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Abstract—This paper presents a new data-dependent random
projection method D2RP for least square regressions, which maps
data into the row space of a randomly mapped training data
matrix. Our theoretical analysis suggests D2RP may not preserve
pairwise data distance as well as its data-independent ancestors,
but preserves enough information for reconstructing the training
data. Our further analysis shows least square regression in the
D2RP projected space has an O(e−k/n) empirical excess risk that
decays exponentially faster as k increases, partly suggesting its
high dimension efficiency. On the practical side, we apply D2RP
to speed up least square regression, kernel ridge regression and
ensemble regression. Experimental results on real-world data sets
show it achieves the best tradeoff between computation efficiency
and dimension efficiency compared to multiple baselines methods.

Index Terms—random projection, dimensionality reduction,
least square regression

I. INTRODUCTION

Random projection (RP) [1] is an efficient data dimension-
ality reduction technique widely used to accelerate machine
learning tasks including regression [2], [3], [4], [5], [6], [7],
[8], classification [9], [10], [11], [12], [13], [14], [15] and
clustering [16], [17], [18], [19]. In these applications, data are
first mapped into a lower dimensional space using a randomly
generated projection matrix before being used to train models.

The success of learning in randomly projected space is often
explained by distance preservation i.e., random projection only
distorts the pairwise distance between n data points by 1±ε if
the projected dimension is Õ(lnn/ε2) [1], therefore allowing
models to preserve performance in the projected space should
their performance depends on such distance.

In the literature, most random projection matrices are gener-
ated independently to the data to project. While this makes RP
fairly computation-efficient, it also makes RP less dimension-
efficient, meaning that one often has to map data into a higher
dimensional space for preserving the same model performance
as other methods like PCA [9]. Such inefficiency undermines
the value of RP as a dimensionality reduction technique.

We argue the dimension efficiency of RP can be improved
if its projection is not entirely data oblivious. Data-dependent
random projection is rarely explored in the literature, and we
notice a prior study [20] shows it allows models to perform

better in the projected space compared to its data-independent
counterparts, shedding light on this promising direction.

Research on data-dependent random projection is non-trivial
due to an inherent tradeoff between computation efficiency and
dimension efficiency i.e., a projection generated obliviously to
data often takes less generation time but is also less dimension-
efficient, whereas a projection learned from data can be more
dimension-efficient but also takes more generation time. For
example, the data-dependent random projection [20] improves
dimension-efficiency but endures an O(k2) generation time
for k-dimensional projected space, which is higher than the
O(k) time of its data-oblivious ancestors. How to improve the
tradeoff remains an open research challenge.

This paper presents a new data-dependent random projection
method D2RP for least square regressions, which maps data
into the row space of a randomly projected training data matrix
with merely O(k) projection generation time. Our theoretical
analysis demystifies its effectiveness from two complementary
views. We show D2RP may not preserve data distance as well
as its data-oblivious ancestors since it admits a larger relative
data distance distortion bound, but its projected space contains
enough information for reconstructing training data with an
O(

√
n/k) error that matches its data-oblivious ancestor’s. Our

further analysis shows D2RP allows least square regression to
achieve an O(e−k/n) empirical excess risk in the projected
space, which can decay faster than the O(lnn/k) expected
excess risk of its data-independent ancestor [2] and partly
suggests the high dimension efficiency of D2RP.

We also apply D2RP to accelerate kernel ridge regression
[21] and ensemble least square regression [22]. Experimental
results on real-world data sets show D2RP-based regressions
achieve the best tradeoff between computation-efficiency and
dimension-efficiency compared to multiple baseline methods.

II. D2RP FOR LEAST SQUARE REGRESSION

Let (x1, y1), . . . , (xn, yn) be a labeled data set where xi ∈
Rp is the ith instance and yi ∈ R is its label. Let R ∈ Rp×k

be a projection matrix mapping instances from Rp to Rk and
let x̃i = RTxi be the mapping of xi. Our goal is to randomly
generate an R and find a least square regression model in the
projected space based on (x̃1, y1), . . . , (x̃n, yn).



Algorithm 1 Projection Generation Mechanism of D2RP

Input: training data x1, . . . , xn ∈ Rp, projected dimension k
1: Sample W ∈ Rk×n with i.i.d. entries from N(0, 1/k).
2: Compute projection matrix R = (WX)T ∈ Rp×k, where

X = [x1, . . . , xn]
T ∈ Rn×p, (1)

is the training data matrix.

Most random projection methods generate R independently
to the instances e.g., by sampling entries i.i.d. from N(1/k)
[1]. We present a data-dependent generation mechanism D2RP
in Algorithm 1, which maps instances into the row space of a
randomly projected training data matrix. In the following, we
theoretically analyze its properties.

A. Data in the D2RP Projected Space

We first investigate how D2RP projection may impact data.
Our following theorem suggests it may not preserve pairwise
data distance as well as its data-independent ancestors.

Theorem II.1. In Algorithm 1, if k ≥ Õ( lnn
ε2 ), with probabil-

ity at least 1− 1
n , the followings hold simultaneously

||RTxi −RTxj ||2 ≤ (1 + ε)σ2
1(X)||xi − xj ||2, (2)

and

||RTxi −RTxj ||2 ≥ (1− ε)σ2
r(X)||xi − xj ||2, (3)

for any i, j, where || · || is Frobenius norm, σj(X) is the jth
largest singular value of X (including ties) and r = rank(X).

Proof Sketch. Observe that

||RTxi −RTxj ||2 = ||WXxi −WXxj ||2

≤ (1 + ε) · ||Xxi −Xxj ||2

≤ (1 + ε) · ||xi − xj ||2 · σ2
1(X)

(4)

where the first inequality holds with probability at least 1− 1
n if

k ≥ Õ( lnn
ε2 ) based on the well-known Johnson–Lindenstrauss

lemma (e.g., [1, Lemma 1.3] plus a union bound), and the
second follows a basic matrix norm bound (e.g., [23]).

Mirrored arguments give the lower bound.

The above theorem suggests D2RP distorts data distance by
[σ2

r(X)(1 − ε), σ2
1(X)(1 + ε)], which is a bigger (relatively)

range than the [1− ε, 1 + ε] of its data-independent ancestors
since the condition number of X is often bigger than 1. This
suggests distance preservation is not why D2RP is useful.

Our next theorem is an immediate result of Lemma 4.2 and
Remark 4.1 in [24]. It suggests D2RP is useful as the projected
space contains enough information for data reconstruction.

Theorem II.2. In Algorithm 1, if k = O( rε ) for some r > 0,
with probability at least 0.9, then the column space of XR
contains an (1 + ε) rank-r approximation of X i.e., there
exists a Q∗ ∈ Rk×p such that

||XRQ∗ −X|| ≤ (1 + ε)||Xr −X||, (5)

where Xr ∈ Rn×p is the best rank-r approximation of X with
respect to the Frobenius norm.

In prior study [20], a O(
√

n
k ) reconstruction error is sug-

gested presuming the tail eigenvalues of X decay as fast as√∑
j>r σ

2
j (X) ≪

√
nσr+1(X). Theorem II.2 matches this

error under the same condition plus σr+1(X) = O(
√

1/r).

B. Least Square Regression in the D2RP Projected Space
We now investigate the performance of least square regres-

sion in the D2RP projected space. Recall X ∈ Rn×p is the
training data matrix and R ∈ Rp×k is a D2RP projection; let
Y = [y1, . . . , yn]

T ∈ Rn be the label vector of X .
Let β ∈ Rp and β̃ ∈ Rk denote the models for raw data

and projected data respectively. We define the empirical risk
of β ∈ Rp on the raw training data (X,Y ) as

L̂(β) = ||Xβ − Y ||/
√
n, (6)

empirical risk of β̃ on the projected training data (XR,Y ) as

L̂R(β̃) = ||XRβ̃ − Y ||/
√
n. (7)

Let β∗ and β̃∗ be the minimizers of L̂(β) and L̂R(β̃) respec-
tively. Define the empirical excess risk of any β̃ as

||β̃ − β∗||P := L̂R(β̃)− L̂(β∗). (8)

Our empirical excess risk bound is stated as follows.

Theorem II.3. Given any training data (X,Y ) and D2RP
projection matrix R, we have

||β̃∗ − β∗||P = O(e−k/n), (9)

with probability at least 0.9 over the random choice of R.

Proof. Fix any ε ∈ (0, 1/2) and pick a proper c > 0 (to be
specified later). Set r = ck/ε. We have

√
nL̂R(β̃∗) = min

β̃
||(XR)β̃ − Y ||

≤ min
Q

||(XR)Qβ∗ − Y ||

= min
Q

||(XR)Qβ∗ −Xβ∗ +Xβ∗ − Y ||

≤ min
Q

||(XR)Q−X|| ||β∗||+ ||Xβ∗ − Y ||

≤ (1 + ε)||Xr −X|| ||β∗||+ ||Xβ∗ − Y ||
= (1 + ε)||Xr −X|| ||β∗||+

√
nL̂(β∗).

(10)

The first inequality holds because we restrict the search space
of β̃ to those satisfying β̃ = Qβ∗ for some Q ∈ Rk×p, and
the third follows Theorem II.2 plus our setting (which implies
k = O(r/ε)) with probability at least 0.9. The above implies

L̂R(β̃∗)− L̂(β∗) ≤ (1 + ε)||β∗||
||Xr −X||√

n
. (11)

Further, the last ratio satisfies ||Xr−X||√
n

=

√∑
j>r σ2

j (X)

n ≤√
1− r

nσr+1(X) ≤ e−
r
2nσr+1(X) ≤ e−

ck
2εnσr+1(X). Pick-

ing any c ≥ 2ε proves the theorem.



The theorem suggests D2RP allows least square regression
to achieve an O(e−k/n) empirical excess risk in the projected
space. This exponential decay (w.r.t. the increase of k) appears
faster than the O(lnn/k) expected excess risk decay of its
data-independent ancestors (e.g. [2, Theorem 1] presuming all
norms are bounded) and partly justifies the higher dimension
efficiency of D2RP for least square regression.

Several gaps remain in our result, however. First, we only
analyze the empirical excess risk while prior study [2] analyzes
the expected excess risk. It is possible to bridge the gap using
concentration properties, although it is unclear whether or how
the exponential decay may survive under the extension. Sec-
ond, we consider unsquared ℓ2 loss for technical convenience,
while prior study considers squared loss. It may be possible
to extend our result for squared loss, but again whether the
exponential decay rate may survive remains an open question.
Finally, in the proof we pick c ≥ 2ε for conciseness, and even
without it the empirical excess risk still enjoys a O(e−c′k/n)
decay rate for some constant c′ > 0.

C. Compare with the Prior Data-Dependent RP Method
We now make a comprehensive comparison between D2RP

and the prior data-dependent random projection method [20].
From an algorithm view, our projection matrix is generated

in a similar way to theirs, with a notable difference that we do
not perform SVD on WX as they do. This change reduces the
projection generation time from O(k2) to O(k), and results in
a significantly better trade-off between computation efficiency
and dimension efficiency. (This will be clearer in experiments.)

In theory, we analyze D2RP from three novel perspectives.
The O(

√
n
k ) data reconstruction error in [20, Theorem 3] is

derived using a deterministic bound for subspace obtained via
orthogonal projection [25], while our O(

√
n
k ) reconstruction

error implied by Theorem II.2 is derived using a probabilis-
tic bound for subspace obtained via random projection [24,
Lemma 4.2]. Secondly, the O( 1√

n
) excess risk in [20, Theorem

1] is for least square model reconstructed in the input space,
while our O(e−

k
2n ) excess risk implied by Theorem II.3 is for

least square model in the projected space. At last, our Theorem
II.1 suggests that D2RP may not preserve data distance as well
as its data-independent ancestors, which is a new insight not
discussed in the prior study [20].

III. TWO MORE APPLICATIONS OF D2RP
A. D2RP for Kernel Ridge Regression

Recall kernel ridge regression based on a data mapping
ϕ : Rp→ Rq learns a linear model β in the mapped space
by solving minβ∈Rq ||Xϕβ − Y ||2 + λ||β||2, where Xϕ =
[ϕ(x1), . . . , ϕ(xn)]

T . The solution is β = Xϕα where

α = (K2 + λK)−1KY, (12)

and K ∈ Rn×n is a kernel matrix with Kij = ϕ(xi)
Tϕ(xj).

Random projection has been used to accelerate the compu-
tation of (12) in [21], [26], by replacing K with KS with a
random projection matrix R ∈ Rn×k. The new solution is

α̃ = (RTK2R+ λRTKR)−1RTKY. (13)

It is clear that (13) is faster to compute than (12) as its inverse
is taken over a smaller matrix. However, prior studies generate
R independently to data, which is not dimension-efficient. We
propose to apply D2RP to generate R. The process is almost
the same as Algorithm 1, except that X is replaced with K.

B. D2RP for Ensemble Regression

Random projection has also been used to accelerate ensem-
ble least square regression in [22]. The idea is to learn a set of
models from different randomly projected spaces and average
them. Let R1, . . . , Rm ∈ Rp×k be independently generated
random projection matrices and βt be a model learned by
solving minβt∈Rk ||XRtβt − Y ||2. The ensemble model is
then β = 1

m

∑m
t=1 βt. In prior study, Rt’s are generated

independently to data, and we propose to use D2RP instead.

IV. EXPERIMENT

We experiment on the public MNIST [27] and High Di-
mensional Datascape [28] data sets. Since our focus is on
reducing feature dimension, we randomly downsampled the
MNIST data set to a subset of 1k instances. On each data
set, we use the first 50% instances for training and the rest
for testing. All reported results for random projection based
methods are averaged over 200 trials.

A. Projected Least Square Regression

We evaluate the projected least square regression described
in Section II-B. We generate R using the following methods.

• PCA: R is learned from training data by PCA.
• RP: R has i.i.d. entries from N(0, 1/k)

• NOR: [20] where W has i.i.d. entries from N(0, 1/k).
• D2RP: the proposed method in Algorithm 1.
Results on MNIST are shown in Figure 1. In (a), we see both

D2RP and NOR give faster error convergence than RP, which
verifies their superior dimension efficiency. We also see D2RP
has the same error rate as NOR in (a), but consumes much
less generation time in (b). These show D2RP achieves the
best computation-efficiency and dimension-efficiency tradeoff.
Similar patterns are observed on Datascape in Figure 2 (a)(d).

B. Projected Kernel Ridge Regression

We evaluate the projected kernel ridge regression described
in Section III-A. For the kernel method, we use RBF kernel
with γ set to 1e-7 on MNIST and 1e-3 on Datascape, and
set the regularization coefficient to 0.1. Projection matrix R is
generated by different methods, including RP, NOR and D2RP.
The ‘SVD’ method is a baseline that applies SVD on K and
assign the top k left singular vectors to R.

Results on MINST are shown in Figure 1. In (b), we see
D2RP and NOR have faster error convergence than RP, which
verifies their superior dimension efficiency. We also see D2RP
has the same error rate as NOR in (b) but consumes much less
generation time in (e). These, again, shows D2RP achieves the
best computation-efficiency and dimension-efficiency tradeoff.
Similar patterns are found on Datascape in Figure 2 (b)(e).



(a) Error of Projected Least Square (b) Error of Projected KRR (c) Error of Projected Ensemble

(d) Time for Projected Least Square (e) Time for Projected KRR

Fig. 1. Performance on MNIST

(a) Error of Projected Least Square (b) Error of Projected KRR (c) Error of Projected Ensemble

(d) Time for Projected Least Square (e) Time for Projected KRR

Fig. 2. Performance on High Dimensional Datascape

C. Projected Ensemble Regression
Performance of the projected ensemble regressions are

shown in Figures 1 (c) and 2 (c). The ‘PCA Single’ method
learns a least square regression in a PCA projected space. The
projected dimension for all methods are fixed to 50 on both
data sets. We see both D2RP and NOR errors converge faster
than RP for the ensemble regression.

V. CONCLUSION AND FUTURE WORK

This paper presents a new data-dependent random projection
method D2RP for least square regressions. Theoretical analysis

suggests it preserves enough information for reconstructing the
training data, and allows least square regression to achieve
an O(e−k/n) empirical excess risk in the projected space.
We apply it to accelerate least square, kernel and ensemble
regressions, and empirical results on real-world data sets show
it achieves the best tradeoff between computation efficiency
and dimension efficiency. In future, it may be interesting to
explore other types of data-dependent random mappings (e.g.,
Fourier [29] or hypothesis [30]) or applications (e.g., data
privacy [31] or matrix norm estimation [32]).
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