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Abstract

Many important datasets contain samples that are missing one or more feature
values. Maintaining the interpretability of machine learning models in the pres-
ence of such missing data is challenging. Singly or multiply imputing missing
values complicates the model’s mapping from features to labels. On the other
hand, reasoning on indicator variables that represent missingness introduces a
potentially large number of additional terms, sacrificing sparsity. We solve these
problems with M-GAM, a sparse, generalized, additive modeling approach that
incorporates missingness indicators and their interaction terms while maintaining
sparsity through ℓ0 regularization. We show that M-GAM provides similar or
superior accuracy to prior methods while significantly improving sparsity relative
to either imputation or naı̈ve inclusion of indicator variables.

1 Introduction

Interpretability is essential for a wide range of machine learning applications Rudin et al. (2022).
Missing data pose a challenge to interpretability, because many simple models (e.g., linear models)
are not well-defined when data are missing. This raises the question: how can interpretability be
maintained for datasets with missing values?

We introduce an interpretable model class, M-GAM, that extends Generalized Additive Models
(GAMs) to handle missing data. GAMs take the form of a linear combination of univariate component
functions, with one function corresponding to each feature; this univariate nature is the core reason for
their interpretability (Rudin et al., 2022). We introduce two sets of boolean variables for each feature.
The first consists of missingness indicators that identify which features have missing values. The
second consists of missingness adjustment terms that adjust the shape curves for other features for
each missing features in a sample. This maintains our ability to view a GAM as a sum of univariate
shape functions even when modeling interactions with missing data. As such, an M-GAM is much
simpler to interpret than a GAM built on imputed data, since it avoids creating multivariate features
as happens when imputing features from multiple others. This is illustrated in Figure 1.

∗These authors contributed equally to this work.
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Figure 1: A comparison of how GAMs that use underlying imputation (middle row) and M-GAMs
(bottom row) behave when a feature is missing. Top: When no data are missing, the overall output
logit for both models is the sum of three univariate shape functions. Middle: When X3 is missing, it
is imputed as X3 = X1+2X2, producing a 3D shape function that is difficult to understand. Bottom:
M-GAM uses simple adjustments to existing univariate shape curves when X3 is missing (using the
green curves instead of the light blue ones), making its reasoning process simple to follow. If the
data were more than 3 dimensional, we would not be able to visualize the model with imputation, but
M-GAM would still be easily visualized.

M-GAMs explicitly encourage sparsity. This reduces overfitting, which has been identified as a
concern in prior work using missingness indicators (Van Ness et al., 2023), since realistic data may
produce an overwhelming number of missingness indicators. Unlike prior methods that leverage
missingness indicators, we use ℓ0 regularization (Liu et al., 2022; Dedieu et al., 2021; Hazimeh &
Mazumder, 2020; Hazimeh et al., 2023), which directly optimizes for sparser, more interpretable
models. Our ability to create sparse models allows us to include not only simple missingness
indicators but also combinations of missingness indicator variables with M-GAM’s missingness
adjustment terms, without overfitting. Figure 2 illustrates an M-GAM fit on real data.

With this modeling framework, we make the following contributions: (1) We introduce M-GAM, a
form of sparse generalized additive model that incorporates missingness directly into its reasoning.
(2) We show that M-GAM provides substantial performance benefits relative to impute-then-predict
models when synthetic missing-at-random (MAR) missingness is added to real datasets, while
maintaining performance in real world settings with only naturally occurring missingness. (3) We
show that M-GAM substantially reduces runtime relative to impute-then-predict methods built on
multiple imputation while producing sparse, interpretable models.

2 Related Work

Missing data is a well studied problem in statistics. Traditionally, mechanisms by which data can be
missing are organized into three categories: missing completely at random (MCAR), where missing-
ness is independent of the value of all covariates; missing at random (MAR), where missingness in a
variable X1 is conditionally independent of the value of X1 given all other variables; and missing not
at random (MNAR), where missingness may depend on any variable (Little & Rubin, 2019).

For supervised learning, there are two common approaches to dealing with missing data: impute-
then-predict, in which a standard machine learning model is fit on top of imputed data and used for
prediction, and incorporating missing data handling directly in the predictive model.

A broad body of work studies imputation, particularly in the MAR setting – for a more thorough
review, see Shadbahr et al. (2023). Imputation methods can broadly be sorted into single imputation
methods (see Van Buuren, 2018, for a review of such methods), where each missing value is
imputed once, and multiple imputation (Rubin, 1988; Van Buuren & Oudshoorn, 1999; Schafer &
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Figure 2: A generalized additive model (GAM) for the Explainable ML Challenge data from FICO
et al. (2018) with missingness incorporated. This model handles missingness interpretably by
explicitly providing alternative shape functions when a variable is missing. For example, in this
model the shape function for variable 2 is adjusted when variable 3 is missing, and the shape function
for variable 3 is removed. This model achieves comparable performance to convoluted black box
approaches (such as random forests and/or MICE), but provides global interpretability (the entire
model can easily be inspected) and local interpretability (the shape functions applied for a given
sample can be easily visualized). An expanded version of this figure with variable names can be found
in Appendix Figure 16. Shape functions in the right section are shared across all missing variable
combinations. The type of missingness is indicated in parentheses next to the missing variable.
Section F visualizes additional M-GAMs.

Graham, 2002; Stekhoven & Bühlmann, 2012; Mattei & Frellsen, 2019), where many alternative
imputations are provided for each missing value. Multiple imputation is convenient because it
integrates uncertainty into its imputations by providing a range of alternatives (Van Buuren, 2018).

Recent approaches directly incorporate missing data in the predictive model. Le Morvan et al. (2020)
showed that, even when the target of prediction is a linear function, in the presence of missing data, the
optimal model need not be linear in the original features. Rather, their optimal model was linear in the
observed data and interactions between indicators for missing data and the observed data. Van Ness
et al. (2023) showed that when missingness contains information about an outcome, linear models
that directly include missingness indicators outperform models excluding this information. This
inclusion of missingness indicators is especially recommended in the practical setting of predictive
modeling, rather than the setting of statistical inference where MCAR, MAR and MNAR concepts
are more commonly used (Sperrin et al., 2020).

There are also a wide variety of ad-hoc methods for handling missing data in tree-based models
(Kapelner & Bleich, 2015; Twala et al., 2008; Beaulac & Rosenthal, 2020; Therneau et al., 1997)
and boosting models (Wang & Feng, 2010; Chen & Guestrin, 2016) that involve prediction without
explicit imputation. Beaulac & Rosenthal (2020) learn decision trees which avoid splitting on missing
data when missingness follows a deterministic structure based on other known features. This sidesteps
any need to query features when data is missing, but does not generalize to settings with less structured
missingness. More generally, tree-based models can learn a branch direction for each split to use
when the queried feature is unknown. This effectively imputes the response to the query, but keeps
the model itself simple. This is the method used in XGBoost (Chen & Guestrin, 2016) and SKLearn’s
decision tree classifier (Pedregosa et al., 2011). Twala et al. (2008) and Kapelner & Bleich (2015)
additionally incorporate the option to split on missingness itself, effectively encoding missingness as
a value. Ding & Simonoff (2010) provides empirical support for incorporating this option to treat
missingness as a value. We compare to XGBoost and SKLearn in our experimental section, finding
that M-GAM better balances interpretability and performance, even when we allow missingness
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indicator splits like in Twala et al. (2008); Kapelner & Bleich (2015); Ding & Simonoff (2010); Wang
& Feng (2010). Most similarly to our own approach, Therneau et al. (1997) and Breiman (2017)
discuss an alternative approach of surrogate splits: when a feature that is split on is missing, a set
of other splits is used in place of the missing feature to evaluate the split. This practice of adjusting
which features are used when one feature is missing bears some similarities to our use of missingness
interaction splits that adjust the shape functions for some features when other features are missing,
though these surrogate splits do not optimize for sparsity like M-GAM, and underperform more
standard multiple imputation approaches Valdiviezo & Van Aelst (2015); Feelders (1999). Further
work explores the idea of developing distinct models for use under different cases of missing features
(Fletcher Mercaldo & Blume, 2020; Stempfle et al., 2023) or developing additive logical models with
disjunctions, such that reliance on imputed values is low Stempfle & Johansson (2024).

It is critical to note that, for a dataset with d features, adding indicators for missing data results in 2d
features, and adding first order interactions between features and missingness results in d(d− 1)+2d
features. As such, without careful regularization, these models that explicitly handle missingness are
complex and uninterpretable. This poses a challenge for their application in high stakes domains such
as justice and medicine, where there have been calls to enshrine interpretability as a requirement for
the use of machine learning methods (US Food and Drug Administration, 2021; European Commision,
2021). In contrast, M-GAM provides sparse, transparent models that handle missingness indicators
and interactions by extending sparse generalized additive models (Liu et al., 2022). M-GAM provides
an expressive model class for handling missingness while controlling the exploding number of
missingness interaction terms through ℓ0 regularization.

3 Methodology

We denote a dataset of n samples by D = (X,y) = {(xi, yi)}ni=1, where xi ∈ (R ∪ {NA})d is a
d-dimensional vector of features, NA denotes a missing entry, and yi ∈ {0, 1} is our target label.
We use xi,j to denote the j-th feature of the i-th sample. We use bold capital letters (X) to denote
matrices, bold lowercase letters to denote vectors (xi), capital letters to denote random variables (X),
and lowercase letters to represent scalars (xi,j). ε denotes noise; any other Greek characters denote
model parameters. We encode all binary comparisons to the value NA as 0. That is, we follow the
convention that 1[NA≤a] = 0 for any value a ∈ R, where 1[·] denotes the indicator function.

Note that, in practice, data are often missing for distinct yet identifiable reasons; for example, a
measurement for one sample may be missing because it was never taken, while another may be
missing because a researcher spilled coffee on the notes containing the data. As such, we explicitly
consider distinct reasons for missing data. For a dataset with c ∈ N potential reasons for data to
be missing, define the mapping mcat : R ∪ {NA} → {0, 1, . . . , c} to map from an entry of X to a
natural number indicating the reason that entry is missing (0 if the entry is not missing).

With notation established, we begin with a motivational proposition. Proposition 3.1 states that even
if we can perfectly impute missing values, we may find greater predictive power by using missingness
itself as a feature rather than by imputing missing values.

Proposition 3.1. Let I : (R ∪ NA)d → Rd be an oracle imputation function that replaces all
missing values in a vector with the correct non-missing entry. For a random variable X ∈ Rd, let
f1(X) := 1[E[Y |I(X)]>0.5] be the Bayes’ optimal model using perfectly imputed data and f2(X) :=
1[E[Y |X]>0.5] be the Bayes optimal model using missingness as a value. There exist data generating
processes for X and Y where P (Y = f1(X)) < P (Y = f2(X)).

Section A of the appendix provides a proof by construction for Proposition 3.1. The key insight
behind Proposition 3.1 is that, when missingness is dependent on the label Y, missingness itself can
be a powerful predictor of the label (this setting is called informative missingness in Van Ness et al.,
2023). In particular, we can gain information about our label that is not available in other covariates
(e.g., information from ε1).

Proposition 3.1 may appear to conflict with Theorem 3.1 of Le Morvan et al. (2021), which states
that a Bayes optimal model may be produced using impute-then-predict with almost any imputation
model. This theorem hinges on the idea that, for most imputations, it is still possible to distinguish
imputed data entries from non-missing entries. This is not the case for perfect imputation, which
yields Corollary 3.2.
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Corollary 3.2. Let R(f,X,y) denote the risk of a model f for data X,y, and R∗ the optimal risk.
Let I : (R ∪ NA)d → Rd denote the oracle imputation function of Proposition 3.1. Under perfect
imputation, it is possible for there to be no Bayes optimal model built on imputed data. That is,

∃(X,y) [∄f : R(f ◦ I,X,y) = R∗] .

Corollary 3.2 states that perfectly imputing missing data can reduce the best possible performance of
a predictive model. This has substantial implications for how imputation is understood for prediction:
if perfect imputation is achieved, then impute-then-predict models sacrifice expressiveness. If
imputation is optimized to maintain the downstream performance of impute-then-predict models, the
imputed data loses some of its meaning since it is no longer our “best guess” of the missing data’s
value, as we need to deliberately avoid perfect imputation to guarantee that we maintain performance.

Motivated by Proposition 3.1 and Corollary 3.2, we are interested in constructing predictive models
that explicitly use missingness as a value in their prediction rather than imputing first. More generally,
we may also consider using the indicator for each type of missing data directly in a prediction.
Generalized additive models (GAMs) provide a natural choice for such a model.

A GAM g : Rd → R consists of a bias term β0 ∈ R and d shape functions f1, . . . , fd : R → R
parameterized by vectors β1, . . . , βd. Given a sample xi, a GAM forms a prediction as:

g(xi;β) = β0 +

d∑
j=1

fj(xi,j ;βj). (1)

In practice, it is common for each shape function to be a linear combination of different thresholds on
its input variable, i.e., fj(xi,j ;βj) =

∑len(tj)
k=1 βj,k1[xi,j≤tj,k], where len(tj) ∈ N is the number of

thresholds applied to variable j, each tj,k ∈ R is a threshold value, and each βj,k ∈ R is a learned
weight.

These functions provide a convenient framework for considering missing values. In particular, we can
form a new shape function hj(xi,j ;βj , β

missing
j ) that explicitly handles missing data by introducing

additional “missingness indicator” terms, such that our shape functions take the form

hj(xi,j ;βj , β
miss
j ) = fj(xi,j ;βj) +

c∑
m=1

βmiss
j,m1[mcat(xi,j)=m],

where βmiss
j ∈ Rc is an additional vector of parameters. Recall that there are c distinct reasons for

missingness, with mcat(xi,j) = 0 if xi,j is not missing and mcat(xi,j) = m if xi,j is missing for
the m-th reason.

We may further extend this augmentation to include interaction terms between missingness indicators
and standard threshold functions. The “missingness interaction” function between feature j and
feature j′ takes the form

hj,j′(xi,j , xi,j′ ;αj,j′) =

c∑
m=1

len(tj)∑
k=1

αj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]
,

where each αj,j′,k,m ∈ R is a learned weight. We thus define a missingness-GAM (M-GAM) gmiss
as follows:
Definition 3.3. Given parameters α, βmiss, and β, an M-GAM is defined as

gmiss(xi;β, β
miss, α) = β0 +

d∑
j=1

hj(xi,j ;βj , β
miss
j ) +

d∑
j=1

d∑
j′=1

hj,j′(xi,j , xi,j′ ;αj,j′), (2)

where

hj,j′(xi,j , xi,j′ ;αj,j′) =

c∑
m=1

len(tj)∑
k=1

αj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]

and

hj(xi,j ;βj , β
miss
j ) = fj(xi,j ;βj) +

c∑
m=1

βmiss
j,m1[mcat(xi,j)=m].
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These augmentation terms are quite powerful. Theorem 3.4 shows that, for any impute-then-predict
approach using an affine imputer and a GAM predictor, we can construct an M-GAM that recovers
the expected classification score over imputations.
Theorem 3.4. Consider any GAM g : Rd → R, parameterized by β, with shape functions defined as
linear combinations over boolean features (either thresholds fj(xi,j ;βj) =

∑len(tj)
k=1 βj,k1[xi,j≤tj,k]

or a feature that was originally boolean). Suppose some observations are missing boolean feature b,
and that this feature is imputed such that the modeled probability of xi,b being true, P̂(xi,b = 1|xi,−b)
(where xi,−b refers to all covariates except b) is an affine function h : xi,−b → [0, 1]. For any
parameterization β of a GAM g, let E[g(xi;β)] := P̂(xi,b = 1|xi,−b)g(x

(b+)
i ;β) + P̂(xi,b =

0|xi,−b)g(x
(b−)
i ;β), where x(b+)

i denotes xi with xi,b = 1 and x
(b−)
i denotes xi with xi,b = 0. Then,

there exists a model in the model class M-GAM (which does not use imputations), that recovers this
score E[g(xi;β)] for all i.

More broadly, Theorem 3.4 suggests that M-GAM is able to express scores comparable to those of
any impute-then-predict GAM, if the imputation probabilities can be approximated by an additive
model. One advantage is that M-GAM can be optimized directly for classification performance
– rather than first optimizing an imputation step to recover missing values, and then optimizing
a model on the imputed data. Together, Proposition 3.1 and Theorem 3.4 show that M-GAM is
comparable to impute-then-predict in a broad range of settings and that M-GAM is strictly better
than impute-then-predict in some settings. Appendix C contains the proof for Theorem 3.4.

3.1 Sparsity

Building a GAM with missingness indicators and interaction terms provides superior expressive
power but causes an explosion of the number of covariates the model must consider. The GAM in
Equation (1) consists of

∑d
j len(tj)+1 coefficients, while the M-GAM in Definition (3.3) consists of

c
∑d

j

(∑
j′ ̸=j len(tj′)

)
+
∑d

j (len(tj))+cd+1 coefficients (or, d
∑d

j (len(tj))+d+1 when c = 1).
This increases the risk of overfitting and may lead to complex, uninterpretable models. The same
problem arises when adding similar interaction terms to a linear model, as diagnosed by Van Ness
et al. (2023), who propose a hypothesis testing style framework for variable selection. Notably, this
framework does not explicitly encourage sparsity – it only discourages overfitting.

Rather than applying a pre-processing step for variable selection, we use ℓ0 regularization, which we
can optimize directly alongside accuracy. This encourages the model coefficients to be 0, resulting
in sparse models despite the potentially large number of input features. We optimize classification
performance using the exponential loss, as it yields faster convergence rates than logistic loss during
optimization (Liu et al., 2022). Thus, our goal is to solve the following optimization problem:

min
β,βmiss,α

(
1

n

n∑
i=1

e−yigmiss(xi;β,β
miss,α) + λ0(∥β∥0 + ∥βmiss∥0 + ∥α∥0)

)
, (3)

where λ0 is a hyperparameter that determines the strength of the ℓ0 regularization.

To simplify (3) so it can be solved directly, we construct a new set of features X̄ ∈
{0, 1}c

∑d
j (

∑
j′ ̸=j len(tj′ ))+

∑d
j (len(tj))+cd+1 consisting of the indicator for each threshold, missing

value, and interaction term for each feature in the original dataset. For a large coefficient vector
γ ∈ Rc

∑d
j (

∑
j′ ̸=j len(tj′ ))+

∑d
j (len(tj))+cd+1 and bias coefficient γ0 ∈ R, our optimization problem

becomes:

min
γ

1

n

n∑
i=1

e−yi(γ
T x̄i+γ0) + λ0∥γ∥0, (4)

which is solved using the optimization framework of Liu et al. (2022). This allows us to quickly
produce sparse M-GAMs, overcoming the large number of input values.

4 Experiments

We now evaluate the performance, runtime, and sparsity of M-GAM in comparison to other methods.
To evaluate M-GAM in a realistic setting, we require datasets with some missing entries. We primarily
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consider four datasets: the Explainable Machine Learning Challenge dataset (FICO et al., 2018)
(referred to as FICO), a breast cancer dataset introduced by Razavi et al. (2018) (referred to as
Breast Cancer), the MIMIC-III critical care dataset (Johnson et al., 2016) (referred to as MIMIC),
and a dataset concerning the prediction of pharyngitis introduced by Miyagi (2023) (referred to as
Pharyngitis). FICO contains 10,459 individuals, measuring 23 predictor variables used to predict
whether each individual will repay a line of credit within 2 years. FICO contains three distinct
encodings for missingness: -7, indicating no information of a given type is available, -8, indicating
there was no usable information, and -9, indicating that a credit bureau report was not investigated
or not found. Breast Cancer measures 27 features for 1,756 patients, MIMIC measures 49 features
for 30,238 patients, and Pharyngitis measures 19 features for 676 patients. We use AUC, rather
than accuracy, when evaluating model performance for Breast Cancer and MIMIC because these
two datasets are heavily imbalanced. Breast Cancer, MIMIC, and Pharyngitis contain only one
missingness encoding. Two additional datasets are studied in Section E of the appendix.

Each dataset contains missing entries. Because these are real datasets, we do not know the exact
mechanism(s) (i.e., MCAR, MAR, or MNAR) by which data are missing. These datasets allow us to
evaluate M-GAM on data with (Section 4.1) and without (Section 4.4) added MAR missingness.

We then study the interpretability/accuracy tradeoff for M-GAM using sparsity versus accuracy plots
(Section 4.2) and evaluate the runtime of M-GAM (Section 4.3). We use multivariate imputation by
chained equations (MICE) (Van Buuren & Oudshoorn, 1999), MIWAE(Mattei & Frellsen, 2019), and
MissForest(Stekhoven & Bühlmann, 2012) as multiple imputation baselines.

We compare M-GAM to a variety of standard machine learning models used in an impute-then-predict
framework. We further compare to standard machine learning models used with both the missingness
augmentation described by Van Ness et al. (2023) and imputation. Section D.3 of the appendix
contains full experimental details.

4.1 M-GAM Provides Superior Performance Given Informative MAR Missingness

To demonstrate the added expressive capability of our model relative to impute-then-predict models,
we created versions of each dataset with added synthetic missingness. Missingness is added to an
arbitrary column of the data according to an MAR mechanism, where missingness is dependent on
the outcome Y and one other randomly chosen predictor variable. We encode this added missingness
as a new value distinct from the value(s) used to indicate missingness in the original dataset. A
conditional probability table for this synthetic missingness is provided in Appendix Section D.1.

This adjustment falls under the MAR setting where imputation is often suggested. Nevertheless,
as shown in Figure 3, M-GAM with interactions provides much greater accuracy than imputation,
because the missingness depends on the outcome. The gain in performance due to considering
interaction terms grows larger with increasing MAR missingness (from left to right).

Note that missingness depending on the outcome of interest is realistic. For example, individuals
who are unlikely to have a particular disease are unlikely to receive medical tests related to that
disease. One theory about why polls were wrong before the 2016 US presidential election was that
non-response bias was associated with less education and distrust in the media, both predictors of
votes for Donald Trump (Kurtzleben, 2016).

4.2 M-GAM Achieves High Performance While Maintaining Sparsity

The most important benefit of the missingness handling in M-GAM is that it enables simple, sparse
models. As such, we show the tradeoff between complexity and performance for M-GAM.

Figure 4 demonstrates the sparsity-accuracy trade-off for M-GAM relative to a GAM fit using Scikit
Learn’s logistic regression package (Pedregosa et al., 2011) over binarized features, trained on data
from 10 imputations using a multiple imputation method. We also contrast two different levels
of missing variable parameterization: the full set of indicators and interactions versus using just
indicators.

We quantify interpretability using the number of nonzero coefficients selected by M-GAM, since
a large number of non-zero coefficients leads to a dense, complicated mapping from the input
data to a prediction. Meanwhile, running impute-then-predict is not interpretable: the method
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Figure 3: Sparsity of M-GAM when synthetic MAR missingness is added to up to 25% (left column)
and 50% (right column) of entries in FICO (top row) and Breast Cancer (bottom row). We compare
to several alternatives for GAMs with missing data: ensembling 10 GAMs fit on multiple imputation
(for MIWAE, MICE, and MissForest), 0-value imputation (“GAM”), mean-value imputation (“GAM
w/ MVI”), and selective addition of missingness indicators (“SMIM”). The number of non-zero
coefficients for multiple imputation cannot be evaluated because the models depend on both the
GAM coefficients and the underlying imputation mechanisms, resulting in high dimensional shape
functions as in Figure 1. Error bars report standard error over 10 train-test splits.

requires ensembling many different GAMs, and the imputations themselves introduce complicated
relationships between the raw data and the classifications, similar to what was illustrated in Figure
1. We show that with fewer than 40 total coefficients (including all step functions for all variables),
M-GAM can achieve accuracy comparable to that of GAMs with multiple imputation. On FICO,
M-GAM – using just 20 non-zero coefficients – achieves superior accuracy to a variety of dense,
complicated alternatives.

4.3 M-GAM is Faster than Impute-then-Predict

We next turn to a runtime comparison between the impute-then-predict framework and M-GAM. For
impute-then-predict models, we first imputed 10 datasets and recorded the time required to do so.
We then fit a predictive model on each imputed training dataset and recorded the total time required.
We recorded the time required to fit an M-GAM with missingness indicators and an M-GAM with
missingness interactions for comparison. This was repeated for each of ten distinct train-test splits of
the original dataset.

Figure 5 shows the runtime of our approach relative to each impute-then-predict baseline, as well as
decision trees and random forests without imputation. M-GAM consistently produces models at least
an order of magnitude more quickly than impute-then-predict with any non-trivial imputation. While
decision trees without imputation tend to be produced faster than M-GAM, they tend to have lower
accuracy than M-GAM as discussed in the next section. We repeat this experiment for four distinct
subsamples of each dataset (1/4, 1/2, 3/4, and all of the data) to study how each method scales in the
number of samples in Appendix E.3.
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Test Performance vs Sparsity
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Figure 4: Test performance of three models at various levels of sparsity on the unaltered FICO and
Breast Cancer datasets, with the same baselines as in Figure 3
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Figure 5: Runtime of different methods on Breast Cancer, FICO, MIMIC, and Pharyngitis. For
each imputation method, we report the total time required to impute missing data and fit the best
performing impute-then-predict classifier for that dataset and imputation method. M-GAM (Ind) is
an M-GAM with indicators and M-GAM (Int) is an M-GAM with indicators and interaction terms.
Error bars report standard error of total runtime over 10 train-test splits.

4.4 M-GAM is as Accurate as Impute-then-Predict on Real Data

While M-GAM outperforms imputation on semi-synthetic data, there is a risk that this comes at
the cost of performance on real data. To evaluate whether this is the case, we used several multiple
imputation methods to impute 10 distinct datasets for each setting, then fit a variety of predictive
models on these datasets. We used cross validation to select hyperparameters separately for each
imputed training dataset and ensembled the resulting 10 models for each model class to produce a
single predictive model for each model class. We repeated this procedure for ten distinct train-test
splits for each dataset considered.

Figure 6 shows the test accuracy of each model. We find that, on real datasets, no alternative
method substantially outperforms M-GAM. This suggests that M-GAM does not harm predictive
performance on real datasets, while providing substantial benefits in interpretability (Section 4.2) and
superior power under informative missingness (Section 4.1).
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Figure 6: Box-and-whiskers plots comparing test performance of baseline models to M-GAM on
four datasets over ten train-test splits. All methods except M-GAMs, “DecisionTree No Imputation”,
and “RandomForest No Imputation” impute ten datasets using MICE then ensemble the models fit on
each dataset.

5 Conclusion

We introduced M-GAM, a framework for producing accurate, sparse GAMs in the presence of
missing data. We demonstrated that M-GAM achieves comparable accuracy to impute-then-predict
on real datasets and superior accuracy under informative synthetic missingness. M-GAM produces
models substantially more quickly than impute-then-predict models with multiple imputation, and
provides simple, transparent reasoning on missing data.

While the ℓ0 penalty in M-GAM encourages sparsity, it is limited in that the ℓ0 regularization is
applied uniformly across all coefficients. Consider the case when we are adding interaction terms to
handle missingness. We might encourage the model to rely on features it is already using to predict y,
rather than using new features. It may be more effective regularization – and more interpretable – to
have a reduced ℓ0 penalty for such cases. Future work should investigate applying distinct levels of
regularization to observed variables, missingness indicators, and missingness interactions when a
variable is already included in the model.

An important caveat to models that reason on missing features is that missingness can be especially
vulnerable to distribution shift, particularly in a medical domain (Sperrin et al., 2020; Groenwold,
2020). The interpretability enabled by M-GAM is crucial in allowing models to be closely monitored
and adjusted in the presence of potential distribution shift. Future work could more thoroughly
investigate potential distribution shift and ways to adjust a model which reasons on missing data.

On the whole, M-GAM quickly produces accurate, interpretable models, providing a new degree of
transparency to predictions in the presence of missing data. The code used for this work is available
at https://github.com/jdonnelly36/M-GAM.

Societal Impacts. M-GAM offers an interpretable way to deploy machine learning in high stakes
domains like medicine, even when data is missing. Modeling decisions for missing data risk
introducing or perpetuating unfairness Jeanselme et al. (2022). We view interpretability as a key tool
for addressing this.
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Figure 7: The case constructed to prove Proposition A.1. Model f1 takes as input variables in blue
circles, f2 takes as input variables in red circles, and dashed red circles indicate variables involved in
generating missingness in X1, denoted by M . Here, ϵ1 and ϵ2 are unmeasured noise. By using M as
an input, f2 can infer information about Y after noise from ϵ1 is considered.

A Proof of Proposition 3.1

First, recall Proposition 3.1:
Proposition A.1. Let I : Rd → Rd be an oracle imputation function that replaces all miss-
ing values in a vector with the correct non-missing entry. For a random variable X ∈ Rd,
let f1(X) := 1[E[Y |I(X)]>0.5] be the Bayes’ optimal model using perfectly imputed data and
f2(X) := 1[E[Y |X]>0.5] be the Bayes’ optimal model using missingness as a value. There exist
data generating processes for X and Y where P (Y = f1(X)) < P (Y = f2(X)).

Proof. We prove Proposition 3.1 by construction.

Let X1, X2 ∼ Bernoulli(p = 0.5) and Y := |X1X2 − ϵ1| where ϵ1 ∼ Bernoulli(p = k1) is
unobserved noise. Let M denote missingness in X1, where M := |Y − ϵ2| with ϵ2 ∼ Bernoulli(p =
k2) being unobserved noise. Let k2 < k1 < 0.5.

Consider two oracle models f1 and f2, defined as:
f1(X1, X2) := 1[E[Y |I(X)]≥0.5] = 1[E[Y |X1,X2]≥0.5] f2(M,X2) := 1[E[Y |X]≥0.5] = 1[E[Y |M,X2]≥0.5].

Intuitively, f1 perfectly imputes X1 when X1 is missing, then predicts Y using X1 and X2, while f2
predicts Y using M and X2.

We first evaluate the expected accuracy of the imputation model, i.e., P(f1(X1, X2) = Y ). Using the
law of total probability, we have:

P(f1(X1, X2) = Y ) =
∑
x1,x2

P(x1, x2)P(f1(x1, x2) = Y |x1, x2)

=
∑
x1,x2

P(x1)P(x2)P(f1(x1, x2) = Y |x1, x2) Since X1 ⊥ X2

= 0.25
∑
x1,x2

P(f1(x1, x2) = Y |x1, x2)

Noting that, when X1 = X2 = 1, we have Y = |1− ϵ1|, so P(Y = 1|X1 = 1, X2 = 1) = P(ϵ1 =
0) = 1 − k1. When at least one of X1 and X2 is 0, we have Y = |0 − ϵ1|, so P(Y = 1|X1X2 =
0) = P(ϵ1 = 1) = k1. Since f1 simply evaluates whether the expectation of Y given X1 and X2 is
greater than 0.5, if k1 < 0.5, we have f1(1, 1) = 1 and f1(0, 1) = f1(1, 0) = f1(0, 0) = 0. Thus,
the expected accuracy is:

P(f1(X1, X2) = Y ) = 0.25
∑
x1,x2

P(f1(x1, x2) = Y |x1, x2)

= 0.25
∑
x1,x2

P(ϵ1 = 0)

= P(ϵ1 = 0)

= 1− k1
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Similarly,

P(f2(m,x2) = Y ) =
∑
m,x2

P(m,x2)P(f2(m,x2) = Y |m,x2)

=
∑
m,x2

P(x)P(m|x2)P(f2(m,x2) = Y |m,x2)

= 0.5
(
P(m = 1|x2 = 1)P(f2(m,x2) = Y |m,x2) + P(m = 1|x2 = 0)P(f2(m,x2) = Y |m,x2)

+ P(m = 0|x = 1)P(f2(m,x2) = Y |m,x2) + P(m = 0|x2 = 0)P(f2(m,x2) = Y |m,x2)
)

We can compute each term in the conditional probability table P (M |X2) as follow:

P(m = 0|x2 = 0) =
∑
y

P(m = 0|x2 = 0, y)P(y|x2 = 0)

= (1− k2)(1− k1) + k2k1

P(m = 1|x2 = 0) =
∑
y

P(m = 1|x2 = 0, y)P(y|x2 = 0)

= k2(1− k1) + (1− k2)k1

P(m = 0|x2 = 1) =
∑
y

P(m = 0|x2 = 1, y)P(y|x2 = 1)

= k2(0.5k1 + 0.5(1− k1)) + (1− k2)(0.5(1− k1) + 0.5k1)

= 0.5

P(m = 1|x2 = 1) =
∑
y

P(m = 1|x2 = 1, y)P(y|x2 = 1)

= (1− k2)(0.5k1 + 0.5(1− k1)) + k2(0.5(1− k1) + 0.5k1)

= 0.5

Plugging these values in, we have

P(f2(M,X2) = Y ) = 0.5

(
(1− k1 − k2 + 2k1k2)P(f2(m,x2) = Y |m = 0, x2 = 0)

+ (k2 + k1 − 2k1k2)P(f2(m,x2) = Y |m = 1, x2 = 0)

+ 0.5P(f2(m,x2) = Y |m = 0, x2 = 1)

+ 0.5P(f2(m,x2) = Y |m = 1, x2 = 1)

)
≥ 0.5

(
(1− k1 − k2 + 2k1k2)P(f2(m,x2) = Y |m = 0)

+ (k2 + k1 − 2k1k2)P(f2(m,x2) = Y |m = 1)

+ 0.5P(f2(m,x2) = Y |m = 0)

+ 0.5P(f2(m,x2) = Y |m = 1)

)
= 0.5(1− k1 − k2 + 2k1k2 + k2 + k1 − 2k1k2 + 0.5 + 0.5)(1− k2)

= 1−k2

Thus, we have P(f1(X1, X2) = Y ) = 1− k1 and P(f2(M,X2) = Y ) ≥ 1− k2. Since k2 < k1, we
have

k2 < k1
1− k2 > 1− k1

P(f2(M,X2) = Y ) > P(f1(X1, X2) = Y ),

as required, where the last step follows because P(f1(X1, X2) = Y ) ≥ 1− k2.
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A.1 Alternative Proof

While the above offers a proof of Proposition 3.1, one might wonder whether the proposition holds
outside of the case we constructed. In the previous proof, we aimed for a case that resulted in an easy
to follow proof. Here, we prove Proposition 3.1 by a second construction, to show that imputation
can be worse than missingness-as-a-value even if there is more noise in the informative missingness
than in the data itself, and even when missingness is relatively rare.

Proof. Consider a case similar to that used for the proof in proposition 3.1, where we add an additional
variable X3 and have the noise for the missingness be higher than any other noise.

Y = |X1X2 − ϵ1|, ϵ1 ∼ Bern(
1

12
)

M =

{|Y − ϵ2|, ϵ2 ∼ Bern( 14 ), with probability 1
2

0, with probability 1
2

X3 = |Y − ϵ3|, ϵ3 ∼ Bern(
1

11
)

We also adjust the probabilities for X1 and X2 being true so that this is a balanced classification
problem: X1, X2 ∼ Bern( 1√

2
), so X1X2 ∼ Bern( 12 ),

Note that we now also have missingness at well under 50% of the data (missingness happens a quarter
of the time).

The bayes optimal model with perfect imputation of X1, and no access to M , is still just to predict
in accordance with X1X2 for P(X1X2 = Y ) = 11

12 . When X1X2 = X3, all information available
suggests X1X2 is correct. When X1X2 ̸= X3, we still have the bayes optimal prediction aligning
with X1X2: P(Y = 1|X1X2 = 1, X3 = 0) = 11

21 > 0.5 and P(Y = 0|X1X2 = 0, X3 = 1) =
11
21 > 0.5.

If we instead only have access to X1 when it is not missing, but we also know when X1 is missing
(i.e. we know M ), then the following approach will perform better than the above model:

Y =

{
X3, if M = 1

X1X2X3, if M = 0

When M = 1, we make additional errors relative to the previous approach at rate

P(M = 1)(P((X3) ̸= Y )− P((X1X2) ̸= Y ))

=
1

4
(
1

11
− 1

12
)

=
1

528

When M = 0, we improve our classifier’s accuracy by:
P(Imputation model is wrong, model with missingness is right and M = 0)

− P(Imputation model is right, model with missingness is wrong and M = 0)

=P(X1X2 ̸= Y = X1X2X3,M = 0)− P(X1X2 = Y ̸= X1X2X3,M = 0)

=P(X1X2 = 1, X3 = 0, Y = 0,M = 0)− P(X1X2 = 1, X3 = 0, Y = 1,M = 0)

=P(X1X2 = 1)P(Y = 0|X1X2 = 1)P(X3 = 0|Y = 0)P(M = 0|Y = 0)

− P(X1X2 = 1)P(Y = 1|X1X2 = 1)P(X3 = 0|Y = 1)P(M = 0|Y = 1)

=
1

2

1

12

10

11

7

8
− 1

2

11

12

1

11

5

8

=
15

2112

>
1

528
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That is, the proportion of cases the classifier that uses missingness will gain is greater than the
proportion it will lose relative to the imputation approach. So, the model that uses missingness
outperforms the imputation model.
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B Proof of Corollary 3.2

Corollary B.1. Let R(f,X,Y) denote the risk of a model f for data X,Y, and R∗ the optimal risk.
Let I : (R ∪ NA)d → Rd denote the oracle imputation function of Proposition 3.1. Under perfect
imputation, it is possible for there to be no Bayes optimal model built on imputed data. That is,

∃(X,Y) [∄f : R(f ◦ I,X,Y) = R∗] .

Proof. Recall that, in Proposition A.1, we constructed a distribution of X,Y such that

R(f1, X, Y ) > R(f2, X, Y )

where

f1 = argmin
f

R(f, I(X), Y )

f2 = argmin
f

R(f,X, Y )

By definition of R∗, we have that R(f2, X, Y ) ≥ R∗, immediately yielding

R(f1, X, Y ) > R(f2, X, Y ) ≥ R∗.
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C Proof of Theorem 3.4

Theorem 3.4 states:

Theorem C.1. Consider any GAM g : Rd → R, parameterized by β, with shape functions defined as
linear combinations over boolean features (either thresholds fj(xi,j ;βj) =

∑len(tj)
k=1 βj,k1[xi,j≤tj,k]

or a feature that was originally boolean). Suppose some observations are missing boolean feature
b, and that this feature is imputed such that the modeled probability of xi,b being true, P̂(xi,b =
1|xi,−b) (where xi,−b refers to all covariates except b) is an affine function h : xi,−b → [0, 1].
For any parameterization β of g, let E[g(xi;β)] := P̂(xi,b = 1|xi,−b)g(x

(b+)
i ;β) + P̂(xi,b =

0|xi,−b)g(x
(b−)
i ;β), where x(b+)

i denotes xi with xi,b = 1 and x
(b−)
i denotes xi with xi,b = 0. Then,

there exists a model in the model class M-GAM (which does not use imputations), that recovers this
score E[g(xi;β)] for all i.

Proof. 2

C.1 Model Family Definition for E[g(xi;β)]

The general GAM, as per equation (1), is g(xi;β) = β0 +
∑d

j=1 fj(xi,j ;βj), or with the shape
functions incorporated,

g(xi;β) = β0 +

d∑
j=1

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]

where 1[xi,j≤tj,k] values corresponding to a missing feature j are replaced with some imputed value
based on a GAM. To highlight the sometimes-missing boolean feature b, we may rewrite this as

g(xi;β) = β0 +

∑
j ̸=b

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]βb1[xi,b]

+ βb1[xi,b]

For examples xi with feature b missing, the value 1[xi,b] must be imputed prior to being used. Under
the setting of this proof, the feature b is imputed by modeling the probability as an affine function
of an additive score. Without loss of generality, that means there exists some additive model with
score: s(xi,−b) = C0 +

∑
j ̸=b

∑len(tj)
k=1 Cj,k1[xi,j≤tj,k] for some set of real-valued coefficients C,

with corresponding probability of xi,b = 1 given, WLOG, by:

P̂(xi,b = 1|xi,−b) = a
s(xi,−b)−mini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))
+ d

where a > 0, d > 0, a+ d = 1. Note that we can set C0 = 0 without loss of generality because it
will appear in both terms in the numerator and both terms in the denominator, having no impact on
the overall probability.

The values maxi′(s(xi′,−b)) and mini′(s(xi′,−b)) denote, respectively, the maximum and minimum
of the score function over any possible xi.

If we take the expectation of the score function over the probability distribution learned by the
imputing additive model, we get:

g(xi;β) = β0 +

∑
j′ ̸=b

len(tj)∑
k=1

βj′,k1[xi,j′≤tj′,k]

+ βb1[xi,b] + βb1[mcat(xi,b )̸=0]P̂(xi,b = 1|xi,−b)

2Note that it is sufficient to show that this this theorem holds for a single missingness reason, m = 1.
Showing that this theorem holds for M-GAM in the less expressive case where there is only a single reason for
missingness, also shows that the theorem holds when there is added expressiveness to the model class. As such,
we do not include notation for distinct missingness reasons in the proof.
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(Recalling that 1[xi,b] is defined to always be false when xi,b is missing, and 1mcat(xi,b )̸=0 is true iff
xi,b is missing.)

We can put the βb1mcat(xi,b) ̸=0 term back in the summation over thresholds and have:

g(xi;β) = β0 +

 d∑
j=1

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]

+ βb1[mcat(xi,b) ̸=0]P̂(xi,b = 1|xi,−b)

Simplifying further:

g(xi;β) = β0 +

 d∑
j=1

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]

+ βb1[mcat(xi,b )̸=0]

(
a

s(x−b)−mini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))
+ d

)

g(xi;β) = β0 +

 d∑
j=1

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]

+ βb1[mcat(xi,b )̸=0]a
s(x−b)−mini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

+ βb1[mcat(xi,b )̸=0]d

g(xi;β) = β0 +

 d∑
j=1

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]

+ βba
s(x−b)

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

− βb1[mcat(xi,b )̸=0]a
mini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))
+ βb1[mcat(xi,b )̸=0]d

g(xi;β) = β0 +

d∑
j=1

len(tj)∑
k=1

βj,k1[xi,j≤tj,k]

+ s(x−b)1[mcat(xi,b )̸=0]
βba

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

+ 1[mcat(xi,b )̸=0]

(
βbd−

βbamini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

)

We can return to our shape function notation and write:

g(xi;β) = β0 +

d∑
j=1

fj(xi,j ;βj)

+ 1[mcat(xi,b )̸=0]s(x−b)
βba

maxi′(s(xi′,−b))−mini′(s(xi′,−b))
(5)

+ 1[mcat(xi,b )̸=0]

(
βbd−

βbamini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

)

C.2 M-GAM Model Family Definition

Recall from section 3, Equation (3.3), that the form of M-GAM is:

gmiss(xi; β̄, β̄
miss, ᾱ) = β̄0 +

d∑
j=1

hj(xi,j ; β̄j , β̄
miss
j ) +

d∑
j=1

d∑
j′=1

hj,j′(xi,j , xi,j′ ; ᾱj,j′).

Filling in the shape functions, we have:
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gmiss(xi; β̄, β̄
miss, ᾱ) = β̄0 +

d∑
j=1

(
fj(xj , β̄j) +

c∑
m=1

β̄miss
j,m1[mcat(xi,j)=m]

)

+

d∑
j=1

d∑
j′=1

c∑
m=1

len(tj)∑
k=1

ᾱj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]
.

(6)

C.3 Show that any linear imputation model has an equivalent representation as a missingness
term model

To show this, it is sufficient to show that for any coefficients of a linear imputation model, there exists
a parameterization of M-GAM such that Equation (6) is equivalent to Equation (5).

Start from Equation (6):

gmiss(xi; β̄, β̄
miss, ᾱ) = β̄0 +

d∑
j=1

(
fj(xj , β̄j) +

c∑
m=1

β̄miss
j,m1[mcat(xi,j)=m]

)

+

d∑
j=1

d∑
j′=1

c∑
m=1

len(tj)∑
k=1

ᾱj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]
.

Rearranging:

gmiss(xi; β̄, β̄
miss, ᾱ) = β̄0 +

d∑
j=1

fj(xj , β̄j)

+

d∑
j=1

c∑
m=1

β̄miss
j,m1[mcat(xi,j)=m]

+

d∑
j=1

d∑
j′=1

c∑
m=1

len(tj)∑
k=1

ᾱj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]
.

We can pick the non-missing coefficients β̄ for Equation (6) to match those from Equation (5), leaving
β̄0 +

∑d
j=1 fj(xj , β̄j) = β0 +

∑d
j=1 fj(xj , βj).

Now pick β̄miss
j,m = 0 except when j = b, and β̄miss

b,1 =
(
βbd− βbamini′ (s(xi′,−b))

maxi′ (s(xi′,−b))−mini′ (s(xi′,−b))

)
. Then

we have:

gmiss(xi; β̄, β̄
miss, α) = β0 +

d∑
j=1

fj(xj , βj)

+ 1[mcat(xi,j)=m]

(
βbd−

βbamini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

)

+

d∑
j=1

d∑
j′=1

c∑
m=1

len(tj)∑
k=1

ᾱj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]
.
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gmiss(xi; β̄, β̄
miss, ᾱ) = β0 +

d∑
j=1

fj(xj , βj)

+

d∑
j=1

d∑
j′=1

c∑
m=1

len(tj)∑
k=1

ᾱj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]
.

+ 1[mcat(xi,j)=m]

(
βbd−

βbamini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

)

Now, parameterize
∑d

j′=1

∑c
m=1

∑len(tj)
k=1 ᾱb,j′,k,m1[mcat(xi,b)=m and xi,j′≤tj′,k]

to match
s(x−b)

βba
maxi′ (s(xi′,−b))−mini′ (s(xi′,−b))

by, for each j′, setting

ᾱb,j′,k,1 = Cj′,k
βba

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

Set ᾱj,j′,k,m = 0 for all j ̸= b. Then we have:

gmiss(xi;β, β
miss, α) = β0 +

d∑
j=1

fj(xj , βj)

+ 1[mcat(xi,j)=m]

(
βbd−

βbamini′(s(xi′,−b))

maxi′(s(xi′,−b))−mini′(s(xi′,−b))

)
+ 1[mcat(xi,b)=1]s(x−b)

βba

maxi′(s(xi′,−b))−mini′(s(xi′,−b))
.

Now, as required, we have shown that Equations 6 and 5 are equivalent.
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D Experimental Details

D.1 Conditional Probability Table for Added MAR Missingness

In Section 4.1, we evaluated the predictive power of M-GAM when additional synthetic missingness
was added to each dataset we studied. Let X1 denote the variable missingness is being added to, X2

another column from the dataset used to determine whether to add missingness, and Y our target
outcome. Let M denote whether synthetic missingness is added to X1, and let QX2

(p) denote the
p-th quantile of X2. For a target missing rate r, Table D.1 shows the conditional probability of X1

being missing given each value of Y and X2. Note that missingness does not depend on X1, making
this an MAR setting.

Y = 0 Y = 1
X2 ≥ QX2

(0.6) P (M = 1|Y,X2) = 0 P (M = 1|Y,X2) = r
X2 < QX2(0.6) P (M = 1|Y,X2) = r P (M = 1|Y,X2) = 0

Table 1: The conditional probability table obeyed when adding synthetic missingness.

D.2 Data Processing

We follow the structure from (Shadbahr et al., 2023) for running our imputation baselines and
selecting train/test splits. To collect the data for MIMIC, we used the process in (Johnson et al., 2018),
and additional steps by (Zhu et al., 2023) to convert the data to a single tabular dataset.

D.3 Detailed Experimental Setup

For every GAM we fit (M-GAM, FastSparse, and non-L0 GAMs), we created an indicator for each
of 8 quantiles (the 0.125 quantile, the 0.25 quantile, and so on). On FICO, we include missingness
indicator and interaction terms as appropriate for four encodings of missingness: the three types in
the original dataset (no information, no usable information, and no report available) and an added
indicator which is true for any type of missingness. All other datasets contain only one type of
missingness.

We fit all M-GAMs using FastSparse (Liu et al., 2022), and in all cases set the “max support size”
variable to 100. This prevents the algorithm from exploring models with greater than 100 non-zero
coefficients. For all experiments that did not report complete sparsity versus accuracy curves, we used
5-fold cross validation to select the value for the ℓ0 sparsity penalty. We searched over the following
set of values for λ for each GAM: 20, 10, 5, 2, 1, 0.5, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. We
optimized for AUC on Breast Cancer and accuracy on all other datasets when using cross validation.
We fit all non-sparse GAM’s using SKLearn’s implementation of logistic regression over binned data.

We evaluated the performance of a variety of classifiers on all datasets in Section 4.4. For each
datasets, we used MICE to impute 10 distinct datasets, and fit a variety of predictive models (a
logistic regression, an AdaBoost model (Freund & Schapire, 1997), a random forest (Breiman, 2001),
a decision tree, a shallow neural network, and an XGBoost classifier Chen & Guestrin (2016))
on these datasets. For each baseline classifier, we also provide accuracy for a model fit with and
without missingness indicators added via the SMIM procedure Van Ness et al. (2023). We used cross
validation to select hyperparameters separately for each imputed training dataset, and ensembled
the 10 models for each model class to produce a single predictive model. Cross validation was
performed using 5 folds via GridSearchCV from SKLearn (Pedregosa et al., 2011), and the SKLearn
implementation was used for each model class considered other than XGBoost. The hyperparameters
we considered are:

• Logistic regression: {“C”:[0.01, 0.1, 1, 10], “penalty”: (“l2”),“max iter”: [10,000], “tol”:
[5e-2]}

• Random forest: {“n estimators”:[25, 50, 100, 200], “criterion”: [“gini”,“entropy”]}
• AdaBoost: {“n estimators”:[10, 25, 50, 100, 200]}
• Decision tree: {“max depth”:[3, 5, 7, 9, None], “criterion”:(“gini”, “entropy”)}
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• Neural Network: {“hidden layer sizes”:[(50,), (100,), (200,), (50, 50), (50, 100), (100, 100),
(100, 200), (200, 200)], “tol”: [5e-2], “max iter”: [1000]}

• XGBoost: { ’n estimators’:[100, 500, 1000], ’gamma’:[0, 0.1], ’lambda’:[.5, 1, 2], ’al-
pha’:[.5, 1, 2] }

We repeat this procedure for ten distinct train-test splits for each dataset considered.

D.4 Computational Resources

All experiments were performed on an institutional computing cluster. All experiments that involved
timing were conducted using one Tensor TXR231-1000R D126 Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40GHz (512GB RAM - 40 cores), except for MIWAE timing experiments, which use one NVIDIA
Tesla P100 GPU. When runtime was not reported, experiments were run on whatever hardware was
available on the cluster at that time.
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E Additional Experiments

E.1 Additional Datasets

Throughout this section of the appendix, we will consider two new datasets in addition to the four
datasets introduced in the main body of the paper (FICO, Breast Cancer, MIMIC, and Pharyngitis).
We add the Chronic Kidney Disease Rubini et al. (2015) and Heart Disease Janosi et al. (1988)
datasets from UCI, refered to simply as CKD and Heart Disease respectively. CKD consists of 400
samples with 24 features, and involves prediction of chronic kidney disease using medical features.
Heart Disease concerns predicting heart disease using medical and demographic features, with 303
samples and 13 features. Note that the outcome in Heart Disease is an integer between 0 and 4; we
binarize this label such that we classify no heart disease (0) versus any heart disease (1, 2, 3, 4). Both
of tshese datasets contain only one missingness encoding.

E.2 Evaluation of Alternative Imputation Methods

In the main body of this paper, we focused our evaluation of baseline classifiers on impute-then-predict
using the MICE method for multiple imputation. However, a wide variety of multiple imputation
methods are available. Using all six datasets, we evaluate the runtime and accuracy of four imputation
methods: MICE (Van Buuren & Oudshoorn, 1999), MIWAE (Mattei & Frellsen, 2019), mean value
imputation, and MissForest (Stekhoven & Bühlmann, 2012). We impute ten alternative datasets for
each of ten distinct train-test splits for both FICO and Breast Cancer. For a given train-test split, we
fit a model from each of the model classes described in D.3 for each imputed training dataset. We
ensemble these ten models to produce a single predictive model per train-test split, and evaluate the
test accuracy (FICO) or test AUC (Breast Cancer) of this ensembled model.

Figure 8 contains box-and-whiskers plots for the accuracy of each method considered across all six
datasets. The imputation method does not generally have a substantial impact on the performance of
the resulting impute-then-predict classifier. We also see that, across the two datasets not considered
in the main body of the paper (CKD and Heart Disease) M-GAM continues to provide comparable
accuracy to all baseline methods.

Figure 9 shows the time required to produce a predictive model under each method for each dataset.
As in the main body of the paper, we show the sum of the time required to impute data and the
time required to produce the most accurate model. We see that, despite resulting in models with
comparable accuracy to those produced by MICE and Mean imputation, MissForest and MIWAE
take longer to compute on the majority of datasets. On all six datasets datasets, M-GAM is at least
an order of magnitude faster than all three multiple imputation methods, although mean imputation
tends to be fastest.

E.3 Scalability of M-GAM and Imputation Methods

This section studies how well each method scales in terms of the number of samples in the dataset.
For each dataset, we take subsamples of increasing size (25%, 50%, 75%, and 100% of samples in
each dataset) and run each impute-then-predict predict procedure, as well as M-GAM over 10 distinct
train-test splits. Figure 10 reports the total time taken to produce a model for each imputation method
and M-GAM on each dataset/subsample combination. We find that M-GAM scales no worse than
any of the imputation alternatives in terms of runtime.

E.4 Evaluation of Different Thresholds

Throughout the main body of this work, we reported results using 8 evenly spaced quantiles to
threshold our input variables for both M-GAM and FastSparse GAMs fit on imputed data. In this
section, we evaluate the sparsity versus accuracy curve for M-GAM under different binning strategies.
In particular, we evaluate the performance of M-GAM on FICO with 4, 8, 16, and 32 evenly spaced
quantiles. Figure 11 shows the results of this analysis. As the number of quantiles increased, M-GAM
remained sparse despite the exploding number of interaction terms, and in fact for 32 quantiles the
interaction terms lead to an especially sparse and accurate model. Beyond these observations, we
found that reasonable changes to the number of thresholds we consider did not significantly impact
performance.
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Figure 8: Test accuracy of M-GAM compared against a variety of baselines for four imputation
methods and six datasets. Each column corresponds to a different imputation method, and each row
to a different dataset.
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Figure 9: Runtime of different methods on Breast Cancer, CKD, FICO, Heart Disease, MIMIC, and
Pharyngitis. For each imputation method, we report the total time required to impute missing data
and fit the best performing impute-then-predict classifier for that dataset and imputation method.
M-GAM (Ind) is an M-GAM with indicators and M-GAM (Int) is an M-GAM with interaction terms.
Error bars report standard error of total runtime over 10 train-test splits.

E.5 Evaluation of MICE with Different Numbers of Imputations

Since MICE is a multiple imputation method, we needed to choose how many datasets we allow
MICE to impute for each of our experiments. In this section, we evaluate the runtime versus test
accuracy for models built on various numbers of imputed datasets for FICO. We evaluated each
non-GAM baseling model considered in the main paper when ensembled over 1, 5, 10, 20, and 30
MICE imputed datasets.

Figure 12 shows the accuracy versus runtime for each number of imputations. In Figure 12, we
see that there is a slight improvement in the accuracy of our classifiers when increasing from 1 to
5 imputations, but no significant performance gain for any larger numbers of imputed datasets. As
such, we opted to use the moderately fast and performant choice of 10 imputations.

E.6 Extension of Sparsity/Accuracy Results to Further Datasets

We focus on the FICO and Breast Cancer datasets for much of the main paper, alongside Pharyngitis
and MIMIC. In Figure 13 we show the superset of our sparsity-accuracy results that includes the two
UCI repository datasets, Heart Disease Janosi et al. (1988) and CKD Rubini et al. (2015). In Figure
14 we show the superset of our results for the data with added MAR missingness, for all 6 datasets.

E.7 Evaluation of Alternative Distinct Missingness Encodings

As we discuss in the main text, allowing our model to encode different reasons for missingness
allows the ability to handle multiple reasons for missingness, improving the model’s power. However,
using only a single, overall reason for missingness could potentially allow for handling a larger set
of missing data cases with fewer coefficients. These two encodings are not mutually exclusive; we
could augment in both ways, as described in Equation E.1. For this reason, we investigate sparsity
and test accuracy on the FICO dataset across a range of choices for whether to use distinct encodings,
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Figure 10: Runtime of different methods over 25%, 50%, 75%, and all of Breast Cancer, CKD,
FICO, Heart Disease, MIMIC, and Pharyngitis. For each imputation method, we report the total time
required to impute missing data and fit the best performing impute-then-predict classifier for that
dataset and imputation method. M-GAM (Ind) is an M-GAM with indicators and M-GAM (Int) is an
M-GAM with interaction terms. Error bars report standard error of total runtime over 10 train-test
splits.
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Test Performance vs Sparsity
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Figure 11: The sparsity versus accuracy plot for four distinct binning strategies for M-GAM on the
FICO dataset.

Figure 12: Test accuracy versus runtime for models built on different numbers of MICE imputed
datasets. Each color represents a different number of imputed datasets, and each shape represents a
different ensembled model fit on these datasets.
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Test Performance vs Sparsity
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Figure 13: Test accuracy vs sparsity for M-GAMs relative to competitor GAMs on 6 datasets.

overall encodings, or some combination of the two. We explore a variety of combinations in Figure
15, allowing nonzero values for different subsets of α (specific indicators), αoverall (overall indicators),
βmiss (specific interactions), and βoverall miss (overall interactions). We find no dramatic differences
across these choices.
Definition E.1. Given parameters α, αoverall, βmiss, βoverall miss, and β, an M-GAM is defined as

gmiss(xi;β, β
miss, βoverall miss, α, αoverall) = β0 +

d∑
j=1

hj(xi,j ;βj , β
miss
j , βoverall miss

j ) (7)

+

d∑
j=1

d∑
j′=1

hj,j′(xi,j , xi,j′ ;αj,j′ , α
overall
j,j′ ),

where

hj,j′(xi,j , xi,j′ ;αj,j′ , α
overall
j,j′ ) =

c∑
m=1

len(tj)∑
k=1

αj,j′,k,m1[mcat(xi,j)=m and xi,j′≤tj′,k]

+

len(tj)∑
k=1

αoverall
j,j′,k1[mcat(xi,j )̸=0 and xi,j′≤tj′,k]

and

hj(xi,j ;βj , β
miss
j , βoverall miss) = fj(xi,j ;βj) +

c∑
m=1

βmiss
j,m1[mcat(xi,j)=m]

+ βoverall miss
j 1[mcat(xi,j )̸=0]
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Performance under Added Synthetic MAR Missingness
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Figure 14: Test accuracy vs sparsity for M-GAMs relative to competitor GAMs on 6 datasets with
added missingness.
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Test Performance vs Sparsity for Distinct Missingness Encodings
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Figure 15: Results on the FICO dataset using different choices of missingness augmentation for
indicators and interactions. “Specific” refers to the distinct missingness used throughout the text.
“Overall” refers to augmenting our matrix while treating missing data as all having a single missingness
reason.
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F Additional M-GAM Visualizations

In this section, we visualize three additional M-GAM, one with and one without missingness
interactions on FICO (Figures 17 and 18, respectively), and one without missingness interactions on
Breast Cancer (Figure 19. These figures are best viewed digitally.

Note that several shape functions in Figure 19 are simply flat lines; this is because several variables
in Breast Cancer (e.g., “M Stage” and “Overall Patient Receptor Status Triple Negative”) are binary.

G License Information for Used Assets

In this section, we provide license information for every external asset used in this paper. The
Breast Cancer, CKD, Heart Disease, and Pharyngitis datasets are available under creative commons.
FICO is used under its own license, the details of which can be found here: https://community.
fico.com/s/explainable-machine-learning-challenge?tabset-158d9=2. MIMIC-III is
available under the MIT license. We use code from Liu et al. (2022) under the MIT license, and the
code from Shadbahr et al. (2023) under BSD 3-Clause.
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Figure 16: An expanded version of Figure 2 with variable names included. “MSinceMostRecentDelq”
is the number of months since the individual’s last delinquent payment and “MSinceMostRecentIn-
qexcl7day” is the number of months since the individual’s last inquiry, excluding those within the
last week; all features are described in the FICO challenge (FICO et al., 2018) data documentation.

34



Figure 17: A visualization of a M-GAM without interaction terms on FICO. The shape functions on
the left are selected based on which variables are missing, with the relevant missing variable noted to
the left. The shape functions on the right are used in all cases.

Figure 18: An additional visualization of a M-GAM with interaction terms on FICO. The shape
functions within the left set of brackets are selected based on which variables are missing, with the
relevant missing variable noted to the left. The shape functions in the right set of brackets are applied
in all cases.

Figure 19: A visualization of a M-GAM without interaction terms on Breast Cancer. The shape
functions within the left set of brackets are selected based on which variables are missing, with the
relevant missing variable noted to the left. The shape functions in the right set of brackets are applied
in all cases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The primary claims made in the abstract and introduction are that our method
improves upon sparsity without sacrificing accuracy. We also claim that we improve
performance in synthetic cases, and do not substantially harm runtime. All of these claims
are directly supported by an experimental section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss that the ℓ0 penalty we impose does not perfectly impose the prior
we would like, and that missing data methods as a whole are vulnerable to distribution shift.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: A complete proof for each theoretical claim in the paper can be found in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: A thorough description of our experimental framework is provided in the
appendix. We also provide references to each dataset we use, and will release the code upon
publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

All datasets used are openly accessible (although MIMIC-III requires an application process)
and code will be released. We also thoroughly describe each experimental setup in the
appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

The procedure and random seed used to split data, all hyperparameters, selection methods,
and implementation details are provided in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

All experimental figures include uncertainty quantification through error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

The appendix provides details around all computational hardware used. Timing experiments
are provided throughout the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

We have reviewed and are in compliance with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

We discuss the broader impacts of this work in the conclusion.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
This work poses no substantial risks for misuse, beyond those associated with any predictive
model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
The license under which each asset is used is given in the appendix, and we comply with the
license for each asset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Complete code associated with our framework and experiments will be released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Neither crowdsourced research nor research with human subjects was conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

No such research was involved in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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