
Analog Bayesian neural networks are insensitive to
the shape of the weight distribution

Ravi G. Patel T. Patrick Xiao Sapan Agarwal Christopher Bennett
Sandia National Laboratories

{rgpatel,txiao,sagarwa,cbennet}@sandia.gov

Abstract

Recent work has demonstrated that Bayesian neural networks (BNN’s) trained
with mean field variational inference (MFVI) can be implemented in analog hard-
ware, promising orders of magnitude energy savings compared to the standard
digital implementations. However, while Gaussians are typically used as the vari-
ational distribution in MFVI, it is difficult to precisely control the shape of the
noise distributions produced by sampling analog devices. This paper introduces a
method for MFVI training using real device noise as the variational distribution.
Furthermore, we demonstrate empirically that the predictive distributions from
BNN’s with the same weight means and variances converge to the same distribu-
tion, regardless of the shape of the variational distribution. This result suggests
that analog device designers do not need to consider the shape of the device noise
distribution when hardware-implementing BNNs performing MFVI.

1 Introduction

Uncertainty quantification is an essential capability for machine learning (ML) algorithms, partic-
ularly where these models are in the critical path of high-consequence or safety-critical decisions
[1]. Without being able to accurately assess uncertainty, ML models cannot be trusted and therefore
cannot be deployed in such systems. The Bayesian neural network (BNN) possesses the general-
ization capability of deep neural networks (DNNs), while providing rigorous estimates of predictive
uncertainty by encoding its weights as trainable probability distributions rather than as fixed pa-
rameters [2, 3]. BNNs can capture uncertainty arising from ambiguous data, as well as uncertainty
that comes from making inferences on data that lies well outside the distribution represented by
the training data. Training of BNNs can be made computationally tractable by using variational
inference [4, 5], a technique which constrains BNN weights to parameters with only a few tunable
values, rather than arbitrarily complex distributions. Nonetheless, large BNN networks are difficult
to implement at scale due to their complexity and sampling requirements; for every prediction from
a BNN, a large number of random numbers must be sampled – at least one for every weight – and
these random number generations can be prohibitively slow and power-intensive for these applica-
tions [6]. Unfortunately, there are many target systems where uncertainty quantification is critical
to enable safe autonomy, yet where ML algorithms must be processed in real time and within a
small power envelope (typically less than 1W). Given this constraint, these methods can scarcely be
deployed in modern edge or mobile devices.

To address this challenge with BNN inference on edge systems, a promising approach is to
map BNNs onto energy-efficient analog in-memory computing (AIMC) hardware. This comput-
ing paradigm encodes weights as individual conductances within a larger crossbar array of pro-
grammable memory devices, and uses analog circuit laws to physically compute matrix-vector mul-
tiplications (MVMs) [7]. Though AIMC has so far been applied only to conventional deterministic
DNNs, early proposals have suggested that designers could exploit the noise inherent to emerging

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024 (MLNCP 2024).

0

1

D
en

si
ty

−1 0 1

Weight

0

2

D
en

si
ty

Device fit

Data

Gaussian

Device

Bimodal

Figure 1: (Top) Compar-
ison between device noise
and distribution fit to device
noise. (Bottom) The three
variational distributions ex-
amined in this work.

10−5

10−2

V
a
ri

a
n
ce

Device Bimodal

101 102

Order

10−5

10−2

K
L

101 102

Order

Legendre Hermite Custom

Figure 2: Squared difference of order approximation and pre-
vious order approximation. Custom quadratures (Orange) con-
verge faster than standard quadratures (blue) in estimating vari-
ance (Top) and KL divergence to a Gaussian (Bottom).

memory devices to implement probabilistic algorithms [8]. In particular, the conductances of mem-
ory devices have some level of intrinsic analog noise, which provides the opportunity to sample
many analog random numbers and perform analog matrix computations on these random numbers
in parallel [9]. This approach is restricted to mean field variational inference

Critically, implementing BNNs on stochastic AIMC hardware requires the distribution of conduc-
tance noise in each individual memory device to be tunable (writable) to reflect the full range of
probability distributions obtained from the software BNN training. Yet the noise distributions of
real memory devices are often non-ideal; they may be minimally tunable, having only one or two
degrees of freedom, or sampling them may yield an exotic distribution that isn’t like the Gaussian
distribution commonly used in VI. Prior work has nonetheless trained BNNs with Gaussian distri-
butions and approximated them during inference time using non-ideal memory device device noise
distributions [9, 10, 11, 12, 13]. Although this induces a significant amount of error at the level of
a single probability distribution, the UQ end-application metrics from BNNs built from these non-
ideal sampling devices (e.g., expected calibration error) has been observed to be remarkably resilient
to these errors.

In this work, we present a method to train BNNs using variational inference that accounts for the
non-standard probability distributions of actual noisy analog memory devices. This method effec-
tively eliminates the approximation error involved in transferring the trained probability distributions
in a BNN to the available conductance noise distributions in analog hardware. Nonetheless, we use
this method to show numerically that the approximation error does not have a significant impact on
the predictive uncertainty of deep BNNs, due to the effect of the central limit theorem (CLT) within
each layer. This result provides a theoretical basis for the conclusion that large arrays of stochastic
memory devices that do not have a high degree of tunability or precision in their encoded probability
distributions can nonetheless be used to efficiently process large-scale BNNs.

2 Predictive distributions using device weights

A crossbar of memory devices with tunable mean conductances (µ) and tunable conductance noise
(σ) enables the efficient computation of a stochastic MVM. In this case, the multiplication of a vector
occurs with a matrix sampling from known, unique probability distributions. Often, the origin of
randomness in the analog system is driven by thermal fluctuation in the conductance value of a
given memory device; e.g., noise can can appear as complex 1/f noise fingerprints in filamentary
resistive random access memory (ReRAM) [14] . Using a novel bit-cell design for stochastic MVMs
introduced in [9], the mean conductance and the conductance noise do not need to be independently
controllable within a single device. Stochastic MVMs have been demonstrated or simulated using
magnetic random access memory (MRAM) [9], resistive random access memory (ReRAM) [13, 15,
10], charge-trap memory [11], and electrochemical random access memory (ECRAM) devices [12]
that were engineered to enable operation over a range of programmable noise values (σ). Notably,
among all these proposed devices, the shape of the noise probability distribution is not tunable in
general, but rather a function of the underlying device physics of that memory component. Following

2

a number of individual sampling opreations, the analog result of a stochastic MVM is converted
from raw current and current noise into a vector of digital output signals using companion analog-
to-digital converters (ADCs) at the bottom of each column in the array.

For the remaining results in this paper, we use the noise probability distribution of the Bayes-
magnetic tunnel junction (Bayes-MTJ) device from [9]. This device exploits the fact that the mag-
netization of a circular in-plane MTJ has two easy axes and no energetically preferred orientation.
Therefore, the magnetization can rotate randomly due to thermal fluctuations, resulting in random
changes in the tunnel magnetoresistance (conductance) of the MTJ. This noise has a distribution
that is not perfectly described by a standard Gaussian distribution, as in Fig. 1. By modulating the
built-in voltage inside the Bayes-MTJ, the width of the distribution could be made large or small
without affecting the distribution’s shape. Crossbar arrays of Bayes-MTJs, combined with crossbar
arrays of less noisy multi-state MRAM devices such as domain-wall MTJs, can be used together to
implement stochastic MVMs and perform BNN inference.

In addition to the real device noise, we also examine inference with a weight distribution much
further from a Gaussian than device distribution, a mixture of Gaussians. We refer to this distribution
as the bimodal distribution. Therefore as in Figure 1 bottom pane, we contrast these two designer
distributions against a standard Gaussian distribution throughout the remainder of this work.

3 Mean field variational inference with device distributions

Our goal is to compare inference using Gaussians as the variational distribution to realistic device
noise as the variational distribution. In VI, one minimizes the Kullback-Leibler (KL) divergence
[5], minα KL(pV (θ;α)||ppost(θ|X)), between a variational distribution, pV , and the posterior,
ppost(θ|X) ∝ pℓ(X|θ)pprior(θ) where X is data, θ is a vector of model parameters, α is the varia-
tional parameters, pℓ is a likelihood, and pprior is a prior, by maximizing the evidence lower bound
(ELBO),

min
α

ELBO(α) = EpV
[log pℓ(X|θ)]−DKL(pV ||pprior), (1)

The expectation of first term in (1) is high dimensional but can be estimated by Monte Carlo (MC),
EpV

[log pℓ(X|θ)] ≈ 1
N

∑N
i log pℓ(X|θi), sampling the parameters from the variational distribu-

tion, θi ∼ pV . We will work with the mean field assumption, i.e. assume the parameters are all
independently distributed. Furthermore, we will assume each parameter is distributed by a scaled
and shifted version of the same base distribution, qV . This allows us to use the reparameterization
trick to compute the MC estimate. We sample, zij ∼ qV , per parameter, per Monte Carlo sample,
and transform each vector zi as θi = σzi + µ where and µ and σ are vectors of shift and scale vari-
ational parameters. Section 3.1.3 discusses our approach to sampling qV for the device distribution.

The mean field assumption and reparameterization trick also allow us to simplify the KL divergence
between the variational distribution and the prior in (1). We also choose an i.i.d. prior, pprior(θ) =∏

i p̂(θi). Due to the mean field approximation, the integrals in the second term of (1) are one
dimensional. There are closed form expressions for Gaussian variational distributions and Gaussian
priors, but we must use quadrature for the device distribution. See Section 3.1.2 for further details.
The variational inference optimization problem becomes,

min
σj ,µj

1

N

N∑
i

log pℓ(X|σjzij + µj)−
∑
j

(
log σj +

∫
q(z) log p̂prior(σjz + µj)dz

)
(2)

where zij ∼ q. We have drop terms constant in µ and σ and simplified.

3.1 Numerical Approximations

This section details various numerical approximations used throughout this work. The device distri-
bution needs careful numerical analysis to generate samples from and compute expectations with.

3.1.1 Maximum likelihood fit to device noise

We compare the predictive distributions using three different neural network weight distributions,
Gaussian, device, and a mixture of two Gaussians (bimodal). We model the device noise distribution

3

as,
qD(x) = A exp

(
−|x|
B

)
−A exp

(−1
B

)
+ C(1− x2) −1 ≤ x ≤ 1

qD(x) = 0 else
(3)

and find the maximum likelihood estimates of A,B, and C using the Adam optimizer [16] under
the constraint that

∫ 1

−1
qD(x)dx = 1. Throughout this work, we compare results using this device

distribution to a Gaussian distribution, qG, and a mixture of Gaussians, qM , with the same mean
and standard deviations. Figure 1 demonstrates the device distribution fit and compares the three
variational distributions.

3.1.2 Quadrature

In general, there is no closed form expression for expectations with respect to the device distribution,

Eq [f(x)] =

∫ 1

−1

f(x)q(x)dx (4)

so we need to use approximations. Of particular importance is approximating variance,
E[(x− E[x])

2
], and the KL divergence from variational distributions to other distributions,

DKL(q||p) = Eq[log q − log p].

We can efficiently and accurately integrate expectations of polynomials and smooth functions using
the device distribution as the weighting function in Gaussian quadrature. In fact, cross entropies
with respect to the Gaussian distribution can be exactly integrated with only two quadrature points.
In other cases, we design custom quadrature rules based on standard quadratures. Figure 2 demon-
strates the efficacy of these quadratures. More details on this formulation and justification for this
choice are given in Appendix B.

3.1.3 Inverse sampling

We generate additional device noise samples using inverse transform sampling. After fitting to
device noise, we have access to the CDF, QD(x) =

∫ x

−1
qD(z)dz. We can generate new samples by

applying the inverse CDF, G = Q−1
D , to samples from the uniform distribution,

u ∼ U [0, 1] ⇒ x = G(u) ⇒ x ∼ qD (5)
We cannot find a closed-form expression for the inverse CDF and must use numerical approximation.
Because qD is symmetric across x = 0, QD and G are symmetric about 180 degree rotations around
(x, u) = (0, 1

2). Therefore, we can approximate a restriction of the inverse CDF, Ĝ : [−1, 0] →
[0, 1

2], and reuse it for the other halves of the full domain and codomain.

Ĝ is smooth and amenable to polynomial approximation in the domain [ϵ, 1
2] for 0 < ϵ ≪ 1

2 .
However, near u = 0 the function is not differentiable. By differentiating QD(Ĝ(u)) = u, we find,

lim
u→0+

QD(Ĝ(u))′ = lim
u→0+

Q′
D|Ĝ(u) Ĝ

′
∣∣∣
u
= 1 ⇒ lim

u→0+
Ĝ′

∣∣∣
u
= lim

x→−1

1

qD(x)
= lim

x→−1

1

C(1− x2)
(6)

This limit diverges due to the quadratic term. Instead of approximating Ĝ directly, we use poly-
nomials to approximate a function with the non-differentiability subtracted and then add the non-
differentiability back in.

The CDF has the 2nd order Taylor expansion near x = −1, Q2(−1 + x) = QD(−1) + Q′
D|−1 x+

1
2 Q′′

D|−1 x
2, which can be inverted for x ∈ [−1, 0] to give, Ĝ2 = Q−1

2 . See Appendix A for
the formal expressions of Q2 and Ĝ2. We fit a Legendre polynomial, shifted and scaled to the
restricted domain, to the difference, G̃ = Ĝ − Ĝ2 ≈

∑
i ciϕi, at the Gauss-Lobatto points. We

employ Brent’s root-finding method [17] to compute G̃ at these points. The restriction of the inverse
CDF is then approximated as the sum, Ĝ =

∑
i ciϕi + Ĝ2. To approximate the restriction of G to

· : [12 , 1] → [0, 1], we rotate Ĝ 180 degrees around (x, u) = (0, 1
2). The full approximation of G is,

G(u) =


∑

i ciϕi(u) + Ĝ2(u) u < 1
2

−
∑

i ciϕi(1− u)− Ĝ2(1− u) u > 1
2

0 u = 1
2

(7)

4

Brent’s method Polynomial fit Corrected fit

103 106

Samples

10−4

10−3

10−2

10−1

100

|K
L
q
u
a
d
−
K
L
M
C
|

0.0 0.2 0.4

u

−1.00

−0.75

−0.50

−0.25

0.00

x

Figure 3: Comparison between corrected fit and
polynomial fits to inverse CDF. (Left) The ap-
proximations to inverse CDF over the full do-
main. (Center) The approximations near u = 0.
(Right) Absolute difference between Monte Carlo
and quadrature estimates for the KL divergence
between the device distribution and a centered
Gaussian with the same variance. The corrected
fit performs better than the polynomial fit.

0.0

0.5

1.0

D
en

si
ty

Width=1, Depth=1

−2 0 2

y(x = 0)

0.0

0.5

1.0

D
en

si
ty

Width=64, Depth=1

Gaussian

Device

Bimodal

Width=1, Depth=16

−2 0 2

y(x = 0)

Width=64, Depth=16

1 2 4 8 16 32 64

Width

10−3

10−2

D
iv

er
g
en

ce
to

G
a
u

ss
ia

n

Device, Depth=1

Bimodal, Depth=1

Device, Depth=4

Bimodal, Depth=4

Device, Depth=16

Bimodal, Depth=16

Figure 4: (Left) Comparison of three pre-
dictive distributions for energy distance
problem at different widths and depths.
(Right) KL divergence from predictive
distributions for y(x = 0) using Device
and Bimodal weights to predictive distri-
butions from Gaussian weights.

The left subplot in Figure 3 show that the corrected fit performs better than the direct fit. We
also compare them by evaluating Monte Carlo estimates of the KL divergence from the device
distribution to a Gaussian of the same mean and variance. While Monte Carlo estimates using the
polynomial fit to the inverse CDF appears to converge to a biased estimate for the KL divergence
while the correct fit continues to converge to the quadrature approximation of the KL divergence.

4 Assessing the impact of diverse variational distributions on neural
network performance

In this section we compare the predictive distributions from probabilistic neural networks using the
three variational distributions. See Appendix C for details on training and the architectures.

4.1 Energy distance minimization

Firstly, we trained a dense neural network function from reals to reals, fnn : x; θ 7→ y, with Gaussian
weights, θG, to match the normal distribution at x = 0. This set-up allows us to control the form
of the predictive distribution and evaluate inference when we switch between various variational
distributions. We minimize the energy distance with respect to the variational parameters,

min
µ,σ

2E θG
i ∼pG
yj∼pT

[
|fnn(0; θGi)− yj |α

]
− EθG

i ,θG
j ∼pG

[
|fnn(0; θGi)− fnn(0; θ

G
j)|α

]
(8)

with α = 1.5. We use MC to estimate expectations over the neural network outputs and quadrature
with the target distribution as the weighting function for expectations over the target distribution.
After training, we compare predictive distributions at x = 0 for the same network and variational
parameters, replacing the base distribution from Gaussian to either device or bimodal. In Figure 4,
we vary the neural network depth and width. We observe that the predictive distributions for the
three distributions converge to the target distribution as the width increases.

4.2 Scalar Regression

Next, we performed Bayesian 1D regression using the variational inference framework described
above. We choose as our true model,

y = sin(2πx) + ϵ ϵ ∼ N(0, 0.1(1 + min(0, x− 1))) (9)

We generate training data, xtrain ∼ u[−1, 1], and compute ytrain from the above model. Likewise,
we compute test data using, xtest ∼ u[−1.5, 1.5] and ytest from the same model. We next fit the
data with MFVI training using Gaussians as our variational distribution and compare the posterior

5

−1 0 1

x

−2

−1

0

1

2

y

Gaussian

−1 0 1

x

Device

−1 0 1

x

Bimodal

Mean

σa

σe

Training data

Test data

Figure 5: The predictive distributions
from all three weight distributions
are nearly identical for the scalar re-
gression problem. σa is the aleatoric
error predicted by f ′

nn and σe is
the empirical standard deviation of
the mean predictions under resam-
pled neural network weights, ξ.

0.0 0.5 1.0

Probability

0.00

0.25

0.50

0.75

1.00

F
re

q
u
en

cy

Gaussian

Epistemic

Aleatoric

Both

0.0 0.5 1.0

Probability

Device

0.0 0.5 1.0

Probability

Bimodal

Figure 6: Calibration curves for three distribu-
tions during inference on the test data after train-
ing with the Gaussian distribution. The RMSE er-
ror for all cases on the test data is around 8%.

predictive distributions obtained by replace the Gaussians with device and bimodal distributions of
the same means and variances.

We choose as our predictive model a feed-forward, Bayesian neural network. We model the error as
heteroscadastic noise predicted by a feed-forward, deterministic neural network,

ξ ∼ pV ypred − y ∼ N(0, σa) ypred = fnn(x; ξ) σa = f ′
nn(x, ξ

′) (10)
The model is similar to [18], except that the aleatoric predictions are deterministic. After training,
in Figure 5 we compare inference using the three variational distributions by fixing the variational
parameters, but replacing the form of the Gaussian base distribution to the device distribution and the
bimodal distribution. At inference, the predictive distributions, with this change is nearly identical
to the predictive distribution produced by the Gaussians.

4.3 UTKFACE

Lastly, we performed Bayesian inference on the UTKFACE dataset [19]. We seek a mapping from
images of faces to ages and use the same model as (10), replacing the feedforward neural networks
with convolutional neural networks. As in the last example, we train with the Gaussian distribution,
but replace the variational distribution with the device and bimodal distributions. Figure6 compares
the calibration curves obtained from inference on test data. They are obtained as discussed in [18].
We find that the predictions obtained by any of the variational distributions used during inference
are identical, regardless of the distribution used during training.

5 Discussion and Conclusions

We empirically demonstrate that the shape of the variational distribution has little impact on the
posterior predictive distributions in mean field variational inference; only the mean and variance
is important. As it is difficult to tune the shape of the variational distribution in hardware, these
results suggest that device engineering efforts do not need to focus on producing specific sampling
curves for downstream variational distributions. Furthermore, one may use the standard Gaussian
variational distribution to train the networks in software and reuse the scale and shift parameters
in hardware, regardless of the shape of the hardware noise distribution. Our work enables this
by establishing methods for transforming predictive distributions. While, as was shown in Fig 4.,
sufficiently wide neural network layers are still necessary to reduce the difference between predictive
distributions, the required width of networks to do so is minimal due to the CLT. Future work will
examine whether any loss exists in narrow, deep networks on tasks of interest. Additionally, our
claims could be verified in hardware within small probabilistic arrays.

Acknowledgments

We use TensorFlow [20] for training neural networks, NumPy [21], SciPy [22], and Chaospy [23]
for special functions and polynomial approximation, SymPy [24] for symbolic calculations, and
GNU Parallel to run experiments in parallel [25].

6

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Inter-
national, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjec-
tive views or opinions that might be expressed in the paper do not necessarily represent the views of
the U.S. Department of Energy or the United States Government.

SAND number: SAND2024-16263C

References
[1] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier.

Advances in neural information processing systems, 31, 2018.

[2] David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[3] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Ben-
namoun. Hands-on bayesian neural networks—a tutorial for deep learning users. IEEE Com-
putational Intelligence Magazine, 17(2):29–48, 2022.

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural network. In International conference on machine learning, pages 1613–1622,
2015.

[5] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[6] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud Pedram,
and Yanzhi Wang. Vibnn: Hardware acceleration of bayesian neural networks. ACM SIGPLAN
Notices, 53(2):476–488, 2018.

[7] T Patrick Xiao, Christopher H Bennett, Ben Feinberg, Sapan Agarwal, and Matthew J
Marinella. Analog architectures for neural network acceleration based on non-volatile memory.
Applied Physics Reviews, 7(3), 2020.

[8] Roberto Carboni and Daniele Ielmini. Stochastic memory devices for security and computing.
Advanced Electronic Materials, 5(9):1900198, 2019.

[9] Samuel Liu, T. Patrick Xiao, Jaesuk Kwon, Bert J. Debusschere, Sapan Agarwal, Jean Anne C.
Incorvia, and Christopher H. Bennett. Bayesian neural networks using magnetic tunnel
junction-based probabilistic in-memory computing. Frontiers in Nanotechnology, 4, 2022.

[10] Yudeng Lin, Qingtian Zhang, Bin Gao, Jianshi Tang, Peng Yao, Chongxuan Li, Shiyu Huang,
Zhengwu Liu, Ying Zhou, Yuyi Liu, et al. Uncertainty quantification via a memristor bayesian
deep neural network for risk-sensitive reinforcement learning. Nature Machine Intelligence,
5(7):714–723, 2023.

[11] Amritanand Sebastian, Rahul Pendurthi, Azimkhan Kozhakhmetov, Nicholas Trainor,
Joshua A Robinson, Joan M Redwing, and Saptarshi Das. Two-dimensional materials-based
probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using
bayesian neural networks. Nature communications, 13(1):6139, 2022.

[12] S. Oh, T. P. Xiao, C. Bennett, A. J Weiss, S. R. Bishop, P. S. Finnegen, E. J. Fuller, S. Agarwal,
and A. A. Talin. Bayesian neural network implemented by dynamically programmable noise
in vanadium oxide. In International Electron Devices Meeting (IEDM), pages 1–4, 2023.

[13] Thomas Dalgaty, Eduardo Esmanhotto, Niccolo Castellani, Damien Querlioz, and Elisa
Vianello. Ex situ transfer of bayesian neural networks to resistive memory-based inference
hardware. Advanced Intelligent Systems, 3(8):2000103, 2021.

[14] Botond Santa, Zoltan Balogh, Laszlo Posa, David Krisztian, Timea Nora Torok, Daniel Mol-
nar, Csaba Sinko, Roland Hauert, Miklos Csontos, and Andras Halbritter. Noise tailoring in
memristive filaments. ACS applied materials & interfaces, 13(6):7453–7460, 2021.

7

[15] Wooseok Choi, Wonjae Ji, Seongjae Heo, Donguk Lee, Kyungmi Noh, Chuljun Lee, Jiyong
Woo, Seyoung Kim, and Hyunsang Hwang. Exploiting read current noise of tio x resistive
memory by controlling forming conditions for probabilistic neural network hardware. IEEE
Electron Device Letters, 43(9):1571–1574, 2022.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2017.

[17] William H Press. Numerical recipes in FORTRAN: the art of scientific computing. Cambridge
University Press, 2005.

[18] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems, 30, 2017.

[19] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adver-
sarial autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017.

[20] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org.

[21] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, 2020.

[22] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van
der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.

[23] Jonathan Feinberg and Hans Petter Langtangen. Chaospy: An open source tool for designing
methods of uncertainty quantification. Journal of Computational Science, 11:46–57, 2015.

[24] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Sco-
patz. Sympy: symbolic computing in python. PeerJ Computer Science, 3:e103, January 2017.

[25] Ole Tange. GNU Parallel 2018. Ole Tange, March 2018.

[26] Rodney O Fox and Frédérique Laurent. Hyperbolic quadrature method of moments for the
one-dimensional kinetic equation. SIAM Journal on Applied Mathematics, 82(2):750–771,
2022.

[27] John C Wheeler. Modified moments and gaussian quadratures. The Rocky Mountain Journal
of Mathematics, 4(2):287–296, 1974.

8

[28] Djork-Arné Clevert. Fast and accurate deep network learning by exponential linear units (elus).
arXiv:1511.07289, 2015.

A Formula for P2 and Ĝ2

In Section 3.1.3 we utilize the second order Taylor expansion of the device CDF,

P2(−1 + x) =

(
A+ 2BCe

1
B

)
(x+ 1)

2
e−

1
B

2B
(11)

which has inverse for x ∈ [−1, 0],

Ĝ2(0 + u) =

−A− 2BCe
1
B +

√
2

√
Bu

(
A+ 2BCe

1
B

)
e

1
B

A+ 2BCe
1
B

(12)

to approximate the inverse CDF.

B Further details on quadrature

If we use the device distribution as the weighting function in (4), quadrature rule of N = 2 abscissas
and weights is sufficient to exactly integrate polynomials up to order 2N − 1 = 3. Since the log
likelihood for a Gaussian is a quadratic polynomial we can integrate the cross entropy, H(q,N) =
−Eq[logN], where N is a Gaussian to machine precision. We use this quadrature for variational
training with the device distribution since H(q,N) is the only integral needed for training. We use
Wheeler’s algorithm [26, 27] combined with symbolic calculations for the moments of the device
distribution to compute the abscissas and weights for the quadrature. We note that the custom
quadratures below perform better for expectations over non-smooth quantities, particularly ones with
singularities, e.g., the KL divergence. Additionally, Wheeler’s algorithm is numerically unstable for
large quadratures, N ≈ 10. We resort to the quadratures below as needed.

qD is smooth, so expectations and amenable to Gaussian quadrature everywhere except near x = 0
where it is not differentiable. Therefore, we use Gauss-Legendre quadratures in [−1,−ϵ] and [ϵ, 1]
and the trapezoidal rule in [−ϵ, ϵ]. While we might expect the Gauss-Hermite quadrature to perform
well for qM because it is C∞ on R, we found that a two sided approach, summing the Gauss-
Laguerre quadratures of EqD [f(x)] and its reflection across x = 0 on [0,∞], to perform better.

C Details on training and architectures

We use the Adam optimizer with TensorFlow’s default hyper-parameters for all optimization prob-
lems.

For Section 4.1, we use the ELU activation function [28] and train for 10000 iterations with a batch
size of 100.

We again use the ELU activation function for Section 4.2 and a dense neural network with 4 hidden
layers of width 16. We initialize the network to the maximum likelihood estimate (MLE) using de-
terministic training on the mean square error. We next fix the biases to the MLE and train the kernels
with VI. We train on 10000 data points for 10 epochs with a batch size of 100. We additionally add
tempering on the likelihood to allow the optimizer to better explore the variational parameter space,
reducing the temperature as T = exp(−i/1000), where i is the iteration number.

The training method for Section 4.3 is identical to Section 4.2, except we use the ReLU activation
function and a convolutional neural network architecture. We use 4 sets of convolution blocks
consisting of,

Conv → MaxPool → BatchNorm → Conv → MaxPool → BatchNorm

where first convolution in each block increases the filter size by a factor of two. All convolutions
use a kernel size of 3 and pools use windows of size 2. These convolution blocks are followed by a
reshape to a vector and three dense blocks,

Dense → BatchNorm

9

0

1

D
en

si
ty

−1 0 1

Weight

0

1

D
en

si
ty

Device fit

Data

Gaussian

Device

Figure 7: (Top) Compar-
ison between device noise
and distribution fit to device
noise. (Bottom) A Gaussian
variational distribution and
the device distribution.

0.0

0.5

1.0

D
en

si
ty

Width=1, Depth=1 Width=1, Depth=16

−2 0 2

y(x = 0)

0.0

0.5

1.0

D
en

si
ty

Width=64, Depth=1

−2 0 2

y(x = 0)

Width=64, Depth=16

Gaussian

Device

Figure 8: Comparison of predictive distributions from Gaussian
and device variational distributions for energy distance problem
at different widths and depths.

where the first maps the output of the convolution blocks to dimension 100, the second to dimension
10, and the third to dimension 1. Finally, the output is scaled to have range [0, 1] with a sigmoid
function.

D Results using tunable-noise ECRAM device

While the bulk of our work focuses on the Bayes-MTJ device, we also find that the predictive distri-
butions produced by a second tunable noise device also converge to the same predictive distribution
produced by Gaussian weights. This second device is a vanadium oxide ECRAM device that ex-
ploits the material’s metal-to-insulator transition to access a wide programmable range of both the
conductance and the conductance noise variance, as described by Oh et al. [12]. The shape of the
noise distribution is qualitatively different from that of the Bayes-MTJ device. Figure 7 shows the
results of a MLE fit to the ECRAM device noise using the following parameterization,

qD(x) = A exp
(

−x2

B

)
−A exp

(−1
B

)
+ C(1− x2) −1 ≤ x ≤ 1

qD(x) = 0 else
(13)

Figure 8 repeats the energy score study discussed in Section 4.1 for this device. Note that the device
distribution and Gaussian are already similar and the predictive distributions match for even shallow,
narrow neural networks.

10

