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Abstract

Training Generative Adversarial Networks (GANs) remains a challenging prob-
lem. The discriminator trains the generator by learning the distribution of
real/generated data. However, the distribution of generated data changes through-
out the training process, which is difficult for the discriminator to learn. In this
paper, we propose a novel method for GANs from the viewpoint of online con-
tinual learning. We observe that the discriminator model, trained on historically
generated data, often slows down its adaptation to the changes in the new arrival
generated data, which accordingly decreases the quality of generated results. By
treating the generated data in training as a stream, we propose to detect whether
the discriminator slows down the learning of new knowledge in generated data.
Therefore, we can explicitly enforce the discriminator to learn new knowledge
fast. Particularly, we propose a new discriminator, which automatically detects its
retardation and then dynamically masks its features, such that the discriminator
can adaptively learn the temporally-vary distribution of generated data. Experi-
mental results show our method outperforms the state-of-the-art approaches.

1 Introduction

Generative Adversarial Networks (GANs) [19, 84, 20, 5, 72, 70, 71] have shown the remarkable
performance in various applications [89, 85, 81, 3, 44], which have attracted intensive interests. The
main components of GANs are the generator and the discriminator, where the generator is trained
to generate realistic samples, and the discriminator learns to distinguish real and generated samples.
However, it is well-known that GANs are difficult to train [33, 30, 21].

Many efforts have been devoted to alleviating training difficulties for GANs. Some studies balance
the generator and discriminator from the side of network architecture, such as DCGAN [61], PG-
GAN [32], Style-GANs [35, 36, 34], and BigGAN [6]. Besides, some studies [2, 94, 53, 86] address
this challenge from the learning objective, e.g., WGAN [2], EBGAN [94], LSGAN[53] and realness-
GAN [86]. These methods can further stabilize training, especially coupled with the Lipschitz reg-
ularization [56, 21] and conditional information [55]. Recent works [87, 33, 30, 95, 93, 50, 48, 82]
propose to improve GANs on the discriminator side. For example, different data augmentation
strategies [33, 30, 95] are proposed to strengthen the discriminator for a limited data regime. Reg-
ularizations are applied to stabilize the training of discriminator [93, 50, 82] and combat the mode
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Figure 1: Illustration of the advantage of our method, where the first and second rows show
generated images and feature maps taken from a discriminator layer, respectively. (a) StyleGAN-V2
introduces similar artifacts into generated images, despite the increased training steps. Our method
is simple yet effectively improves the training of GANs, boosting the quality of generated samples
for StyleGAN-V2 in (b). By fast learning incoming generated samples, the proposed discriminator
captures artifacts in the local regions, better guiding the training of the generator. The averaging
cosine similarity between the current and previous feature maps is 0.8353 for StyleGAN-V2 and
0.4232 for ours, which indicates that our method enforces the attentive regions of the discriminator
to be more different than the baseline, better adapting to time-varying distribution of generated data.

collapse [48]. These methods show that the discriminator is very crucial to the training of GANs.
Nevertheless, stably training GANs remains a challenging problem [33, 31, 93].

In this paper, we rethink the difficulty of training GANs from the discriminator side. The discrim-
inator guides the training of the generator via learning the distributions of real/generated samples.
However, since it has been observed that the characteristics of generated samples vary during the
whole training process [87], a question arises: how challenging is it for the discriminator to learn
from such time-varying generated samples? Our study shows that the distribution of generated
samples dynamically changes during training, posing significant challenges to the discriminator. In
particular, the discriminator in existing work (e.g., [6, 36, 57, 50]) does not explicitly consider an
online task that addresses time-varying distributions of generated samples but is presented for a
typical classification task. We refer to such a discriminator as fixed. We find that the fixed discrim-
inator often improperly relies on local features that are important to historically generated samples
to distinguish incoming ones, although the distributions of these generated samples are different.
As a result, the discriminator insufficiently learns the distribution of incoming generated samples,
leading to subpar guidance to the generator (see Fig. 1).

We propose a novel method for training GANs, from the perspective of online continual learning.
Online continual learning has attracted increasing attention [52, 14, 40]. Different from offline con-
tinual learning focusing on the catastrophic forgetting problem [51, 38, 60], recent online continual
learning methods [17, 7, 47, 22] pointed out that data with time-vary distribution requires learning
methods to have the ability of fast learning and quick adaption. Motivated by these methods, we
propose to detect whether the discriminator slows down the learning of new knowledge in gener-
ated data by treating generated samples throughout training as a stream of data. We then explicitly
force the discriminator to learn new knowledge fast. To this end, we propose a simple yet effective
scheme to detect the retardation of the discriminator and force it to learn fast. Instead of designing a
sophisticated network architecture, we dynamically mask discriminator features when the discrim-
inator is predicted to be retarded, such that the discriminator adaptively learns the temporally-vary
distribution of generated data.

Our contributions are summarized as follows.

• From the perspective of online continual learning, we propose a novel approach that effec-
tively improves the training of GANs by explicitly considering the time-varying distribution
of generated samples.

• The proposed discriminator fast learns and adapts to the time-varying distribution of the
generated samples via dynamically masking discriminator features, improving the training
of GANs.
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• Extensive experimental results show that our method generates high-quality images, out-
performing state-of-the-art GAN approaches. Besides, the performance of our method
surpasses advanced diffusion models.

2 Related Works

Generative adversarial networks. GANs have attracted increasing attention from researchers
[19, 84, 20, 5, 72]. By learning a min-max objective, GANs generate samples from a given data dis-
tribution, which can serve for various applications, e.g., image editing [18, 28, 75, 3, 27, 97, 83, 43]
and text-conditional image synthesis [69, 31, 78, 45, 64, 98]. As a fundamental technology, GANs
coupled with the diffusion model (DM) [65, 26, 58, 62, 66] and auto-regressive model (AR)
[63, 91, 10, 9] indirectly turn on the light of AIGC [8]. Compared with the other emergent gen-
erative models, GANs have the advantages of rapid inference [31], generating fixed objects [31, 65]
and controllable latent distribution [35, 36, 34, 4, 23, 75]. Recently, as an answer ball against
DM and AR, GigaGAN [31], StyleGAN-T[69] and GALIP [78] adapted GANs to large image-text
datasets, demonstrating that GANs can be another viable solution for zero-shot text-to-image gen-
eration. However, as “No Pain, No Gain”, the payments of GANs are also high, i.e., GANs suffer
from unstable training and mode collapse. As a directed result, GANs are difficult to be equipped
with some standard modules, such as dropout [76] and masking operator [10, 24], which strengthen
the model generalization via introducing randomness into the training process, but further decrease
the training stability. Existing studies [92, 74, 13, 96] illustrated that GANs learn from the stream,
where the training distribution varies in the different time steps. Without any regularization, GANs
may harmfully learn a bias on historical data and neglect the current data. Our goal in this paper
is to downgrade the potential payments of GANs and integrate the masking operator into GANs to
overcome overfitting on historical data.

Regularization on discriminators. As a model helping the generator to align with real distribu-
tion, the discriminator plays a pivotal role to train GANs. Various methods have been proposed to
improve GANs by redesigning discriminators [2, 21, 50, 93, 87, 30, 48, 96, 32, 57]. WGAN [2]
employs the discriminator to measure the synthetic and natural samples with Wasserstein distance.
Since WGAN requires Lipschitz continuity to ensure model convergence, weight clipping [2] and
gradient penalty [21] were proposed to enhance the discriminators. Such technologies are then in-
herited by the family of StyleGAN [35, 36, 34]. Thanks to the advanced architecture [6, 36, 32],
several regularization technologies, including ADA [33], APA [30], LC-Reg [82], DiffAugment
[95], Con-Reg [93], AdaptiveMix [50], DAG [80], and MEE [48] were proposed to train GANs with
low-data regime [50, 30, 33, 82, 80, 95] or combat mode collapse [48]. In addition to exploring
training data, some studies redesigned the discriminator via proposing extra tasks [11, 79, 29, 88]
and implementing large-scale pre-trained models [68, 41]. In this paper, the proposed method does
not require additional training data, which can work as a plug-and-play module for existing discrim-
inators. Compared with the previous regularization focusing on data augmentation, the proposed
method investigates the capacity of the discriminator from a new perspective, i.e., ‘augmenting’ the
architecture to quickly adapt the current (new) knowledge. Note that the most related study to this
paper is DynamicD [87], which dynamically adapts the capacity of the discriminator to the training
data. However, DynamicD suffers from divergent solutions on different data regimes. In contrast,
our method can help to re-adjust the attentions of discriminators and obtain consistent improvement
against varying regimes.

3 Pilot Study

We first conduct a study to investigate the distribution shifts of generated samples over time during
training. We then demonstrate the challenges posed by such a time-varying distribution to the fixed
discriminator. We adopt a representative GAN, i.e., StyleGAN-V2 [36], for the study, due to its
advanced network architectures, training strategies, and impressive results.

Analysis on generated distribution over time. We train a StyleGAN-V2 on a widely-used dataset
FFHQ [35], to study the distribution changes of its generated samples. In particular, we collect 5k
generated samples at each time interval during training and then analyze the distribution of gener-
ated samples per time interval. The distribution is estimated with Fréchet Inception Distance (FID)
[25]. More specifically, FID measures the distribution similarity between real and fake samples by
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Figure 2: Illustration of time-varying distributions of generated samples, where we trace the
training process of StyleGAN-V2 [36] on FFHQ [35]. The mean and variance of generated 5k
samples’ features are computed per time interval, showing the generated distributions are dynamic
and time-varying during training, as the generator evolves. kimg refers to the number of images
(measured in thousand) trained so far.

calculating the mean and covariance of real/fake samples. Similarly, we first extract the feature of
a generated sample by an Inception model [77], and then represent the distribution of generated
samples per time interval by the mean and variance of these samples’ features.

We observe that the generated distributions undergo dynamical and complex changes over time (see
Fig. 2), as the generator evolves during training. For example, the generated samples are not even
independently and identically distributed (i.i.d) across the training progress in Fig. 2. Such time-
varying distribution inevitably poses significant challenges to the discriminator, since this has not
been explicitly considered in the discriminator typically.
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Figure 3: We trace the training of StyleGAN-V2’s discriminator. The curve in (a) shows the model
parameter difference of the discriminator between ti and ti−1 in the training progress. In (b), the
attentive regions of the discriminator are almost fixed at training steps when the discriminator slows
down its model parameter updating, where each feature map is represented by the feature space of
the discriminator trained at a time step.

Adaption ability of fixed discriminator. Learning the distributions of generated samples is vital
to training the generator. We investigate whether the fixed discriminator, which does not explic-
itly consider distribution changes, can effectively learn the time-varying distributions of generated
samples. We argue that the discriminator needs to adaptively adjust its model weights and rely on
different local features for discriminating generated samples at different steps. Suppose the genera-
tor synthesizes unrealistic hair for human faces at a time interval [t1, t2], and synthesizes plausible
hair but introduces artifacts in cheek regions at [t3, t4] (see [1209, 4838] and [6451, 11289] kimgs
in Fig. 2). It is expected that the discriminator pays less attention to hair regions and more attention
to cheek regions in [t3, t4], compared to [t1, t2], so as to fast distinguish fake samples. Accordingly,
the parameters of the discriminator model are expected to be updated, such that the discriminator
adapts to the distribution changes of generated samples for [t1, t2] to [t3, t4].

Here we investigate the discriminator of StyleGAN-V2 since it is a representative fixed discrimina-
tor. We find the parameter differences of the discriminator are usually small between two adjacent
steps, (see Fig. 3 (a)), indicating the discriminator slows down learning. Moreover, we find the
discriminator model trained at different times pays attention to almost fixed local regions given an
image, as indicated by the feature map extracted by the layers of the discriminator (see Fig. 3
(b)). As a result, the discriminator relies on old knowledge learned from historical data, which is
insufficient to learn incoming generated samples under a dynamic distribution shift.
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Figure 4: The pipeline of the proposed method. Our method, named Dynamically Masked Dis-
criminator (DMD), automatically adjusts the discriminator via dynamically marking the discrimi-
nator. When DMD detects that the discriminator slows down learning, DMD dynamically assigns
masks or removes masks to features of the discriminator per time interval, forcing the discriminator
to learn new knowledge and preventing it from relying on old knowledge from historical samples.

4 Methodology

4.1 Problem Formulation

The discriminator learns the distribution of real and generated samples, which is vital to training
the generator. Nevertheless, as studied in Sec. 3, the distribution of generated samples varies and
drifts over time during training, posing challenges to existing discriminators (e.g., [36, 50]). By
treating the generated samples of the generator across training as a stream, we innovatively formulate
learning the distribution of generated samples as an online continual learning problem. Motivated
by recent advances in online learning [17, 7, 47], our target is to enable a discriminator to quickly
adapt to incoming generated data.

Since the generator is trained via a min-max game with the discriminator, the distribution of gener-
ated samples is significantly complex and unpredictable. Hence, it is non-trivial to accurately predict
distribution changes. In other words, it is difficult for the discriminator to predict when it needs to
be rapidly adjusted for the new distribution.

Overview. We address the problem by considering two questions: (1) when does the discriminator
slow down the learning from incoming generated samples? (2) how to force the discriminator to
fast learn new knowledge? By exploring the two aspects, we propose a method named Dynamically
Masked Discriminator (DMD) for GANs, as shown in Fig. 4.

4.2 Dynamically Masked Discriminator

Different from existing GANs methods [36, 50, 33, 48], we propose to automatically adjust the dis-
criminator during training towards the time-varying distribution of generated samples. Instead of
designing complex network architectures, we propose two key modules which can be easily inte-
grated into existing discriminators. The two modules are (1) discriminator retardation detection and
(2) dynamic discriminator adjustment. The first module automatically determines when the discrim-
inator slows down learning. Here, slow down is referred to as the discriminator largely relies on old
knowledge learned from historical data, given incoming generated samples with different distribu-
tions. The second module adjusts the discriminator for fast learning via dynamically assigning or
removing masks at a certain interval.

With the two proposed modules, we improve an existing discriminator into a dynamic one at the
time axis. That is, the discriminator in our method has two states, i.e., mask and non-mask training.
D denotes the original discriminator without masks, and D̄ denotes the adjusted discriminator with
masks. During training, we dynamically switch D and D̄ for guiding the training of the generator
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according to discriminator retardation detection. Let π(D|t) describe the probability to use D at
time t. The probability of D̄ is thus formed as 1 − π(D|t). Let {Ĩt} denote a stream consisting of
samples generated by the generator G, where Ĩt = G(z, θt) is a generated sample from a vector z at
time t during training, and θt denotes parameters of the generator at t. We formulate our training of
GANs as follows:

Lθt := −Ez∼pz,t

[
π(D|t)log(D(G(z, θt), ϕt)) + (1− π(D|t))log(DM (G(z, θt), ϕt)

]
(1)

Lϕt := −EI∼pI ,t

[
(1− π(D|t)) log(DM (I, ϕt)) + π(D|t)log(D(I, ϕt))

]
− Ez∼pz,t

[
(1− π(D|t)log(1−DM (G(z, θt), ϕt)) + π(D|t)log(1−D(G(z, θt), ϕt))

] (2)

where I is a real sample and ϕt is the parameter of the discriminator at time t.

Dynamic discriminator adjustment. When the discriminator is detected to be retarded (i.e., slow
down learning), we adjust the discriminator to force it to learn fast. In this paper, we mainly focus on
the issue that the discriminator largely relies on old knowledge learned from historical data and can-
not rapidly adapt to incoming generated samples. To address this issue, one possible solution is to
design complex network architectures. Instead, we propose to dynamically switch the discriminator
from mask/non-mask states to non-mask/mask at a time interval. We argue that such dynamic mask-
ing at time intervals can break the original dependency of the discriminator on some local features
that are important to distinguish historical samples, inspired by [15, 24, 46, 49, 76]. For example,
by masking a feature map that is fed to a layer of the discriminator, we can control the layer of the
discriminator and enforce it to pay attention to other regions of a generated image.

In this paper, we force the non-mask discriminator (i.e., original one) D with parameter ϕti to be
converted into the mask state DM by masking its feature map or input. In particular, given the d-th
layer of a discriminator, we propose to mask its input F(d−1),t in a time interval (tj , tj+ϵ]. Let mt

d−1

denote a mask in the t-th training step with the same size as F(d−1),t. We can dynamically mask the
discriminator by masking the input features of its d-th layer:

F̄(d),t = L(F(d−1),t,mt
d−1) = L(F(d−1),t ⊙mt

d−1), t ∈ (tj , tj+ϵ] (3)

where F̄(d),t is the output of d-th layer of a discriminator by masking,⊙ denotes Hadamard product,
L is the convolutional operator. Different from the traditional dropout, the mask does not contin-
uously change. Instead, this mask is fixed for a period of training steps, i.e., (ti, ti+ϵ]. Switching
the discriminator from mask to non-mask is simply removing all masks in the discriminator. Such
dynamical switching encourages the discriminator to pay attention to various local regions/features
over time, making our discriminator better adapt to the time-varying generated distribution and lead-
ing to better guidance of training the generator, compared with StyleGAN-V2 (see Fig. 1).

Discriminator retardation detection. This module is to detect whether the discriminator slows
down the learning, i.e., , the discriminator largely relies on old knowledge from historical data to
distinguish future generated samples with new distributions. Given the current time step ti, an ideal
solution is to use future-generated samples with different distributions at time (tj , tj+ϵ] to evaluate
the discriminator. However, these future-generated samples are unavailable at the current time step.
Moreover, it is non-trivial to predict the distribution of future-generated samples.

Instead, we propose to construct a pseudo sample that possibly belongs to new distribution to detect
the Retardation of the discriminator. Without loss of generality, we assume the distribution changes
of generated samples correspond to the changes in local regions/features of these samples. For
example, some hair regions are unrealistic in a generated sample at time ti, and become realistic at
tj , as the generator evolves in Fig. 2. By randomly masking a generated sample or its intermediate
features in the discriminator, it is possible to remove discriminative local regions/features that are
important for the sample’s distribution, shirting the sample to a new distribution. For example, if
the right face region of the man is removed/masked in Fig. 5, the remaining regions become more
realistic (i.e., belongs to a new distribution).

Therefore, given a generated sample Ĩti for a distribution, we construct a pseudo sample that pos-
sibly belongs to another distribution by randomly masking local image regions or intermediate fea-
tures of the discriminator. For generated samples at time t, if the discriminator determines they are
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Figure 5: Illustration of the generated images, feature maps, and the corresponding masks.
The feature maps are extracted from the discriminator of StyleGAN-V2 [36] trained on FFHQ [35],
and the red region denotes the artifacts. By masking feature maps of the discrimination, it is possible
to remove discriminative local regions/features (e.g., unrealistic regions) that are important for the
sample’s distribution, shirting the sample to a new distribution.

similar to their pseudo samples, it is probable that the discriminator does not discriminate the distri-
bution difference and is detected as retardation. Formally, given m samples at time t, we can define
our heuristic Retardation metric,Rt, as

Rt =
1

m

∑
i∈Ut

F̄
(d),t
i · F(d),t

i

|F̄(d),t
i ||F(d),t

i |
(4)

where Ut is the index of samples, F̄ (d),t
i is the output of the d-th layer of the discriminator taking

original sample as input, F̄ (d),t
i is that of a pseudo sample where its image region or feature maps

in the discriminator is masked. IfRt is larger than a predefined threshold, the discriminator doesn’t
detect differences between original and pseudo samples and is detected as retardation. The pseudo-
code is given in the Appendix.

5 Experiments

5.1 Experimental Setup

Dataset. We evaluate the performance of our method on six widely used datasets, including AFHQ-
Cat [12], AFHQ-Dog [12], AFHQ-Wild [12], FFHQ [35], and LSUN-Church [90] with 256 ×
256 resolutions and CIFAR-10 [39] with 32 × 32 resolutions. We elaborate on these datasets and
implementation details in the Appendix.

Evaluation Metrics. Following prior works [50, 33, 30], we use two evaluation metrics, includ-
ing Fréchet Inception Distance (FID) [25] and Inception Score (IS) [67], to evaluate the quality of
generated results. The number of testing samples is set to 50k in our experiments.

Baselines. Following the previous studies [33, 30, 50], we integrate our method with StyleGAN-V2
[36], StyleGAN-V3 [34], and BigGAN [6]. We compare our method with state-of-the-art methods
that improve discriminators via data augmentation, including ADA [33] and APA [30]. We also
compare with GANs using regularization: LC-Reg [82], zCR [93], InsGen [88], Adaptive Dropout
[33], AdaptiveMix [50], MEE [48] and DynamicD [87]. Besides StyleGAN, we compare with other
generative models: DDPM [26], ImageBART [16], PGGAN [32] and LDM [65].

5.2 Comparison with State-of-the-art Methods

Main results. To show the superiority of the proposed method, we compare the performance of our
approach with state-of-the-art methods on FFHQ. As shown in Table 1, our method achieves the best
performance in terms of FID score on FFHQ. Recent methods [87, 50, 88] improve GANs by data
augmentation, e.g., ADA [33] and APA [30]. By further combining with APA [30], FID score of
our method reduces from 3.299 to 3.075, significantly surpassing the other approaches. In addition
to the quantitative analysis, Fig. 6 and Fig. 7 show qualitative results of our method. StyleGAN-V2
introduces noticeable artifacts, while our method generates images with much better quality. This
is because our discriminator effectively learns the time-varying distributions of generated samples,
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Table 1: Our method compared to the generative
models and the variants of StyleGAN-V2 [36]
on FFHQ [35]. Comparisons are taken from
[50, 87, 65].

Methods FID↓
ImageBART [16] (NIPS’21) 9.57
U-Net GAN (+aug) [73] (CVPR’20) 10.9(7.6)
LDM [65] (CVPR’22) 4.98
StyleGAN-V2 [36] (CVPR’20) 3.862
StyleGAN-V2 (Re-Impl.) 3.810

DiffAugment [95] (NIPS’20) 4.840
Adaptive Dropout [33] (NIPS’20) 4.160
LC-Reg [82] (CVPR’21) 3.933
DynamicD-Decreasing [87] (NIPS’22) 3.740
ADA [33] (NIPS’20) 3.880
ADA (Re-Impl.) [33] (NIPS’20) 3.713
APA [30] (NIPS’21) 3.678
MEE (Re-Impl.) [48] (AAAI’23) 3.626
AdaptiveMix [50] (CVPR’23) 3.623
AdaptiveMix (+APA) [50] (CVPR’23) 3.609
DynamicD-Increasing [87] (NIPS’22) 3.530
zCR [93] (ICLR’20) 3.450
InsGen (+ADA) [88] (NIPS’21) 3.310

Ours: DMD 3.299
Ours: DMD (+APA) 3.075

Table 2: FID ↓ of our method compared
with other regularizations for GAN training
on AFHQ-V2 [12]. Comparison results are
taken from [87, 50].
Methods Cat Dog Wild

StyleGAN-V2 [36] (CVPR’20) 7.924 26.310 3.957
LC-Reg [82] (CVPR’21) 6.699 - -
ADA [33] (NIPS’20) 6.360 18.930 3.800
DynamicD (+ADA) [87] (NIPS’22) 5.410 16.000 3.340
AdaptiveMix [50] (CVPR’23) 4.477 - -
MEE (Re-Impl.) [48] (AAAI’23) 4.453 - -
Ours: DMD (+ADA) 5.223 12.764 3.261

StyleGAN-V2 (+APA) 4.645 13.913 2.919
Ours: DMD (+APA) 4.261 11.784 2.625

Table 3: Our method compared to other
state-of-the-art generative models on LSUN-
Church [90]. We re-implement StyleGAN-
V2, and the other results are from LDM [65].

Methods FID↓
DDPM [26] (NIPS’20) 7.89
ImageBART [16] (NIPS’21) 7.32
PGGAN [32] (ICLR’18) 6.42
StyleGAN-V2 (Re-Impl.) [36] (CVPR’20) 4.29
LDM [65] (CVPR’22) 4.02
DynamicD [87] (NIPS’22) 3.87

Ours: DMD 3.06
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Figure 6: Qualitative comparison results of our method and StyleGAN-V2 on FFHQ dataset.

which improves the training of the generator. (More experimental results and details are provided in
the Appendix.)

We also perform comparison experiments on dataset AFHQ-V2. As listed in Table 2, our method
outperforms state-of-the-art approaches, boosting the performance on all three sub-datasets, show-
ing the effectiveness of our method in improving the training of the generator. DynamicD [87]
empirically increases/decreases the capacity of the discriminator for GAN training, which is most
related to our work. However, our method outperforms DynamicD by a large margin. For example,
FID of DynamicD is 16.000 on the dog dataset, and our method achieves better FID (11.784). We
also evaluate our method on StyleGAN-V3 [34] and BigGAN [6] respectively in Table 4 and Table 5,
which show consistent improvements by adding our proposed method into these two baselines.

Table 4: Our method over StyleGAN-V3 [34] on
AFHQ-Cat [12].

FID ↓ IS ↑
StyleGAN-V3R 7.616 1.881
StyleGAN-V3R w/ Ours(DMD) 6.864 1.915

StyleGAN-V3T 5.850 1.916
StyleGAN-V3T w/ Ours(DMD) 4.921 1.969

Table 5: Our method over BigGAN [6] on
CIFAR-10 [39].

FID ↓
Unconditional BigGAN 16.040
Unconditional BigGAN w/ MEE [48] 13.860
Unconditional BigGAN w/ Ours(DMD) 10.540
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Performance on the large-scale training dataset. We evaluate the performance of our method
trained on a large-scale dataset LSUN-Church [90] shown in Table 3. LSUN-Church contains 120k
images and can be augmented to 240k with flipping. Diffusion models and auto-regressive models
achieve impressive performance by training on large-scale datasets. We compare our method with
representative diffusion models: LDM [65], DDPM [26], and ImageBART [16]. LDM outperforms
StyleGAN-V2 slightly (4.02 vs. 4.29 FID). However, our method significantly reduces the FID
of StyleGAN-V2 from 4.29 to 3.06 FID, achieving the best performance, compared with the other
generative models.

5.3 Ablation Study and Analysis

Ablation studies. Since our method is plug-and-play, which is easy to be integrated into existing
methods. We adopt StyleGAN-V2 as the baseline and evaluate the improvement of integration
with our method. As shown in Table 6, our method improves StyleGAN-V2 on AFHQ-V2 and
LSUN datasets. For example, our method enables better performance of StyleGAN-V2, where
FID is improved by 25.8% on AFHQ-Cat. One of our contributions is to automatically switch the
discriminator between mask and non-mask training, according to discriminator retardation detection.
We evaluate the effectiveness of this automatic scheme. We test the performance of the baseline
with different fixed intervals for the transition between the mask and non-mask training. As shown
in Table 7, fixed interval improves the performance of StyleGAN-V2, indicating that dynamically
adding/removing masks in the discriminator helps the training of GANs. Nevertheless, the proposed
method can achieve the best performance, since discriminator retardation detection automatically
detects when the discriminator slows down.

Table 6: The ablation study of our method on AFHQ-V2 [12] and LSUN-Church [90], where the
baseline is the StyleGAN-V2 [36] and Ours is StyleGAN-V2+DMD.

AFHQ-Cat AFHQ-Dog AFHQ-Wild LSUN-Church
FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

Baseline 7.924 1.890 26.310 9.000 3.957 5.567 4.292 2.589
Ours 5.879(-25.8%) 1.988(+5.2%) 21.240(-19.3%) 9.698(+7.8%) 3.471(-12.3%) 5.647(+1.4%) 3.061(-28.7%) 2.792 (+7.8%)

(a) AFHQ-Cat (d) FFHQ(b) AFHQ-Dog (c) AFHQ-Wild (e) LSUN-Church

Figure 7: The generated samples of the proposed method on (a) AFHQ-Cat, (b) AFHQ-Dog, (c)
AFHQ-Wild, (d) FFHQ, and (e) LSUN-Church. All training data are in a resolution of 256 × 256.
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Figure 8: Probe of hyper-parameters of the proposed method on FFHQ-70k. We discuss the
depth, ratio, and probabilities for masking. Probabilities of Dyna. Mask control the times in the
masking stage. In each iteration of mask training, masking the discriminator in the 5-th layer with
0.3 ratios can achieve the best result.
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Hyper-parameters and masking strategies. We then search the hyper-parameters for the proposed
method. As shown in Fig. 8, we separately investigate the efficacy of the depth for masking, the
mask ratio, and the probabilities to trigger the mask. Accordingly, the best performance appears
with the 5-th layer, 0.3 masking ratios, and masking discriminator every time (i.e., probability=1) in
the mask training stage. Meanwhile, we investigate different masking strategies, including Vanilla
Dropout, Input Masking, Dynamic Head, and Vanilla Dropout. We detail the corresponding imple-
mentations in the Appendix. As shown in Table 8, the proposed method can achieve the best perfor-
mance among all the cases. Note that the empirical study shows that directly applying dropout will
incur unstable training and hurt the capacity of the discriminator, leading to worse FID. This shows
the advantage of our method, which automatically switches the discriminator at a time interval.

Table 7: FID ↓ of our method
compared to the StyleGAN-
V2 with fixed interval mask
on FFHQ-70k.

Inverval (kimg) FID

4 3.823
8 3.362

16 3.365
24 3.391

DMD (Ours) 3.299

Table 8: FID ↓ of and the proposed method on AFHQ-V2 [12] and
other masking strategies for StyleGAN-V2[36]. Note that Vanilla
Dropout [76] is based on a 0.5 drop rate.

Cat Dog Wild

StyleGAN-V2 [36] 7.924 26.310 3.957
Attention-based Mask 7.294 23.782 3.800
Input Masking 6.809 22.054 3.515
Dynamic Head 7.388 23.050 3.736
Vanilla Dropout [76] 9.294 28.099 5.056
DMD (Ours) 5.879 21.240 3.471

6 Conclusion

In this paper, we propose a novel method named DMD for training GANs from a new perspective,
i.e., online continuous learning. Our study shows that the distribution of generated samples is time-
varying, while this problem has been underexplored. This makes the discriminator often largely
rely on historically generated data, instead of learning new knowledge from the incoming generated
samples, degrading generation performance. We propose to force the discriminator to fast learn and
adapt to incoming generated samples. We propose a simple yet effective method that automatically
detects whether the discriminator slows down learning, and adjusts the discriminator by dynamically
imposing or removing masks of the discriminator per time interval. Experimental results show our
method improves the learning of the discriminator on temporally-vary distribution, boosting the
guidance of training the generator, achieving the best performance than state-of-the-art methods.

Limitations: Theoretical studies can make this work more comprehensive; however, we have not ex-
plored it in the paper, since it is beyond the scope of this study. Moreover, while the proposed method
can effectively improve the training of the CNN-based GANs models, combining our method with
Transformer-based ones is left to be investigated in the future.

Broader Impact: Our method can be used for various applications such as producing training data
and creating photorealistic images. On the other hand, like other generative models, our method
can be misused for the application of Deepfake [1], where fake content is synthesized to deceive and
mislead people, leading to a negative social impact. Nevertheless, many researchers have considered
this problem while exploring fake content detection and media forensics techniques. In addition, we
believe there would be regulations on fake content generation, such as forcing synthesized content
to be injected with identifications that indicate it to be fake.
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[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial net-
works. In ICML, pages 214–223. PMLR, 2017.

[3] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu, and
Antonio Torralba. Semantic photo manipulation with a generative image prior. arXiv preprint
arXiv:2005.07727, 2020.

[4] Amit H Bermano, Rinon Gal, Yuval Alaluf, Ron Mokady, Yotam Nitzan, Omer Tov, Oren
Patashnik, and Daniel Cohen-Or. State-of-the-art in the architecture, methods and applications
of stylegan. In Computer Graphics Forum, volume 41, pages 591–611. Wiley Online Library,
2022.

[5] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep generative mod-
elling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregres-
sive models. IEEE TPAMI, 2021.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. ICLR, 2019.

[7] Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distri-
bution shifts: An empirical study with visual data. In ICCV, pages 8281–8290, 2021.

[8] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A
comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to
chatgpt. arXiv preprint arXiv:2303.04226, 2023.

[9] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image
generation via masked generative transformers. arXiv preprint arXiv:2301.00704, 2023.

[10] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In CVPR, pages 11315–11325, 2022.

[11] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby. Self-supervised gans
via auxiliary rotation loss. In CVPR, pages 12154–12163, 2019.

[12] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image
synthesis for multiple domains. In CVPR, pages 8188–8197, 2020.

[13] Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. Gan memory with
no forgetting. NeurIPS, 33:16481–16494, 2020.

[14] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gre-
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Appendix

A Introduction

In this appendix, we first introduce the implementation details of our Dynamic Mask Discriminator
(DMD), and then provide more technical details of the proposed DMD in Sec. B. In Sec. C.1 and
C.2, we elaborate on the additional details of datasets and experiment settings. In Sec. C.3, we
provide additional experimental results. We also report the error bars of our method in Sec. D.

B Implementation Details

In this section, we provide the implementation details of our proposed method. We have utilized the
PyTorch [59] public platform to conduct our experiments. Our models were trained on a workstation
equipped with 8 NVIDIA Tesla V100 GPUs with 32 GB memory, a CPU of 2.8GHz, and 512GB
RAM.

B.1 More details of the proposed method.

Our method is designed to automatically detect the retardation of the discriminator and force it to
fast learn the new knowledge given time-varying distributions of generated samples. To show the
detailed strategy of the proposed DMD method, the pseudo-code is given in Algorithm. 1. In our
main paper, we have demonstrated the effectiveness of our proposed DMD method by integrating it
with image generation techniques on StyleGAN-V2 [36].

Since the retardation of learning new knowledge can potentially be addressed by augmenting the
input stream or the outcome of the discriminator, we also extend another two schemes to achieve
dynamic discriminator adjustment. Besides the proposed dynamic feature masking scheme, we can
dynamically mask the input and output of the discriminator when it is detected as retardation. The
corresponding details are shown summarized in Algorithm. 2 and Algorithm. 3.

B.2 More details of model parameter difference

We detail model parameter difference which is used in the main paper Figure 3(a) for investigating
the fixed discriminator of StyleGAN-V2. Model parameter difference metric is to measure the
differences of the discriminator model weights between two adjacent training steps:

dtj = ∥W d
tj −W d

tj−1
∥2 (5)

where W d
tj is the parameter weight of d-th layer of the discriminator during tj training step, and

∥ · ∥2 is l2 norm. A smaller dtj indicates that the parameter weights of d-th layer at tj training step
are more similar to that at tj−1 training step, i.e., parameter weights are updated slowly. In other
words, given new arrival generated samples with new distributions, a smaller dtj indicates that the
discriminator slows down the learning of new knowledge to some extent. In the main paper, we
calculate dtj in the full connection layer of the discriminator.

C Additional Details on Experiments

C.1 Datasets and Experimental Settings

AFHQ-V2 [12] consists of 3 independent sub-datasets, which include around 5,000 closeups of cat,
dog, and wildlife faces, respectively (denoted as AFHQ-Cat, AFHQ-Dog, and AFHQ-Wild). We
utilized a high-quality Lanczos filter [42] to resize all images to a resolution of 256 × 256. We then
conducted experiments on three sub-datasets while setting StyleGAN-V2 [36] as the baseline model.
We maintain consistency with ADA [33], by using identical network architectures [36], weight
demodulation [36], style mixing regularization [35], path length regularization, lazy regularization
[36], equalized learning rate for all trainable parameters [32], non-saturating logistic loss [19] with
R1 regularization [54], and the Adam optimizer [37].
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Algorithm 1 Dynamic Mask Discriminator

Require:
Generator Gθt ; Current Discriminator Dϕ(·); Non-Masked Discriminator Dϕ(·); Dynamically
Masked Discriminator D̄ϕ(·); Training Step t;
d-th Layer of Discriminator F(d),t; Dynamic Mask mt

d;
d-th Masking Layer of Discriminator F̄(d),t; Predefined Threshold λ; Retardation Metric Rt;
Set Ut Containing m Samples for Calculating Retardation Metric;
The number of training steps nt; The number of images per training step ns;

Ensure:
Initialize Rt ← 0 and t← 1; Random mt

d;
1: while θ has not converged do
2: for t = 1 to nt do
3: if Rt > λ then
4: Mt ←mt

d; MT ←Mt; Dϕ(·)← D̄ϕ(·)
5: else
6: Mt ← vector(1); MT ←mt+1

d ; Dϕ(·)← Dϕ(·)
7: end if
8: for s = 1 to ns do
9: F̄(d),t ← F(d),t ⊙Mt

10: Lϕ(t) ← −EI,t[log(Dϕ(I))]− Ez∼pz,t[log(1−Dϕ(G(z, θt)))
11: θs ← Adam( ∂ϕ(t)

∂θs−1
);

12: end for
13: Rt =

1
m

∑
i∈Ut

F̄
(d),t
i ·F(d),t

i

|F̄(d),t
i ||F(d),t

i |
14: end for
15: end while
16: Return θ;

FFHQ [35] comprises 70,000 images of human faces, which we used for training after downscaling
them to a resolution of 256 × 256. In this case, we set StyleGAN-V2 [36] as the baseline and used
the same settings as those for AFHQ-V2.

LSUN-Church [90] includes 126,000 images of outdoor church. We downscale them to 256 × 256
as the training data. In this case, we also set StyleGAN-V2 [36] as the baseline and used the same
settings as those for FFHQ.

C.2 Baselines

In accordance with previous studies [33, 30, 50], we have integrated our proposed method with
StyleGAN-V2 [36]. In order to assess the effectiveness of our method, we have compared it with
state-of-the-art methods that improve discriminators through data augmentation, including ADA
[33] and APA [30]. We have also compared our method with GANs that utilize regularization
techniques, such as LC-Reg [82], zCR [93], InsGen [88], Adaptive Dropout [33], AdaptiveMix [50],
MEE [48], and DynamicD [87].

C.3 Additional Experimental Results

Comparing our method with other masking strategies. Besides the masking strategies dis-
cussed in the paper, another masking strategy, namely Continualy-Changed-mask-ratio Discrimi-
nator (CCD) is explored here, which replaces our dynamic discriminator adjustment module by
gradually increasing the mask ratio from 0.1 to 0.9 or decreasing the mask ratio from 0.9 to 0.1
over time. We evaluate the CCD with StyleGAN-V2 on the AFHQ-Cat (256×256 pixels) dataset.
Compared with the StyleGAN-V2 (7.924 FID), CCD with StyleGAN-V2 achieves 8.441 FID. How-
ever, our method (5.879 FID) still outperforms CCD, since CCD increases instabilities in GAN
training. More specifically, the process of GAN training is to play a min-max two-player game
between the generator and discriminator, which is more unstable than typical classification prob-
lems. Compared with our method, CCD causes the discriminator’s discrimination ability to be more
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Algorithm 2 Dynamic Mask Discriminator Assert in Input (Input Masking)

Require:
Generator Gθt ; Discriminator Dϕ(·); Training Step t; Dynamic Mask mt;
Predefined Threshold λ; Retardation Metric Rt;
Set Ut Containing m Samples for Calculating Retardation Metric;
d-th Layer of Discriminator F(d),t; After Masking Input F̄(d),t ;
The number of training steps nt; The number of images per training step ns;

Ensure:
Initialize Rt ← 0 and t← 1; Random mt;

1: while θ has not converged do
2: for t = 1 to nt do
3: if Rt > λ then
4: Mt ←mt; MT ←Mt;
5: else
6: Mt ← vector(1); MT ←mt+1;
7: end if
8: for s = 1 to ns do
9: Ī ← I ⊙Mt; ¯̃I ← G(z, θt)⊙Mt

10: Lϕ(t) ← −EĪ,t[log(D(Ī))]− Ez∼pz,t[log(1−D( ¯̃I)]

11: θs ← Adam( ∂ϕ(t)
∂θs−1

);
12: end for
13: Rt =

1
m

∑
i∈Ut

F̄
(d),t
i ·F(d),t

i

|F̄(d),t
i ||F(d),t

i |
14: end for
15: end while
16: Return θ;

frequently changed and uncertain, making it more difficult for the generators to fool the discrimi-
nator. The deteriorated performance of the generator would further negatively affects the training
of the discriminator. Instead, when the improvement of the discriminator slows down, our method
switches from non-mask training to mask training, otherwise maintains masking/non-masking at a
time interval, which provides more stable training than CCD.

Experiments on AFHQ-Cat with 512×512 pixels. We conduct experiments on the high-resolution
AFHQ-Cat dataset, where the resolution of an image is 512×512 pixels. By integrating our method
with StyleGAN-V2, our method reduces the FID of StyleGAN-V2 by a margin of 18.77% (from
4.3160 to 3.5061), effectively improving the performance of StyleGAN-V2 on higher-resolution
images.

Experiments on ImageNet-1000. We integrate the proposed DMD with an intermediate checkpoint
of the BigGAN [6] model which has been trained for 100,000 iterations. We then further trained
models from 100,000 to 107,500 iterations on ImageNet-1000 at 128×128 resolution using two
NVIDIA V100 GPUs. Compared with the original BigGAN that achieves the FID of 12.213 at
the 107,500 iteration, our method (i.e., DMD) improves the training of BigGAN (FID of 11.212),
outperforming the original BigGAN by 8.196%. This not only shows that our method benefits the
training of BigGAN on large-scale datasets, but also demonstrates the flexibility and compatibility
of our method in combination with GAN models such as pre-trained GAN models.

Experiments on historical knowledge retention of discriminator. We conduct experimental stud-
ies inspired by the study in online continual learning for rapid adaptation [7]. Given the discriminator
trained from the beginning to time T , we evaluate its historical knowledge retention by evaluating
its discrimination performance on historical data generated at time T − t, and evaluate its rapid
adaptation by evaluating its performance in current data at time T and future data at T + t.

Table 9 shows that the discriminator of StyleGAN-V2 achieves high accuracy on historical data,
however, performs much worse on current and future data. This shows that the discriminator of
StyleGAN-V2 retains historical knowledge (i.e., high accuracy in historical data), yet, does not fast
learn and adapt to the changes in the distribution of future data.

19



Algorithm 3 Dynamic Mask Discriminator Assert in Outcome Logits (Dynamic Head)

Require:
Generator Gθt ; Discriminator Dϕ(·); Training Step t;
Outcome Logit Number of Dϕ(·) and D̄ϕ(·) k; Dynamic Mask mt;
d-th Layer of Discriminator F(d),t; After Masking Outcome Logits F̄(d),t;
Predefined Threshold λ; Retardation Metric Rt;
Set Ut Containing m Samples for Calculating Retardation Metric;
The number of training steps nt; The number of images per training step ns;

Ensure:
Initialize Rt ← 0 and t← 1; Random mt;

1: while θ has not converged do
2: for t = 1 to nt do
3: if Rt > λ then
4: Mt ←mt; MT ←Mt;
5: else
6: Mt ← vector(1); MT ←mt+1;
7: end if
8: for s = 1 to ns do
9: Lϕ(t) ← −EI,t[log(

∑
(D(I)⊙Mt)))]− Ez∼pz,t[log(1−

∑
(D(G(z, θt))⊙Mt))

10: θs ← Adam( ∂ϕ(t)
∂θs−1

);
11: end for
12: Rt =

1
m

∑
i∈Ut

F̄
(d),t
i ·F(d),t

i

|F̄(d),t
i ||F(d),t

i |
13: end for
14: end while
15: Return θ;

Instead, by detecting retardation and masking the discriminator, our method enforces the discrim-
inator to reduce retained historical knowledge (see decreased accuracy on historical data), while
effectively encouraging it to fast learn and adapt to new knowledge of future data (i.e., our method
achieves higher accuracy on current and future data than StyleGAN-V2).

Table 9: The accuracy of the discriminator on historical data and future data, where the discriminator
is trained at 800 kimgs step, and (·) indicates the data at time T − t or T + t.

Method Historical data (200) Historical data (600) Current data (800) Future data (1000)

StyleGAN-V2 0.9696 0.9488 0.8236 0.604
Ours (StyleGAN-V2 + DMD) 0.9129 0.9229 0.8793 0.6543

In addition, we calculate the average gradient of the StyleGAN-V2 during the training phase in Table
10, showing the gradient does not vanish from 0 to 1200 kimgs.

Table 10: Average gradient of the StyleGAN-V2 during training.
kimgs 0 200 400 600 800 1000 1200

Gradient 3.5145e-08 4.6110e-07 -9.4235e-07 5.6989e-07 -4.3328e-07 9.2649e-08 1.2138e-06

Model parameter difference of the proposed method. We also compute the model parameter
difference of the proposed method in the training of the AFHQ-Cat dataset. Our method detects the
discriminator to be retarded at 1000 kimgs after 800 kimgs. Our method then applies the proposed
DMD adjustment to train StyleGAN-V2 from 1000 to 1004 kimgs, which increases the model differ-
ence of our method by 63.889%, compared with the model difference between 800 to 1000 kimgs.
Instead, the model difference of StyleGAN-V2’s discriminator is decreased by 2.778% without our
method. These results show StyleGAN-V2’s discriminator slows down learning and our method
effectively encourages the discriminator to fast learn.
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Computation cost. Our method incurs a negligible increase in memory cost, since our method only
additionally detects discriminator retardation and introduces feature masks. For computational cost,
our method does not affect the inference time, since our method is designed for the discriminator
and only the generator is used during inference. For training, our method introduces moderate
time cost; however, this is affordable (e.g., increasing GPU number to reduce training time), and
the additional training time cost depends on the time interval of estimating the retardation. Our
method additionally introduces 6 hours 11 minutes for training on AFHQ in our experiments, when
our method is integrated with StyleGAN-V2 and retardation is detected at every 4 kimgs. When
detecting retardation at every 20 kimgs, our method only additionally takes 1.3 hours for training.

Additional Generated Distribution. Our main paper studies the generated distributions of
StyleGAN-V2. Here, we additionally provide the distribution of the generated samples of APA
[30] method on FFHQ[35] in Fig. 9. Fig. 9 also indicates that the generated distributions undergo
dynamical and complex changes over time as the generator evolves during training. As a result,
the generated samples are not independently and identically distributed (i.i.d) across the training
progress, posing significant challenges in learning the generated distributions.

0.00099
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Figure 9: Illustration of time-varying distributions of generated samples in the training process of
APA [30] on FFHQ [35]. The mean and variance generated samples’ features show the generated
distributions are dynamic and time-varying during training, as the generator evolves.

D Error Bar

To evaluate the reproducibility of our method’s results, we run our experiments three times using
random seeds and the same hyper-parameters. Table 11 and Table 12 list the mean and variance of
experimental results to show the error bar.

As shown in Table 11 and Table 12, our method performs stably on multiple datasets i.e., AFHQ-V2,
FFHQ and LSUN-Church datasets, indicating the reproducibility of our method.

Table 11: Quantitative results of our method on AFHQ-V2 dataset [12], error bars are reported in
terms of mean and variance, and Ours is StyleGAN-V2+DMD.

AFHQ-Cat AFHQ-Dog AFHQ-Wild
FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

StyleGAN-V2 7.924 1.890 26.310 9.000 3.957 5.567
Ours (Reported in the paper) 5.879 1.988 21.240 9.698 3.471 5.647
Ours (re-run-1)) 5.896 1.944 20.016 9.807 3.473 5.803
Ours (re-run-2)) 6.015 1.987 20.456 10.291 3.420 5.699

Ours(Mean±Variance) 5.930±0.061 1.973±0.021 20.571±0.506 9.932±0.258 3.455±0.025 5.716±0.065

Table 12: Quantitative results of our method on FFHQ [35] and LSUN-Church [90], where error
bars are reported in terms of mean and variance, and Ours is StyleGAN-V2+DMD.

LSUN-Church (126K) FFHQ(70K)
FID ↓ IS ↑ FID ↓ IS ↑

StyleGAN-V2 4.292 2.589 3.810 5.185
Ours (Reported in the paper) 3.061 2.792 3.299 5.204
Ours (re-run-1)) 3.025 2.795 3.177 5.225
Ours (re-run-2)) 2.993 2.787 3.285 5.200

Ours(Mean±Variance) 3.026±0.028 2.791±0.003 3.254±0.055 5.210±0.011
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