
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Fast Adaptation with Behavioral Foundation Models
Anonymous authors

Paper under double-blind review

Keywords: Unsupervised Learning, Self Supervised learning, Zero shot RL, Adaptation,
Finetuning

Summary
Unsupervised zero-shot reinforcement learning (RL) has emerged as a powerful paradigm

for pretraining behavioral foundation models (BFMs), enabling agents to solve a wide range
of downstream tasks specified via reward functions without additional test-time learning or
planning. This is achieved by learning self-supervised task embeddings alongside correspond-
ing near-optimal behaviors, and incorporating an inference procedure to directly retrieve the
latent task embedding and associated policy for any given reward function. In this work, we
demonstrate that existing unsupervised zero-shot RL pre-training methods discover a latent
task embedding space containing more performant policies than those identified by their infer-
ence procedure, making them well-suited for fast adaptation. Motivated by this observation,
we propose both actor-critic and actor-only fast adaptation strategies that search in the low-
dimensional task-embedding space of the pre-trained BFM to rapidly improve the performance
of its zero-shot policies on any downstream task. Notably, our approach mitigates the initial
“unlearning” phase commonly observed when fine-tuning pre-trained RL models. We evaluate
our fast adaptation strategies on top of four state-of-the-art zero-shot RL methods in multiple
navigation and locomotion domains. Our results show that they achieve 10-40% improvement
over their zero-shot performance in only a few episodes, outperforming existing baselines.

Contribution(s)
1. We empirically investigate the task-representation space learned by a family of unsupervised

zero-shot RL methods and show that it contains policies achieving significantly higher re-
turns than the one output by the zero-shot inference procedure.
Context: Prior works in zero-shot RL (Touati et al., 2023; Park et al., 2024; Agarwal et al.,
2024) implicitly assume that zero-shot inference is the optimal way to prompt a pre-trained
model for behaviors optimizing tasks specified by reward functions. We challenge such an
assumption and show that this is not the case.

2. We propose two fast-adaptation algorithms: a) Residual Latent Adaptation (ReLA), an ap-
proach that optimizes for a policy in the BFM’s task-representation space by training an
additional smaller critic to estimate the cumulative reward not captured by the pre-trained
BFM. b) Lookahead Latent Adaptation (LoLA), a computationally efficient approach that
leverages policy gradients with lookahead returns without updating the pre-trained critic.
Context: Prior approaches to adaptation either fine-tune the entire pre-trained critic and
perform policy optimization in the action space (Nair et al., 2020; Nakamoto et al., 2023),
or learn policy residuals (Silver et al., 2018; Johannink et al., 2019; Rana et al., 2023).

3. We evaluate our approaches on top of four state-of-the-art zero-shot RL methods in multiple
navigation and locomotion domains, and show that they achieve 10-40% improvement over
their zero-shot performance. Furthermore, we observe that our approach LoLA avoids the
initial “unlearning” phase commonly observed in the literature.
Context: Prior approaches for fine-tuning RL models without retaining training data (Luo
et al., 2023; Zhou et al., 2024) observe a sharp decrease in performance due to distribution
shift.

Fast Adaptation with Behavioral Foundation Models

Fast Adaptation with Behavioral Foundation Models

Anonymous authors
Paper under double-blind review

Abstract
Unsupervised zero-shot reinforcement learning (RL) has emerged as a powerful1
paradigm for pretraining behavioral foundation models (BFMs), enabling agents to2
solve a wide range of downstream tasks specified via reward functions in a zero-shot3
fashion, i.e., without additional test-time learning or planning. This is achieved by4
learning self-supervised task embeddings alongside corresponding near-optimal behav-5
iors and incorporating an inference procedure to directly retrieve the latent task embed-6
ding and associated policy for any given reward function. Despite promising results,7
zero-shot policies are often suboptimal due to errors induced by the unsupervised train-8
ing process, the embedding, and the inference procedure. In this paper, we focus on9
devising fast adaptation strategies to improve the zero-shot performance of BFMs in10
few steps of online interaction with the environment, while avoiding any performance11
drop during the adaptation process. Notably, we demonstrate that existing BFMs learn a12
set of skills containing more performant policies than those identified by their inference13
procedure, making them well-suited for fast adaptation. Motivated by this observa-14
tion, we propose both actor-critic and actor-only fast adaptation strategies that search15
in the low-dimensional task-embedding space of the pre-trained BFM to rapidly im-16
prove the performance of its zero-shot policies on any downstream task. Notably, our17
approach mitigates the initial “unlearning” phase commonly observed when fine-tuning18
pre-trained RL models. We evaluate our fast adaptation strategies on top of four state-19
of-the-art zero-shot RL methods in multiple navigation and locomotion domains. Our20
results show that they achieve 10-40% improvement over their zero-shot performance21
in a few tens of episodes, outperforming existing baselines.22

1 Introduction23

Unsupervised (or self-supervised) pre-training has emerged as one of the key ingredients behind24
the recent breakthroughs in computer vision and language modeling (e.g., Radford et al., 2019;25
Devlin et al., 2019; Touvron et al., 2023; Caron et al., 2021). This technique allows utilizing large26
datasets of unlabeled data samples to learn generalizable representations that can be later fine-tuned27
for various downstream applications (Zhai et al., 2023; Brown et al., 2020; Driess et al., 2023).28
For instance, language models are pre-trained on internet-scale data with a next-token prediction29
objective and later fine-tuned for desired applications using high-quality examples. How to transpose30
this approach to reinforcement learning (RL) to train agents that can efficiently solve sequential31
decision-making problems is an open research question of paramount importance. Going beyond the32
tabula-rasa paradigm of classic RL requires an unsupervised pre-training objective and the ability to33
efficiently fine-tune or adapt pre-trained representations for downstream tasks. Recent developments34
in unsupervised RL propose various objectives to learn a repertoire of skills on top of reward-free35
data from the environment (Gregor et al., 2016; Wu et al., 2018; Hansen et al., 2019; Liu & Abbeel,36
2021; Eysenbach et al., 2018; Zahavy et al., 2022; Park et al., 2023). Some of these methods are37
named “zero-shot”, in the sense that they additionally provide a procedure to infer a performant38
policy for any given task specified by reward functions (Touati et al., 2023; Park et al., 2024; Agarwal39
et al., 2024; Cetin et al., 2024), demonstrations (Pirotta et al., 2024; Tirinzoni et al., 2025), or40

1

Under review for RLC 2025, to be published in RLJ 2025

Unsupervised
RL Pretraining

Reward-Free Transitions

𝜑 𝑠 , 𝜓 𝑠, 𝑎, 𝑧 ,
 𝜋𝑧(𝑠)

Zero-shot
Inference

Behavioral Foundation
Model (BFM)

Online Fast
Adaptation

Test-Time
Reward Function r(s)

𝑧𝑟=

 argmin 𝔼[𝜑 𝑠 𝑇𝑧 − 𝑟 𝑠
2

]

Approximately-Optimal
Policy 𝝅𝒛𝒓

Latent-Space
Adaptation

{s,a,s’}

Adaptation Path
Zero-shot Policy

Adapted Policy

𝑧𝑟

𝑧𝑎𝑑𝑎𝑝𝑡

Online Finetuning/Adaptation

Return

Action-Space
Finetuning

WSRL

ReLA (Ours)
LoLA (Ours)

Environment
 Interactions

Fast Adaptation

Zero-shot Performance

Figure 1: Overview of our method: Unsupervised zero-shot RL methods provide us with an initial
policy πzr ; we propose a way to leverage the latent space of learned policies as well as the pre-
trained critic to rapidly adapt and improve πzr on few task-specific environment interactions. Right:
Illustrative summary of our results.

videos/language (Sikchi et al., 2024). The resulting pre-trained agents are commonly referred to as41
Behavioral Foundation Models (BFMs, Pirotta et al., 2024; Tirinzoni et al., 2025).42

Zero-shot methods commonly pre-train two components: (1) a state representation φ : S → Rd43
that embeds state observations s ∈ S into a d-dimensional vector φ(s), and (2) a space {πz} of44
policies parameterized by a latent vector z ∈ Rd. The representation φ defines the set of all linear45
reward functions in φ, i.e., r̃z(s) = φ(s)T z for all z ∈ Rd, which in turn is used as a self-supervised46
objective function for the policy space: for each z ∈ Rd, the policy πz is trained to be approximately47
optimal for the reward r̃z . Given a reward function r(s) at test time, a zero-shot policy πzr can be48
obtained by projecting r onto the pre-trained state features φ through linear regression on top of the49
training data, hence approximating r(s) ≃ φ(s)T zr.50

Although this inference method has proven effective in producing reasonable policies, it suffers51
from two main limitations yielding sub-optimal performance. First, the embedding φ is learned52
using unsupervised losses encoding inductive biases1 that may not be suitable for the downstream53
tasks of interest. As a result, the projection of the reward function onto φmay remove crucial aspects54
of the task specification thus preventing from finding the optimal policy for the original reward. In an55
extreme scenario, if a reward function lies in the orthogonal subspace of the features’ linear span, its56
projection onto these features becomes zero, making it uninformative. Second, BFMs are typically57
trained on task-agnostic datasets that may have poor coverage of the rewarding states relevant to the58
specific task. This limitation can result in zero-shot inference failing to accurately represent these59
states and ultimately hinder the learning of a good policy.60

While the suboptimality of unsupervised pre-training of large models is somewhat unavoidable, it61
is natural to wonder whether these limitations can be overcome once a downstream reward function62
is given and the agent has online access to the environment. In this paper we focus on devising fast63
adaptation strategies that improve zero-shot performance of BFMs 1) rapidly, i.e., in a handful of64
online episodes, and 2) monotonically, i.e., avoiding any performance drop during the adaptation65
process. This motivates the main question of this work:66

Does the policy space of a pre-trained BFM contain better behaviors than those returned by67
zero-shot inference? If so, can we retrieve them with few task-specific environment interactions?68

To address this question, we propose searching over the latent space Z using a limited number of69
online task-specific interactions with the environment (cf. Figure 1). We introduce two algorithms70
that leverage the latent space and pre-trained components from BFMs to enable fast adaptation of71
their zero-shot policies: (1) Residual Latent Adaptation (ReLA), an off-policy actor-critic approach72
that trains a small residual critic to compensate for the reward projection errors, and Lookahead73

1For instance, some methods rely on low-rank assumptions in the policy dynamics (Touati & Ollivier, 2021; Agarwal
et al., 2024), while others focus only on goal-reaching behaviors (Park et al., 2024)

2

Fast Adaptation with Behavioral Foundation Models

cheetah pointmass quadruped walker
400
500
600
700
800

cheetah pointmass quadruped walker300
400
500
600
700
800

cheetah pointmass quadruped walker

400

600

800

craw
l-0.4-0-d

craw
l-0.4-0-u

craw
l-0.4-2-d

craw
l-0.4-2-u

craw
l-0.5-0-d

craw
l-0.5-0-u

craw
l-0.5-2-d

craw
l-0.5-2-u

crouch-0

headstand

jum
p-2

lieonground-dow
n

lieonground-up

m
ove-ego--90-2

m
ove-ego--90-4

m
ove-ego-0-0

m
ove-ego-0-2

m
ove-ego-0-4

m
ove-ego-180-2

m
ove-ego-180-4

m
ove-ego-90-2

m
ove-ego-90-4

m
ove-ego-low

--90-2

m
ove-ego-low

-0-0

m
ove-ego-low

-0-2

m
ove-ego-low

-180-2

m
ove-ego-low

-90-2

raisearm
s-h-h

raisearm
s-h-l

raisearm
s-h-m

raisearm
s-l-h

raisearm
s-l-l

raisearm
s-l-m

raisearm
s-m

-h

raisearm
s-m

-l

raisearm
s-m

-m

rotate-x--5-0.8

rotate-x-5-0.8

rotate-y--5-0.8

rotate-y-5-0.8

rotate-z--5-0.8

rotate-z-5-0.8

sitonground

split-0.5

split-1

0
50
100
150
200
250
300

Adapation Improvements on Zero-Shot Policies

A
ve

ra
ge

 R
et

ur
n

A
ve

ra
ge

 R
et

ur
n

FB HILP PSM

FB-CPR

Figure 2: Performance comparison of zero-shot policy vs adapted policy in the BFM’s latent space
after 200 episodes. The shaded region shows the improvement of the adapted policies averaged
across tasks.

Latent Adaptation (LoLA), a hybrid actor-only approach that combines on-policy optimization while74
bootstrapping the frozen critic from the pre-trained BFMs.75

We perform an extensive empirical evaluation on 5 domains with a total of 64 tasks spanning low-76
dimensional and high-dimensional problems with increasing complexity, including a whole-body77
humanoid control problem with a wide range of 45 diverse reward-based behaviors. We demon-78
strate the effectiveness of our proposed algorithms on four state-of-the-art BFMs: FB (Touati &79
Ollivier, 2021), HILP (Park et al., 2024), PSM (Agarwal et al., 2024) and FB-CPR (Tirinzoni et al.,80
2025). In particular, we answer the above question affirmatively: our fast adaptation algorithms81
achieve 10-40% improvement over the BFMs zero-shot performance in only a few episodes (Fig-82
ure 2), while outperforming existing baselines. Moreover, we show that LoLA avoids any initial83
drop of performance, a phenomenon commonly observed by numerous prior works on fine-tuning84
RL policies (Nair et al., 2020; Nakamoto et al., 2023; Luo et al., 2023; Zhou et al., 2024).85

2 Preliminaries86

Markov decision process. We consider a reward-free Markov decision process (MDP) (Puter-87
man, 2014; Sutton & Barto, 2018) which is defined as a tupleM = (S,A, P, d0, γ), where S and88
A respectively denote the state and action spaces, P denotes the transition kernel with P (s′|s, a)89
indicating the probability of transitioning from s to s′ by taking action a, d0 denotes the initial state90
distribution and γ ∈ (0, 1) specifies the discount factor. A policy π is a function π : S → ∆(A)91
mapping a state s to probabilities of action in A. We denote by Pr(· | s, a, π) and E[· | s, a, π] the92
probability and expectation operators under state-action sequences (st, at)t≥0 starting at (s, a) and93
following policy π with st ∼ P (· | st−1, at−1) and at ∼ π(· | st). Given any reward function94
r : S → R, the Q-function of π for r is Qπr (s, a) :=

∑
t≥0 γ

tE[r(st+1) | s, a, π].95

Successor measures and features. The successor measure (Dayan, 1993; Blier et al., 2021) of96
state-action (s, a) under a policy π is the (discounted) distribution of future states obtained by taking97
action a in state s and following policy π thereafter:98

Mπ(X | s, a) :=
∑
t≥0

Pr(st+1 ∈ X | s, a, π) ∀X ⊂ S. (1)

3

Under review for RLC 2025, to be published in RLJ 2025

Importantly, successor measures disentangle the dynamics of the MDP and the reward function: for99
any reward r and policy π, the Q-function can be expressed linearly as Qπr =Mπr.100

Given a feature map φ : S → Rd that embeds states into a d-dimensional space, the successor101
features (Barreto et al., 2017) is the expected discounted sum of features:102

ψπ(s, a) :=
∑
t≥0

γtE[φ(st+1) | s, a, π]. (2)

Successor features and measures are related: by definition, ψπ(s, a) =
∫
s
Mπ(ds′ | s, a)φ(s′). For103

any reward function in the linear span of φ, i.e., r(s) = ω⊤φ(s) where ω is a weight vector in Rd,104
the Q-function can be expressed compactly as Qπr (s, a) = ω⊤ψπ(s, a).105

Behavioral foundation models. A behavioral foundation model, for a given MDP, is an agent106
that can be trained in unsupervised fashion using reward-free transitions and yet can produce ap-107
proximately optimal policies for a large class of reward functions r specified at test time, without108
performing additional learning or planning. In this work, we focus on zero-shot RL agents that are109
based on successor features and forward-backward representations.110

Universal successor features (USFs) (Borsa et al., 2018) provide a generic framework for zero-shot111
RL. Given a feature map φ, USFs learn the successor features of a particular family of policies πz112
parameterized by latent variables z ∈ Z ⊂ Rd:113

ψ(s, a, z) = E[
∑
t≥0

γtφ(st+1) | s, a, πz], πz(s) = argmax
a

ψ(s, a, z)⊤z. (3)

At test time, once a reward function r is specified, a reward-maximizing policy is inferred114
by performing a linear regression of r onto the features φ. In particular, we estimate zr =115
argminz Es∼ρ[(r(s) − φ(s)⊤z)2] = Es∼ρ[φ(s)φ(s)⊤]−1Es∼ρ[φ(s)r(s)] where ρ is some dataset116
distribution over states. Then we return the pre-trained policy πzr . This policy is guaranteed to be117
optimal if the reward is in the linear span of the features φ (Borsa et al., 2018). Although USF is118
a generic framework, it requires specifying a training criterion to learn the basic features φ. Touati119
et al. (2023) compare several choices of unsupervised representation learning objectives across vari-120
ous empirical problems. In this work, we focus on two recent state-of-the-art feature learning meth-121
ods for zero-shot RL: Hilbert representations (HILP) (Park et al., 2024) and proto successor mea-122
sures (PSM) (Agarwal et al., 2024). HILP constructs features φ such that the distance ∥φ(s)−φ(s′)∥123
between a state pair (s, s′) encodes the optimal value function of reaching the state s′ starting at s.124
PSM proposes to build the features φ by learning an affine decomposition of the successor measure125
for a discrete codebook of policies, i.e., Mπu(ds′ | s, a)/ρ(ds′) ≈ ϕ(s, a)⊤φ(s′)w(u)+ b(s, a, s′),126
where ϕ,w and b are vector-valued functions and where πu is a deterministic policy that outputs an127
action in state s as a realization of the uniform distribution, determined by the random seed u.128

Forward-backward representations (FB) (Touati & Ollivier, 2021) provide an alternative framework129
for zero-shot RL. Unlike USFs which use two separate criteria to learn features and their successor130
features, FB avoid the state featurization step and employ a single objective to learn a finite-rank de-131
composition of the successor measure for various policies. Namely, FB pre-train two representations132
F : S ×A×Z → Rd and B : S → Rd such that:133

F (s, a, z)⊤B(s′)ρ(ds′) ≈Mπz (ds′ | s, a), πz(s) = argmax
a

F (s, a, z)⊤z. (4)

FB representations are related to USFs, as F (s, a, z) represents the successor features of134
Es∼ρ[B(s)B(s)⊤]−1B(s) (Touati et al., 2023). In the sequel, to standardize the notations with135
the USFs, we will denote ψ(s, a, z) = F (s, a, z) and φ(s) = Es∼ρ[B(s)B(s)⊤]−1B(s).136

Forward-Backward representations with Conditional Policy Regularization (FB-CPR) (Tirinzoni137
et al., 2025) is an online variant of FB that grounds the unsupervised policy learning toward im-138
itating observation-only unlabeled behaviors.139

4

Fast Adaptation with Behavioral Foundation Models

3 Fast Adaptation for Behavioral Foundation Models140

In this section, we introduce our two approaches for fast adaptation of pre-trained BFMs: an off-141
policy actor-critic algorithm (Section 3.1), and a hybrid on-policy actor-only algorithm (Section 3.2).142

3.1 ReLA: Residual Latent Adaptation143

Given a reward function r, ReLA begins with the latent variable z = zr inferred by the zero-144
shot procedure and uses an off-policy actor-critic approach to gradually update z towards better145
performance. The overall algorithm uses a standard online training procedure, interleaving between146
critic and actor updates (as described below), while gathering reward-labeled transitions in a replay147
buffer Donline through online interactions with the environment.148

Residual critic learning. Instead of training a critic from scratch to model the Q-function of the149
policy πz currently being learned for the reward r, ReLA uses a residual critic to correct for the150
reward projection error. This is made possible by the following decomposition:151

Qπz
r (s, a) = Qπz

φ⊤zr
(s, a) +Qπz

r−φ⊤zr
(s, a)

= ψ(s, a, z)⊤zr +Qπz

r−φ⊤zr
(s, a) (5)

where the last equality holds because ψ is pre-trained to estimate the successor features of φ152
and the projected reward φ⊤zr lies in the span of φ. Consequently, ReLA considers a net-153
work Qresidual(s, a; θ) parametrized by weights θ and trains it via off-policy TD learning so that154
ψ(s, a, zr)

⊤zr + Qresidual(s, a; θ) approximates the Q-function Qπz
r (s, a), while keeping the base155

Q-function ψ(s, a, zr)⊤zr frozen. In practice, we shall use much smaller networks for the residual156
critic than for the pre-trained successor features, with the main intuition being that we only need to157
compensate for some projection error. For a more in-depth treatment of the Q-function decomposi-158
tion we refer the readers to Appendix 6.1.159

Latent actor update. ReLA updates the latent variable z using standard policy-gradient ascent,160
with the key difference being that the gradient is computed only with respect to z, while keeping the161
pre-trained actor parameters fixed,162

∇zEs∼Donline [ψ(s, πz(s), zr)
⊤zr +Qresidual(s, πz(s); θ)], (6)

The main advantage over optimizing the whole actor network is that we only need to search in a163
low-dimensional space (in practice, z has in the order of hundreds of components, while the actor164
network of a BFM has in the order of millions of parameters).165

3.2 LoLA: Lookahead Latent Adaptation166

Although ReLA can take advantage of off-policy data collected in the replay buffer, it requires167
learning an additional residual network. Therefore, ReLA demands a certain budget of transitions168
and updates to mitigate the distribution shift issue (Luo et al., 2023) when learning the Q-function,169
which may impede improvements during the very early stages of adaptation. On the other hand,170
a purely on-policy approach will require rolling out entire trajectories under the current policy to171
estimate Monte Carlo returns

∑T
t=0 γ

trt (where T is the episode length), and thus incur many172
environment interactions in the process. Alternatively, we propose Lookahead Latent Adaptation173
algorithm (LoLA) that uses fixed-horizon on-policy rollouts with a frozen terminal value function174
obtained from the BFM. LoLA parameterizes a policy over the latent space as a normal distribu-175
tion πµ,σ = N (µ, σ) with trainable mean µ (initialized with µ = zr), and fixed diagonal covari-176
ance σ. The pre-trained successor features from BFM are used compute the estimate of a terminal177
value-function, thus estimating the n-step lookahead return of policy πz starting from state s0 as178
Rn(s0, z) =

∑n−1
t=0 γ

tr(st+1) + γnψ(sn+1, πz(sn+1), z)
⊤zr.179

5

Under review for RLC 2025, to be published in RLJ 2025

Moreover, to further improve learning, LoLA incorporates the variance reduction strategy of leave-180
one-out baseline (Kool et al., 2019). This baseline has recently been shown to be empirically effec-181
tive for fine-tuning large language models (Ahmadian et al., 2024). This leads to the following final182
gradient estimate2:183

Es0∼ν
[
1
k

∑k
i=1

(
R
(
s0, zi

)
− 1

k−1
∑k
j=1
j ̸=i

R
(
s0, zj

))
∇µ log πµ,σ

(
zi
)]

for z1, . . . , zk ∼ πµ,σ(·)

(7)
where s0 is sampled from the distribution ν defined as mixture between the environment’s ini-184
tial distribution d0 and the online replay buffer distribution Donline. For each sampled starting185
state s0, we sample k latent variables {zi}i∈[k] ∼ πµ,σ and generate k trajectories of length n186

(s
(i)
0 , a

(i)
0 , s

(i)
1 , a

(i)
1 , . . . , s

(i)
n) by following the policy πzi . Computing the gradient requires the abil-187

ity to reset of any state in support of distribution ν, which includes the states encountered during188
online adaptation.189

4 Experimental Results190

The goal of our experiments is to study how well latent policy adaptation works on top of exist-191
ing BFMs. We perform several ablations to understand the efficacy of the proposed methods and192
evaluate our design choices. Precisely, 1) Can we find better policies by online latent policy adap-193
tation compared to the zero-shot policies? Or, equivalently, is the latent policy space easy to search194
over? 2) How important is to leverage BFMs properties (e.g., Q-function estimate, zero-shot policy195
initialization)? 3) What are the critical limitations of the zero-shot inference process?196

Experimental setup. We investigate these questions by leveraging 4 different BFMs: FB, HILP,197
PSM and FB-CPR. While FB, HILP and PSM are trained offline, FB-CPR learns through online198
environmental interactions and it is regularized towards expert trajectories. We consider four envi-199
ronments from the DeepMind Control suite (Tassa et al., 2018) and train the BFMs on an exploratory200
dataset obtained from ExoRL (Yarats et al., 2022).3 Further, we leverage the FB-CPR model released201
by Tirinzoni et al. (2025) for the HumEnv environment, a high-dimensional humanoid agent. Over-202
all, we consider 7 tasks for Pointmass, 4 for Cheetah, 4 for Quadruped, 4 for Walker, and203
45 tasks for HumEnv. Detailed information about the pre-training phase can be found in Appendix 8.204

Protocol and baselines. While the paper focuses on adaptation in the latent policy space, we also205
investigate the common class of approaches for fine-tuning in action space (i.e., updating all policy206
network parameters) with zero-shot initialization (Nair et al., 2020; Nakamoto et al., 2023). In207
particular, we consider a TD3-based algorithm (Fujimoto et al., 2018) that train a critic from scratch208
and an actor initialized using the zero-shot policy (TD3 (I)).4 Since collecting a few on-policy209
trajectories before starting updating the critic and the actor proved to be effective for offline to210
online adaptation, a strategy called Warm-Start RL (WSRL) (Zhou et al., 2024), we additionally211
consider this component for action-based algorithms. We further ablate several design choices (e.g.,212
zero-shot initialization, bootstrapped critic) in Section 4.2 and, in Appendix 9 we report variations213
of our algorithms that operate by directly updating the parameters of the policy. See Table 1 for a214
complete list of algorithm variations.215

We use a comparable architecture and hyperparameter search for all algorithms. For each BFM,216
we report the performance on the set of hyperparameters that performed best across all tasks and217
domains. We train all the online adaptation algorithms for 300 episodes and we use 5 seeds for each218
experiment. Evaluation is done by averaging results over 50 episodes. We also use TD3 as base219
off-policy algorithm for implementing ReLA. When using residual critic we use a small 2-layers220
MLP with hidden dimension 64, while when we learn the critic from scratch we use a 2-layers MLP221
with hidden dimension 1024. The policy has always the same size as the BFM policy. We provide222
further implementation details in Appendix 8.223

2In practice we work with z normalized on hypersphere using projected gradient descent
3We consider the dataset collected by running RND (Burda et al., 2019).
4We also tested vanilla RLOO (Kool et al., 2019) but did not get good results and decided not to report it.

6

Fast Adaptation with Behavioral Foundation Models

0 100 200

80

60

40

20

0

20

%
 Im

pr
ov

em
en

t O
ve

r
 th

e
Ze

ro
-S

ho
t P

ol
icy

FB

0 100 200

80

60

40

20

0

20

40
PSM

0 100 200

80

60

40

20

0

20

HILP

0 100 200
100

75

50

25

0

25

50

FB-CPR

0 100 200
Episode

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

 w
.r.

t.
th

e
ze

ro
-s

ho
t p

ol
icy

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

TD3 (I) TD3-warm start (I) LoLa (ours) ReLa (ours)

Figure 3: Top: Performance improvement w.r.t. the zero-shot policy for different online fast adap-
tation methods and BFMs. TD3(I) denotes standard action-based TD3 with zero-shot policy initial-
ization, our methods are as described in Section 3. Bottom: Cosine similarity between the zero-shot
policy zr and the learned policy z for the methods working in the latent policy space. We report
mean and standard deviation over 5 seeds. Results are averaged over 19 tasks for FB, PSM, HILP
and 45 tasks for FB-CPR.

4.1 Do ReLA and LoLA enable fast adaptation?224

Figure 3 (top) shows our aggregated results across tasks for each domain: Latent policy adaptation225
leads to performance improvements w.r.t. the zero-shot policy in the range of 10-30% for DMC226
environment and 40-50% for HumEnv. Compared to Figure 2, these results show that significant227
improvements are already obtained in few online episodes. For example, LoLA leads to about 10%228
(resp. 40%) improvement for DMC (resp. for HumEnv) in only 20 episodes. These results show that229
i) the space of policies learned by the BFMs contains better policies than the one inferred by the zero-230
shot procedure and ii) such a space can be easily navigated using gradient-based approaches. While231
both ReLA and LoLA provide significant performance improvements, LoLA is the only method to232
achieve monotonic performance improvement across the board. As we can see from the per-task233
visualization in Appendix 9, the non-monotonic performance of ReLA is mostly due to the fact234
that the methods incurs a noticeable catastrophic forgetting in the pointmass environment where235
TD3-based methods seem to struggle in the online setting, probably due to exploration issues. As236
a result of training purely on online samples, critic learning in ReLA undergoes distribution shift237
which has been investigated to lead to initial unlearning (Zhou et al., 2024) whereas LoLA skips the238
critic learning step entirely. In addition, LoLA exploits a privileged information compared to ReLA,239
the ability to reset the environment to any arbitrary state, which further contributes in stabilizing and240
speeding up the learning process (see e.g., Mhammedi et al., 2024).241

How does the adapted policy evolve in latent space? To try to better understand the learning242
dynamics of ReLA and LoLAwe report the cosine similarity between the adapted z and the zero-shot243
policy zr in Figure 3 (bottom). ReLA deviates much more in the latent space from the initial zero-244
shot policy than LoLA. This fast and significant change is associated with the drop in performance.245
On the other hand, despite the high learning rate (we found 0.1 or 0.05 to be the best based on the246
BFM), LoLA remains closer to the zero-shot policy. A potential cause for the significant change in247
ReLAmay be difficulties in critic learning associated with distribution shift, which can impact policy248
directly. This visualization also shows that while converging to different policies, the performance249

7

Under review for RLC 2025, to be published in RLJ 2025

of ReLA and LoLA is comparable after 300 episodes in the DMC environments. This reveals that250
policies with similar performance may be associated to with different latent vectors z.251

When looking at the baselines, we can notice that all action-space adaptation algorithms suffer252
a much more significant drop compared to latent policy adaptation. The performance gap between253
action-based and latent policy adaptation becomes even larger when looking at FB-CPR. In this case,254
all action-based algorithms completely unlearn in a few steps and are not able to rapidly recover.255
We think this is due to the large dimensionality of observation space, action space and policy model256
that lead to a much more complicated optimization problem.5 On the other hand, in contrast to257
other BFMs, FB-CPR does not suffer any initial performance drop when using ReLA. Indeed, all258
latent policy adaptation algorithms (see Appendix 9 for additional experiments) achieve monotonic259
performance improvement, stressing even more that structured search in the latent policy space may260
be simpler than finetuning the whole policy in high-dimensional problems. This may be due to the261
fact that FB-CPR is the only BFM that is pre-trained with online environmental interactions, a setting262
that may reduce the distribution shift between pretraining and adaptation. Finally, the performance263
improvement due to the latent policy adaption is much more significant in this domain. The reason264
may reside in the critic training objective of FB-CPR; indeed FB-CPR uses a discriminator-based265
loss to regularize the policy space towards expert demonstrations. This may prevent the zero-shot266
inference to correctly identify the best policy for the task, while online adaptation seems to better267
search the policy space.268

Finally, we would like to report an observation about the computational efficiency. On our hardware,269
LoLA runs at ≈ 157x the FPS of ReLA and other adaptation approaches. Specifically, ReLA runs270
at ≈ 14 FPS, and LoLA runs at ≈ 2, 200. This gaps presumably comes from the fact that ReLA271
needs to backpropagate gradient through the BFM estimated value function and policy both in the272
critic and actor updates, while LoLA has just a single actor update. The computational efficiency273
of LoLA along with its observed near-monotonic improvement for adaptation makes it appealing in274
practice.275

4.2 What components are critical for fast adaptation?276

Algorithm Zero-Shot
Policy Init.

Residual Critic(†)/
Bootstraped
Return(+)

Critic
Trained from

scratch
Search space

LoLA ✓ ✓(+) z

LoLA (no-I) ✓(+) z
LoLA (no-R) ✓ ✓ z
LoLA (no-I, no-R) ✓ z

ReLA ✓ ✓(†) z

ReLA (no-I) ✓(†) z
ReLA (no-R) ✓ ✓ z
ReLA (no-I, no-R) ✓ z

TD3-z ✓ z
TD3 (I) ✓ ✓ a
TD3-warm-start(I) ✓ ✓ a

TD3-warm-start(I, R) ✓ ✓(†) a

Table 1: Summary of algorithm variations. Here, search
space z indicates latent policy adaptation via the policy
space {πz} constructed by the BFM, while a denotes fine-
tuning in action space.

In this section we assess the impor-277
tance of leveraging BFM properties278
for fast online adaptation. We focus279
on ablating the need of i) zero-shot280
initialization and ii) BFM value func-281
tion estimate, i.e., using a residual282
critic for ReLA and the bootstrapped283
Q-function for LoLA. We focus on284
the very early steps of the training to285
better inspect the results. Ablation286
variants are concisely shown in Ta-287
ble 1 for reference, and results are re-288
ported in Figure 4.289

When zero-shot initialization is dis-290
abled not only the performance starts291
lower but also take significantly292
longer to match the baseline’s returns293
(if they match at all). Unsurprisingly,294
zero-shot initialization helps in the295
search process. Leveraging the BFM’s value function estimate does not hurt and often helps in296
reducing the initial performance drop. Looking at LoLA, BFM bootstrapping helps only marginally297
in all the domains. We believe that this is due to the small discount factor and large lookahead298

5A way to address this problem may be through policy regularization but this is outside the scope of this paper.

8

Fast Adaptation with Behavioral Foundation Models

0 50 100 150
100

200

300

400

500

600

700

Av
er

ag
e

Re
tu

rn

FB

LoLa
LoLa (no-I)
LoLa (no-R)
LoLa (no-I,no-R)

0 50 100 150

200

300

400

500

600

700
PSM

0 50 100 150

100

200

300

400

500

600

HILP

0 50 100 1500

50

100

150

200

FB-CPR

0 50 100 150
100

200

300

400

500

600

700

Av
er

ag
e

Re
tu

rn

ReLa
ReLa (no-R)
ReLa (no-I)
ReLa (no-I,no-R)

0 50 100 150

100

200

300

400

500

600

700

0 50 100 150

100

200

300

400

500

600

0 50 100 150

50

100

150

200

0 50 100 150
Episodes

100

200

300

400

500

600

700

Av
er

ag
e

Re
tu

rn

ReLa-a
TD3 (I)
ReLa-a (no-I)
TD3
TD3-warm start (I, R)
TD3-warm start (I)

0 50 100 150
Episodes

100

200

300

400

500

600

700

0 50 100 150
Episodes

0

100

200

300

400

500

600

700

0 50 100 150
Episodes

0

20

40

60

80

100

120

140

Figure 4: Average returns for several variations of LoLA, ReLA, and action-based TD3 with warm
start. We use no-R to denote that we do not use the BFM’s estimated value function (i.e., for LoLA
we do not bootstrap the terminal state and for ReLA we learn a critic from scratch) and no-I to
denote that we do not use zero-shot policy initialization. Finally, for TD3 we use R to denote that
we use residual critic since the standard implementation learns a critic from scratch.

(we use 0.98 and a lookahead of 100 or 250); this combination significantly reduces the role of299
the bootstrapped Q-function (discounted by 0.13 or 0.006). When looking at ReLA, residual critic300
helps in DMC domains but not in the HumEnv, where zero-shot initialization is the most important301
dimension. On the other hand, when zero-shot initialization is disabled in the DMC domains, the302
importance of residual critic is particularly evident and leads to almost match the performance of the303
best algorithm. Finally, the residual critic is also very important when performing direct adaptation304
in the action-space and helps in a faster recovery from the initial drop.305

4.3 Dissecting the Suboptimality of Zero-Shot RL Policies306

The previous results show that BFMs are indeed learning skills that contain good policies for all the307
downstream tasks we study. This then raises the question on what causes the suboptimality of the308
zero-shot policy and the need of performing online adaptation to actually recover a better policy.309
We run a series of ablations with FB, HILP and PSM. We do not consider FB-CPR because our310
ablation involves offline training and we do not have access to an offline dataset for this model since311
it was trained online. We consider TD3 as learning algorithm since it is the building block of all the312
three BFMs and focus on latent policy adaptation (we call this approach TD3-z to avoid confusion313
with TD3 used in the previous sections to optimize the full policy network). For all experiments in314
this section, we consider the standard scenario of training from scratch, no zero-shot initialization315
and no-residual critic. Specifically when searching in z space, we use a pretrained BFM actor and316

9

Under review for RLC 2025, to be published in RLJ 2025

offline online offline online

0

2

4

6

8

10

%
 Im

pr
ov

em
en

t O
ve

r
 th

e
Ze

ro
-S

ho
t P

ol
icy

FB

offline online offline online

0

10

20

30

HILP

offline online offline online0

2

4

6

8

10

12

14 PSM

Reconstructed reward True reward ReLa@200 episodes

Figure 5: Performance improvement w.r.t. the zero-shot policy for a TD3-based method trained from
scratch for 3M steps to perform search in the latent policy space (i.e., TD3-z). We report the results
for both online and offline training using the ExoRL (Yarats et al., 2022) dataset. We also ablate
learning with the true task reward and the reward reconstructed by the BFM methods. We average
the results over all the task of the Walker, Quadruped and Cheetah domains. We report the
average performance over 5 seeds. We additionally show the performance of ReLA after training
for 200 episodes.

initialize z along with the critic randomly and when learning in action space we initialize both317
the actor and critic randomly. We report the performance of TD3-z after 3M training steps when318
using the true reward function and the reward function reconstructed by the BFMs6, both offline and319
online. We do not consider pointmass in this test since TD3 does not work well when trained320
online due to the challenging exploration in the long-horizon tasks considered in this domain.321

Overall, these experiments confirm that BFMs can express much better policies than the zero-shot322
policy and that optimizing for true rewards is crucial to unlock their full performance. When opti-323
mizing for the latent reward, offline TD3-z can already improve the zero-shot performance revealing324
the difficulty of optimizing all polices {πz} simultaneously during the pre-training process.7 Inter-325
estingly, when moving to online training on the latent reward performance can even drop. We con-326
jecture the cause is the distribution shift between online and offline samples. Given that the models327
were trained offline, their reward prediction degrades on out-of-distribution samples encountered328
during online adaptation, further skewing towards learning policies that are even less correlated to329
the true reward. This is confirmed when looking at the performance when optimizing for the true330
reward, which consistently lead to better results across offline and online tests, with online methods331
being overall better. This ablation confirms that focusing on searching in the z-space, while correct-332
ing the embedding errors is the right strategy to achieve fast adaptation online. Indeed, we see that333
ReLA recovers better policies than the one obtained by training from scratch TD3-z online for 3M334
episodes in only 200 episodes. Even faster if we use LoLA. This shows that leveraging information335
from the BFM is useful in many cases.336

5 Related Work337

Unsupervised RL pre-training: For language and vision, unsupervised pretraining has paved the338
way to extracting meaningful structure from data, scaling up, and obtaining impressive results for339
transfer and zero-shot generalization to different downstream tasks. In recent years, approaches have340
been proposed for unsupervised reinforcement learning: a training paradigm where a learning agent341
attempts to extract world structure and representations that will later allow it to solve diverse multi-342

6Latent or reconstructed reward is given by r̃z(s) = φ(s).zr
7The fact that performance of HILP and PSM improve by about than 10-15% by offline training on the reconstructed

reward might may be due to a non-perfect pre-train. Indeed, the pre-training condition should ensure that the actor is already
optimal on any reconstructed reward on the training data distribution.

10

Fast Adaptation with Behavioral Foundation Models

step decision-making problems in the environment. Various objectives have been proposed: world343
modeling (Bruce et al., 2024; Hansen et al., 2023), intrinsic rewards (Schmidhuber, 2019; Stadie344
et al., 2015; Sekar et al., 2020; Pathak et al., 2017), empowerment and mutual information skill345
learning (Klyubin et al., 2005; Eysenbach et al., 2018; Rajeswar et al., 2023; Gregor et al., 2016),346
goal-reaching (Ma et al., 2022; Park et al., 2023; 2024), successor measures (Touati & Ollivier,347
2021; Agarwal et al., 2024; Sikchi et al., 2024) among others. In this work, we restrict our focus to348
the class of unsupervised RL objectives that learn a family of policies and allow us to query for a349
near-optimal policy given any test-time reward function without further learning or planning in the350
environment. Approaches belonging to this class often learn a state representation and use that to351
define the class of reward functions for which they learn the set of optimal policies. At inference352
time, they output the policy that is optimal for the projection of the reward function to this class of353
reward functions.354

Fine-tuning and adaptation with unsupervised RL models: Similar to supervised pre-training355
approaches, unsupervised zero-shot RL models are not expected to output optimal policies for the356
given task. Rather they are expected to output a reasonable policy initialization that can be later fine-357
tuned or adapted. Prior approaches for policy adaptation with pre-trained RL models have mostly358
studied the offline-to-online setting. In this setting, a policy is trained with reward-labeled transitions359
first using offline data with specialized offline RL algorithms and then allowed to fine-tune by inter-360
acting with the environment and retaining access to the offline data. Offline RL algorithms (Levine361
et al., 2020; Sikchi et al., 2023) incorporate pessimism to avoid overestimation by restricting the362
policy to visit states closer to the dataset. Naively using the same algorithm to finetune online has363
been observed to lead to slow performance improvements and using an online RL algorithm leads364
to performance collapse at the beginning of fine-tuning (Luo et al., 2023). This behavior has been365
attributed to a distribution shift for critic-learning (Yu & Zhang, 2023), and prior works have inves-366
tigated various techniques, such as calibration of Q-functions to mitigate this problem (Nakamoto367
et al., 2023). Our work, considers a different but practical paradigm for adaptation where a) no368
offline data is retained during finetuning and b) we learn from reward-free transitions. First, by only369
retaining pre-trained models we reduce compute requirements of learning from large pre-training370
offline datasets (Zhou et al., 2024), and by considering reward-free transitions we have a single371
model that can adapt to any downstream task (Kim et al., 2024). Learning online without retaining372
offline data suffers a significant initial drop of performance with respect to the pre-trained policy as373
recently investigated by Zhou et al. (2024).374

6 Conclusion375

Unsupervised zero-shot RL pre-training can result in an agent (a type of Behavioral Foundation376
Model, BFM) capable of accomplishing a wide variety of tasks having a noticeable but expected377
degree of suboptimality. This paper investigates and addresses the question of how to adapt these378
agents to be better at a task specified during test-time with limited environment interactions. We379
propose two fast adaptation strategies (LoLA and ReLA); The key insight behind our methods is380
to reuse pre-trained knowledge from BFM strategically and search over the learned latent policy381
space that provides a low-dimensional landscape favorable for gradient-based optimization. We382
have demonstrated the effectiveness of these strategies across various zero-shot BFMs. Notably,383
LoLA, an actor-only adaptation algorithm, demonstrates monotonic performance improvement on384
all domains and BFMs, making it a reliable choice when privileged resets are permitted. However,385
our findings also reveal an initial performance drop when employing any actor-critic method, includ-386
ing our proposed ReLA algorithm. This highlights the need for further investigation into mitigating387
forgetting in the actor-critic class of approaches. Future research directions include exploring meta-388
learning adaptation techniques, including in-context adaptation by learning to adapt in multi-task389
settings to optimize learning costs and improve overall performance.390

11

Under review for RLC 2025, to be published in RLJ 2025

Broader Impact Statement391

Our work seeks to advance the adaptability of learning agents that interact with the environment. Our392
work pushes the frontier on scalable and adaptable agents by building upon unsupervised learning393
objectives that allow us to reuse a single trained model capable of a variety of tasks and propos-394
ing approaches that make these models more proficient at a task specified during test time rapidly395
without retaining any data used for pretraining. Prior works have studied a variety of objectives for396
unsupervised RL but fall short in their investigation of adaptation or propose a strategy that unlearns397
the policy before starting to improve performance. Our proposed approach is the first to our knowl-398
edge, to demonstrate monotonic performance improvement for pretrained RL agents without access399
to training data. There are potential societal consequences of our work, none which we feel must be400
specifically highlighted here.401

References402

Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto successor measure:403
Representing the space of all possible solutions of reinforcement learning. arXiv preprint404
arXiv:2411.19418, 2024.405

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,406
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-407
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.408

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,409
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural410
information processing systems, 30, 2017.411

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent412
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.413

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,414
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint415
arXiv:1812.07626, 2018.416

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,417
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are418
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.419

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,420
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-421
active environments. In Forty-first International Conference on Machine Learning, 2024.422

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network423
distillation. In 7th International Conference on Learning Representations, ICLR 2019, New Or-424
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/425
forum?id=H1lJJnR5Ym.426

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and427
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of428
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.429

Edoardo Cetin, Ahmed Touati, and Yann Ollivier. Finer behavioral foundation models via auto-430
regressive features and advantage weighting. arXiv preprint arXiv:2412.04368, 2024.431

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-432
tion. Neural computation, 5(4):613–624, 1993.433

12

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Fast Adaptation with Behavioral Foundation Models

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep434
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of435
the North American chapter of the association for computational linguistics: human language436
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.437

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,438
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-439
timodal language model. 2023.440

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:441
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.442

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-443
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.444

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv445
preprint arXiv:1611.07507, 2016.446

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-447
uous control. arXiv preprint arXiv:2310.16828, 2023.448

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and449
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint450
arXiv:1906.05030, 2019.451

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,452
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning for453
robot control. In 2019 international conference on robotics and automation (ICRA), pp. 6023–454
6029. IEEE, 2019.455

Junsu Kim, Seohong Park, and Sergey Levine. Unsupervised-to-online reinforcement learning.456
arXiv preprint arXiv:2408.14785, 2024.457

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International458
Conference on Learning Representations (ICLR), 2015.459

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal460
agent-centric measure of control. In 2005 ieee congress on evolutionary computation, volume 1,461
pp. 128–135. IEEE, 2005.462

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!463
2019.464

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-465
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.466

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International467
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021.468

Yicheng Luo, Jackie Kay, Edward Grefenstette, and Marc Peter Deisenroth. Finetuning from469
offline reinforcement learning: Challenges, trade-offs and practical solutions. arXiv preprint470
arXiv:2303.17396, 2023.471

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy472
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.473
arXiv preprint arXiv:2210.00030, 2022.474

Zakaria Mhammedi, Dylan J. Foster, and Alexander Rakhlin. The power of resets in online rein-475
forcement learning. In NeurIPS, 2024.476

13

Under review for RLC 2025, to be published in RLJ 2025

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-477
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.478

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral479
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-480
tuning. arXiv preprint arXiv:2303.05479, 2023.481

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware482
abstraction. arXiv preprint arXiv:2310.08887, 2023.483

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.484
arXiv preprint arXiv:2402.15567, 2024.485

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration486
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.487
PMLR, 2017.488

Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast im-489
itation via behavior foundation models. In The Twelfth International Conference on Learning490
Representations, 2024. URL https://openreview.net/forum?id=qnWtw3l0jb.491

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John492
Wiley & Sons, 2014.493

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language494
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.495

Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron Courville, and496
Alexandre Lacoste. Mastering the unsupervised reinforcement learning benchmark from pixels.497
In International Conference on Machine Learning, pp. 28598–28617. PMLR, 2023.498

Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill499
policies: Learning an adaptable skill-based action space for reinforcement learning for robotics.500
In Conference on Robot Learning, pp. 2095–2104. PMLR, 2023.501

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them502
to actions. arXiv preprint arXiv:1912.02875, 2019.503

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.504
Planning to explore via self-supervised world models. In International conference on machine505
learning, pp. 8583–8592. PMLR, 2020.506

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new507
methods for reinforcement and imitation learning, 2023.508

Harshit Sikchi, Siddhant Agarwal, Pranaya Jajoo, Samyak Parajuli, Caleb Chuck, Max Rudolph,509
Peter Stone, Amy Zhang, and Scott Niekum. Rl zero: Zero-shot language to behaviors without510
any supervision. arXiv preprint arXiv:2412.05718, 2024.511

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning. arXiv512
preprint arXiv:1812.06298, 2018.513

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement514
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.515

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.516

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-517
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.518
Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018.519

14

https://openreview.net/forum?id=qnWtw3l0jb

Fast Adaptation with Behavioral Foundation Models

Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen520
Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behav-521
ioral foundation models. In The Thirteenth International Conference on Learning Representa-522
tions, 2025. URL https://openreview.net/forum?id=9sOR0nYLtz.523

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In NeurIPS,524
pp. 13–23, 2021.525

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In526
ICLR. OpenReview.net, 2023.527

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée528
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and529
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.530

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with531
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.532

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,533
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline534
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.535

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.536
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and537
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,538
volume 202 of Proceedings of Machine Learning Research, pp. 40452–40474. PMLR, 23–29 Jul539
2023. URL https://proceedings.mlr.press/v202/yu23k.html.540

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo541
Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization maintaining542
near optimality. arXiv preprint arXiv:2205.13521, 2022.543

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language544
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,545
pp. 11975–11986, 2023.546

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-547
ment learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762, 2024.548

15

https://openreview.net/forum?id=9sOR0nYLtz
https://proceedings.mlr.press/v202/yu23k.html

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials549

The following content was not necessarily subject to peer review.550

551

6.1 Motivation for residual learning552

Notation: We use matrix form and we identify for any z ∈ Z , ψz : S × A → Rd and ϕ :553
S × A → Rd by ψz ∈ Rd×|S×A| and ϕ ∈ Rd×|S| respectively and Dρ = diag((ρ(s))s∈S).554
Similarly, we identify for any z ∈ Z , Fz : S × A → Rd and B : S × A → Rd by Fz ∈ Rd×|S×A|555
and B ∈ Rd×|S| respectively. We denote by Πϕ = ϕ⊤

(
ϕDρϕ

⊤)−1 ϕDρ the L2(ρ) orthogonal556
projection onto the linear span of ϕ.557

Proposition 1. Let ϕ : S → Rd a state feature map and {ψz}z∈Z the corresponding universal558
successor features for the policy family {πz}z∈Z , i.e ψz(s, a) = E[

∑
t≥0 γ

tϕ(st+1) | (s, a), πz]559
Then, for any reward function r : S → R, we have: Qπz

r = ψ⊤z zr + Qπz

r−ϕ⊤zr
where560

zr = Es∼ρ[ϕ(s)ϕ(s)⊤]−1Es∼ρ[ϕ(s)r(s)], and Qπz

r−ϕ⊤zr
is the Q-function of the residual reward561

r − ϕ⊤zr = (I −Πϕ)r.562

Proof. for any reward function r ∈ RS , we have r = (ΠB + I −ΠB)r, then563

Qπz
r =Mπzr

=Mπz (ΠB + I −ΠB)r

=MπzΠBr +Mπz (I −ΠB)r

=Mπzϕ⊤
(
ϕDρϕ

⊤)−1 ϕDρr +Mπz (r − ϕ⊤
(
ϕDρϕ

⊤)−1 ϕDρr)

= ψ⊤z zr +Qπz

r−ϕ⊤zr

where the last equation follows from the fact that ψ⊤z = Mπzϕ⊤ and zr =564

Es∼ρ[ϕ(s)ϕ(s)⊤]−1Es∼ρ[ϕ(s)r(s)] =
(
ϕDρϕ

⊤)−1 ϕDρr565

Proposition 2. Let assume that for any z ∈ Z, Fz is a stationary point of the FB training loss566
ℓ(F,B), namely, the functional derivative ∂l

∂Fz
of the loss with respect of Fz is 0. Then,567

Qπz
r = F⊤z zr +Qπz

(I−ΠB)r

= F⊤z zr +
(
Mπz − F⊤z BDρ

)
(r −ΠBr)

where zr = Es∼ρ[B(s)r(s)].568

Proof. Let’s remind the FB training loss:569

ℓ(F,B) = Ez,(s,a)∼ρ
s+∼ρ

[(
F (s, a, z)⊤B(s+)− P (ds+ | s, a)/ρ(ds+)− (Pπz F̄)(s, a, z)⊤B̄(s+)

)2]
In matrix form, we obtain:570

ℓ(F,B) = Ez
[
Trace

((
F⊤z B − PD−1ρ − γPπz F̄⊤z B̄

)⊤
Dρ

(
F⊤z B − PD−1ρ − γPπz F̄⊤z B̄

)
Dρ

)]
16

Fast Adaptation with Behavioral Foundation Models

if Fz satisfies the stationarity conditions, i.e, ∂ℓ
∂Fz

= 0, then, we have571

∂ℓ

∂Fz
= 0⇒ 2BDρ

(
F⊤z B − PD−1ρ − γPπzF⊤z B

)⊤
Dρ = 0

⇒ 2Dρ

(
F⊤z B − PD−1ρ − γPπzF⊤z B

)
DρB

⊤ = 0

⇒ F⊤z BDρB
⊤ = PB⊤ + γPπzF⊤z BDρB

⊤

⇒ F⊤z =MπzB⊤
(
BDρB

⊤)−1
⇒ F⊤z BDρ =MπzB⊤

(
BDρB

⊤)−1
⇒ F⊤z BDρ =MπzB⊤

(
BDρB

⊤)−1BDρ

Therefore F⊤z BDρ = MπzΠB where ΠB = B⊤
(
BDρB

⊤)−1BDρ is the L2(ρ) orthogonal pro-572
jection onto the linear span of B.573

Let ΠB⊥ the orthogonal projection onto the orthogonal ofB. By definition, we have ΠB⊥ = I−ΠB574

We have:575

Qπz
r =Mπzr

=Mπz (ΠB +ΠB⊥)r

=MπzΠBr +MπzΠB⊥r

= F⊤z BDρr +MπzΠB⊥r

= F⊤z zr +MπzΠB⊥r

where zr = BDρr = Es∼ρ[B(s)r(s)]576

Therefore, we have:577

Qπz
r = F⊤z zr +Qπz

Π
B⊥r

where the second term is the the Q-function of the residual reward ΠB⊥r578

Moreover, since Π2
B⊥ = ΠB⊥ , we can write:579

Qπz
r = F⊤z zr + (MπzΠB⊥) (ΠB⊥r)

= F⊤z zr +
(
Mπz − F⊤z BDρ

)
(r −ΠBr)

Which means that the residual term can be expressed as the successor measure approximation error580
(due to the low-rank decomposition of FB model) multiplied by the reward error (due to the reward581
embedding in the span of B).582

7 Pseedocode583

Algorithm 1 and 2 outline pseudocode for ReLA and LoLA respectively.584

8 Experimental Setup585

8.1 Environments586

We list the continuous control environments from the DeepMind Control Suite (Tassa et al., 2018)587
and Humenv (Tirinzoni et al., 2025) used in this work in Table 2.588

8.2 Behavioral Foundation Models589

We trained all the BFMs except for the FB-CPR model that is publicly available (code link).590

17

https://github.com/facebookresearch/metamotivo

Under review for RLC 2025, to be published in RLJ 2025

Algorithm 1: ReLA
Load Frozen BFM’s successor features ψ(s, a, z) and

policy πz(s) networks.
Initialize residual critic networksQresidual

θ1
,Qresidual

θ2
, replay

bufferDonline, exploration std σ, Update to Data ratio
(UTD)M , Initialize target networks: Qresidual

θ′1
← Qresidual

θ1
,

Qresidual
θ′2

← Qresidual
θ2

.

Compute zero-shot latent zr using inference samples for
the BFM agent with test-time reward function.

for each environment step t do
Select at = πz(st) + ϵ, ϵ ∼ N (0, σ)
Execute at; observe rt, st+1

Store (st, at, rt, st+1) inDonline
Sample M mini-batches

Batchi = {(si, ai, ri, s′i)} ∼ Donline

Compute target Q-value:
yi = ri + γ(ψ(s′i, πz(s

′
i), zr) · zr +

min{Qθ′1
(s′i, πz(s

′
i)), Qθ′2

(s′i, πz(s
′
i))})

TemporalDifferenceUpdate(ψ(si, ai, zr) · zr +

Qresidual
θk∈[1,2]

, yi) for i ∈ [M] using critic

parameterization from Eq 5
Latent Policy Update Update z taking gradient step as
in Eq 6 on ∪i∈[m]Batchi .
Update target networks by polyak averaging;

end

Algorithm 2: LoLA
Load Frozen BFM’s successor features ψ(s, a, z) and

policy πz(s) networks
Initialize latent policy πµ,σ = N (µ = zr, σ), replay

bufferDonline, sampling state distribution ν(Donline, d0), z
budget k, intial state budgetm, horizon n

Compute zero-shot latent zr using inference samples for
the BFM agent with test-time reward function.

for each gradient step do
for b=1..m do

s0 ∼ µ(Donline, d0)
for i=1..k do

zib ∼ πµ,σ , Reset to s0
Rollout trajectory τ i

b by taking actions given
by at = π

zi
b
(st)

ComputeR(s0, z
i
b)

Collect states from τ i
b inDonline

end
end
Update πµ,σ by taking gradient step in Eq 7.

end

Figure 6: Pseudocode of our proposed adaptation methods: Residual Latent Adaptation (ReLA) and
Lookahead Latent Adaptation (LoLA).

Domain Observation dimension Action dimension Episode length
Pointmass 4 2 1000

Walker 24 6 1000
Cheetah 17 6 1000

Quadruped 78 12 1000
HumEnv 358 69 300

Table 2: Overview of observation spaces, action spaces and episode length of environments used in
this work.

Offline BFMs. We train the BFMs using the publicly available dataset from ExoRL (Yarats et al.,591
2022) collected using the RND algorithm (Burda et al., 2019). We used the authors implementation592
for FB and FB-CPR (code link) and reimplemented PSM and HILP. We report in Table 3 the set of593
hyperparameter used for the algorithms.594

FB architecture. The backward representation networkB(s) is represented by a feedforward neu-595
ral network with two hidden layers, each with 256 units, that takes as input a state and outputs a596
d-dimensional embedding. For the forward network F (s, a, z), we first preprocess separately (s, a)597
and (s, z) by two feedforward networks with one single hidden layer (with 1024 units) to 512-598
dimentional space. Then we concatenate their two outputs and pass it into two heads of feedforward599
networks (each with one hidden layer of 1024 units) to output a d-dimensional vector. For the pol-600
icy network π(s, z), we first preprocess separately s and (s, z) by two feedforward networks with601
one single hidden layer (with 1024 units) to 512-dimentional space. Then we concatenate their two602
outputs and pass it into another one single hidden layer feedforward network (with 1024 units) to603
output to output a dA-dimensional vector, then we apply a Tanh activation as the action space is604
[−1, 1]dA .605

For all the architectures, we apply a layer normalization and Tanh activation in the first layer in606
order to standardize the states and actions. We use Relu for the rest of layers. We also pre-607
normalize z : z ←

√
d z
∥z∥2 in the input of F , and π.608

18

https://github.com/facebookresearch/metamotivo

Fast Adaptation with Behavioral Foundation Models

Table 3: BFM hyperparameters. We largely reuse the hyperparameters from Pirotta et al. (2024) for
FB, from (Park et al., 2024) for HILP.

Hyperparameter Walker Cheetah Quadruped Pointmass

FB

Forward Backward
(Touati & Ollivier, 2021)

Embedding Dimension d 100 50 50 100

Embedding Prior Sd Sd Sd Sd

Embedding Prior Goal Prob. 0.5 0.5 0.5 0.5

B Normalization ℓ2 ℓ2 ℓ2 ℓ2

Orthonormal Loss Coeff. 1 1 1 1

Optimizer (Adam)
(Kingma & Ba, 2015)

Learning Rate (F, B) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4) (10−4, 10−6)
Learning Rate (π) 10−4 10−4 10−4 10−6

Target Network EMA 0.99 0.99 0.99 0.99

HILP

Hilbert Representations
(Park et al., 2024)

Embedding Dimension d 50 50 50 100

Feature Learning Expectile 0.5 0.5 0.5 0.5

Feature Learning Discount Factor 0.98 0.98 0.98 0.98

Successor feature loss Q-loss Q-loss Q-loss Q-loss

Optimizer (Adam)
Learning Rate (SF, F) (10−4, 10−5) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4)
Learning Rate (π) 10−4 10−4 10−4 10−4

Target Network EMA features 0.995 0.995 0.995 0.995

Target Network EMA SF 0.99 0.99 0.99 0.99

PSM

Proto Successor Measures
(Agarwal et al., 2024)

Embedding Dimension d 100 50 50 100

Policy Codebook Size 216 216 216 216

Feature Learning Timesteps 400k 400k 400k 400k

Embedding Prior Goal Prob. 0.5 0.5 0.5 0.5

B Normalization ℓ2 ℓ2 ℓ2 ℓ2

Orthonormal Loss Coeff. 1 1 1 1

Optimizer (Adam)
(Kingma & Ba, 2015)

Learning Rate (F, B) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4) (10−4, 10−6)
Learning Rate (π) 10−4 10−4 10−4 10−6

Target Network EMA 0.99 0.99 0.99 0.99

Policy (TD3)
(Fujimoto et al., 2018)

Target Policy Noise N (0, 0.2) N (0, 0.2) N (0, 0.2) N (0, 0.2)

Target Policy Clipping 0.3 0.3 0.3 0.3

Policy Update Frequency 1 1 1 1

Common

Batch Size 1024 1024 1024 1024

Gradient Steps 3M 3M 3M 3M
Discount Factor γ 0.98 0.98 0.98 0.99

Reward Inference Samples 250, 000 250, 000 250, 000 250, 000

ExoRL number of trajectories 5, 000 5, 000 5, 000 5, 000

HILP architecture. We use the same policy architecture as FB as well F-architecture for the609
successor features. We learn the HILP features using a 2 layers MLP with hidden dimension 1024.610
Even in this case, z is normalized.611

PSM architecture. We use the same policy architecture as FB as well F-architecture for the suc-612
cessor features. We learn the PSM features using a 2 layers MLP with hidden dimension 256. Even613
in this case, z is normalized.614

8.3 Algorithm Implementation615

All the actor-critic algorithms are implemented using TD3 (Fujimoto et al., 2018) as the base off-616
policy algorithm. When learning from scratch we use a 2 two layers MLP with hidden dimension617
1024 and Relu activation. We use the same configuration also for the critic.618

For ReLA, we use a small 2 layer MLPs with 64 hidden dimensions and ReLU activation as residual619
network. In the ablation, when residual critic is deactivated, we use the same critic network as for620
standard TD3.621

19

Under review for RLC 2025, to be published in RLJ 2025

For LoLA, we use a Gaussian policy centered around the learned z and learn simultaneously mean622
and standard deviation.623

8.4 Hyperparameters624

For all baselines and our method, we run a hyperparameter sweep across domains and tasks and625
choose the configuration that performs the best across tasks for each BFM.626

TD3-based algorithms. We run a hyperparameter sweep on Update to Data ratio (UTD) in627
[1, 4, 8], actor update in frequency in [1, 4]. We use a small 2 layer MLP with 64 hidden nodes628
for the residual network which we found to work best for fast adaptation. When not using residual629
critic, we learn a critic from scratch using a 2 layer MLP with 1024 hidden nodes. We use 10−4 as630
learning rate for both critic and actor. We use either warm start of 0 steps or 5000 steps.631

LoLA. We consider hyperparameter sweep between a lookahead horizons of [50, 100, 250], the632
number of total trajectories per update to be 10, and number of trajectories for a sampled state to be633
5 (for calculating baseline). We sweep between [0, 0.2, 0.5] for the probability of resetting to initial634
state distribution and otherwise sampling from states encountered in replay buffer. We sweep also635
the learning rate in [0.1, 0.05].636

9 Additional Experiments637

As mentioned in the main paper, pointmass is the domain where actor-critic algorithms in-638
curs a significant initial drop. Figure 7 shows the average performance improvement without the639
pointmass domain. As we can see, ReLA has still a initial drop but it is much more reduced640
compared to what reported in the main. Previous papers (e.g. Pirotta et al., 2024), noticed that a641
smaller learning rate helped in pointmass. In our experiments we kept the learning rate fixed at642
10−4 for all the domains, it would be interesting to test different values.643

0 100 200
80

60

40

20

0

20

%
 Im

pr
ov

em
en

t O
ve

r
 th

e
Ze

ro
-S

ho
t P

ol
icy

FB

0 100 200
80

60

40

20

0

20
PSM

0 100 200
80

60

40

20

0

20

40

HILP

0 100 200
100

75

50

25

0

25

50

FB-CPR

0 100 200
Episode

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

 w
.r.

t.
th

e
ze

ro
-s

ho
t p

ol
icy

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

0 100 200
Episode

0.4

0.6

0.8

1.0

TD3 (I) TD3-warm start (I) LoLa (ours) ReLa (ours)

Figure 7: Top: Performance improvement w.r.t. the zero-shot policy for different online fast adap-
tation methods and BFMs without the Pointmass domain.

20

Fast Adaptation with Behavioral Foundation Models

9.1 Per Algorithm Per Domain Ablation Studies644

We conduct extensive ablation studies to understand the impact of key design choices in our meth-645
ods, specifically: (1) zero-shot initialization in LoLA and ReLA variants, (2) value function boot-646
strapping in LoLA, (3) residual critics in ReLA variants and action-based TD3 with warm start.647
Table 4 provides a comprehensive list of the algorithm variants considered.648

Algorithm
Zero-Shot Policy

Initialization
Residual Critic (†) or

Bootstrapped Return (+)
Critic Trained
from scratch Search space WSRL

LoLA ✓ ✓(+) z

actor-onlyLoLA (no-I) ✓(+) z
LoLA (no-R) ✓ ✓ z

LoLA (no-I, no-R) ✓ z

ReLA ✓ ✓(†) z

actor-criticReLA-warm-start ✓ ✓(†) z ✓
ReLA (no-I) ✓(†) z
ReLA (no-R) ✓ ✓ z

ReLA-warm-start (no-R) ✓ ✓ z ✓
ReLA (no-I, no-R) ✓ z

ReLA-a ✓ ✓(†) a

actor-criticReLA-a (no-I) ✓(†) a
ReLA-a (no-R) ✓ ✓ a

ReLA-a (no-I, no-R) ✓ a

TD3-z ✓ z

actor-criticTD3 (I) ✓ ✓ a
TD3-warm-start (I)
(i.e., using WSRL) ✓ ✓ a ✓

TD3-warm-start (I, R) ✓ ✓(†) a ✓

Table 4: Summary of the algorithm variations considered in the main paper. Search space z means
latent policy adaptation leveraging the policy space {πz} constructed by the BFM. Search space a
denotes fine-tuning in action space (i.e., updating all policy network parameters).

We evaluated these variants across four DMC domains (Quadruped, Pointmass, Cheetah, Walker)649
using FB, HILP and PSM, and on HumEnv using FB-CPR, each experiment conducted over five650
random seeds. The results are shown in Figure 8, 9, 10 and 11.651

Zero-Shot Initialization (no-zs-init): Removing zero-shot initialization consistently degraded652
early-stage performance across all methods and domains, with the only exception being ReLA-a653
with FB and PSM on pointmass. The benefit of zero-shot initialization is especially significant on654
LoLA.655

Bootstrapping (no-bootstrap): We hypothesized that value functiom bootstrapping could help sta-656
bilizing LoLA. However, we did not notice such benefit from our ablation experiments.657

Residual critics (no-residual): Removing residual critics in ReLA variants and TD3-based algo-658
rithm strongly impaired the effectiveness of the algorithm. This effect was especially pronounced659
for ReLA-a and TD3 on DMC domains.660

21

Under review for RLC 2025, to be published in RLJ 2025

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

Quadruped

0 100 200 300

400

800

Pointmass

0 100 200 300

400

800

Cheetah

0 100 200 300

400

800

Walker

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300
Episodes

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

HILP

LoLA LoLA (no-zs-init) LoLA (no-bootstrap) LoLA (no-zs-init, no-bootstrap)

ReLA ReLA (no-zs-init) ReLA (no-residual) ReLA (no-residual, no-zs-init)

ReLA-a ReLA-a (no-zs-init) ReLA-a (no-residual) ReLA-a (no-residual, no-zs-init)

ReLA-warm start ReLA-warm start (no-residual)

TD3-a-warm start TD3-a-warm start (no-residual)

Figure 8: Ablation studies evaluating adaptations of HILP on four DMC tasks (Quadruped, Point-
mass, Cheetah, Walker). Experiments include disabling zero-shot initialization ("no-I") and/or re-
moving residual critics ("no-R") from LoLA, ReLA, and three additional variants: (1) ReLA-a:
update a instead of z in ReLA, (2) ReLA with warm start (ReLA-warm start), and (3) action-based
TD3 with warm start (TD3-warm start). Shaded areas represent standard errors across 5 seeds.

22

Fast Adaptation with Behavioral Foundation Models

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

Quadruped

0 100 200 300

400

800

Pointmass

0 100 200 300

400

800

Cheetah

0 100 200 300

400

800

Walker

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300
Episodes

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

FB

LoLA LoLA (no-zs-init) LoLA (no-bootstrap) LoLA (no-zs-init, no-bootstrap)

ReLA ReLA (no-zs-init) ReLA (no-residual) ReLA (no-residual, no-zs-init)

ReLA-a ReLA-a (no-zs-init) ReLA-a (no-residual) ReLA-a (no-residual, no-zs-init)

ReLA-warm start ReLA-warm start (no-residual)

TD3-a-warm start TD3-a-warm start (no-residual)

Figure 9: Ablation studies evaluating adaptations of FB on four DMC tasks (Quadruped, Point-mass,
Cheetah, Walker). Experiments include disabling zero-shot initialization ("no-I") and/or re-moving
residual critics ("no-R") from LoLA, ReLA, and three additional variants: (1) ReLA-a: update a
instead of z in ReLA, (2) ReLA with warm start (ReLA-warm start), and (3) action-based TD3 with
warm start (TD3-warm start). Shaded areas represent standard errors across 5 seeds.

23

Under review for RLC 2025, to be published in RLJ 2025

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

Quadruped

0 100 200 300

400

800

Pointmass

0 100 200 300

400

800

Cheetah

0 100 200 300

400

800

Walker

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300

400

800

0 100 200 300
Episodes

400

800

Av
er

ag
e

Re
tu

rn

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

0 100 200 300
Episodes

400

800

PSM

LoLA LoLA (no-zs-init) LoLA (no-bootstrap) LoLA (no-zs-init, no-bootstrap)

ReLA ReLA (no-zs-init) ReLA (no-residual) ReLA (no-residual, no-zs-init)

ReLA-a ReLA-a (no-zs-init) ReLA-a (no-residual) ReLA-a (no-residual, no-zs-init)

ReLA-warm start ReLA-warm start (no-residual)

TD3-a-warm start TD3-a-warm start (no-residual)

Figure 10: Ablation studies evaluating adaptations of PSM on four DMC tasks (Quadruped, Point-
mass, Cheetah, Walker). Experiments include disabling zero-shot initialization ("no-I") and/or re-
moving residual critics ("no-R") from LoLA, ReLA, and three additional variants: (1) ReLA-a:
update action instead of z in ReLA, (2) ReLA with warm start (ReLA-warm start), and (3) action-
based TD3 with warm start (TD3-warm start). Shaded areas represent standard errors across 5 seeds.

24

Fast Adaptation with Behavioral Foundation Models

0 100 200 300
Episodes

0

50

100

150

200

Av
er

ag
e

Re
tu

rn

LoLA
LoLA (no-zs-init)
LoLA (no-bootstrap)
LoLA (no-zs-init, no-bootstrap)

0 100 200 300
Episodes

50

100

150

200

ReLA
ReLA (no-zs-init)
ReLA (no-residual)
ReLA (no-residual, no-zs-init)

0 100 200 300
Episodes

0

20

40

60

80

100

120

140

ReLA-a
ReLA-a (no-zs-init)
ReLA-a (no-residual)
ReLA-a (no-residual, no-zs-init)

0 100 200 300
Episodes

140

160

180

200

220

ReLA-warm start
ReLA-warm start (no-residual)

0 100 200 300
Episodes

0

20

40

60

80

100

120

140

TD3-a-warm start
TD3-a-warm start (no-residual)

Figure 11: Ablation studies for adaptation with FB-CPR on 45 HumEnv tasks. Experiments include
disabling zero-shot initialization ("no-I") and/or re-moving residual critics ("no-R") from LoLA,
ReLA, and three additional variants: (1) ReLA-a: update action instead of z in ReLA, (2) ReLA
with warm start (ReLA-warm start), and (3) action-based TD3 with warm start (TD3-warm start).
Shaded areas represent standard errors across 5 seeds.

25

