
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EKAN: EQUIVARIANT KOLMOGOROV-ARNOLD
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Kolmogorov-Arnold Networks (KANs) have seen great success in scientific do-
mains thanks to spline activation functions, becoming an alternative to Multi-
Layer Perceptrons (MLPs). However, spline functions may not respect symmetry
in tasks, which is crucial prior knowledge in machine learning. Previously, equiv-
ariant networks embed symmetry into their architectures, achieving better per-
formance in specific applications. Among these, Equivariant Multi-Layer Percep-
trons (EMLP) introduce arbitrary matrix group equivariance into MLPs, providing
a general framework for constructing equivariant networks layer by layer. In this
paper, we propose Equivariant Kolmogorov-Arnold Networks (EKAN), a method
for incorporating matrix group equivariance into KANs, aiming to broaden their
applicability to more fields. First, we construct gated spline basis functions, which
form the EKAN layer together with equivariant linear weights. We then de-
fine a lift layer to align the input space of EKAN with the feature space of the
dataset, thereby building the entire EKAN architecture. Compared with baseline
models, EKAN achieves higher accuracy with smaller datasets or fewer param-
eters on symmetry-related tasks, such as particle scattering and the three-body
problem, often reducing test MSE by several orders of magnitude. Even in non-
symbolic formula scenarios, such as top quark tagging with three jet constituents,
EKAN achieves comparable results with EMLP using only 26% of the parameters,
while KANs do not outperform MLPs as expected.

1 INTRODUCTION

Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024b;a) are a novel type of neural network
inspired by the Kolmogorov-Arnold representation theorem (Tikhomirov, 1991; Braun & Griebel,
2009), which offers an alternative to Multi-Layer Perceptrons (MLPs) (Haykin, 1998; Cybenko,
1989; Hornik et al., 1989). Unlike MLPs, which utilize fixed activation functions on nodes, KANs
employ learnable activation functions on edges, replacing the linear weight parameters entirely with
univariate functions parameterized as splines (De Boor & De Boor, 1978). On the other hand, each
layer of KANs can be viewed as spline basis functions followed by a linear layer (Dhiman, 2024).
This architecture allows KANs to achieve better accuracy in symbolic formula representation tasks
compared with MLPs, particularly in function fitting and scientific applications. Subsequent works
based on KANs have demonstrated superior performance in other areas, such as sequential data
(Vaca-Rubio et al., 2024; Genet & Inzirillo, 2024b;a; Xu et al., 2024), graph data (Bresson et al.,
2024; De Carlo et al., 2024; Kiamari et al., 2024; Zhang & Zhang, 2024), image data (Cheon,
2024b;a; Azam & Akhtar, 2024; Li et al., 2024a; Seydi, 2024; Bodner et al., 2024), and so on.

However, KANs themselves perform poorly on non-symbolic formula representation tasks (Yu et al.,
2024). One reason for this is that splines struggle to respect data type and symmetry, both of which
play important roles in machine learning. Many recent works utilize symmetry in data to design
network architectures, achieving better efficiency and generalization on specific tasks. For example,
Convolutional Neural Networks (CNNs) (LeCun et al., 1989) and Group equivariant Convolutional
Neural Networks (GCNNs) (Cohen & Welling, 2016a) leverage translational and rotational symme-
tries in image data, while DeepSets (Zaheer et al., 2017) and equivariant graph networks (Maron
et al., 2018) exploit the permutation symmetry in set and graph data.
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Equivariant Multi-Layer Perceptrons (EMLP) (Finzi et al., 2021) propose a general method that
allows MLPs to be equivariant with respect to arbitrary matrix groups for specific data types, thereby
unifying the aforementioned specialized network architectures. They construct the equivariance
constraint using discrete and infinitesimal generators of the matrix group, and then obtain equivariant
linear weights by solving this constraint. Next, they apply gated nonlinearities (Weiler et al., 2018a),
which use the additional output of the previous layer as gate scalars. Due to the generality of matrix
groups, EMLP outperforms non-equivariant baselines on several datasets with complex symmetries.

Inspired by EMLP, we propose Equivariant Kolmogorov-Arnold Networks (EKAN), which embed
matrix group equivariance into KANs. By specifying the data type and symmetry, EKAN can serve
as a general framework for applying KANs to various areas. In Section 2, we introduce the pre-
liminary knowledge of group theory. In Section 3, we summarize related works. In Section 4, we
construct a layer of EKAN. We add gate scalars to the input and output space of each layer, and de-
fine gated spline basis functions between the input and post-activation space. To ensure equivariance
when linearly combining gated basis functions, we construct the equivariant constraint and solve for
the equivariant linear weights similar to EMLP. In Section 5, we build the entire EKAN architecture.
We insert a lift layer before the first layer and discard the gate scalars from the output of the final
layer, so that the input and output space of EKAN can be consistent with the original dataset. In
Section 6, we evaluate EKAN on tasks with known symmetries. We show that EKAN can achieve
higher accuracy than baseline models with smaller datasets or fewer parameters. In Section 7, we
conclude this work. In Figure 1, we compare the architectures of MLPs, EMLP, KANs, and EKAN.

Multi-Layer Perceptron (MLP)

linear weights

nonlinear activation functions

Kolmogorov-Arnold Network (KAN)

sum

B-spline functions

linear weights

basis functions

Equivariant Multi-Layer Perceptron (EMLP)

equivariant linear weights

gated nonlinear activation functions

gate

Equivariant Kolmogorov-Arnold Network (EKAN)

equivariant linear weights

gated basis functionsgate

gate

Figure 1: Comparison of the architectures of Multi-Layer Perceptrons (MLPs), Equivariant Multi-
Layer Perceptrons (EMLP), Kolmogorov-Arnold Networks (KANs), and Equivariant Kolmogorov-
Arnold Networks (EKAN).

In summary, our contributions are as follows:

• We propose EKAN, an architecture that makes KANs equivariant to matrix groups. To our
knowledge, EKAN is the first attempt to combine equivariance with KANs, and we expect
that it can serve as a general framework to broaden the applicability of KANs to more areas.

• We specify the space structures of the EKAN Layer and define gated spline basis functions.
We theoretically prove that gated basis functions can ensure equivariance between the gated
input space and the post-activation space. Then, we insert a lift layer to preprocess the raw
input feature, which aligns the input space of EKAN with the feature space of the dataset.

• Experiments on tasks with matrix group equivariance, such as particle scattering and the
three-body problem, demonstrate that EKAN often significantly outperforms baseline mod-
els, even with smaller datasets or fewer parameters. In the task of non-symbolic formula
representation, where KANs are not proficient, such as top quark tagging with three jet
constituents, EKAN can still achieve comparable results with EMLP while using only 26%
of the parameters.

2 BACKGROUND

Before presenting related works and our method, we first introduce some preliminary knowledge of
group theory.
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Groups and generators. The matrix group G̃ is a subgroup of the general linear group GL(n),
which consists of n × n invertible matrices. Each group element g ∈ G̃ can be decomposed into
a continuous and a finite component g = g1g2. We can obtain the continuous component g1 from
a Lie algebra element A ∈ g through the exponential map exp : g → G̃, i.e., g1 = exp(A) =∑∞

k=0
Ak

k! . Representing the space where the Lie algebra resides as a basis {Ai}Di=1, we have g1 =

exp
(∑D

i=1 αiAi

)
. On the other hand, the finite component g2 can be generated by a set of group

elements {hi}Mi=1 and their inverses h−k = h−1
k , formally speaking g2 =

∏N
i=1 hki

. Overall, we
can express the matrix group element as:

g = exp

(
D∑
i=1

αiAi

)
N∏
i=1

hki
, (1)

where {Ai}Di=1 are called infinitesimal generators and {hi}Mi=1 are called discrete generators. We
introduce common matrix groups and their generators in Appendix A.

Group representations. The group representation ρV : G̃ → GL(m) maps group elements to
m ×m invertible matrices, which describes how group elements act on the vector space V = Rm

through linear transformations. For g1, g2 ∈ G̃ it satisfies ρV (g1g2) = ρV (g1)ρV (g2). Similarly,
the Lie algebra representation is defined as dρV : g → gl(m), and for A1, A2 ∈ g, we have
dρV (A1+A2) = dρV (A1)+dρV (A2). We can relate the Lie group representation to the Lie algebra
representation through the exponential map. Specifically, for A ∈ g, ρV (exp(A)) = exp(dρV (A))
holds. Then, combining with Equation (1), the matrix group representation can be written as:

ρV (g) = exp

(
D∑
i=1

αidρV (Ai)

)
N∏
i=1

ρV (hki). (2)

We can construct the complex vector space from the base vector space using the dual (∗), direct sum
(⊕), and tensor product (⊗) operations. To give a concrete example, let V1 and V2 be base vector
spaces. The multi-channel vector space, matrix space and parameter space of the linear mapping
V1 → V2 can be represented as V1 ⊕ V2, V1 ⊗ V2, and V2 ⊗ V ∗

1 , respectively. In general, given a
matrix group G̃, we can normalize the vector space U into a polynomial-like form with respect to the
base vector space V (the space where the group representation is the identity mapping ρV (g) = g;
intuitively, the transformation matrix is the matrix group element itself):

U =

A⊕
a=1

T (pa, qa) =

A⊕
a=1

V pa ⊗ (V ∗)qa , (3)

where V pa = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
pa

and (V ∗)qa = V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
qa

. Its group representation and

Lie algebra representation can be generated by the following rules:
ρV ∗(g) = ρV (g

−1)⊤,

ρV1⊕V2(g) = ρV1(g)⊕ ρV2(g),

ρV1⊗V2
(g) = ρV1

(g)⊗ ρV2
(g),


dρV ∗(A) = −dρV (A)⊤,

dρV1⊕V2(A) = dρV1(A)⊕ dρV2(A),

dρV1⊗V2
(A) = dρV1

(A)⊞ dρV2
(A),

(4)

where ⊕ is the direct sum, ⊗ is the Kronecker product, and ⊞ is the Kronecker sum.

Equivariance and invariance. The symmetry can be divided into equivariance and invariance,
meaning that when a transformation is applied to the input space, the output space either transforms
in the same way or remains unchanged. Formally, given a group G̃, a function f : Ui → Uo is
equivariant if:

∀g ∈ G̃, vi ∈ Ui : ρo(g)f(vi) = f(ρi(g)vi), (5)

where ρi and ρo are group representations of Ui and Uo, respectively. Specifically, when ρo(g) = I ,
the function f is invariant.
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3 RELATED WORK

Equivariant networks. Equivariant networks have gained significant attention in recent years due
to their ability to respect and leverage symmetries in data. GCNNs (Cohen & Welling, 2016a) embed
discrete group equivariance into traditional CNNs through group convolutions. Steerable CNNs
(Cohen & Welling, 2016b) introduce steerable filters, which provide a more flexible and efficient
way to achieve equivariance compared with GCNNs. Subsequently, SFCNNs (Weiler et al., 2018b)
and E(2)-equivariant steerable CNNs (Weiler & Cesa, 2019) extend GCNNs and steerable CNNs to
continuous group equivariance, while 3D Steerable CNNs (Weiler et al., 2018a) extend these models
to 3D volumetric data. On the other hand, some works use partial differential operators (PDOs) to
construct equivariant networks (Shen et al., 2020; 2021; 2022; He et al., 2022; Li et al., 2024b).
Based on these theoretical frameworks, equivariant networks are widely applied in various fields,
such as mathematics (Zhao et al., 2022), physics (Wang et al., 2020), biochemistry (Bekkers et al.,
2018; Winkels & Cohen, 2019; Graham et al., 2020), and others.

Equivariant Multi-Layer Perceptrons (EMLP). EMLP (Finzi et al., 2021) embeds matrix group
equivariance into MLPs layerwise. Given the input space Ui and output space Uo, the linear weight
matrix W ∈ Uo ⊗ U∗

i should satisfy Equation (5), i.e., ∀g ∈ G̃, vi ∈ Ui : ρo(g)Wvi = Wρi(g)vi.
So the coefficients of each term in vi are equal ∀g ∈ G̃ : ρo(g)W = Wρi(g). Flattening the linear
weight matrix W into a vector, we have ∀g ∈ G̃ :

[
ρo ⊗ ρi(g

−1)⊤
]
vec(W ) = vec(W ). Combined

with Equation (4), the linear weight matrix W is invariant in the space Uo ⊗ U∗
i :

∀g ∈ G̃ : ρo,i(g)vec(W ) = vec(W ), (6)

where ρo,i = ρo⊗ρ∗i is the group representation of Uo⊗U∗
i . Decomposing the group representation

ρo,i(g) into discrete and infinitesimal generators as shown in Equation (2), Equation (6) is equivalent
to the following constraint:

Cvec(W ) =



dρo,i(A1)
...

dρo,i(AD)
ρo,i(h1)− I

...
ρo,i(hM )− I


vec(W ) = 0. (7)

By performing singular value decomposition (SVD) on the coefficient matrix C, we can obtain its
nullspace, which corresponds to the subspace where the equivariant linear weights reside.

Kolmogorov-Arnold Networks (KANs). KANs (Liu et al., 2024b;a) place learnable activation
functions on the edges and then sum them to obtain the output nodes, replacing the fixed activation
functions applied to the output nodes of linear layers in MLPs. Formally, the l-th KAN layer can be
expressed as:

xl+1,j =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, . . . , nl+1, (8)

where nl is the number of nodes in the l-th layer, xl,i is the value of the i-th node in the l-th layer,
and ϕl,j,i is the activation function that connects xl,i to xl+1,j . In practice, ϕl,j,i consists of a
spline function and a silu function. The spline basis functions are determined by grids, which are
updated based on the input samples. Then we can write the post-activation of ϕl,j,i as ϕl,j,i(xl,i) =∑G+k−1

b=0 wl,j,i,bBl,i,b(xl,i) + wl,j,i,G+ksilu(xl,i), where G, k, and Bl,i,b represent the number of
grid intervals, the order, and the b-th basis function of splines at node xl,j , respectively. Therefore,
the KAN layer can be viewed as spline basis functions Bl,i,b and a silu function, followed by a linear
layer with wl,j,i,b as parameters (Dhiman, 2024):

xl+1,j =

nl∑
i=1

[
G+k−1∑
b=0

wl,j,i,bBl,i,b(xl,i) + wl,j,i,G+ksilu(xl,i)

]
, j = 1, . . . , nl+1. (9)
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4 EKAN LAYER

In this section, we construct the EKAN layer, which is equivariant with respect to the matrix group
G̃. First, we define the space structures and explain their relationships. Then, we introduce gated
basis functions and equivariant linear weights, which together form a layer of EKAN. Finally, we
present the implementation details of grid updates. We summarize the space structures and network
architecture of the EKAN layer in Figure 2.

gate

gate

equivariant linear weights

gated basis functions

gated output space 

gated input space 

post-activation space 

input space 

output space 

user specified

actual input feature

actual output feature

data flow
control flow

Figure 2: (Left) The space structures of the EKAN layer and their relationships. (Right) The archi-
tecture of the EKAN layer, which consists of gated basis functions and equivariant linear weights.

4.1 SPACE STRUCTURES

A key aspect of equivariant networks is how group elements act on the feature space. Therefore,
unlike conventional networks, which only focus on the dimensions of the feature space, equivariant
networks need to further clarify the structure of the feature space. For example, for the group SO(2),
two feature spaces U1 = V ⊕ V = R2 ⊕ R2 and U2 = V ⊗ V = R2 ⊗ R2 have different group
representations ρU1

and ρU2
, but conventional networks treat them as the same space U = R4.

We specify the input space and the output space of EKAN layer as Ui and Uo, respectively. Their
structures can be normalized into the form of Equation (3). In particular, for ease of later discussion,
we extract the scalar space terms T0 = T (0, 0) and rewrite them as:Ui = ciT0 ⊕

[⊕Ai

a=1 T (pi,a, qi,a)
]
,

Uo = coT0 ⊕
[⊕Ao

a=1 T (po,a, qo,a)
]
,

(10)

where p2i,a + q2i,a > 0, p2o,a + q2o,a > 0, and cT0 = T0 ⊕ T0 ⊕ · · · ⊕ T0︸ ︷︷ ︸
c

.

We have to emphasize that the actual input/output feature does not lie within Ui/Uo. To align with
gated basis functions, we add a gate scalar T0 to each non-scalar term T (pi,a, qi,a)/T (po,a, qo,a) in
Ui/Uo to obtain the actual input/output space. We denote this actual input/output space as the gated
input/output space Ugi/Ugo:Ugi = ciT0 ⊕

[⊕Ai

a=1 T (pi,a, qi,a)
]
⊕AiT0,

Ugo = coT0 ⊕
[⊕Ao

a=1 T (po,a, qo,a)
]
⊕AoT0.

(11)

As shown in Equation (9), we split the KAN layer into basis functions and linear weights. From
this perspective, we correspondingly construct gated basis functions and equivariant linear weights
to form the EKAN layer. We refer to the space where the activation values reside after gated basis
functions and before equivariant linear weights as the post-activation space Um. The structure of
Um depends on Ui, which we will elaborate on in Section 4.2.

We summarize the aforementioned space structures and their relationships in Figure 2 (Left). The
user first specifies the input space Ui and the output space Uo for the EKAN layer. Then the gated
input space Ugi and the post-activation space Um are calculated based on Ui, and the gated output
space Ugo is calculated based on Uo. The actual input feature in Ugi passes through gated basis
functions to obtain the activation value in Um, which then passes through equivariant linear weights
to obtain the actual output feature in Ugo.

5
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4.2 GATED BASIS FUNCTIONS

Gating mechanisms are widely used in various areas, not only in language models to improve perfor-
mance (Dauphin et al., 2017; Shazeer, 2020; Gu & Dao, 2023) but also in the design of equivariant
networks (Weiler et al., 2018a; Finzi et al., 2021). Inspired by this, we propose gated basis functions
to make the basis functions in KANs (spline basis functions and the silu function) equivariant. Sup-
pose that the input feature vgi ∈ Ugi can be decomposed according to the space structure shown in
Equation (11):

vgi =

(
ci⊕

a=1

si,a

)
⊕

(
Ai⊕
a=1

vi,a

)
⊕

(
Ai⊕
a=1

s′i,a

)
, (12)

where si,a, s
′
i,a ∈ T0 and vi,a ∈ T (pi,a, qi,a). For the non-scalar term vi,a, we apply the basis

functions to the corresponding gate scalar s′i,a and then multiply the result by vi,a. For the scalar
term si,a, we consider it as its own gate scalar, which is equivalent to applying basis functions
element-wise to si,a. Formally, the post-activation value vm ∈ Um can be written as:

vm =

G+k⊕
b=0

vm,b, (13)

where

vm,b =

[
⊕ci

a=1 si,aBb(si,a)]⊕
[⊕Ai

a=1 vi,aBb(s
′
i,a)
]
, b < G+ k,

[
⊕ci

a=1 si,asilu(si,a)]⊕
[⊕Ai

a=1 vi,asilu(s
′
i,a)
]
, b = G+ k.

(14)

Note that vm,b ∈ ciT0 ⊕
[⊕Ai

a=1 T (pi,a, qi,a)
]
= Ui. Therefore, we obtain the structure of the

post-activation space Um:
Um = (G+ k + 1)Ui. (15)

The following theorem guarantees the equivariance between the gated input space and the post-
activation space (see Appendix B for proof).

Theorem 1. Given a matrix group G̃, the gated input space Ugi and the post-activation space Um

can be expressed in the forms of Equations (11) and (15), respectively. The function f : Ugi → Um

is defined by Equations (12), (13) and (14), that is, vm = f(vgi). Then, f is equivariant:

∀g ∈ G̃, vgi ∈ Ugi : ρm(g)f(vgi) = f(ρgi(g)vgi), (16)

where ρgi and ρm are group representations of Ugi and Um, respectively.

4.3 EQUIVARIANT LINEAR WEIGHTS

The output feature vgo ∈ Ugo is obtained by a linear combination of the post-activation value vm ∈
Um. Let Ui = Rdi and Ugo = Rdgo , then Equation (15) indicates that Um = R(G+k+1)di . The
linear weight matrix W ∈ Rdgo×(G+k+1)di can be partitioned as W = [W0 W1 . . . WG+k], where
Wb ∈ Rdgo×di . Combining with Equation (13), we have:

vgo = Wvm =

G+k∑
b=0

Wbvm,b. (17)

To ensure the equivariance between the post-activation space and the gated output space, we obtain:

∀g ∈ G̃, vm ∈ Um : ρgo(g)Wvm = Wρm(g)vm, (18)

where ρgo is the group representation of Ugo. Using the structure of Um shown in Equation (15)
and applying the rules from Equation (4), we can derive that ρm(g) =

⊕G+k
b=0 ρi(g), where ρi is the

group representation of Ui. Therefore, from Equation (13), we have ρm(g)vm =
⊕G+k

b=0 ρi(g)vm,b.
Then Equation (18) can be written as:

∀g ∈ G̃, {vm,b}G+k
b=0 ∈ Ui :

G+k∑
b=0

ρgo(g)Wbvm,b =

G+k∑
b=0

Wbρi(g)vm,b. (19)

6
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The coefficients of each term in {vm,b}G+k
b=0 are equal:

∀g ∈ G̃, b ∈ {0, 1, . . . , G+ k} : ρgo(g)Wb = Wbρi(g). (20)

Flattening the linear weight blocks {Wb}G+k
b=0 into vectors, we obtain:

∀g ∈ G̃, b ∈ {0, 1, . . . , G+ k} : ρgo,i(g)vec(Wb) = vec(Wb), (21)

where ρgo,i = ρgo ⊗ ρ∗i is the group representation of Ugo ⊗ U∗
i . We use the same method as

EMLP (Finzi et al., 2021) to solve for the equivariant basis Q and equivariant projector P = QQ⊤

of vec(Wb). Similar to the transition from Equation (6) to Equation (7), we decompose the group
representation ρgo,i(g) into discrete and infinitesimal generators to obtain the following constraint:

∀b ∈ {0, 1, . . . , G+ k} : Cvec(Wb) =



dρgo,i(A1)
...

dρgo,i(AD)
ρgo,i(h1)− I

...
ρgo,i(hM )− I


vec(Wb) = 0. (22)

Note that the equivariant linear weight blocks {Wb}G+k
b=0 lie in the same subspace, which corresponds

to the nullspace of the coefficient matrix C. We can obtain it via SVD.

We summarize the architecture of the EKAN layer in Figure 2 (Right). In this example, the
EKAN layer is equivariant with respect to a 2-dimensional matrix group G̃ (such as the SO(2)
group). The user specifies the input space Ui = T0 ⊕ T1 (where we abbreviate T (p, 0) = V p as
Tp), which represents a scalar space and a vector space, and specifies the output space Uo = T2,
which represents a matrix space. Then, the gated input space Ugi = T0 ⊕ T1 ⊕ T0 and the gated
output space Ugo = T2 ⊕ T0 each add a gate scalar to the vector space T1 and the matrix space T2.
The basis functions are applied to the gate scalars of T0 (itself) and T1, which are then multiplied
by the original terms to obtain the post-activation space Um = 3Ui. The linear weights W ∈ R5×9

between Um and Ugo are within the subspace determined by Equation (22) to ensure equivariance.

4.4 GRID UPDATE

Similar to KANs (Liu et al., 2024b), EKAN updates grids based on the input activations. At the
same time, the linear weights should also be updated in order to keep the output features un-
changed. Let the post-activation values of the grids before and after the update be denoted as
Vm, V ′

m ∈ RN×(G+k+1)di , where N is the number of samples. We first project the linear weight
blocks into the equivariant subspace as vec(W̃b) = Pvec(Wb) and compute the output activations
Vgo = VmW̃⊤ =

∑G+k
b=0 Vm,bW̃

⊤
b , where P is the equivariant projector obtained from Equa-

tion (22). Then, the updated equivariant linear weights W̃ ′ should satisfy Vgo = V ′
mW̃ ′⊤, and we

have W̃ ′ = V ⊤
go(V

′⊤
m )†. We finally restore the updated linear weight blocks vec(W ′

b) = P †vec(W̃ ′
b).

5 EKAN ARCHITECTURE

In this section, we construct the entire EKAN architecture. The main body of EKAN is composed
of stacked EKAN layers. The output space of the l-th layer serves as the input space of the (l+1)-th
layer, which we refer to as the latent space Ul. For the dataset, we usually know its data type, or in
other words, how group elements act on it. To embed this prior knowledge into EKAN, we set the
input space of the first layer as the feature space of the dataset Ui and the output space of the final
layer as the label space of the dataset Uo.

However, the actual input/output features of the EKAN layer stack lie in Ugi/Ugo. Therefore, we
need to add extensions to align the network with the dataset. First, the gate scalars of the actual
output feature are directly dropped to obtain the final output label of EKAN, which resides in Uo.
Then, we add a lift layer before the first layer to preprocess the raw input feature of EKAN, which
is essentially an equivariant linear layer between Ui and Ugi (see Section 4.3 for more details).
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EKAN layer

gate

gate (dropped)

lift layer
gated input space 

input space 

gated output space 

gated latent space 

dataset determined

output space 

user specified

latent space 

data flow
control flow raw input feature

final output label (after dropping)

Figure 3: (Left) The space structures of EKAN and their relationships. (Right) The EKAN architec-
ture, which consists of a lift layer and stacked EKAN layers.

We summarize the space structures and network architecture of EKAN in Figure 3. The space struc-
tures of EKAN can be analogous to the dimensions of a conventional network. The user specifies the
latent space Ul of EKAN, which corresponds to specifying the hidden dimension in a conventional
network. The input space Ui and the output space Uo are determined by the dataset, similar to how
the input and output dimensions are defined in a conventional network. In the concrete example, the
feature space and label space of the dataset are Ui = T0 ⊕ T1 and Uo = T2, respectively. After
passing through the lift layer, a new gate scalar is added to the raw input feature for T1, resulting in
the actual input feature Ugi = T0 ⊕ T1 ⊕ T0 for the first EKAN layer. The gate scalar in the actual
output space Ugo = T2 ⊕ T0 of the last EKAN layer is dropped to obtain the final output label.

6 EXPERIMENTS

In this section, we evaluate the performance of EKAN on regression and classification tasks with
known symmetries. Compared with MLPs, KANs, and EMLP, EKAN achieves lower test loss and
higher test accuracy with smaller datasets or fewer parameters.

6.1 PARTICLE SCATTERING

In electron-muon scattering, we can observe the four-momenta of the incoming electron, incoming
muon, outgoing electron, and outgoing muon, denoted as qµ, pµ, q̃µ, p̃µ ∈ R4, respectively. We aim
to predict the matrix element, which is proportional to the cross-section (Finzi et al., 2021):

|M|2 ∝ [pµp̃ν − (pαp̃α − pαpα)g
µν ][qµq̃ν − (qαq̃α − qαqα)gµν ]. (23)

According to Einstein’s summation convention, in a monomial, if an index appears once as a super-
script and once as a subscript, it indicates summation over that index. The metric tensor is given by
gµν = gµν = diag(1,−1,−1,−1), and aµ = gµνa

ν = (a0,−a1,−a2,−a3). The matrix element
is invariant under Lorentz transformations. In other words, this task exhibits O(1, 3) invariance (see
Appendix A.2 for more details), with the feature space Ui = 4T1 and the label space Uo = T0.

We embed the group O(1, 3) and its subgroups SO+(1, 3) and SO(1, 3) equivariance into EKAN.
Models are evaluated on synthetic datasets with different training set sizes, which are generated
by sampling qµ, pµ, q̃µ, p̃µ ∼ N (0, 1

42 ). Both EKAN and KAN have the depth of L = 2, the
spline order of k = 3, and grid intervals of G = 3. Although the lift layer increases the parameter
overhead, we set the width of the middle layer in EKAN to n1 = 1000 (shape as [16, 1000, 1],
and the software will automatically calculate the appropriate feature space structure based on the
user-specified dimension), and set the width of the middle layer in KAN to n1 = 3840 (shape as
[16, 3840, 1]) to keep the parameter count similar. Both EMLP and MLP have the depth of L = 4
and the middle layer width of n1 = n2 = n3 = 384 (shape as [16, 384, 384, 384, 1]). In these
settings, EKAN (435k) has fewer parameters than EMLP (450k) and KAN (461k). We provide
more implementation details in Appendix C.1.

We repeat experiments with three different random seeds and report the mean ± std of the test MSE
in Table 1. The results of EMLP and MLP come from the original paper (Finzi et al., 2021) under
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Table 1: Test MSE of different models on the particle scattering dataset with different training set
sizes. We present the results in the format of mean ± std.

Models Training set size
102 102.5 103 103.5 104

MLP (7.33± 0.01)× 10−1 (6.97± 0.09)× 10−1 (3.64± 0.30)× 10−1 (5.04± 0.37)× 10−2 (1.66± 0.07)× 10−2

EMLP-SO+(1, 3) (1.27± 0.35)× 10−2 (2.21± 0.56)× 10−3 (3.30± 0.86)× 10−4 (2.24± 0.55)× 10−4 (1.99± 0.33)× 10−4

EMLP-SO(1, 3) (1.47± 0.91)× 10−2 (2.58± 0.25)× 10−3 (3.69± 1.25)× 10−4 (2.73± 0.30)× 10−4 (2.12± 0.15)× 10−4

EMLP-O(1, 3) (8.88± 2.51)× 10−3 (1.95± 0.18)× 10−3 (3.30± 0.43)× 10−4 (2.66± 0.66)× 10−4 (2.64± 0.28)× 10−4

KAN (6.70± 1.35)× 10−1 (6.16± 1.18)× 10−1 (3.46± 0.15)× 10−1 (1.21± 0.07)× 10−1 (2.57± 0.08)× 10−2

EKAN-SO+(1, 3) (Ours) (6.86± 6.28)× 10−3 (1.85± 1.75)× 10−3 (2.01± 1.93)× 10−5 (1.93± 1.11)× 10−5 (4.29± 3.38)× 10−6

EKAN-SO(1, 3) (Ours) (6.86± 6.27)× 10−3 (1.85± 1.75)× 10−3 (2.06± 1.88)× 10−5 (2.17± 1.51)× 10−5 (3.85± 2.77)× 10−6

EKAN-O(1, 3) (Ours) (7.77± 5.85)× 10−3 (1.64± 1.87)× 10−3 (2.85± 3.09)× 10−5 (7.31± 4.15)× 10−6 (3.81± 2.83)× 10−6

the same settings. Although EMLP performs better than non-equivariant models, our EKAN with
different group equivariance further surpasses it comprehensively, especially showing an orders-of-
magnitude advantage on large datasets (training set size ≥ 103). Moreover, our EKAN with just 103
training samples achieves approximately 10% of the test MSE of EMLP with 104 training samples.

6.2 THREE-BODY PROBLEM

The study of the three-body problem on a plane (Greydanus et al., 2019) focuses on the motion of
three particles, with their center of mass at the origin, under the influence of gravity. Their trajecto-
ries are chaotic and cannot be described by an analytical solution. Specifically, we observe the mo-
tion states of three particles over the past four time steps, denoted as {qi1, pi1, qi2, pi2, qi3, pi3}t−1

i=t−4,
and predict their motion states at time t, denoted as {qt1, pt1, qt2, pt2, qt3, pt3}. Here, qij ∈ R2 and
pij ∈ R2 indicate the position and momentum coordinates of the j-th particle at time i, respectively.
The dataset contains 30k training samples and 30k test samples. When the input motion states are
simultaneously rotated by a certain angle or reflected along a specific axis, the output motion states
should undergo the same transformation. Therefore, this task has O(2) equivariance (see Appendix
A.1 for more details), with the feature space Ui = 4× 6T1 = 24T1 and the label space Uo = 6T1.

We embed the group O(2) and its subgroup SO(2) equivariance into EKAN and EMLP. Both
EKAN and KAN have the depth of L = 2, the spline order of k = 3, and grid intervals of G = 3,
while both EMLP and MLP have the depth of L = 4. The number of parameters is controlled by
adjusting the middle layer width N for comparison (the shape of EKAN and KAN is [48, N, 12],
while the shape of EMLP and MLP is [48, N,N,N, 12]). More implementation details can be found
in Appendix C.2.

Table 2: Test MSE of different models with different numbers of parameters on the three-body
problem dataset. We present the results in the format of mean ± std.

Models Number of parameters
104.5 104.75 105 105.25 105.5

MLP (4.84± 0.19)× 10−3 (4.70± 0.30)× 10−3 (4.60± 0.12)× 10−3 (4.17± 0.24)× 10−3 (4.24± 0.27)× 10−3

EMLP-SO(2) (2.28± 1.17)× 10−3 (6.87± 5.29)× 10−3 (3.55± 1.59)× 10−3 (2.01± 1.09)× 10−3 (5.34± 3.78)× 10−3

EMLP-O(2) (7.72± 8.71)× 10−3 (1.18± 0.22)× 10−3 (1.42± 1.86)× 10−2 (7.37± 7.60)× 10−3 (1.37± 0.07)× 10−3

KAN (4.32± 3.08)× 10−1 (2.21± 0.65)× 10−2 (1.18± 0.18)× 10−2 (1.23± 0.34)× 10−2 (9.15± 1.76)× 10−3

EKAN-SO(2) (Ours) (1.12± 0.13)× 10−3 (7.06± 0.65)× 10−4 (6.09± 0.27)× 10−4 (4.26± 0.19)× 10−4 (4.84± 0.68)× 10−4

EKAN-O(2) (Ours) (1.48± 0.37)× 10−3 (1.12± 0.24)× 10−3 (7.91± 0.52)× 10−4 (6.06± 0.36)× 10−4 (6.02± 0.88)× 10−4

The mean ± std of the test MSE over three runs with different random seeds are reported in Table 2.
Our EKAN-SO(2) and EKAN-O(2) consistently outperform baseline models with the same number
of parameters, often by orders of magnitude. Notably, our EKAN with 104.5 parameters achieves
comparable or even lower test MSE than baseline models with 105.5 parameters, saving 90% of the
parameter overhead.
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6.3 TOP QUARK TAGGING

The research on top quark tagging (Kasieczka et al., 2019) involves classifying hadronic tops from
the QCD background. In particle collision experiments, top quark decays or other events produce
several jet constituents. We observe the four-momenta pµ1 , p

µ
2 , p

µ
3 ∈ R4 of the three jet constituents

with the highest transverse momentum pT , and predict the event label (1 for top, 0 for QCD). The
category of the event will not change when all jet constituents undergo the same Lorentz transfor-
mation. Consequently, this task possesses O(1, 3) invariance (see Appendix A.2 for more details),
with the feature space Ui = 3T1 and the label space Uo = T0.

Similar to particle scattering, we embed the group O(1, 3) and its subgroups SO+(1, 3) and SO(1, 3)
equivariance into EKAN and EMLP. We sample training sets of different sizes from the original
dataset for evaluation. Both EKAN and KAN have the depth of L = 2, the spline order of k = 3,
and grid intervals of G = 3. We set the width of the middle layer in EKAN to n1 = 200 (shape as
[12, 200, 1]) and the width of the middle layer in KAN to n1 = 384 (shape as [12, 384, 1]) to control
the number of parameters. Both EMLP and MLP have the depth of L = 4 and the middle layer
width n1 = n2 = n3 = 200 (shape as [12, 200, 200, 200, 1]). We apply the sigmoid function to
the model’s output and use BCE as the loss function for binary classification. More implementation
details are provided in Appendix C.3.

Table 3: Test accuracy (%) of different models on the top quark tagging dataset with different
training set sizes. We present the results in the format of mean ± std.

Models Training set size Parameters
102 102.5 103 103.5 104

MLP 52.96± 0.21 54.31± 0.48 57.47± 0.32 62.72± 0.60 69.30± 1.03 83K

EMLP-SO+(1, 3) 65.48± 1.21 72.59± 0.84 74.40± 0.26 76.34± 0.14 77.10± 0.02
133KEMLP-SO(1, 3) 61.86± 5.92 73.09± 0.92 74.37± 0.17 76.46± 0.12 77.12± 0.04

EMLP-O(1, 3) 62.66± 7.35 73.65± 1.01 74.22± 0.53 76.26± 0.05 77.12± 0.04

KAN 49.89± 0.39 49.91± 0.43 49.89± 0.37 50.00± 0.02 49.84± 0.25 35K

EKAN-SO+(1, 3) (Ours) 71.92± 0.88 73.98± 0.39 76.15± 0.11 76.69± 0.08 76.93± 0.02
34KEKAN-SO(1, 3) (Ours) 70.49± 2.85 73.96± 0.37 76.15± 0.11 76.69± 0.08 76.93± 0.02

EKAN-O(1, 3) (Ours) 71.68± 1.21 73.95± 0.36 76.15± 0.11 76.69± 0.07 76.93± 0.03

We report the mean ± std of the test accuracy over three runs with different random seeds, as well
as the number of parameters of the models in Table 3. Since we have not observed all the jet con-
stituents, the relationship between the labels and input features cannot be accurately expressed as an
explicit function. In this case of non-symbolic formula representation, KAN cannot achieve higher
accuracy with fewer parameters than MLP as expected. On the other hand, our EKAN achieves
comparable results with EMLP using approximately 26% of the parameters, improving test accu-
racy by 0.23% ∼ 6.44% on small datasets (training set size < 104), while decreasing by 0.19% on
large datasets (training set size = 104).

7 CONCLUSION

To our knowledge, this work is the first attempt to combine equivariance and KANs. We view
the KAN layer as a combination of spline functions and linear weights, and accordingly define the
(gated) input space, post-activation space, and (gated) output space of the EKAN layer. Gated ba-
sis functions ensure the equivariance between the gated input space and the post-activation space,
while equivariant linear weights guarantee the equivariance between the post-activation space and
the gated output space. The prior work has demonstrated that “EMLP > MLP” on tasks with sym-
metries and “KAN > MLP” on symbolic formula representation tasks. Our experimental results
further indicate that on symbolic formula representation tasks with symmetries, “EKAN > EMLP”
and “EKAN > KAN”. Moreover, on non-symbolic formula representation tasks with symmetries,
although it may be that “KAN < MLP”, we show that “EKAN > EMLP”. We expect that EKAN can
become a general framework for applying KANs to more fields, such as computer vision and natural
language processing, just as EMLP unifies classic works like CNNs and DeepSets.
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A COMMON MATRIX GROUPS AND THEIR GENERATORS

A.1 GROUPS SO(2) AND O(2)

The group SO(2) represents rotation transformations in two-dimensional space. Its group elements
can be expressed as:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (24)

It corresponds to an infinite generator:

A1 =

[
0 −1
1 0

]
. (25)

Then we can obtain the group elements through the exponential map R(θ) = exp(θA1).

The group O(2) represents orthogonal transformations in two-dimensional space, including rota-
tions and reflections. Based on the group SO(2), it has an additional discrete generator:

h1 =

[
1 0
0 −1

]
. (26)

A.2 GROUPS SO+(1, 3), SO(1, 3), AND O(1, 3)

The group SO+(1, 3) represents Lorentz transformations that preserve both orientation and the di-
rection of time. It includes six infinitesimal generators:

A1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , A2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , A3 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

A4 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 , A5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , A6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 ,

(27)

where A1, A2, A3 correspond to Lorentz boosts, and A4, A5, A6 correspond to spatial rotations.

The group SO(1, 3) represents Lorentz transformations that preserve orientation. Based on the group
SO+(1, 3), it has an additional discrete generator:

h1 =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (28)

which corresponds to orientation reversal.

The group O(1, 3) represents all Lorentz transformations. Based on the group SO(1, 3), it has an
additional discrete generator:

h2 =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (29)

which corresponds to time reversal.

B PROOF OF THEOREM 1

Theorem 1. Given a matrix group G̃, the gated input space Ugi and the post-activation space Um

can be expressed in the forms of Equations (11) and (15), respectively. The function f : Ugi → Um

is defined by Equations (12), (13) and (14), that is, vm = f(vgi). Then, f is equivariant:

∀g ∈ G̃, vgi ∈ Ugi : ρm(g)f(vgi) = f(ρgi(g)vgi), (16)
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where ρgi and ρm are group representations of Ugi and Um, respectively.

Proof. Let vm,b = fb(vgi), then Equation (13) can be written as:

f(vgi) =

G+k⊕
b=0

fb(vgi). (30)

Using the structure of Um shown in Equation (15) and applying the rules from Equation (4), we can
derive the group representation of Um:

ρm(g) =

G+k⊕
b=0

ρi(g), (31)

where ρi is the group representation of Ui.

Combining Equations (30) and (31), we have:

ρm(g)f(vgi) =

G+k⊕
b=0

ρi(g)fb(vgi). (32)

Note that the group transformation in the scalar space T0 is the identity transformation, then we can
obtain the group representation of Ugi from Equation (11):

ρgi(g) = Ici ⊕

[
Ai⊕
a=1

ρi,a(g)

]
⊕ IAi

, (33)

where ρi,a is the group representation of T (pi,a, qi,a).

Therefore, applying the group transformation to vgi in Equation (12) results in:

ρgi(g)vgi =

(
ci⊕

a=1

si,a

)
⊕

(
Ai⊕
a=1

ρi,a(g)vi,a

)
⊕

(
Ai⊕
a=1

s′i,a

)
. (34)

Substitute Equation (34) into Equation (14):

fb(ρgi(g)vgi) =

[
⊕ci

a=1 si,aBb(si,a)]⊕
[⊕Ai

a=1 ρi,a(g)vi,aBb(s
′
i,a)
]
, b < G+ k,

[
⊕ci

a=1 si,asilu(si,a)]⊕
[⊕Ai

a=1 ρi,a(g)vi,asilu(s
′
i,a)
]
, b = G+ k.

(35)

Similar to Equation (33), we can derive the group representation of Ui from Equation (10):

ρi(g) = Ici ⊕

[
Ai⊕
a=1

ρi,a(g)

]
. (36)

Note that the right-hand side of Equation (35) is the result of applying ρi(g) to fb(vgi), which means:
fb(ρgi(g)vgi) = ρi(g)fb(vgi). (37)

Substitute Equation (37) into Equation (30):

f(ρgi(g)vgi) =

G+k⊕
b=0

ρi(g)fb(vgi). (38)

Combining Equations (32) and (38), Equation (16) is proven.

C IMPLEMENTATION DETAILS

C.1 PARTICLE SCATTERING

In particle scattering, we generate training sets of different sizes, and the corresponding test sets have
the same sizes as the training sets. We train EKAN using the Adan optimizer (Xie et al., 2024) with
the learning rate of 3×10−3 and the batch size of 500. For datasets with the training set size < 1000,
we set the number of epochs to 7000, while for datasets with the training set size ≥ 1000, we set the
number of epochs to 15000, which is sufficient for the MSE loss to converge to the minimum. We
perform this experiment on a single-core NVIDIA GeForce RTX 3090 GPU with available memory
of 24576 MiB.
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C.2 THREE-BODY PROBLEM

In the three-body problem, we control the number of parameters by adjusting the middle layer
width N of the model. We list the correspondence between the model’s shape and the number of
parameters in Table 4. We train all models using the Adan optimizer (Xie et al., 2024) with the
learning rate of 3× 10−3, the batch size of 500, and for 5000 epochs. The grids of EKAN and KAN
are updated every 5 epochs and stop updating at the 50th epoch. We perform this experiment on a
single-core NVIDIA GeForce RTX 3090 GPU with available memory of 24576 MiB.

Table 4: The correspondence between the model’s shape and the number of parameters.

Models Number of parameters
104.5 104.75 105 105.25 105.5

MLP [48, 111, 111, 111, 12] [48, 153, 153, 153, 12] [48, 209, 209, 209, 12] [48, 283, 283, 283, 12] [48, 383, 383, 383, 12]
EMLP [48, 84, 84, 84, 12] [48, 110, 110, 110, 12] [48, 147, 147, 147, 12] [48, 214, 214, 214, 12] [48, 281, 281, 281, 12]
KAN [48, 76, 12] [48, 134, 12] [48, 238, 12] [48, 423, 12] [48, 752, 12]
EKAN (Ours) [48, 45, 12] [48, 88, 12] [48, 151, 12] [48, 262, 12] [48, 457, 12]

C.3 TOP QUARK TAGGING

In top quark tagging, we train all models using the Adan optimizer (Xie et al., 2024) with the learning
rate of 3× 10−3 and the batch size of 500. For datasets with the training set size ≤ 1000, we set the
number of epochs to 1000, while for datasets with the training set size > 1000, we set the number
of epochs to 2000, which is sufficient for the BCE loss to converge to the minimum. The grids of
EKAN and KAN are updated every 5 epochs and stop updating at the 50th epoch. We perform this
experiment on a single-core NVIDIA GeForce RTX 3090 GPU with available memory of 24576
MiB.
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