Gt−1], implying

P [Zt = · | Gt−1] = P [Z∗
t = · | Gt−1].

Since Ut is Gt−1-measurable, E [Ut(Z
∗
t , Xt)− Ut(Zt, Xt) | Gt−1] = 0. It follows that

E

[
T∑

t=1

(m2(Z
∗
t , Xt; θ2)−m2(Zt, Xt; θ2))

]
≤ E

[
T∑

t=1

(
wCt

(Zt, Xt) + 2B · 1{m2(·,·;θ2)/∈F}
)]
,

concluding the proof.

Russo and Van Roy [2013] ([44]) bounds the sum of the errors wCt(Zt, Xt), where the confidence
set Ct is centered at the least squares estimate m̂LS

t , where

m̂LS
t := argmin

m∈F

t−1∑
s=1

(m(Zs, Xs)− Ys)2.

The bound, presented in Lemma 6, is in terms of the αF
T -eluder dimension, where

αF
t := max

{
1

t2
, inf {∥m1 −m2∥∞ : m1,m2 ∈ F ,m1 ̸= m2}

}
.

Lemma 6 (Lemma 2 in [44]). If {βt}Tt=1 is a nondecreasing sequence and Ct := {m ∈ F :
∥m− m̂LS

t ∥2,Et
≤
√
βt}, then the following holds almost surely:

T∑
t=1

wCt(Zt, Xt) ≤
1

T
+B ·min

{
dimE(F , αF

T ), T
}
+ 4
√

dimE(F , αF
T )βTT .

Russo and Van Roy [2013] ([44]) also shows that, if the confidence width βt is chosen as

β∗
t (α) := 8σ2

2 log

(
N (F , α, ∥ · ∥∞)

δ

)
+ 2αt

(
8B +

√
8σ2

2 log

(
4t2

δ

))
, (3)

where N (F , α, ∥ · ∥∞) denotes the α-covering number of F with respect to ∥ · ∥∞, then the
associated confidence set (centered at the least squares estimate) contains the true mean reward
function m2(·, ·; θ2) with high probability. Lemma 7 formalizes this claim.
Lemma 7 (Proposition 2 in [44]). For all δ > 0 and α > 0, if

Ct =

{
m ∈ F :

t−1∑
s=1

(m(Zs, Xs)− Ys)2 ≤ β∗
t (α)

}
for all t = 1, . . . , T , then

P

[
m2(·, ·; θ2) ∈

T⋂
t=1

Ct | θ2

]
≥ 1− 2δ.
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We next establish a Bayesian regret bound for poGAMBITTS in the general reward function setting.
As a first step, we analyze the algorithm under the approximate environment Ẽ(θ2). We assume that
the given function class F is sufficiently rich to satisfy αF

T = T−2.

Lemma 8. Consider an environment Ẽ(θ2) with mean reward function m2(z, x; θ2) ∈ F for some
function classF . The Thompson sampling algorithm run under this environment with a full knowledge
of foff1 and a prior π2 on θ2 achieves a Bayesian regret bound of

BRT ≤ O
(
B · dimE

(
F , T−2

)
+
√

dimE(F , T−2) log (N (F , T−2, ∥ · ∥∞))T
)
,

where the Bayesian regret is defined over the distribution π2 on θ2.

Proof. Well, the Bayesian regret for such a Thompson sampling agent can be decomposed as

BRT = E

[
T∑

t=1

(
Eξoff

Xt,A
∗
t

[m2(Z,Xt; θ2)]− Eξoff
Xt,At

[m2(Z,Xt; θ2)]

)]

= E

[
T∑

t=1

(m2(Z
∗
t , Xt; θ2)−m2(Zt, Xt; θ2))

]

+ E

[
T∑

t=1

Eξoff

Xt,A
∗
t

[m2(Z,Xt; θ2)]−m2(Z
∗
t , Xt; θ2)

]

− E

[
T∑

t=1

Eξoff
Xt,At

[m2(Z,Xt; θ2)]−m2(Zt, Xt; θ2)

]

≤ E

[
T∑

t=1

(m2(Z
∗
t , Xt; θ2)−m2(Zt, Xt; θ2))

]
+O

(
B
√
T log T

)
,

where the final inequality follows from the Azuma-Hoeffding inequality on the martingale difference
sequences {

Eξoff

Xt,A
∗
t

[m2(Z,Xt; θ2)]−m2(Z
∗
t , Xt; θ2)

}T

t=1

and {
Eξoff

Xt,At

[m2(Z,Xt; θ2)]−m2(Zt, Xt; θ2)
}T

t=1
,

both of which are adapted to Gt = σ(X1, A1, Z1, Y1, . . . , Xt, At, Zt, Yt, Xt+1).

As before, we consider A∗
t := argmax

a
Eξoff

Xt,a
[m2(Z,Xt; θ2) | Xt, θ2] and we consider Z∗

t sampled

from ξoffXt,A∗
t
. Considering a fixed sequence of confidence sets C1, . . . , CT , as defined in Lemma 6,

and applying Lemma 5 gives the following bound on the first term:

E

[
T∑

t=1

(m2(Z
∗
t , Xt; θ2)−m2(Zt, Xt; θ2))

]
≤ E

[
T∑

t=1

(
wCt(Zt, Xt) + 2B · 1{m2(·,·;θ2)/∈F}

)]

≤ O
(
B · dimE

(
F , αF

T

)
+
√

dimE

(
F , αF

T

)
β∗
T

(
αF
T

)
T

)
,

where the second inequality follows by Lemma 6 and Lemma 7, with δ = 1
T . The desired bound

follows by plugging α = αF
T into the definition of β∗

T (α) (Equation 3).

Finally, Theorem 2 directly follows by the reduction provided in Theorem 1 and the lemma above.

Theorem 2 (Restated). Let foff1 satisfy (2). For any function class F with m̂2 ∈ F , the Bayesian
regret of poGAMBITTS (Algorithm 2) satisfies

BRpo:F
T ≤ Õ

(
σ2
√

dimE(F , T−2) logN (F , T−2, ∥ · ∥∞)T + T
√
εT
)
.
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E.2.3 Bounding the Error in Offline Treatment Models

poGAMBITTS requires access to an estimate foff1 (·; a, x) that is ε-close to the true treatment density
f1(·; a, x, θ1) in KL divergence. Below, we consider the example where ξθ1x,a is Gaussian for each
(x, a) ∈ X ×A, demonstrating that a sample-based empirical estimate can meet this requirement.
Lemma 9 (Multivariate Gaussian Distribution). Consider a multivariate normal distributionN (µ,Σ)
and let {Z1, . . . , Zn} be i.i.d. samples drawn from this distribution. Then, the estimated distribution
N (µ̂, Σ̂) satisfies

KL
(
N (µ, Σ) ∥N

(
µ̂, Σ̂

))
≤ O

(
d

λmin(Σ)

√
d+ log(1/δ)

n

)
with probability at least 1− δ, where µ̂ is the sample mean and Σ̂ is the empirical covariance matrix.

Proof. The KL divergence has the following exact form:

KL
(
N (µ,Σ)∥N (µ̂, Σ̂)

)
=

1

2

[
tr
(
Σ̂−1Σ

)
+ (µ̂− µ)⊤ Σ̂−1 (µ̂− µ)− d+ log det Σ̂− log detΣ

]
.

We now turn to bounding each term. A standard concentration result for empirical covariance
matrices, based on the matrix Bernstein inequality, gives:

∥Σ̂− Σ∥ ≤
√
d+ log(1/δ)

n

with probability at least 1− δ, where ∥ · ∥ is the operator norm. Hence, the inverse Σ̂ concentrates
and it follows that

∥Σ̂−1∥ ≤ 2∥Σ−1∥ = 2

λmin(Σ)

for n ≥ Ω

(
d+ log(1/δ)

λmin(Σ)2

)
.

Hence, we can bound

tr
(
Σ̂−1Σ

)
= tr

(
I + Σ̂−1

(
Σ− Σ̂

))
≤ d+ ∥Σ̂−1∥∥Σ− Σ̂∥

≤ d+O

(
1

λmin(Σ)

√
d+ log(1/δ)

n

)
.

To bound the log-determinant term, observe that

log det Σ̂− log detΣ = log det
(
I +Σ−1/2

(
Σ̂− Σ

)
Σ−1/2

)
≤ d∥Σ−1/2

(
Σ̂− Σ

)
Σ−1/2∥

≤ d∥Σ−1∥∥Σ̂− Σ∥

≤ O

(
d

λmin(Σ)

√
d+ log(1/δ)

n

)
.

Finally, we bound
(µ̂− µ)⊤ Σ̂−1 (µ̂− µ) ≤ ∥µ̂− µ∥22∥Σ̂−1∥

≤ O
(
d+ log(1/δ)

n

)
,

applying the vector Bernstein inequality to bound ∥µ̂− µ∥2.

Combining all the bounds yields

KL
(
N (µ, Σ) ∥N

(
µ̂, Σ̂

))
≤ O

(
d

λmin(Σ)

√
d+ log(1/δ)

n

)
,

as required.
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E.3 Upper Regret Bound for foGAMBITTS

In this section, we derive a Bayesian regret for foGAMBITTS in the environment E(θ1, θ2). The
key step in the analysis is that the action selected by Thompson sampling has the same con-
ditional distribution as the optimal action, given the agent’s posterior. Formally, let Ft =
σ(X1, A1, Z1, Y1, . . . , Xt, At, Zt, Yt, Xt+1) be the σ-algebra generated by the interaction up to
time t. Thompson sampling logic guarantees that the conditional distributions of A∗

t and At given
Ft−1 are identical; i.e.,

P [A∗
t = · | Ft−1] = P [At = · | Ft−1] , almost surely. (4)

We will use the following concentration inequality to control deviations of a martingale sequence in
the proof of Theorem 3:
Lemma 10 (Freedman’s inequality). Let (Fk) be a filtration and let the sequence {Xk} of random
variables satisfy E [Xk|Fk−1] = 0 and |Xk| ≤ R almost surely. Let Sk =

∑k
i=1Xi and Vk =∑k

i=1 E
[
X2

i | Fi−1

]
. Then, with probability at least 1− δ, we have, for all k, that

|Sk| ≤
√

2Vk log(2/δ) +
2R

3
log(2/δ).

We now restate Theorem 3 and proceed with its proof.
Theorem 3 (Restated). If m2 (z, xt; θ) is linear in z ∈ Rd, the Bayesian regret of foGAMBITTS
(Algorithm 1) satisfies

BRfo:lin
T ≤ Õ

(
σ1
√
CKT + σ2d

√
T
)
.

Proof of Theorem 3. We are interested in bounding the Bayesian regret defined as

BRT = E

[
T∑

t=1

E
ξ
θ1
Xt,A

∗
t

[m2(Zt, Xt; θ2)]− E
ξ
θ1
Xt,At

[m2(Zt, Xt; θ2)]

]
where A∗

t = argmax
a∈A

E
ξ
θ1
Xt,a

[m2(Z,Xt; θ2) | Xt, θ2] is the best action in context Xt. Under the

linear reward model m2(z, x; θ2) = ⟨z, θ2⟩, we can write the Bayesian regret as

BRT = E

[
T∑

t=1

⟨ψXt,A∗
t
− ψXt,At , θ2⟩

]
where we define ψx,a := E

ξ
θ1
x,a

[Z], suppressing the superscript θ1 for convenience.

Since the agent observes the embedding Zt and receives a noisy reward of the form Yt = ⟨Zt, θ2⟩+ηt,
it can estimate θ2 by regressing Yt on Zt. Consider the following estimate for θ2:

θ̂t = V −1
t

t∑
s=1

YsZs

where Vt = I +
∑t

s=1 ZsZ
⊤
s . Lemma 2 guarantees ∥θ2 − θ̂t∥Vt ≤ β for all t = 1, . . . , T with

probability at least 1− δ, where β, dependent on δ, is defined in the lemma. Let Et be the event that
∥θ2−θ̂t−1∥Vt−1

≤ β, and letE := ∩Tt=1Et. Setting δ = 1
T in the definition of β gives P [E] ≥ 1− 1

T .
We can then bound the Bayesian regret under Ec and E separately, as follows.

BRT = E

[
T∑

t=1

⟨ψXt,A∗
t
− ψXt,At , θ2⟩

]

= E

[
1{Ec}

T∑
t=1

⟨ψXt,A∗
t
− ψXt,At

, θ2⟩

]
+ E

[
1{E}

T∑
t=1

⟨ψXt,A∗
t
− ψXt,At

, θ2⟩

]

≤ 2 + E

[
1{E}

T∑
t=1

⟨ψXt,A∗
t
− ψXt,At

, θ2⟩

]

≤ 2 + E

[
T∑

t=1

1{Et}⟨ψXt,A∗
t
− ψXt,At , θ2⟩

]
. (5)
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Before proceeding with the bound, we clarify the probability space governing the random variables
Xt, At, Zt, Yt. We adopt the random table model (see Chapter 4.6 in Lattimore and Szepesvári [2020])
and, conditional on θ1, define the embedding Zt(x, a) ∼ ξθ1x,a independently for each t = 1, . . . , T
and (x, a) ∈ X ×A [31]. We define Zt = Zt(Xt, At) to be the embedding observed by the agent.
This random table model provides a convenient framework for the analysis that follows.

To proceed, we define the upper confidence bound function Ut : Z → R by

Ut(z) = ⟨z, θ̂t−1⟩+ β∥z∥V −1
t−1
.

Then, under the event Et, it follows that, for all (x, a) ∈ X ×A,

⟨ψx,a, θ2⟩ − Ut(Zt(x, a)) = ⟨ψx,a, θ2⟩ − ⟨Zt(x, a), θ̂t−1⟩ − β∥Zt(x, a)∥V −1
t−1

= ⟨ψx,a − Zt(x, a), θ2⟩+ ⟨Zt(x, a), θ2 − θ̂t−1⟩ − β∥Zt(x, a)∥V −1
t−1

≤ ⟨ψx,a − Zt(x, a), θ2⟩.

The inequality follows from using Cauchy-Schwarz to bound ⟨Zt(x, a), θ2 − θ̂t−1⟩ ≤
∥Zt(x, a)∥V −1

t−1
∥θ2 − θ̂t−1∥Vt−1 . Furthermore, under the event Et, ∥θ2 − θ̂t−1∥Vt−1 ≤ β. Sim-

ilarly,

Ut(Zt(x, a))− ⟨ψx,a, θ2⟩ = ⟨Zt(x, a), θ̂t−1⟩+ β∥Zt(x, a)∥V −1
t−1
− ⟨ψx,a, θ⟩

= ⟨Zt(x, a), θ̂t−1 − θ⟩+ β∥Zt(x, a)∥V −1
t−1
− ⟨ψx,a − Zt(x, a), θ⟩

≤ ⟨Zt(x, a)− ψx,a, θ⟩+ 2β∥Zt(x, a)∥V −1
t−1
.

Since Ut(·) and Xt are Ft−1-measurable, (4) implies

P [Ut(Zt(Xt, A
∗
t )) = · | Ft−1] = P [Ut(Zt(Xt, At)) = · | Ft−1] ,

and that
Et−1 [Ut(Zt(Xt, A

∗
t ))] = Et−1 [Ut(Zt(Xt, At))] ,

where, as before, Et−1 [·] denotes E [· | Ft−1]. Hence, recalling the definition Zt = Zt(Xt, At),

Et−1

[
1{Et}⟨ψXt,A∗

t
− ψXt,At

, θ2⟩
]

= 1{Et}Et−1

[
⟨ψXt,A∗

t
, θ2⟩ − Ut(Zt(Xt, A

∗
t )) + Ut(Zt(Xt, At))− ⟨ψXt,At

, θ2⟩
]

≤ 1{Et}Et−1

[
⟨ψXt,A∗

t
− Zt(Xt, A

∗
t ), θ2⟩+ ⟨Zt − ψXt,At

, θ2⟩+ 2β∥Zt∥V −1
t−1

]
.

Continuing the regret bound from (5) and using Et−1

[
1{Et}⟨ψXt,A∗

t
− ψXt,At

, θ2⟩
]
≤ 2, we observe

BRT ≤ 2 + E

[
T∑

t=1

Et−1

[
1{Et}⟨ψXt,A∗

t
− ψXt,At

, θ2⟩
]]

≤ 2 + E

[
T∑

t=1

1{Et}⟨ψXt,A∗
t
− Zt(Xt, A

∗
t ), θ2⟩︸ ︷︷ ︸

(a)

]

+ E

[
T∑

t=1

1{Et}⟨Zt − ψXt,At , θ2⟩︸ ︷︷ ︸
(b)

]
+ 2βE

[
T∑

t=1

(∥Zt∥V −1
t−1
∧ 3)︸ ︷︷ ︸

(c)

]

To bound term (a), we express it as a summation over (x, a):
T∑

t=1

1{Et}⟨ψXt,A∗
t
− Zt(Xt, A

∗
t ), θ2⟩

=
∑
x∈X

∑
a∈A

T∑
t=1

1{Et}1{Xt=x,A∗
t=a}⟨ψx,a − Zt(x, a), θ2⟩.
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For any given context-action pair (x, a) ∈ X ×A, the sequence {Wt(x, a)}Tt=1 , defined by

Wt(x, a) = 1{Et}1{Xt=x,A∗
t=a}⟨Zt(x, a)− ψx,a, θ2⟩

is a martingale difference sequence adapted to

Gt = σ (θ1, θ2, X1, A1, {Z1(x, a)}x,a, Y1, . . . , Xt, At, {Zt(x, a)}x,a, Yt, Xt+1, At+1) .

This follows because 1{Et} and 1{Xt=x,A∗
t=a} are Gt−1-measurable, implying

E
[
1{Et}1{Xt=x,A∗

t=a}⟨Zt(x, a)− ψx,a, θ2⟩ | Gt−1

]
= 1{Et}1{Xt=x,A∗

t=a}⟨E [Zt(x, a)− ψx,a | Gt−1] , θ2⟩
= 0.

Furthermore, |Wt(x, a)| ≤ 2 for all t = 1, . . . , T , and

T∑
t=1

E
[
Wt(x, a)

2 | Gt−1

]
≤

T∑
t=1

1{Xt=x,A∗
t=a}E

[
(⟨Zt(x, a)− ψx,a, θ2⟩)2 | Gt−1

]
≤ σ2

1

T∑
t=1

1{Xt=x,A∗
t=a}

= σ2
1NT (x, a),

where NT (x, a) =
∑T

t=1 1{Xt=x,A∗
t=a}, as before. The first inequality follows from the assumption

thatm2(Z, x; θ2) is σ1-subgaussian. Hence, Freedman’s inequality (Lemma 10) coupled with a union
bound over (x, a) ∈ X ×A, guarantees that, with probability at least 1− δ,

T∑
t=1

Wt(x, a) ≤ σ1

√
2NT (x, a) log

(
2CK

δ

)
+

4

3
log

(
2CK

δ

)
.

It follows that
T∑

t=1

1{Et}⟨ψXt,A∗
t
− Zt(Xt, A

∗
t ), θ2⟩ =

∑
x∈X

∑
a∈A

T∑
t=1

Wt(x, a)

≤
∑
x∈X

∑
a∈A

(
σ1

√
2NT (x, a) log

(
2CK

δ

)
+

4

3
log

(
2CK

δ

))

≤ σ1

√
2CKT log

(
2CK

δ

)
+

4

3
CK log

(
2CK

δ

)
.

where the last inequality is by Cauchy-Schwarz and the fact that
∑

x

∑
aNT (x, a) = T . Similar

analysis, with At in place of A∗
t , yields the following bound on the term (b):

T∑
t=1

1{Et}⟨ψXt,At − Zt(Xt, At), θ⟩ ≤ σ1

√
2CKT log

(
2CK

δ

)
+

4

3
CK log

(
2CK

δ

)
.

Finally, the last term (c) can be bounded using the elliptical potential lemma (Lemma 3) as

T∑
t=1

(3 ∧ ∥Zt∥V −1
t−1

) ≤ 3

T∑
t=1

(1 ∧ ∥Zt∥V −1
t−1

)

≤ 3

√√√√T

T∑
t=1

(1 ∧ ∥Zt∥2V −1
t−1

)

≤ 3

√
2dT log

(
1 +

T

d

)
.
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Combining the bounds above, we observe

BRT ≤ 2 + σ1

√
8CKT log

(
2CK

δ

)
+

8

3
CK log

(
2CK

δ

)
+ 6β

√
2dT log

(
1 +

T

d

)

≤ O

(
σ1

√
CKT log

(
CA

δ

)
+ σ2d

√
T log

(
1 +

T

d

)(
log

(
1 +

T

d

)
+ log

(
1

δ

))

+ CK log

(
CA

δ

))
.

The result follows.

E.4 Lower Regret Bound for foGAMBITTS

In this section, we establish a minimax lower bound on the regret of foGAMBITTS.

Claim 2. The minimax regret of foGAMBITTS satisfies

RT ≥ Ω
(
max

{
σ1
√
CKT, σ2

√
dT logK

})
.

Proof. To establish the lower bound, we construct instances in which the agent cannot efficiently
resolve uncertainty, leading to provably high regret. We first show RT ≥ Ω

(
σ1
√
CKT

)
.

Fix K, C and d, and let A = {1, . . . ,K}, X = {1, . . . , C}. Let θ2 = (σ1, 0, . . . , 0) ∈ Rd be the
parameter for the linear reward model. Furthermore, choose the reward noise σ2 = 0.

Let θ1 ∈ {A ∪ {0}}C parameterize the distributions ξθ1x,a such that, for each (x, a) ∈ X ×A,

ξθ1x,a ∼ Bernoulli on {e1,0} with probabilities
{(

1
2 ,

1
2

)
if a ̸= θ1,x(

1
2 −∆, 12 +∆

)
if a = θ1,x

,

for some ∆ ∈
[
0, 14

]
.11 Here, we use e1 to denote the first basis vector in Rd.

Under this environment, the mean reward of each context-action pair is σ1-subgaussian. Also, in
context x, the mean reward of every action is σ1

2 except for one optimal action a = θ1,x, which gives
mean reward 1

2 (σ1 +∆).

Because rewards in different contexts are generated from independent distributions, observations
collected in one context carry no statistical information about any other context. Hence, from the
learner’s point of view, the problem decomposes into C independent instances of standard K-armed
bandits, each with horizonNT (1), · · · , NT (C), whereNT (x) denotes the number of rounds in which
context x appears.

For a context x, the regret lower bound overNT (x) rounds is cσ1
√
KNT (x) for some constant c (see

Chapter 15.2 in Lattimore and Szepesvári [2020]) [31]. Summing over x, and choosing NT (x) =
T
C

to ensure the environment chooses contexts evenly, we obtain

RT ≥ Ω

(∑
x∈X

√
KNT (x)

)
= Ω

(
σ1
√
CKT

)
.

We now show that RT ≥ Ω
(
σ2
√
dT logK

)
. Consider an environment where ξθ1x,a is deterministic

and known to the learner. This reduces to a standard contextual linear bandit environment with
dimension d. Applying a known lower bound for this setting [32], we obtain

RT ≥ Ω
(
σ2
√
dT logK

)
.

11Note that {A ∪ {0}}C here denotes the C-dimensional space with components elements of {A ∪ {0}},
rather than the complement of {A ∪ {0}}.
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Combining the two lower bounds yields

RT ≥ Ω
(
max

{
σ1
√
CKT, σ2

√
dT logK

})
,

as required.

F Further Simulations

This appendix presents additional simulations designed to probe specific factors influencing GAM-
BITTS performance. Unless otherwise specified, all data-generating environments assume a linear
outcome model with optimism, formality, and severity as predictors.

F.1 Variance Decomposition

Section 5 and Appendix E discuss GAMBITTS performance in terms of the relative variance of the
treatment and outcome processes. In our setup, the treatment is generated by an LLM and fixed in
advance, but we can control the residual variance of the outcome-generative model. This allows
us to manipulate the ratio of treatment variance to outcome noise directly. Throughout the main
simulations, we held this ratio fixed by setting σ1 = σ2.12 In Figure 7, we increase σ2 to explore how
performance changes under high outcome noise. We scale σ2 gradually, up to the level observed
when fitting the outcome-generative model on held-out data from the 2023 IHS study.

(a) σ2=0.71 (b) σ2=6.68 (c) σ2=12.64

(d) σ2=18.61 (e) σ2=24.57

StdTS
ens-poGAMBITTS
foGAMBITTS
poGAMBITTS

Figure 7: Cumulative Regret Across Outcome Variances

Corollary 1 and Theorem 3 suggest that the performance advantage of linear GAMBITTS-based
algorithms over standard Thompson sampling increases with the outcome noise level σ2. Figure 7
shows that linear GAMBITTS-based methods achieve lower regret across values of σ2; however,
as σ2 increases, all algorithms exhibit performance deterioration and begin to converge. One
possible explanation is that higher outcome noise reduces the overall signal-to-noise ratio, making it
more difficult for any bandit agent to quickly learn a good policy. Future work may examine this
phenomenon over longer time horizons to better understand the asymptotic behavior of the competing
methods.

12We computed σ1 from the generated text interventions used for outcome simulation; i.e., from the
response_db described in Appendix G.
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F.2 Nonlinear Data-Generative Reward Model

Section 6.2 examined GAMBITTS performance under style embedding misspecification. Figure 8
explores a related question, focusing instead on misspecification in the structure of the outcome
model. In these experiments, all GAMBITTS agents used the correct style embeddings, but the true
outcome-generating process E [Y | Z,X] followed an MLP structure. To assess how GAMBITTS
agents respond to this nonlinear specification, we revisit the variance-scaling analysis from Figure 7,
now under an MLP outcome model.

(a) σ2=0.71 (b) σ2=6.68 (c) σ2=12.64

(d) σ2=18.61 (e) σ2=24.57

StdTS
ens-poGAMBITTS
foGAMBITTS
poGAMBITTS

Figure 8: Cumulative Regret Across Outcome Variances: MLP Outcome Generative Model

In a nonlinear data-generating environment, we expected ens-poGAMBITTS to outperform its linear
counterparts, given its more flexible outcome model. However, as in other simulation settings,
ens-poGAMBITTS exhibits volatile performance. Interestingly, the linear poGAMBITTS agent per-
forms relatively well, despite the misspecification of the outcome model. One possible explanation
for this pattern, and for the broader volatility observed in ens-poGAMBITTS performance, is that,
within the GAMBITTS framework (and in Thompson sampling more generally), the outcome model
is used to support decision-making rather than to produce accurate predictions. As described in
Appendix G.2, the neural network models are substantially more parameterized than their linear
counterparts, and may require far more data to converge. In contrast, while the linear models are
misspecified, they may still capture sufficient structure to support effective decision-making.

The volatility in ens-poGAMBITTS performance suggests that the approach holds promise, but it is
not a panacea. Without tuning tailored to the specifics of the application, the agent may perform
poorly. Future work could develop principled strategies for hyperparameter selection to make
ens-poGAMBITTS more robust to variation in the data-generating process.

F.3 poGAMBITTS Simulator Access

As discussed in Section 4, partially online GAMBITTS variants use simulator access to construct
foff1 , an empirical estimate of the treatment-generating distribution. Figure 9 examines the sensitivity
of poGAMBITTS and ens-poGAMBITTS performance to the number of samples per (x, a) pair used to
construct foff1 .

We expected the partially online GAMBITTS variants to perform better with increased access to the
treatment-generating distribution. Figure 9 supports this hypothesis: cumulative regret decreases
as the number of simulator draws increases. Interestingly, performance stabilizes after roughly 50
draws, suggesting that limited simulation access may be sufficient to realize most of the benefits of
the partially online approach.
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(a) poGAMBITTS (b) ens-poGAMBITTS

15 samples
50 samples
100 samples
500 samples
Complete

Figure 9: Cumulative Regret Under Varying Levels of Simulator Access

F.4 Treatment Dimension

We also examine the effect of d, the dimensionality of the treatment embedding. To do so, we
introduce 15 additional style dimensions, supplementing the five used in Section 6, for a total of
20 dimensions: optimism, formality, encouragement, severity, clarity, humor, complexity, vision,
detail, threat-level, urgency, politeness, personalization, conciseness, actionability, emotiveness,
authoritativeness, authenticity, supportiveness, and gender-codedness.13

(a) d=3 (b) d=5 (c) d=10

(d) d=15 (e) d=20

StdTS
ens-poGAMBITTS
foGAMBITTS
poGAMBITTS

Figure 10: Cumulative Regret for Varying Treatment Embedding Dimension

We anticipated that GAMBITTS agents would perform increasingly poorly relative to standard
Thompson sampling as the embedding dimension d increased. Figure 10 confirms this trend for the
foGAMBITTS agent. However, the linear poGAMBITTS agent remains competitive even as d grows. As
discussed in Appendix F.2, the volatility in ens-poGAMBITTS performance further underscores the
need for future work on robust hyperparameter tuning strategies within the GAMBITTS framework.

F.5 Direct Contextual Influence on Reward

The simulations in Sections 6.1 and 6.2 (along with Appendix C) use reward models linear in
Zoptimism with Gaussian noise. As described in Section 6.3, the other data-generating environments

13To select the dimensions used in Figures 10a-10e, we clustered the style dimensions by their correlation in
response_db. For each d, we used d-means clustering and randomly sampled one dimension from each cluster.
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extend this structure to include Zoptimism, Z formality, and Zseverity, again with Gaussian noise.14 This
appendix considers a simulation designed to evaluate GAMBITTS performance when rewards depend
directly on context as well as semantic dimensions.15 Given the substantial performance advantage
of GAMBITTS agents over standard Thompson sampling in our main experiments, we expect this
advantage to persist under additional covariate influence.

In this appendix, we extend the setup from Figure 4b16 by allowing rewards to depend directly on
context. As described in Appendix G, the simulated contextual variables were current location and
steps taken the previous day. Specifically, we use the data-generating model17

Yt = βoptimismZoptimism
t + βformalityZ formality

t + βseverityZseverity
t

+ βstepsXstepsprevday
t +

∑
loc∈Locs

βloc
1Xcurrloc

t =loc + εt.

Figure 11 reports results under correctly specified GAMBITTS agents. The figure supports the
intuition that the advantage of GAMBITTS persists under direct covariate influence, showing little
deviation from Figure 4b.18

StdTS
StdTS:Contextual
ens-poGAMBITTS
foGAMBITTS
poGAMBITTS

Figure 11: Cumulative Regret Under Reward Model with Direct Context Influence

F.6 Scaling Number of Arms: Revisited

As observed in Section 6.3, foGAMBITTS underperforms standard Thompson sampling when the
number of available arms, K, is large. However, the more appropriate comparison is to a contextual
Thompson sampler, since foGAMBITTS incorporates covariate information through the treatment
embedding. Moreover, Section 5 shows that foGAMBITTS is expected to outperform standard
Thompson sampling when σ2 ≫ σ1, whereas the experiments in Section 6.3 assume σ1 = σ2. To
investigate this further, we examine foGAMBITTS performance with K = 40 under varying levels of
outcome noise.

14With two exceptions: Appendix F.2 instead uses an MLP mean reward model, and Appendix F.4 varies the
number of semantic dimensions in the mean reward model.

15In all cases, rewards depend on text indirectly through the semantic dimensions. Semantic dimensions are
functions of LLM-produced text. Although other data-generative environments do not specify a direct effect of
context on reward, context enters implicitly through the LLM query, which shapes the generated text and hence
the semantic dimensions (described further in Appendix G).

16We use Figure 4b as the baseline because it employs the default choices for (i) the number of arms, (ii) the
set of style dimensions, and (iii) the reward noise level used throughout the experiments in this manuscript.

17Here Locs := {“home”, “work”, “a location other than home or work”} and Xstepsprevday was recoded to
be 1, 2, 3, or 4 if the simulated previous day’s steps was 0-4,999, 5,000-9,999, 10,000-15,000, or more than
15,000, respectively.

18The standard contextual Thompson sampler continues to underperform in this setting. Incorporating
covariates requires a more heavily parameterized model for the contextual Thompson sampling agent than for its
non-contextual counterpart. When covariate effects are modest, this added complexity increases variance and
can reduce performance (a known issue in contextual bandit learning [47]). Furthermore, in this simulation, the
optimal action does not vary across context, limiting the potential gain from contextual information. Further
work could examine GAMBITTS performance under different forms and strengths of contextual influence.
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(a) σ2=0.71 (b) σ2=12.64

(c) σ2=24.57

Std TS
Std TS: Contextual
foGAMBITTS

Figure 12: Cumulative Regret for foGAMBITTS with K = 40 under Varying Reward Noise

Figure 12 supports the results in Section 5: foGAMBITTS performs increasingly well relative to
standard Thompson sampling as σ2 grows. Moreover, even for small σ2, foGAMBITTS outperforms
a contextual Thompson sampling agent. To better observe asymptotic behavior under high noise,
we extend the time horizon to 10,000 rounds. Even so, cumulative regret does not appear to level
off, suggesting that the agents are still learning the optimal policy. This persistent learning phase
likely reflects the low signal-to-noise ratio estimated from the IHS study that generated the outcome
parameters. Future research directions to address such scenarios could incorporate partial pooling
methods (e.g., Huch et al. [2020]) to share reward model information across users and accelerate
policy learning [20].

G Simulation Study Design

To evaluate algorithm performance in a setting where ground truth is available, we needed full
knowledge of the data-generating process. This ruled out querying a black-box language model
during simulation runs, since doing so would obscure the underlying conditional expectations and
make performance comparisons difficult to interpret. Instead, we simulated on-the-fly text generation
by constructing a response database (referred to as response_db): for each prompt-context pair, we
sampled 1,000 responses from an LLM19 and computed the style embeddings associated with each
response, as detailed in Appendix G.3. At runtime, we drew from this pool to mimic LLM-generated
responses, as described in Algorithm 6.

19In particular, Llama 3.1 with 8.0B parameters, 131,072 context length, 2,095 embedding length, and
Q4_K_M quantization, accessed via Ollama [42]. Additionally, we re-ran select analyses using a Qwen-based
LLM. The results were consistent with those in the main manuscript, suggesting that the simulation conclusions
are not sensitive to the choice of LLM, though further work would be needed to establish this more formally.
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We derived the outcome-generating model using data from the 2023 IHS study.20 For each outcome
model structure (linear or neural network) and relevant style dimensions, we fit the corresponding
model to the IHS data and used the estimated parameters to define the outcome surface. This provided
a data-driven but controlled setting for comparing policies.21 We provide the exact parameters used
in the data-generating process on GitHub.

Lastly, in our simulations, we included two context variables:

stepsprevday ∈{“0-4,999”, “5,000-9,999”, “10,000-15,000”, “more than 15,000”} and
currloc ∈{“home”, “work”, “a location other than home or work”} .

These context variables varied uniformly across time points and were sampled independently of the
action.

Algorithm 6 Pseudocode for Outcome Generation

Inputs: response_db, style embedding functions f1, . . . , fD, mean model structure
m2 (z, x; θ2), data-generative outcome model parameters θIHS

2 , conditional variance σ2
2 .

1: Given a prompt a and context x, randomly sample response g from response_db, restricted to
responses generated from (a, x).

2: Compute style embedding vector z = [f1(g) . . . fD(g)]
⊤.

3: Simulate outcome y by drawing ε ∼ N (0, σ2) and setting y = m2

(
z, x; θIHS

2

)
+ ε.

G.1 Prompt Specifications

To initialize the LLM environment for crafting intervention text, we provided the following system
prompt:

You are tasked with writing a single message to an individual. The message should be
two to three sentences long and will be delivered to the individual through a mobile
app. The intent of the message is to encourage the individual to take more steps, with
the ultimate goal of improving their physical health. The app collects the following
information on its users: whether they took 0-4,999, 5,000-9,999, 10,000-15,000, or
more than 15,000 steps the previous day, and whether they are currently at home, at
work, or at another location.

To generate the intervention text used in our simulations, we constructed prompts that explicitly
manipulated specific stylistic dimensions. Each prompt was designed to target a particular user
context and asked the LLM to produce a message in which a given dimension (e.g., optimism,
formality) was either high or low. This approach yielded a total of 40 prompts (one high and one low
version for each of the 20 dimensions) attempting to promote alignment among the variation in the
generated text with the interpretable axes used in the outcome model.

To generate simulation messages (for given contexts stepsprevday and currloc), we used the
following prompt structure:

The app provides the following context about the individual: they took stepsprevday
steps the previous day and are currently at currloc. This context may be included
in the message but does not need to dominate it. Please make the message mildly
<style polarity>. <dimension description>. Please do not include anything
in your response other than the text of the message.

Here, <style polarity> refers to the high/low level of the target stylistic dimension (e.g., “op-
timistic”/“pessimistic” for the optimism dimension). <dimension description> is a descriptor

20We used the square root of the number of steps taken by the user on the day following the message as the
reward. This transformation, rather than using raw step counts, yielded approximately normally distributed
errors.

21The one exception is our use of σ1 = σ2 in the main simulations. We observed σ1 from the variability in
response_db and explored sensitivity to larger values of σ2 in Appendix F.1.

44

https://github.com/mb208/GAMBITTS/


of the stylistic quality, intended to guide the LLM toward the appropriate tone.22 Unless otherwise
noted (e.g., Section 6.3), all experiments were run using five prompts available to the agent, chosen
to be evenly distributed by expected outcome.23

G.2 Agent Specifications

We evaluate several bandit agents in Section 6 and Appendix F. Unless otherwise noted, each agent
type followed the base specifications described in the corresponding subsection below. Furthermore,
all GAMBITTS-based algorithms used a correctly specified mean outcome model (unless otherwise
noted; e.g., Section 6.2). When possible, we used data from the 2022 IHS study to inform prior
specification. For example, the average square root of daily steps was approximately 77, which
guided our choice of prior for intercept terms.

G.2.1 Standard Thompson Samplers

The standard Thompson sampling agents modeled the reward for each action using a normal likeli-
hood, with a prior of the form µa ∼ N

(
77, σ2

a

)
, where σ2

a ∼ Inverse-Gamma(1, 10). The contextual
Thompson sampling agents used the same model and priors, but indexed them by each context–action
pair (x, a).

G.2.2 poGAMBITTS Agent

Linear poGAMBITTS agents modeled the reward as Y ∼ N (β0 + Z⊤β′,Σ) for Z, β′ ∈ Rd and
Σ ∈ Rd×d. Letting β := [β0 β′]

⊤ ∈ Rd+1, these agents placed the following priors on model
parameters:

θ2 ∼ N (µ0, B0)

µ0 = [77 0 . . . 0]
⊤ ∈ Rd+1

B0 = diag(10−2, 1, . . . , 1) ∈ R(d+1)×(d+1).

G.2.3 ens-poGAMBITTS Agent

Our implementation of ens-poGAMBITTS uses PyTorch [1], with each neural network instantiated
using PyTorch’s default initialization: weights and biases were drawn from a uniform distribution

U
(
− 1√

k
,

1√
k

)
, where k is the number of input features. The ensembles consisted of Mens = 60

networks. Each network was single-layer feedforward model with 64 hidden units and ReLU
activation. Online training was performed with a batch size of 100 and a learning rate of 0.1. The
ensembles maintained a replay buffer of size 1,024. To approximate the expectation in Algorithm 4,
we used 100 Monte Carlo samples. In each experiment, ens-poGAMBITTS training began after a
burn-in period of t = 100 steps, during which the neural networks did not update, allowing sufficient
data to accumulate for batch-based optimization. Lastly, the agents used the data-generative σ2 as the
perturbation noise standard deviation.

G.2.4 foGAMBITTS Agent

foGAMBITTS agents used the same prior π2 on θ2 as defined for the poGAMBITTS agent in Ap-
pendix G.2.2 above. foGAMBITTS agents used a normal likelihood for Z ∈ Rd with mean θ1 ∈ Rd.
The prior π1 for θ1 is given below:

Σ1 ∼ Inverse-Wishart (Id, 1)
θ1 ∼ N (0d, Σ1) ,

where Id ∈ Rd×d, 0d ∈ Rd, and d is the dimension of the latent treatment space Z .
22For example, the following is the description of the optimism dimension: “Here, optimism is defined

as the degree of hopeful or confident language in the message. A lower optimism level may include a more
matter-of-fact or pessimistic tone, while a higher optimism level may include uplifting and buoyant language.”

23E.g., if an experiment included only three prompts, we selected the highest, lowest, and median prompt
based on true expected value under the data-generating process.
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G.3 Text Embedding Construction

We aimed to quantify LLM-generated responses along five stylistic dimensions: optimism, encourage-
ment, formality, clarity, and severity.24 For each dimension, d, we constructed a mapping fd : G → R,
as described in Algorithm 7 below. This appendix details the construction of these embeddings and
provides evidence that they capture the intended stylistic dimensions. This evidence is included
primarily to aid interpretability of the simulation experiments. While high-quality embeddings are
crucial in applied settings, they are not required for demonstrating the validity of the GAMBITTS
approaches.

We learned each fd by prompting an LLM to generate a set of JITAI-style messages (brief behavioral
messages aimed at encouraging users to walk more, mirroring the setup of the IHS and HeartSteps
studies) [33, 40]. Appendix G.3.1 below contains the exact prompt template used for this purpose.
For each prompt, we asked the LLM to vary the degree to which its response reflected a particular
stylistic dimension (d). The responses were intended to isolate variation along that dimension while
holding other properties relatively constant. The goal was not to assign explicit scores or labels, but
to induce embeddings in which each axis captured targeted semantic variation.

We then trained a variational autoencoder (VAE) on the resulting text set, constraining the model
to use a single latent dimension. The output of this latent space was used as the embedding fd(g)
for each message g.25 This process was repeated separately for each dimension. Algorithm 7 below
provides pseudocode for this process.

Algorithm 7 Pseudocode for Style Dimension d Embedding Construction

Input: Style dimension label d, LLM, high-dimensional embedding model, VAE architecture,
training size Md

train.

1: Generate Md
train random prompts

{
pdi
}Md

train

i=1
using the template presented in Appendix G.3.1.

2: For each prompt, pdi , in Step 1, query the LLM with the prompt to receive rdi
3: For each response, rdi in Step 2, obtain a high-dimensional numerical embedding (ed,hi ) by using

the high-dimensional embedding model [55].
4: Given embeddings ed,h1 , . . . , ed,h

Md
train

, train a variational auto-encoder to obtain a one-dimensional
latent representation of the response [6]. Call the resulting mapping fd.

As with the outcome generative model, we used Llama 3.1 as the LLM for embedding construction.
Additionally, we used BERT as our high-dimensional embedding model [10], and set Md

train =
22, 000.

G.3.1 Embedding Generation Prompt Creation

To initialize the LLM environment, we provided a system prompt describing the context and purpose
of the message generation task (e.g., encouraging physical activity through behavioral messages).
This global instruction was held fixed across all prompt constructions and consisted of the following:

You are tasked with writing eleven separate messages to an individual. Each message
should be two to three sentences long and will be delivered to the individual through a
mobile app. The messages should be independent and must not reference each other.
The intent of each message is to encourage the individual to take more steps, with
the ultimate goal of improving their physical health. The app collects the following
information on its users: whether they took 0-4,999, 5,000-9,999, 10,000-15,000, or
more than 15,000 steps the previous day, and whether they are currently at home, at
work, or at another location.

To simulate messages that varied along a given stylistic axis, we used a template-based user prompt,
shown below. The specific wording of the prompt varied by stylistic dimension; we present the
version used for optimism as an illustrative example.

24Along with the additional 15 dimensions for the experiments in Appendix F.4.
25We note that the messages used to train the VAE were distinct from those contained in the response_db

database used for outcome simulation.
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The app provides the following context about the individual: they took stepsprevday
steps the previous day and are currently at currloc. This context may be included in
the messages but should not dominate them.
The primary axis of variation in the messages should be optimism, with no intentional
variation along other dimensions such as tone, length, or formality. For this task,
create eleven messages where the optimism level varies as follows: Message 1 should
represent the least optimistic tone (optimism level 0). Message 11 should represent
the most optimistic tone (optimism level 10). Messages in between should gradually
and evenly increase in optimism. Here, optimism is defined as the degree of hopeful
or confident language in the message. A lower optimism level may include a more
matter-of-fact or pessimistic tone, while a higher optimism level may include uplifting
and buoyant language. Remember, low levels of optimism should have a pessimistic
tone.
Please write each message on a separate line, and remember that the target length is
two to three sentences for each message. Do not include anything in your response
other than the text of the messages. Start every new message with its number. The
optimism of the message should be independent of the user specific information.

For this purpose, we randomly drew context variables stepsprevday and currloc uniformly from
their possible values.26 We varied the user context across prompts to encourage the VAE to learn
stylistic variation independently of context. For each style dimension d, we generated 2,000 responses
(each consisting of eleven JITAI messages spanning the stylistic axis) yielding a total of 22,000
messages per dimension.

G.3.2 Text Embedding Results

After running Algorithm 7, we compared the target input rating with the VAE output. Figure 13
shows this relationship.27

Figure 13: Optimism Scores versus Prompted Rating

We find that the VAE captured some signal related to the intended tone of the message. While
the relationship in Figure 13 is noisy, two caveats are worth noting. (i) Precisely quantifying
variation along a semantic dimension is likely a domain-specific challenge and, while important, it
is outside the scope of this work. Our goal here is not to validate the embedding as a standalone

26We used the same context variables for the embedding construction as for the outcome generation.
27Note that we removed two outliers with high VAE scores, one with rating ten and one with rating nine,

which distorted the scale of the plot.
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construct; nonetheless, alignment between prompted tone and latent score adds interpretability to
the simulation setup. (ii) Some of the observed noise reflects inconsistencies in LLM behavior: the
model occasionally generates responses that do not align with the requested tone. For example, the
following message was produced in response to a prompt with optimism rating 1, but appears highly
optimistic: “You’re on a roll after yesterday’s success - keep up the pace and see where it takes
you!” Larger LLMs or more carefully tuned unsupervised methods may improve the correspondence
between prompted tone and latent score.

G.3.3 Embedding Construction Summary

Appendix G.3.1 presents the prompt instructions used for generating text that varied in optimism, and
Appendix G.3.2 shows how the resulting VAE scores relate to the specified input levels. As illustrated
in Figure 13, the VAE captures variation along the target semantic dimension, but its unsupervised
nature means the sign of the scores is arbitrary (for example, positive scores appear to align with
pessimistic rather than optimistic text). Table 1 summarizes the style definitions provided in the
prompts for each of the five primary semantic dimensions and reports the styles of text the VAE
associated with positive and negative scores.28

Table 1: Primary Semantic Styles, Prompted Definitions, and Interpretation of VAE Scores
Style Style Definition VAE Score Interpretations

Negative Positive
Optimism “The degree of hopeful or confident language in

the message. A lower optimism level may
include a more matter-of-fact or pessimistic
tone, while a higher optimism level may
include uplifting and buoyant language.”

Optimistic Pessimistic

Severity “The degree of dire or drastic language in the
message. A lower severity level may include a
more lax, calm, or gentle tone, while a higher
severity level may include more dark, intense,
worrying and distressing language.”

Severe Lax

Formality “The degree of which the message has an
objective, academic, or professional tone. A
lower formality level may include a more
personal, casual, or emotional tone and include
colloquial language. A higher formality level
may include more matter-of-fact, impersonal,
professional and serious language.”

Informal Formal

Clarity “The degree to which the intent of the message
is intelligibly communicated. A lower clarity
level should be more vague and ambiguous in
its language, while a higher clarity level may
include more precise, coherent, and intelligible
instructions or comments.”

Clear Unclear

Encouragement “The degree of persuasion using positivity,
confidence, and hope. A lower encouragement
level may include a more depressed, dispirited
or hopeless tone, while a higher encouragement
level may include more excited, heartening, and
motivating language.”

Discouraging Encouraging

G.3.4 Relationship between Style Embeddings

Table G.3.4 below shows the empirical correlation (within the response_db dataset constructed for
outcome generation) among the five stylistic embeddings discussed in Section 6.2.

28These associations were identified by manually examining a sample of generated text and its corresponding
VAE scores.
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Table 2: Style Dimension Correlation Table
Optimism Formality Severity Clarity Encouragement

Optimism 1.000 -0.095 0.787 0.184 -0.960
Formality -0.095 1.000 -0.568 -0.248 -0.121
Severity 0.787 -0.568 1.000 0.066 -0.644
Clarity 0.184 -0.248 0.066 1.000 -0.201
Encouragement -0.960 -0.121 -0.644 -0.201 1.000

Furthermore, we analyzed the structure of the relationship between the different style dimensions.
Figure 14 shows pairwise scatterplots of style embeddings for the five primary dimensions. Recall that,
in addition to the five primary dimensions, we created 15 more for the experiments in Appendix F.4.
The pairwise scatterplots for all 20 dimensions are shown in Figure 15. These figures provide a
qualitative view of the dependencies among dimensions. However, the direction of the embeddings
is not directly comparable across dimensions; e.g., a high encouragement score corresponds to an
encouraging tone, while a high optimism score reflects greater pessimism.

Figure 14: Pairwise Scatterplot of Five Primary Style Dimensions
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Figure 15: Pairwise Scatterplot of All Style Dimensions
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G.4 Computing Resources

The simulation of text-based treatments generated by Llama 3.1 was implemented on a high-
performance compute cluster. Each node in the cluster included two 2.9 GHz Intel Xeon Gold
6226R processors, 8 GB of allocated RAM, and a single NVIDIA A40 GPU with 48 GB of memory.
VAE training was performed on a similar setup, except each node was allocated 16 GB of RAM.
The simulation studies were conducted on nodes equipped with two 3.0 GHz Intel Xeon Gold 6154
processors, 16 CPU cores, and between 16–32 GB of allocated RAM. Under these specifications,
each experiment presented in Section 6 and Appendix F required approximately 50-70 minutes to
complete.

H Broader Impact

As discussed in Section 1, text-based sequential interventions are used across domains such as mobile
health and education to support behavioral change and improve outcomes. We view the GAMBIT
framework and associated algorithms as a step toward more personalized decision-making in such
settings. At the same time, personalization introduces risks (particularly in sensitive domains) where
automatically generated content may influence individuals in subtle or unintended ways. In some
applications, it may be inappropriate to deliver GenAI-generated content without human oversight or
safety review. We discuss these concerns and potential adaptations to the framework in Section 7,
with the hope that variants of GAMBIT can be developed to address such challenges directly.
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