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ABSTRACT

Graph neural networks have shown great potential for the description of a vari-
ety of chemical systems. However, standard message passing does not explicitly
account for long-range and directional interactions, for instance due to electrostat-
ics. In this work, an anisotropic state based on Cartesian multipoles is proposed
as an addition to the existing hidden features. With the anisotropic state, message
passing can be modified to explicitly account for directional interactions. Com-
pared to existing models, this modification results in relatively little additional
computational cost. Most importantly, the proposed formalism offers as a distinct
advantage the seamless integration of (1) anisotropic long-range interactions, (2)
interactions with surrounding fields and particles that are not part of the graph,
and (3) the fast multipole method. As an exemplary use case, the application to
quantum mechanics/molecular mechanics (QM/MM) systems is demonstrated.

1 INTRODUCTION

Message passing graph neural networks (GNN) have shown great potential for the description of a
wide range of chemical systems (Scarselli et al., 2009; Battaglia et al., 2016; 2018). Particularly
the description of quantum molecular (QM) systems with machine learning (ML) potentials has
received a lot of interest (Gilmer et al., 2017; Unke et al., 2021b). However, in its general form,
message passing does not explicitly account for directionality, which plays an important role in
many physical interactions (Glotzer & Solomon, 2007; Kramer et al., 2014). In recent years, a
range of models which include directional information have been proposed (Anderson et al., 2019;
Klicpera et al., 2020; Miller et al., 2020; Schütt et al., 2021). Especially models based on Clebsch-
Gordan tensor products have shown superior data efficiency (Batzner et al., 2022; Batatia et al.,
2022b; Musaelian et al., 2022). However, the relatively high cost of these operations might hinder
the application to larger systems such as biomolecules in solution. This difficulty is compounded
by growing evidence that message passing cannot accurately resolve long-range interactions (Alon
& Yahav, 2020; Dwivedi et al., 2022). Note that we consider here interactions as long-range if
convergence in real space is slow or non-existent, e.g. electrostatic interactions or polarization.

In light of these challenges, which are exemplary illustrated in Figure 1, we propose a model with
the aim to (1) include directional information while (2) retaining computational efficiency and (3)
incorporating (anisotropic) long-range interactions. Specifically, the addition of an anisotropic state
to the existing hidden features is proposed. This anisotropic state is based on Cartesian multipoles
and expressed as a linear combination of local frames. As a result, these multipoles are equivariant
under rotations and can be used to describe anisotropy of interactions. The formalism is developed
analogously to the concept of atomic multipoles commonly used in computational chemistry (Stone,
2013). The proposed modification results in relatively little computational overhead compared to
standard message passing models. Most importantly, the formulation based on multipoles allows for
the hybrid treatment of particles and fields. This is of particular interest for two cases: (1) Systems
of particles embedded in an external field, and (2) systems with large numbers of particles where
long-range interactions may be treated with the fast multipole method (Rokhlin, 1985).
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As a practical use case, we consider quantum mechanics/molecular mechanics (QM/MM) simula-
tions (Warshel & Levitt, 1976). In QM/MM simulations, a QM system is embedded in an external
electrostatic field generated by MM particles, allowing for an efficient description of large systems,
for instance protein-ligand complexes or enzymatic reactions in solution. As such, the QM/MM
formalism might be ideally suited to apply ML potentials to extended systems. Consequently, a
ML/MM formalism within the message passing framework is formulated analogous to QM/MM.
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Figure 1: Exemplary situations arising in molecular systems for which message passing with dis-
tance labelled edges fails. (A): Rotation of one molecule by an angle α cannot be recognized without
adding more edges. However, this change can be resolved through the addition of a dipole (blue ar-
row). (B): Similarly, a rotation by an angle β around the axis described by the aligned dipoles
(’torsion’) can be resolved by including a quadrupole (blue/red crossed arrows). (C): An electric
field caused by charges (+) surrounding the molecule. While the electrostatic interaction is addi-
tive, the polarization on the black atom due to the opposing charges cancels out in the left case but
adds up in the right case. (D): ‘Long-range’ interactions (dashed lines): Message passing can nei-
ther distinguish distance nor direction for the interactions between the red and the two blue-dotted
particles.

2 RELATED WORK

ML potentials have sparked interest as a possible solution to the steeply scaling computational cost of
quantum chemical methods (Schuch & Verstraete, 2009; Unke et al., 2021b), with high-dimensional
neural network potentials being some of the earliest proposed methods (Behler, 2011). With the
introduction of GNN (Scarselli et al., 2009; Battaglia et al., 2016; 2018), the development of ML po-
tentials has shifted away from handcrafted features to end-to-end differentiable models which learn
features solely from distances and element types (Gilmer et al., 2017; Unke et al., 2021b). Rec-
ognizing that GNN may fail to distinguish certain graphs has spurred the development of modified
message passing schemes (Morris et al., 2019; Maron et al., 2019; Pozdnyakov & Ceriotti, 2022).
As a solution, the explicit integration of many-body interactions in the message passing (Kondor,
2018; Klicpera et al., 2020; Shui & Karypis, 2020; Zhao et al., 2021), directional messages (Ander-
son et al., 2019; Schütt et al., 2021), and combinations thereof (Gasteiger et al., 2021; Batatia et al.,
2022b) have been proposed. Building on the concept of equivariant CNNs (Cohen & Welling, 2016;
Weiler et al., 2018), equivariant message passing models based on Clebsch-Gordan tensor products
have received increased attention (Anderson et al., 2019; Miller et al., 2020; Satorras et al., 2021;
Brandstetter et al., 2021; Batzner et al., 2022; Musaelian et al., 2022). A categorization based on
employed architectural features was recently proposed by Batatia et al. (2022a), offering a succinct
overview. Deficiencies in the description of long-range interactions have led to models that include
explicit interaction terms (Unke & Meuwly, 2019; Ko et al., 2021), as well as models that integrate
this information in the representation itself (Grisafi & Ceriotti, 2019; Grisafi et al., 2021; Unke et al.,
2021a). As an alternative to the ML potentials mentioned so far, ML within the QM/MM formalism
might facilitate the description of condensed phase systems. Recent work has highlighted the chal-
lenges and potential of ML for the simulation of QM/MM systems (Zhang et al., 2018; Böselt et al.,
2021; Pan et al., 2021; Hofstetter et al., 2022; Giese et al., 2022).
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3 METHODS

3.1 MESSAGE PASSING GRAPH NEURAL NETWORKS

Message passing GNN process graph-structured data. In its commonly used form, node, edge,
and/or global features are iteratively refined. Various models have been proposed in recent years
with differences found in the construction of the graph and the employed message passing mecha-
nism (Scarselli et al., 2009; Battaglia et al., 2016; Gilmer et al., 2017; Battaglia et al., 2018).

Considering a graph G = (V, E) with nodes vi ∈ V and edges eij ∈ E , message passing can be
defined as

hl+1
i = ϕh(h

l
i,

∑
j∈N(i)

ϕe(h
l
i,h

l
j ,uij)) (1)

with hl
i ∈ Rn describing the hidden-feature vector of node vi after l iterations, uij ∈ Rn the edge

feature of the edge eij between node i and j, N(i) denoting the set of neighbours of vi, and ϕe

and ϕh describing edge and node update functions. The superscript l denotes the current message
passing iteration with n being the total number of message passing layers.

In the following paragraphs, we will refer to QM and MM particles. In the context of this work, QM
particles are nodes vi of a graph G, which are labelled with a hidden feature hi. MM particles, on
the other hand, are not part of the graph, and therefore do not hold a hidden feature. Instead, only a
scalar partial charge qi (monopole) is attached to MM particles. More generally, MM particles can
be understood as a specific example of a source of an external field in which the graph is embedded.
In addition, both QM and MM particles hold a position ri ∈ R3 in Cartesian space.

3.2 THE ANISOTROPIC STATE

The present work proposes the introduction of an internal anisotropic state Mi composed of Carte-
sian multipoles of order k to the existing hidden features. Cartesian multipoles are ideally suited for
this task as they result in relatively little additional computational costs and conceptual complexity.
Specifically, Mk

i ∈ R3n refers to the k-th moment of the anisotropic state of node i composed of
the monopole M0

i , the dipole M1
i and so on. For clarity, the iteration superscript l will be omitted.

However, in practice, the anisotropic state can be updated during each iteration much like the hidden
feature hl

i.

The anisotropic state is expressed as a linear combination of a local basis (Thürlemann et al., 2022).
This formulation preserves equivariance under rotations and invariance to translations. As the local
basis, the traceless tensor product of order k of the unit vector r̂ij pointing from the position of node
i to the position of its neighbour j is used

Rk
ij = r̂ij ⊗ r̂ij ⊗ ... (2)

with k referring to the order of the multipole and R0
ij = 1. Each component of order k of the

anisotropic state Mk
i is then expressed as

Mk
i =

∑
j∈N(i)

ckijR
k
ij (3)

with coefficients ckij predicted for each interaction as

ckij = ϕM(k)(hi,hj ,uij) (4)

where ϕM(k) refers to a learnable function. The scalar coefficient ckij is based on the hidden features
of the interacting nodes i and j as well as an edge feature uij . The coefficient ckij can be interpreted
as the contribution of the node j to the polarization of order k of node i analogous to a (hyper-
)polarizability. We note that the multipoles discussed here serve as a tool to introduce anisotropy.
Albeit possible, they do not necessarily carry physical meaning.
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3.3 ANISOTROPIC INTERACTION FEATURES

Given the anisotropic state Mi proposed in the previous section, multipole-multipole interactions can
be defined. Formulation of the multipole interaction follows the notation and formalism described
in (Smith, 1998; Lin, 2015; Burnham & English, 2020) which decomposes the interaction between
multipoles on two distinct sites into a product of a radial component bk(||rij ||) and coefficients of
the multipole interactions gkij(rij), resulting in the following terms

uij =

∞∑
k=0

bk(||rij ||)gkij(rij) (5)

with bk(||rij ||) = (2k−1)!!/||rij ||2k+1. In the context of machine learning, bk can be reinterpreted
as filters analogous to the continuous-filter convolutions introduced by Schütt et al. (2018). Con-
sequently, the coefficients gkij encode the angular information based on the relative orientation of
the multipoles centered on the interacting nodes. In the notation of Burnham & English (2020), the
coefficients can be generated with

gk
ij =

⊕
di+dc+dj=k

⟨(M(di+dc)
i .di.Rdi

ij ), (M
(dj+dc)
j .dj .R

dj

ij )⟩ (6)

given multipoles M(di+dc)
i of order (dj + dc) on site i and the previously defined traceless tensor

products of the vector r̂ij .
⊕

refers to the concatenation of the scalar coefficients. All di, dj , dc
where di+dj+dc = k and di, dj , dc ≥ 0 are included. d denotes the number of contractions, with di
being the number of contractions over the indices of the first bracket, dj the number of contractions
in the second bracket and dc the number of contractions between the two brackets, indicated by ⟨., .⟩.
Analogous to the multipole interaction defined in Eq. 5, the anisotropic feature aij is defined as

aij = ϕb(||rij ||) ◦G(r̂ij ,Mi,Mj) (7)

where we use ◦ to denote the aforementioned element-wise multiplication with radial weights gen-
erated by ϕb and G(r̂ij ,Mi,Mj) for the concatenated multipole interaction coefficients gk

ij of all
considered orders k.

3.4 ANISOTROPIC MESSAGE PASSING (AMP)

Based on the anisotropic feature defined in the previous section, the modified message passing is
obtained as

Mk
i =

∑
j∈N(i)

ϕM(k)(h
l
i,h

l
j ,aij)Rk

ij

aij = ϕb(||rij ||) ◦Gij(r̂ij ,Mi,Mj)

hl+1
i = ϕh(h

l
i,

∑
j∈N(i)

ϕe(h
l
i,h

l
j ,aij))

(8)

Thus, two additional steps are added to the standard message passing formalism: (1) Expansion of
the multipoles on each node, and (2) contraction of the multipoles for each pair of interacting nodes.
The resulting feature is used to incorporate directional information in the message mij . For the use
as a ML potential, the total potential energy is expressed as a sum of atom-based contributions of
each QM particle, i.e. VQM =

∑QM
i ϕV (h

n
i ). We will refer to this model as AMP(k) where k

denotes the highest order of the multipoles used and n is the number of graph layers.

3.5 QUANTUM MECHANICS/MOLECULAR MECHANICS (QM/MM)

QM/MM has become an integral part of computational chemistry since its inception in
1976 (Warshel & Levitt, 1976). QM/MM offers an efficient way to incorporate interactions with
an environment, for instance solvent molecules and/or proteins, through combination of a QM and
a classical (MM) description of a system. As such it retains the fidelity of QM-based methods for
the region of interest, e.g. the solute, and the computational efficiency of classical force fields for
the surroundings. Here, a brief description of the electrostatic embedding, one of several possible
QM/MM schemes, is given. We refer the interested reader to Senn & Thiel (2007) for further details.
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Within an electrostatic embedding, a designated QM zone interacts with the partial charges of the
surrounding MM particles. For this purpose, the molecular Hamiltonian ĤQM is extended by an
interaction with the MM zone

ĤQM/MM = −
MM∑
i

EL∑
j

qi
||ri − rj ||

+

QM∑
i

MM∑
j

Ziqj
||ri − rj ||

(9)

where qi are the partial charges of the MM zone and Zi refer to the core charges of the nuclei. MM
refers to the MM particles, EL to the electrons in the QM zone and QM to the QM nuclei. While
the first term incorporates the interaction of the surrounding partial charges analogous to the core-
electron interaction, the second term describes the Coulomb interaction between the nuclei within
the QM zone and the partial charges. In other words, the QM system interacts with point charges
representing the MM particles. The point charges polarize the QM system and interact with the
resulting charge distribution. Remaining interactions between QM and MM particles, i.e. exchange-
repulsion and dispersion, are described with classical force-field terms such as the Lennard-Jones
potential (Jones & Chapman, 1924).

3.6 QM/MM FOR MESSAGE PASSING: DIRECT POLARIZATION

As a synthesis of the two previous sections, we propose a further modification to anisotropic message
passing, which incorporates interactions with a surrounding field or particles that are not part of the
graph.

Mk
i =

∑
j∈NQM (i)

ϕMQM (k)(h
l
i,h

l
j ,aij)Rk

ij +
∑

j∈NMM (i)

ϕMMM (k)(h
l
i,aij)Rk

ij (10)

Here, NQM (i) refers to the neighbours of i in the QM zone and NMM (i) to the neighbours of i in
the MM zone. In addition to the previously described polarization due to neighbouring atoms that
are part of the graph, a second term is introduced, which adds a contribution caused by the MM par-
ticles. The second term is conditioned on the hidden feature of the QM particle and the anisotropic
feature aij , which is based on the multipoles on the QM particle i and the partial charge on the
MM particle. Evidently, this formulation permits also the application to polarizable embeddings
schemes, use with the fast multipole method, and use of higher-order multipoles. We note that MM
particles contribute only to the polarization of multipoles with order k ≥ 1, analogous to the defi-
nition of (hyper-)polarizabilities (Stone, 2013). Since MM particles are only labelled with a charge
and not with a hidden feature hl

i, the interaction depends solely on the feature of the QM particle
and the anisotropic interaction feature aij , which encodes the strength of the interaction and the
relative orientation of the MM particle with respect to the polarized QM particle. The advantages
of the proposed interaction mechanism are twofold: First, the evaluation of messages between MM
particles and between QM and MM particles is avoided. Instead, only the cheaper polarization term
is evaluated for the more numerous QM–MM interactions. Second, directional and long-range in-
teractions are efficiently incorporated in addition to the proper cancellation of opposing polarization
terms. The total potential energy is then obtained as the atom-based contribution due to the QM
particles described previously and a contribution due to the Coulomb interaction between QM and
MM particles,

VQM/MM,ESP =

QM∑
i

MM∑
j

ϕρ(h
n
i ) · qj

||rij ||
(11)

where qj denotes the partial charge of the respective MM particle and ϕρ(h
n
i ) refers to a scalar

charge density localized on the respective QM particle, analogous to a discretized Coulomb interac-
tion. In other words, a pairwise interaction between each QM atom and its neighbours in the MM
zone is added. In principle, ϕρ(h

n
i ,aij) may be used to incorporate anisotropy. Here, only the

hidden feature hn
i is used. Thus, asymptotically correct long-range behaviour can be guaranteed by

enforcing that the resulting scalar charges conserve total charge within the QM zone by subtraction
of the mean excess charge, i.e.

∑QM
i ϕρ(h

n
i ) = 0 for neutral systems. Expansion of ϕρ(h

n
i ) it-

self may be an alternative route to obtain anisotropic QM/MM electrostatic interactions, as shown
by Grisafi & Ceriotti (2019). The forces Fi acting on the QM and MM particles are obtained as the
derivative of the negative total energy (VQM/MM,ESP + VQM ) with respect to the positions ri of
the QM and MM particles, respectively. We will refer to models that include this direct polarization
terms as AMP(k)-D. Use of the pairwise long-range potential in Eq. 11 will be denoted by ‘-P’.
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4 RESULTS

Results are split into three parts: First, two model systems are investigated to explore the proposed
modifications. Second, the model is applied to an existing dataset of QM/MM systems. Finally,
results for QM9 are reported as a comparison with existing models.

4.1 WATER DIMERS: DIRECTIONAL FEATURES

As an illustrative example of the discussed concepts, a water dimer as shown in Figure 1B is inves-
tigated. Configurations were generated by rotating one molecule in steps of one degree around the
axis described by the aligned dipoles, resulting in a total of 360 configurations. The molecules were
separated by a distance of 4 Å. For such a system, three cutoff regimes are significant: (1) The cutoff
rcut used to construct the graph is larger than the maximal distance rmax in the system, resulting in
a fully-connected graph (rmax < rcut). (2) The cutoff is larger than the distance rOO between the
two opposing oxygen atoms but smaller than the maximal distance (rOO < rcut < rmax). (3) The
cutoff is smaller than the distance between the oxygen atoms, resulting in two disconnected graphs
(rcut < rOO). Particularly case (2) is interesting as it can be related to torsional degrees of freedom,
which play an important role in molecular dynamics.

A B C

Figure 2: Potential energy (y-axis) for the quadrupole-quadrupole interaction between two wa-
ter molecules for the proposed cutoff regimes with rcut = 8.0 Å (A), rcut = 4.25 Å (B), and
rcut = 2.0 Å (C). The relative orientation is indicated by the angle on the x-axis. The resulting
graph topology for each cutoff is shown as inset. The reference (MP2) is shown in grey. Results for
AMP(1), AMP(2), and AMP(2)-DP are shown as orange, red, and blue lines, respectively.

For all results shown in this section, a minimal 1-layer model was used. While the k = 1 model
is still able to describe the interaction using a cutoff that results in a fully connected graph (i.e.
case (1) shown in Figure 2A), a marginally larger error MAE (0.32 AMP(1) versus 0.05 J mol−1

AMP(2)) was found for the AMP(1) compared to the AMP(2) model. This observation could be an
indication that the present task is also more challenging for AMP(1) than AMP(2). Learning curves
shown in Figure 5 add further evidence to this interpretation. For case (2) shown in Figure 2B,
the k = 1 model (orange line) fails to describe the interaction, as the dipole-dipole interaction
remains invariant under the considered rotation. This issue can be traced back to the quadrupole–
quadrupole interaction of the opposing oxygen atoms, motivating the need for k ≥ 2. We note that
this case is also interesting as it exemplary demonstrates the limitations of two existing directional
message passing architectures, i.e. DimeNet and PaiNN Klicpera et al. (2020); Schütt et al. (2021).
These two models seem to fail to describe this quadrupole-quadrupole interaction despite the use
of directional information. Our interpretation is that for DimeNet this is due to the invariance of
bond angles under the considered rotation, and for PaiNN because it only uses vectorial information
(i.e. k = 1). Finally for case (3) shown in Figure 2C, all message passing models without additional
long-range interactions fail (red line), motivating the proposed pairwise interaction and contributions
to the polarization (models with suffix ‘-D’ and ‘-P’, shown in blue). We note that the long-range
interaction would in principle also include dispersion, which we do not address here due to the
availability of robust and efficient classical models.

4.2 WATER CLUSTERS: EXTENSIVITY

For this task, clusters of water molecules, ranging in size from six to 20 molecules, were investigated.
For each cluster, one molecule was randomly selected as the QM zone while all other molecules
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were treated as MM particles. The goal of this task is the prediction of the difference in energy and
gradients caused by placing the QM system in the external field generated by the MM particles. A
successful model must be able to discriminate between (1) the polarization of the QM zone by the
external field, which does not directly scale with cluster size, and (2) the electrostatic interaction,
which increases with cluster size. All models were trained on 1′289 samples from clusters of size
10. All other cluster sizes were used for testing. Results are shown in Figure 3.

Baseline – Message Passing: As a baseline message passing model, the PaiNN architecture is used.
PaiNN was shown to perform accurately on a wide variety of tasks through inclusion of directional
information (Schütt et al., 2021). For our QM/MM task, the MM particles are part of the same graph
as the QM particles. However, energies are only predicted for the three QM particles of the water
molecule in the QM zone.

Ablation Studies – Multipole Order and Polarization: In addition, the role of the multipole order k
was investigated. To compensate for different sizes of aij due to the multipole order, the number
of radial weights was adjusted such that the total number of trainable parameters (∼ 1M) remained
constant.
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Figure 3: Mean absolute errors (MAE) with respect to the reference (MP2) for the energy (EQM) and
gradients (FQM) of QM/MM water clusters of different sizes. In all cases, one water was treated as
a QM system within the electric field of the surrounding charges. All models were trained only on
clusters of size 10. Energies are reported in kJ mol−1 and forces in kJ mol−1 Å−1.

Not surprisingly, AMP(0) fails at this task as it only interacts with the MM particles through the
pairwise Coulomb potential of Eq. 11. The results for AMP(0) provide a rough estimate of the
role of both polarization and anisotropy in the present task. Including the direct polarization (i.e.,
AMP(0) versus AMP(1)), results in the largest relative improvement. This result demonstrates that
the proposed modification allows the model to incorporate information about the surrounding par-
ticles without explicit message passing between the QM and MM zone. Interestingly, increasing k
from 2 to 3 (i.e., AMP(2) versus AMP(3)), seems to diminish the extrapolation capabilities again,
most notably on the largest clusters. Overall, we find that all models that interact with the MM
particles (i.e., AMP(1), AMP(2), AMP(3) and PaiNN), perform comparably on the training set and
clusters with similar size, whereas differences in performance arise for much larger and smaller
clusters. While the performance of the PaiNN model is comparable to the AMP(2) and AMP(3)
models on gradients, larger deviations are observed for energies. This result could be an indication
that message passing models like PaiNN may have difficulties to differentiate between the electro-
static and polarization interaction in the present task. Building models that differentiate between
interaction types might be an important step for ML potentials to improve transferability to large
and/or condensed-phase systems.

4.3 QM/MM SYSTEMS

As a more realistic example, the model was tested on a previously published datasets of QM/MM
systems introduced by Böselt et al. (2021). These datasets include QM energies, QM gradients,
and MM gradients of five molecules of varying size solvated in water. In this work, we focus
on the three largest and most challenging systems: uracil, retinoic acid (RA) and the S-adenosyl
methionine/cysteine dimer (SAM) with 12, 50 and 49 + 14 QM atoms, respectively. On average,
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each molecule is surrounded by approximately 1′491 (uracil), 2′391 (RA) and 2′553 (SAM) MM
particles. Each water molecule is represented by three partial charges centered on each atom. These
datasets are challenging due to the large number of surrounding MM particles that polarize the QM
system, the resulting electrostatic long-range interactions, as well as the size and flexibility of RA
and SAM. A ∆-ML approach, which learned a correction on top of a semi-empirical tight-binding
method (DFTB (Elstner et al., 1998)), was used in previous work (Böselt et al., 2021; Hofstetter
et al., 2022).

Table 1: MAE for the QM energy (EQM), QM gradients (FQM), and MM gradients (FMM) of the three
QM/MM systems uracil, RA and SAM in water as described in Böselt et al. (2021). Energies are
reported in kJ mol−1 and forces in kJ mol−1 Å−1. The terms “unshuffled” and “shuffled” refer to
the dataset with and without temporal ordering, respectively.

AMP(3)-DP 50 Å (unshuffled) AMP(3)-DP 50 Å (shuffled)
System EQM FQM FMM EQM FQM FMM

Uracil 0.2/3.1/2.5 0.4/7.3/7.1 0.04/0.08/0.09 0.3/0.3/0.3 0.6/0.6/0.6 0.03/0.03/0.03
RA 0.5/9.1/12.0 1.2/5.0/9.6 0.06/0.16/0.19 0.6/0.6/0.6 1.4/1.5/1.5 0.06/0.06/0.06

SAM 2.2/29.1/44.3 3.3/16.1/16.0 0.20/0.39/0.34 3.1/3.2/3.3 3.2/3.5/3.5 0.15/0.15/0.15

No ∆-learning scheme was used in this work. In Table 1, results for a 3-layer AMP(3)-DP model
are reported. The performance is compared for two pre-processing steps: While (unshuffled) uses
the temporally sequential ordering used in the initial work Böselt et al. (2021); Hofstetter et al.
(2022), (shuffled) refers to a shuffled (i.e. randomized) version of the same data. Comparing
the same dataset (unshuffled), we observe in most cases larger errors compared to the previously
reported ∆-models but smaller errors than previously reported results without ∆-learning. For
uracil, (unshuffled) errors were reported without ∆-learning: Using a HDNNP architecture, Böselt
et al. (2021) reported MAEs of 2.9/6.6/4.8 kJ mol−1 for EQM, 6.38/12.6/12.4 kJ mol−1 Å−1 for
FQM and 0.62/0.58/0.65 kJ mol−1 Å−1 for FMM respectively. With a GNN architecture, Hof-
stetter et al. (2022) reported MAEs of 7.3 kJ mol−1 for EQM, 13.52 kJ mol−1 Å−1 for FQM and
0.58 kJ mol−1 Å−1 for FMM on the test-set. These results suggest that the proposed model can suc-
cessfully incorporate long-range polarization and electrostatic interactions. However, the relatively
large drop in accuracy for the (unshuffled) dataset, which was previously observed and discussed
in Hofstetter et al. (2022), indicates a limited capability to generalise. The difference between
random splits or time splits might be important for commonly used benchmark datasets such as
MD17 (Chmiela et al., 2017), as random splits tend to give a too optimistic performance assessment.
This issue is already well known in biological activity prediction Sheridan (2013). Calculating QM
energy, QM gradients, and MM gradients for uracil (12 QM atoms and an average of 1490 MM
atoms) using a 3-layer AMP(3)-DP takes around 10 ms on a Nvidia Titan V. Additional results re-
garding computational costs are reported in the Appendix A.1. Thus, a (QM)ML/MM simulation
based on the AMP model could in principle remove the bottleneck of current QM/MM molecular
dynamics (MD) simulations almost entirely. However, further improvements are required to bring
the cost down to a level comparable to the calculation of classical force fields, which is on the order
of 1ms/step for a system with around 14′000 atoms (Eastman et al., 2017). Such improvements
are clearly within reach, for instance through the use of the fast multipole method (Rokhlin, 1985).
Nevertheless, it is important to mention that a low MAE does not guarantee a stable MD simula-
tion (Stocker et al., 2022). In practice, a ∆-learning scheme might still be required to obtain stable
simulations over long timescales. The robustness of the AMP(k)-DP model for the propagation of
(QM)ML/MM MD simulations will therefore be investigated in the future.

Table 2: Comparison of long-range cutoffs. Energies are reported in kJ mol−1 and forces in
kJ mol−1 Å−1. The models used here were trained for fewer epochs than those in Table 1, re-
sulting in slightly larger errors. The shuffled dataset was used. Results are given for a training/test
split (7′000/3′000 data points).

AMP(3)-DP 30 Å AMP(3)-DP 50 Å
System EQM FQM FMM EQM FQM FMM

Uracil 0.3/0.4 0.8/0.9 0.06/0.06 0.3/0.3 0.8/0.9 0.03/0.03
RA 5.3/5.5 2.9/3.1 0.14/0.14 1.5/1.6 2.5/2.7 0.13/0.13

SAM 6.0/6.4 6.1/6.4 0.45/0.45 5.5/5.7 5.3/5.5 0.33/0.33
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In addition, two long-range cutoffs, 30 Å and 50 Å, for the interactions between QM and MM par-
ticles are investigated (Table 2). Notable performance differences are observed for the two investi-
gated long-range cutoffs, which reaffirms the importance of long-range interactions. In both cases,
a smooth cutoff function is used, thus the differences cannot simply be explained by cutoff artifacts.
In this context, it is further important to mention that an increased long-range cutoff does not change
the number of parameters and QM–QM interactions but only the number of QM–MM interactions.
A 50 Å cutoff covers all observed QM–MM interactions for all systems. For a 30 Å cutoff, the same
is only true for uracil. Particularly for retinoic acid, for which the solvent-shell is elongated, the
difference of the MAE for EQM between the two cutoffs is considerable. Hence, even if a message
passing architecture with six layers and a cutoff of 5 Å, could accurately resolve long-range interac-
tions, these interactions would still fall outside the perceptive radius. However, given that there is
little evidence that message passing models can faithfully resolve and incorporate such long-range
interactions in the first place, this observation might be crucial for future work on ML potentials.

4.4 QM9 DATASET

Results for a 4-layer AMP(3) model with a cutoff of 5 Å for the 12 properties of the QM9 dataset
are given in Table 3 and compared with existing models reported in the literature. Inference of a
4-layer AMP(3) model used here requires approximately 26ms for a batch of 100 samples with
a total of 1′833 atoms (see Appendix A.1, NVIDIA Titan V), comparing favourably to existing
models. Errors on properties related to the potential-energy surface (i.e., U, U0, H, G, and ZPVE)
are higher than for other models (Allegro, PaiNN, PaxNet, DimeNet). For the remaining properties,
performance is comparable with other state-of-the-art architectures.

Table 3: Mean absolute error (MAE) for the 12 properties of the QM9 dataset (Ramakrishnan et al.,
2014). AMP refers to the model proposed in this work. Values for existing models in the literature
are taken from: SchNet (Schütt et al., 2018), DimeNet (Klicpera et al., 2020), PaiNN (Schütt et al.,
2021), Allegro (Musaelian et al., 2022), SEGNN (Brandstetter et al., 2021), and PaxNet (Zhang
et al., 2022).

Target Unit SchNet DimeNet PaiNN Allegro SEGNN PaxNet AMP
U0 meV 14 8.02 5.85 4.7 15 5.90 11.3
U meV 19 7.89 5.83 4.4 13 5.92 11.4
H meV 14 8.11 5.98 4.4 16 6.04 11.3
G meV 14 8.98 7.35 5.7 15 7.14 12.4

ZPVE meV 1.7 1.29 1.28 - 1.62 1.17 4.1
ϵHOMO meV 41 27.8 27.6 - 24 22.8 25.7
ϵLUMO meV 34 19.7 20.4 - 21 19.2 22.6
∆ϵ meV 63 34.8 45.7 - 42 31.0 44.9
µ mD 33 28.6 12.0 - 23.0 10.8 11.7
α ma30 235 46.9 45 - 60 44.7 66.8

⟨R2⟩ ma20 73 33.1 66 - 660 93 249.2
cv mcal

mol·K 33 24.9 24 - 31 23.1 31.7

5 OUTLOOK

In this work, a modified message passing formalism that allows for the efficient incorporation of
directional and long-range information was proposed. For future work, an implementation, which
makes use of the fast multipole method, as well as the explicit inclusion of many-body interactions,
as demonstrated by Klicpera et al. (2020) and Batatia et al. (2022b), and additional weights, as
shown by Schütt et al. (2021), could be promising avenues. As a particular use case, we envision the
application in (QM)ML/MM MD simulations, which could facilitate the study of large biomolecular
systems and enzymatic reactions.
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Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv, pp. arXiv:2006.05205, 2020.

Brandon Anderson, Truong-Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Adv. Neural Inf. Process. Syst., 32, 2019.
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A APPENDIX

A.1 COMPUTATIONAL COST

The modifications proposed in this work will result in additional computational costs. However, it
is important to note that the proposed changes will only increase the constant cost of each message
but not the overall complexity. The following two paragraphs show empirical running times in a
pure QM and in a QM/MM setting. All timings are reported based on a Nvidia Titan V.
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Table 4: Relative inference time for a single batch of 100 molecules of the QM9 dataset with a
n-layer AMP model. The absolute cost is given in parenthesis. The relative cost in percentage is
given with respect to the message passing without the proposed modifications as defined in Eq. 1.

n AMP(0) AMP(1) AMP(2) AMP(3)
1 138% (5.7 ms) 146% (6.0 ms) 164% (6.8 ms) 207% (8.5 ms)
2 151% (8.1 ms) 164% (8.8 ms) 200% (10.7 ms) 267% (14.3 ms)
3 162% (10.6 ms) 178% (11.6 ms) 221% (14.4 ms) 307% (20.1 ms)
4 167% (12.9 ms) 187% (14.4 ms) 236% (18.2 ms) 333% (25.7 ms)

A.1.1 COMPUTATIONAL COST: QM9

Here, the computational cost for various orders and number of layers is reported for a single batch
of the QM9 dataset containing 100 samples (1′833). This task only includes a single forward pass.
Timings were averaged over 100 calls. In addition to absolute costs (in brackets), relative costs with
respect to the baseline GNN described in Eq. 1 are reported in Table 4.

A.1.2 COMPUTATIONAL COST: QM/MM

For QM/MM simulations, which generally include a large number of MM particles and a large num-
ber of repeated calls, the cost of the ML potential will significantly contribute to the simulation cost.
In general, the computational cost will be dominated by the QM/MM interactions due to the larger
number of MM particles. Since the QM/MM interaction is based on a one-time unidirectional pair-
wise interaction, these costs will be proportional to NQM ×NMM , i.e., the number of MM particles
times the number of QM particles. The dominating NMM can be reduced further based on the fast
multipole method Rokhlin (1985). Here, we report timings for two settings. Setting 1 considers
the computational cost without interactions with the MM particles (i.e., the isolated molecule). In
setting 2, the computational cost due to the QM/MM interaction is investigated. In both cases, the
three layer AMP(3) model used for the systems described in Section 4.3 is used.

In this paragraph, computational costs for the isolated molecule are reported. Batches of size 60
were used. Timings were averaged over all batches using 100 runs and are reported per molecule.
A cutoff of 5 Åand three layers were used. Results are reported in Table A.1.2. We find that for the

Table 5: Cost for the prediction of QM energies and QM gradients for the isolated QM systems. The
number of particles is shown in the second column. GNN refers to a message passing model based
on Eq. 1, i.e., without the proposed modifications.

System Size GNN AMP(0) AMP(1) AMP(2) AMP(3)
Uracil 12 0.51 ms 0.65 ms 0.82 ms 1.04 ms 1.52 ms

RA 50 0.76 ms 1.33 ms 1.53 ms 2.07 ms 2.99 ms
SAM 63 0.87 ms 1.67 ms 1.95 ms 2.28 ms 3.15 ms

two larger systems, the computational cost per edge saturates at roughly 2 µs per edge as shown in
Figure 4. For both molecules, the cost per edge is roughly 50% higher with AMP(3) compared to
AMP(2).

Finally, we report the total computational cost to predict energies, QM gradients, and MM-gradients
for varying numbers of MM particles in Table A.1.2. Results were averaged over batches of size 10
using 100 runs. Reported are the costs per system.

A.2 GENERAL IMPLEMENTATION DETAILS

If not noted otherwise, the following architecture and hyperparameters were used. Three message
passing layers were used except for the QM9 dataset, where we used four message passing layers.
The architecture looked as follows:
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Figure 4: Computational cost per edge for the isolated molecules.

Table 6: Cost for the prediction of QM energies, QM gradients, and MM-gradients for varying
numbers of MM particles (NMM ). Results are reported for the three layer AMP(3) model used in
Section 4.3.

NMM Uracil RA SAM
10 5.6 ms 20.1 ms 20.5 ms
100 5.7 ms 22.3 ms 22.8 ms
1′000 8.4 ms 37.7 ms 37.4 ms

1. Generation of edge weights with [Linear(16)], which parametrized ϕb. As input, the onehot
features of the two connecting atoms and Bessel function (n = 20) expanded distance
features were used.

2. Embedding of node features: [Linear(128)]

3. Message layers with [Linear(128), Swish, Linear(128), Swish] for ϕh and
[Linear(128), Swish, Linear(128), Swish, Linear(k+1)] for the prediction of the co-
efficients cij , i.e., ϕM(k), ϕMQM (k) and ϕMMM (k). The coefficients for all orders k were
predicted with the same module.

4. A readout layer [Linear(128), Swish, Linear(128), Swish, Linear(1)].

Linear(n) refers to a standard fully connected network layer with bias. No bias was used for the last
layer of the output. For each message passing iteration, independent modules were used. Swish was
employed as the non-linearity (Ramachandran et al., 2017). Layer weights were initialized based on
the method proposed by He et al. (2015). Coefficients cij were scaled by 10−4 to support training
stability during early epochs.

Node features were initialized as onehot vectors of the element. Norms of the multipoles were
concatenated with the hidden feature. Edges were added for all atom pairs within a distance of 5 Å.
For interactions between QM and MM particles, an independent long-range cutoff of 50 Å was used.
Radial weights were conditioned on the initial onehot features, i.e., ϕb(h

0
i ,h

0
j , ||rij ||). Distances

||rij || were encoded with the enveloped Bessel functions proposed by Klicpera et al. (2020) with 20
functions and p = 5 for the envelope. The frequencies were not optimized. A ResNet-like update of
the hidden feature was used, i.e., hl+1

i = hl
i+ϕh(h

l
i,mi) (He et al., 2016). Model parameters were

optimized using ADAM (Kingma & Ba, 2017) with default parameters (β1 = 0.9, β2 = 0.999, ϵ =
10−7) and an exponentially decaying learning rate (5 ·10−4, 10−5). Gradients were clipped by their
global norm with a clip norm of 1 (Pascanu et al., 2012). Mean-squared errors were optimized. If
the model was jointly trained on energies and gradients, the following loss function was used

L =
(1− λ)

B

B∑
b

(V̂b − Vb)
2 +

λ

3BN

BN∑
i

2∑
α=0

(
− ∂Êb

∂ri,α
− Fi,α

)2

(12)
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with the potential energy V and the force component Fi,α for each Cartesian dimension α. λ = 0.8
was used to balance the contributions of the energies and gradients to the loss. The loss term for
the MM gradients was obtained in the same way but scaled by an additional factor 100 as proposed
in (Hofstetter et al., 2022). Models were implemented with TensorFlow (2.6.2 and 2.9.1) (Abadi
et al., 2015; Developers, 2021). Single precision float32 was used.

A.3 WATER DIMER

Calculations were performed with PSI4 (1.6) (Turney et al., 2012; Parrish et al., 2017; Smith et al.,
2020) on a MP2/aug-cc-pVTZ level of theory using density fitted MP2 (Dunlap, 2000; Distasio JR.
et al., 2007). The molecules were placed such that the two oxygen atoms were separated by 4 Å.
Structures were assigned to training and test sets in an alternating manner. Single layer models
were used for all experiments. Models were trained for 10′000 steps using a batch size of five. 64-
dimensional features were used as node features and four edge weights. Since the whole system was
simulated with MP2, no partial charge embedding was used. Instead, the pairwise interaction for the
model ’-DP’ was implemented as

VESP =
∑
i

∑
j>i

ϕρ(hi) · ϕρ(hj)

||rij ||
(13)

for all long-range pairs, i.e., ||rij || ≥ rcut. Double precision float64 was used for this system.

A.3.1 WATER DIMER: LEARNING CURVE

Work on equivariant and directional message passing models has shown that inclusion of directional
information can improve data efficiency (Schütt et al., 2021; Batzner et al., 2022; Batatia et al.,
2022b). Figure 5 illustrates the convergence of AMP models for the fully connected topology of the
water dimer in Figure 2A.
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Figure 5: Mean absolute error (MAE) of the energy in log10(kJmol−1) on the validation set during
training for the (fully-connected) dimer topology show in Figure 2A. The bold line indicates the
mean over 10 runs while the shaded regions indicate one standard deviation. The black horizontal
line indicates a null model (prediction = mean).

In addition, shown in Figure 6, we also explored the training behaviour for the AMP(2) model
on the sparsely-connected topology shown in Figure 2B. Interestingly, there appear to be cases
where training proceeds in a phase-transition like manner in contrast to the consistent convergence
observed for the fully connected topology in Figure 2A.

A.4 WATER CLUSTERS

The dataset with the water clusters was created based on the geometries presented in (Rakshit et al.,
2019) For each set of clusters ranging from 6 to 20 water molecules, up to 2′000 clusters were ran-
domly sampled. For each cluster, one water molecule was randomly designated as the QM zone with
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Figure 6: MAE of the energy in log10(kJmol−1) on the validation set during training for the (sparsely
connected) dimer topology show in Figure 2B. Each line represents the training trajectory of one of
10 randomly initialized models. The black horizontal line indicates a null model (prediction =
mean).

the remaining molecules forming the MM zone. The long-range cutoff was set to 30 Å , including all
QM–MM interactions. All accessible clusters were used, i.e., all known clusters within a 5 kcal/mol
energy window above the putative minimum. All clusters of size n = 10 were used for training while
the other clusters were used for testing. For the PaiNN, SchNet, and GNN models, the energy was
predicted for the QM particles. Furthermore, in addition to the existing atom types (oxygen-QM and
hydrogen-QM), two new types were introduced: oxygen-MM and hydrogen-MM. The implementa-
tion provided in the SchNetPack (Schütt et al., 2019) was used for PaiNN and SchNet (Schütt et al.,
2021; Schütt et al., 2018). For PaiNN, the size of the scalar representation (160) was increased to
provide a comparable number of trainable parameters ( 1M ). For SchNet, the size of layers and the
number of filters was set to 256. The same cutoff (5 Å), readout and radial basis functions were used
as in the AMP model. Numerical results for all models are reported in Table A.4.1. Partial charges of
the MM zone were assigned based on MBIS monopoles (Verstraelen et al., 2016), i.e., −0.914197e
for oxygen and 0.457098e for hydrogen. Calculations were performed on a MP2/aug-cc-pVTZ level
of theory (Møller & Plesset, 1934; Dunning, 1989; Kendall et al., 1992) using density fitted MP2
(Dunlap, 2000; Distasio JR. et al., 2007) as implemented in PSI4 (1.6) (Turney et al., 2012; Parrish
et al., 2017; Smith et al., 2020). Gradients and energies of the isolated QM zone were subtracted.
The models were trained over 50′000 steps, presenting each time a batch of 16 randomly drawn
samples.

A.4.1 WATER CLUSTERS: RESULTS

Table 7: Mean absolute error (MAE) of the energies in kJ mol−1 presented in Figure 3.
Cluster Size 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AMP(0) 7.8 6.25 3.97 5.4 5.11 5.76 4.4 5.14 5.06 5.13 4.67 4.71 5.05 5.02 5.11
AMP(1) 2.66 2.22 1.44 0.77 0.25 0.53 0.86 0.92 1.02 1.36 2.03 3.01 4.59 6.2 8.1
AMP(2) 0.3 0.33 0.17 0.18 0.16 0.26 0.23 0.26 0.28 0.34 0.41 0.42 0.47 0.56 0.55
AMP(3) 0.4 0.39 0.17 0.23 0.16 0.33 0.33 0.39 0.46 0.52 0.62 0.8 0.82 0.99 0.86
PaiNN 1.14 1.03 0.44 0.51 0.08 0.75 0.65 0.8 0.89 1.01 1.2 2.08 1.91 2.19 1.8
SchNet 1.79 1.42 0.6 0.75 0.19 1.05 1.02 1.28 1.37 1.5 1.75 3.61 3.61 4.1 4.11
GNN 6.22 5.09 1.47 1.48 0.07 1.68 2.18 3.01 3.63 4.34 4.8 7.54 6.74 6.94 6.94

GNN-P 1.16 0.88 0.37 0.39 0.09 0.57 0.54 0.8 1.0 1.2 1.34 2.32 2.62 3.43 3.6

A.5 QM/MM SYSTEMS

The datasets were taken from Böselt et al. (2021) and randomly split into training/validation/test
sets of 7′000/2′000/1′000 samples, respectively. Polarization due to the MM particles described in
Eq. 10 was only incorporated during the last message passing step. In addition, only eight distance
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Table 8: Mean absolute errors (MAE) of the gradients in kJ mol−1 Å−1 presented in Figure 3.
Cluster Size 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AMP(0) 8.04 7.92 8.48 8.27 8.4 8.14 8.35 8.2 8.2 8.23 8.23 8.28 8.29 8.48 8.52
AMP(1) 1.65 1.37 0.76 0.61 0.18 0.81 1.18 1.59 2.09 2.72 3.68 5.48 6.73 8.08 9.11
AMP(2) 0.58 0.52 0.26 0.26 0.12 0.36 0.32 0.43 0.5 0.6 0.73 0.91 1.06 1.25 1.3
AMP(3) 0.67 0.59 0.25 0.3 0.1 0.48 0.44 0.64 0.8 1.01 1.23 1.32 1.61 1.98 2.19
PaiNN 1.0 1.06 0.5 0.61 0.05 0.85 0.68 0.77 0.77 0.79 0.88 1.56 1.44 1.52 1.35
SchNet 2.26 1.84 0.7 0.97 0.12 1.34 0.96 1.16 1.18 1.18 1.3 2.4 2.36 2.57 2.52
GNN 3.42 2.99 1.01 1.43 0.07 2.02 1.55 1.89 1.98 2.05 2.24 3.94 3.71 3.8 4.0

GNN-P 1.76 1.49 0.68 0.73 0.05 0.97 0.95 1.29 1.61 1.95 2.22 2.74 3.21 3.78 3.86

weights were used for interactions between QM and MM particles while the default of 16 was used
for edges within the graph, i.e., between QM particles. The models were trained over 400′000 steps
using batches of size 5 for uracil and batches of size 1 for retinoic acid and SAM/cysteine. For the
comparison between the long-range cutoffs, only 200′000 training steps were used.

A.6 QM9 DATASET

The dataset was taken from Ramakrishnan et al. (2014). An independent 4-layer AMP(3) model
was trained for each property over 1′250 epochs with an exponentially decaying learning rate (5 ·
10−4, 5 · 10−6). A 4-layer AMP(3) results in 1′153′793 trainable parameters. Properties in units
of Eh were converted and trained in units of kcal mol−1. Each property was predicted as the sum
of atomic contributions except for the dipole moment µ. For all properties, except for the dipole
moment µ, the mean of the training set was subtracted. In addition, the energy of the isolated atoms
was subtracted for U0, U, H, and G. 3′054 molecules for which the geometry consistency checks
failed were removed from the dataset Ramakrishnan et al. (2014). The remaining data points were
randomly split into a training/validation/test sets (110′000, 10′000, 10′831) using a batch size of
100. As proposed by Veit et al. (2020), the molecular dipole moment µ was modeled as the sum of
the contribution from atomic monopoles qi and atomic dipoles µi

µ =
∑
i

ϕq(h
n
i )ri + µi (14)

with each atomic dipole µi being predicted according to Eq. 3. The mean excess charge was sub-
tracted from each qi to enforce charge conservation.
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