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ABSTRACT

This work focuses on the end-to-end forecast of global extreme marine heatwaves
(MHWs), which are unusually warm sea surface temperature events with profound
impacts on marine ecosystems. Accurate prediction of extreme MHWSs has signifi-
cant scientific and financial worth. However, existing methods still have certain
limitations in forecasting general patterns and extreme events. In this study, to
address these issues, based on the physical nature of MHWs, we created a novel
hybrid data-driven and numerical MHWs forecast framework Ocean-E2E, which is
capable of 40-day accurate MHW forecasting with end-to-end data assimilation.
Our framework significantly improves the forecast ability of MHWs by explic-
itly modeling the effect of oceanic mesoscale advection and air-sea interaction
based on a dynamic kernel. Furthermore, Ocean-E2E is capable of end-to-end
MHWs forecast and regional high-resolution prediction, allowing our framework
to operate completely independently of numerical models while outperforming
the current state-of-the-art ocean numerical/Al forecasting-assimilation models.
Experimental results show that the proposed framework performs excellently on
global-to-regional scales and short-to-long-term forecasts, especially in those most
extreme MHWs. Overall, our model provides a framework for forecasting and
understanding MHW:s and other climate extremes.

1 INTRODUCTION

Marine heatwaves (MHWs) are abnormally warm seawater events that significantly damage marine
ecosystems |Oliver et al.|(2021); [Pearce et al.|(2011)). In other words, MHWs are extreme Sea Surface
Temperature Anomaly (SSTA) events. MHWS, particularly extreme ones, can cause coral bleaching
Hughes et al.|(2017; 2018)) and widespread mortality of marine organisms |Garrabou et al.|(2009);
Thomson et al.|(2015). As a result, precise forecasting of extreme MHWs has significant scientific and
economic implications. For example, synoptic scale MHW:s forecasting can help seafood production
and management planning, such as feed cycles, at 1-7 day timescales, while subseasonal to seasonal
forecasting can further support proactive decision-making for the blue economy Hobday et al.| (2016);
Malick et al.[(2020); Mills et al.| (2017); |[Payne et al.|(2022). In this study, we will mainly focus on
the subseasonal-to-seasonal forecast (i.e., 1-40 days).

Traditional MHW forecasting has primarily relied on two paradigms: physics-based numerical
models and emerging data-driven approaches. Numerical models solve oceanic primitive equations
to produce seasonal forecasts that capture large-scale patterns of MHW onset and intensification
Jacox et al.|(2022); Brodie et al.|(2023)), as well as sub-seasonal predictions that resolve finer-scale
variability over shorter lead times |[Benthuysen et al.| (2021); [Yu et al.| (2024). In parallel, recent
advances in deep learning have shown promise for efficient global ocean forecasting |Bi et al.| (2022);
Chen et al.|(2023al)); Kurth et al.|(2023])), with extensions to MHW prediction [Lin et al.|(2023); |Sun
et al.| (2023). Despite their operational value, both paradigms suffer from inherent limitations:

1) Numerical models: These approaches demand substantial computational resources |Xiong et al.
(2023)); Wang et al.|(2024), especially in the data assimilation processes. Moreover, they often param-
eterize key physical processes—such as air-sea coupling and mesoscale eddy dynamics—through
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empirical formulations, leading to systematic biases and constrained skill in predicting the general
patterns of MHWs |Jacox et al.| (2022); Giamalaki et al.|(2022).

2) Data-driven models: While these methods statistically approximate complex oceanic dynamics,
they frequently generate non-physical fields, exhibiting limited accuracy in forecasting extreme
events like MHW:s due to issues such as error accumulation and smoothing of SST gradients during
autoregressive rollouts Wang et al.|(2024). Additionally, they typically depend on initialization from
numerical models, precluding end-to-end operation from raw observational inputs|Xiong et al. (2023).

Given these complementary strengths and weaknesses, a natural question arises: why not integrate the
advantages of both by combining a relatively simple physical model with AI components, where the
physical model handles well-understood dynamics and Al simulates the more complex or uncertain
aspects? In this study, we pursue this hybrid strategy to effectively mitigate the aforementioned
drawbacks of numerical and data-driven models, enabling our framework to harness the best of both
worlds:

1) Enhanced computational efficiency and end-to-end capability: By substituting neural networks
for the forecasting and data assimilation processes, we have substantially reduced the cost of predicting
MHWs, enabling our framework to operate independently of numerical models.

2) Improved physical realism and reduced biases: The incorporation of physical constraints ensures
generation of consistent fields, addressing the non-physical artifacts and extreme-event limitations in
pure data-driven methods.

By addressing these integrated shortcomings, we introduce Ocean-E2E, a global hybrid physics-
based data-driven framework that significantly enhances forecasts of extreme MHWSs, drawing
inspiration from numerical models. The contributions of this paper can be summarized as follows: (1)
Global/Regional MHWs Forecasting Framework. We propose a hybrid physics-based data-driven
method that supports both global scale and regional high-resolution forecasting, achieving high-
accuracy results for extreme MHW:s forecasts. (2) Global MHWSs Neural Assimilation Framework.
We designed an end-to-end MHWs neural system that, when combined with the forecasting model,
can directly obtain the complete initial field and forecasting results of MHWSs from observation data.
(3) Physics-consistent Forecast. By combining physical laws into our framework, our model has
achieved state-of-the-art results in long-term and regional high-resolution forecasting with higher
physical consistency.

(a). Overview of our framework
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Figure 1: Our proposed Ocean-E2E framwork. a) Overview of our framework. b) Details of our
hybrid physics and data-driven forecast model.
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2 METHOD

2.1 FRAMEWORK OVERVIEW

In this study, the problem of the end-to-end MHWs forecast is essentially forecasting SSTA, which
can be separated into two parts (shown in Figure[I)). First, estimating the current state of SSTA
Co € RTXW (a global two-dimensional field, where H and W correspond to latitude and longitude)

based on the observation C$%* and the background field ng . Second, predicting the future state of

mixed layer SSTA C, based on the current state Cy under atmospheric forcing Ag.; € REXHXW
Here Ag.; denotes the atmosphere state from time 0 to ¢. Formally speaking, we are going to model

the conditional distribution p(C;|Cg®*, ng , Ao:¢, ) in two stages:

P(CHCEY*, C8?, Ani) = pT (C|Co, Agit) - p*(ColCEP*, C7) (1)

Forecast model Assimilation model

where p/ and p® denote forecast and assimilation process, respectively. In our end-to-end framework,

we model these two processes through two specifically designed neural networks qﬁg and ¢3, which
we will discuss in detail in the following sections.

2.2 THE DESIGN OF qbgz HYBRID PHYSICS-AT MODEL

As established in the problem formulation, forecasting MHWSs fundamentally reduces to predicting
extreme sea surface temperature anomalies (SSTA). To effectively embed physical principles into
our modeling framework, we must rigorously account for the governing laws of SSTA evolution.
We approach this challenge through a generalized geophysical fluid dynamics perspective, wherein
seawater temperature constitutes a passive tracer advected by oceanic flow fields. Formally speaking,
the governing equation of SSTA C, together with other surface variables can be written as:

oC oc .
E—l—(ug—i—uag)VC—l—wa =S )
fkxu,=-V(gn) 3)
on L
S+ V- (H) =0 (4)
o —
S+ G+ V(g =0 3)
wlz=0 =Nt (6)

Where ¢ is time, (u, w) = (u, + u,y, w) are horizontal and vertical flow velocity (u, represents
oceanic geostrophic velocity while u, is ageostrophic velocity), V is the horizontal derivation, Sis
the sink/source, k is a unit vector in the vertical direction, f is the Coriolis parameter, 7 is sea surface
height, H is ocean depth, * is vertical average operator (i.e., 1 = LO y udz), g is the gravitional
accerelation. By integrating equation (1), the state of C' at time ¢ can be expressed in the form of the
initial condition Cy:

t a9C .
Ct = *ugvc + (7uagvc - U}% + S) dt + CO
0

t . @)
~ / —u,VC + (—u,VC+S8) dt+Cy
0 S—— N————

advective transport  mixing and external sink/source

The second equal sign is due to the fact that, according to equation (5), w|,—¢ is small (1076 ~ 10~
m/s) compared to other terms. Equation (7)) implies two key governing mechanisms of MHWs: 1)
advective transport by geostrophic currents that redistribute thermal energy, 2) mixing and external
sink/source encompassing convective mixing and external ageostrophic forcing through surface
boundary interactions. In the following paragraphs, we will combine physical theory and deep
learning methods to simulate these two mechanisms in four steps.
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Step 1. Modelling advective transport. The key factor of advective transport is the ocean surface
current u,, where the flow field at the smaller scale (mesoscale) plays an important role in the
distribution of MHW:s and other oceanic passive tracers. However, in most models and data, due
to limited resolution, the model cannot distinguish these small-scale processes, so the advection
processes caused by the flow field below the model’s finest grid (i.e., subgrid processes):

u,VC =u,VC + u, V(' ®)

are not fully simulated. Here, the overline - represents the downsampling operator. In other words,
the variables with an overline denote the low-resolution data. In the traditional numerical model,
Gent and McWilliams |Gent & Mcwilliams|(1990) found that this subgrid process can be fitted by
‘bolus velocity’ (also called GM90 parameterization):

WV ~ gy VO ©)

According to the GM90 parameterization, these bolus velocity can be expressed as|/Gent & Mcwilliams
(1990):

Ugm = (kVp/pz)= (10)
where p = p(C) is the density. It should be noticed that this expression requires subsurface
ocean data, which is often extremely difficult to obtain. What’s more, the choice of coefficient x
requires an empirical formula, which is always inaccurate. Alternatively, we seek a neural network
ug(uy, C) = ug,, to approximate the bolus velocity and the subgrid advection effect. In summary,
the advection term can be expressed as:

u,VC = (uy(uy,C) +u,)VC (11)

Step 2. Modelling mixing and external sink/source. This term is strongly related to the air-sea
interaction along the ocean’s surface. To be specific, for SSTA, the source term consists of four parts:

S o Qhet = Qw + QL + Qly + Ql (12)

where Qsw, Qrw, Qsh, Q1n are the shortwave radiation, longwave thermal radiation, sensible heat
flux, and latent heat flux, respectively. Of the four air-sea heat fluxes, the sensible and latent flux

' + @1, determines the majority of the SSTA’s variations Holbrook et al. (2019). According to
the bulk formula|Cui et al.| (2025), these two terms are significantly related to surface wind speed
U0, V10, near-surface temperature of the atmosphere 75,,,, and surface specific humidity g,. What’s
more, the ageostrophic velocity ugg is alse driven by surface wind forcing U, V1. Based on the
observation above, we assume that mixing and external sink/source can be well approximated by the

surface variables of the atmosphere A = (Ui, Vig, Tom, ¢,) and C itself. Specifically,
So(A,C) = —u,,VC +S (13)

Since this study primarily focuses on proposing a physics-Al framework, the design and selection of
the specific structures for the two neural networks ug, Sy are highly flexible. In this study, we selected
a powerful and robust spatiotemporal prediction backbone Tan et al.|(2022) to accomplish this task.
We believe that more advanced backbones can further enhance the model’s prediction performance.

Step 3. Treating boundary conditions. Above paragraphs point out that in order to effectively
model the key physical mechanism of MHWs, we need the future state of A and u, (i.e., boundary
conditions). For oceanic geostrophic velocity ug, %(3) — V- (H(4)) implies that

o oG

@+V(QHVU)ZVGuZVGug:g(ﬁ) (14)
which is a self-consistent hyperbolic equation. This indicates that, at least at a relatively short
time interval, the evolution of 7, together with geostrophic velocity, can be modelled based on an
auto-regressive manner:

Oug
ot

Here My is a pretrained neural network. Inspired by the Wu et al.|(2024b) architecture, the neu-
ral network module M, used for modeling ocean surface geostrophic velocity employs a U-Net-
like encoder-decoder structure. This model is primarily built upon the Group Attention Block

= My(ug) (15)
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(GABlock), which serves as the core computational unit. The GABlock is designed to efficiently
capture multi-scale spatio-temporal features, leveraging a Spatial Attention (SA) module that incor-
porates depth-wise and depth-wise dilated convolutions for spatial gating, followed by a Multilayer
Perceptron (M1p). The overall architecture processes initial geostrophic current conditions, uses
downsampling and stacked GABlocks in the encoder to extract features, and then symmetrically
reconstructs the resolution in the decoder via upsampling and skip connections to predict the future
geostrophic velocity field. What’s more, the atmosphere variables between time interval [0, ¢] is also
acquired through a large Al-driven weather forecast model|Gao et al.| (2025)):

0A
v = Ny(A) (16)

Step 4. Combining physics and Al together. As shown in the section above, the furture state of C' at
time ¢ can be modelled as:

t
o[-
0

- Sg(/os Ny(A)ds, C)ds

vC

/0 " Mo(uy)ds + u( /O " My(uy)ds, C)

a7

In the training stage, we first pretrain these two neural networks My, Ny. Then the parameters of
these networks are frozen and we utilize the forecast model to optimize the parameters of ug, Sy

based on the MSE loss, which can be written as:

t
c:nc}—/ —(uy +ug(uy, C)VC + S(A, C)dt||* (18)
0

Where C, is the groundtruth data of C;. In practice, by separating the time interval [0, ¢] into N
subintervals [iA¢, (i + 1)At],1 < i < N — 1, equation is approximated via forward Euler
method:

Citnar = Ciar + {* (wiar +ug(wing, Cine)) VCint

+ So(Aiat, Agir)ar OiAt)} At, (19)
Ugit1)at = Uiae + Mo(uiag) At, (20)
Ajitnar = Aiar + No(Aiag) At. 1)

Then the parameters of ug, Sy are optimized through £ = ||C; — Ciya¢(0)||2. It is worth noting that
the above numerical kernel is highly lightweight, imposing no significant computational burden on
our framework. Details of the numerical implementation can be found in Appendix C.

2.3 THE DESIGN OF ¢g: NEURAL DATA ASSIMILATION

As shown in the above section, our hybrid Al-physics model requires an initial condition Cj to
initialize our framework. However, under realistic operational forecasting scenarios, the full Cy
(analysis field) cannot be directly observed. This necessitates a data assimilation (DA) process
that optimally combines sparse observational data C$* with prior background estimates C’gg from
numerical models, which requires large computational resources Boudier et al.| (2023)).

Our framework addresses these limitations by establishing a direct mapping from observational
inputs C§°* to assimilated states Cj through deep learning. We utilized neural networks to optimally
combine sparse observations with background fields in one step. Specifically, we begin with the SSTA
state at time —At (C_a¢), defining [—At, 0] as the assimilation window. We generate background

fields (ng ) by adding structured noise to C_ay:

CY = ¢pI(C_at + €, Ag.ar) (22)
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where € denotes Perlin noise. The final analysis field is then produced by merging observations with
background data:

Co = ¢3(C",C¢%) (23)

where ¢ is an edge-reparameterization and attention-guided network with Kirsch-guided reparame-
terization, which is capable of reconstructing SSTA fields from sparse observations [Liu et al.|(2024).
The neural assimilation network ¢§, inspired by [Liu et al|(2024), is an edge-reparameterization
and attention-guided architecture meticulously designed for the efficient, real-time projection of
observation data to analysis data. The network’s core innovation lies in its Kirsch-guided Reparame-
terization Module (KRM), which efficiently consolidates standard, expanded, and eight directional
Kirsch edge-detection convolutions into a single unit during inference, enabling robust capture of
sharp feature boundaries. Complementing this, the network employs a joint Channel and Spatial
Attention mechanism (CAM and SAM) to dynamically focus computational resources on crucial data
regions. The final architecture is a cascaded, iterative structure built upon a Basic Block that includes
the attention modules, where the observation data is passed through five consecutive stages, each
integrating the KRM output with a residual connection to progressively refine the analysis and produce
the highly accurate, edge-aware output. The details of ¢§ can be found in Appendix D.

Once the initial analysis field Cj is obtained, the model proceeds with forward assimilation over
subsequent time steps to maintain accuracy in evolving forecasts. Starting from C), the framework
iteratively advances the state by generating a background estimate for the next time step ngt using
the forward operator and incorporating dynamical updates at a time interval At(i.e., assimilation
window). For instance, at i-th time step, the background is computed as:

Cffﬂ)m = ¢} (Cine + €5y Ainrit1)ar) (24)

followed by the assimilation step:

b
Clitnat = ¢3(C(O¢b+81)mv Cilinad) (25)
As we will demonstrate in the following paragraph, this autoregressive process can generate robust
assimilation fields over hundreds of days.

3 EXPERIMENTS

We designed comprehensive experiments to evaluate our model. Our evaluation is guided by the
following key questions: RQ1: Overall Performance: Can Ocean-E2E outperform state-of-the-art
models with higher consistency and better performance in normal and extreme MHW events? RQ2:
End-to-end Forecasting: Can Ocean-E2E run independently of numerical model while preserving
a high accuracy in real-world MHWs forecast? RQ3: High-resolution Multiscale Prediction:
Can our framework achieve a satisfying performance in regional high-resolution simulations, where
complicated oceanic multi-scale dynamics pose more challenges to the model’s forecast skill and
physical consistency?

3.1 BENCHMARKS AND BASELINES

We conduct the experiments on GLORYS12V 1 reanalysis data|Lellouche et al.|(2018)), which provides
daily mean data of sea surface temperature (SST) covering latitudes between -80° and 90° spanning
between 1993 and 2021. The seasonal cycle has been removed from the original data in order to
get the MHWSs (SSTA) field Shu et al.[(2025). The subset we use includes years from 1993 to 2021,
which is 1993-2018 for training, 2019 for validating, and 2020-2021 for testing. The surface velocity
of the ocean is obtained from satellite observation [Pujol et al.| (2016). The atmospheric variables
are obtained from ECWMF Reanalysis v5 (ERAS) Hersbach et al.|(2020). More details, including
observational data and atmospheric forcing data, can be found in Appendix B.

Before introducing our experiments, there are two key concepts that should be clarified: ocean
simulation and end-to-end ocean forecast. As pointed out in previous studies [Shu et al.| (2025));
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Table 1: In the global ocean simulation task, we compare the performance of our Ocean-E2E with
various baselines. The average results for global SSTA (Sea Surface Temperature Anomaly) are
measured using RMSE and CSI. Lower RMSE (]) and higher CSI (1) indicate better performance.
The best results are in bold, and the second-best are underlined. Note that some baseline models are
unstable and produce unrealistic forecasts, with RMSE exceeding 10 K replaced by —.

| Metric
Model Category | 20-day 40-day 50-day 60-day
RMSE  CSI |RMSE CSI |RMSE CSI |RMSE CSI

Ocean Forecasting Models

& FourCastNet Pathak et al.| (2022) | 0.6836 0.2709| —  0.1755| — 0.1537| — 0.1423
& CirT Liu et al. (2025) 1.3496 0.0905 | 1.9249 0.0810 | 1.9932 0.0770 | 2.0321 0.0746
& WenHai|Cui et al.| (2025) 0.5435 0.4202 | 0.7006 0.2805 | 0.7633 0.2447 | 0.8139 0.2209
& ClimODE|Verma et al.|(2024) 0.7221 0.3263 | 0.8555 0.2091 | 0.8997 0.1896| —  0.1754
Operator Learning Models

P CNO Raonic et al.| (2023) 0.7062 0.3669 | 0.9025 0.2367 | 0.9821 0.2011 | 1.0556 0.1771
P LSM Wu et al.|(2023) 1.1346 03025 — 0.1760| — 0.1436| — 0.1312

Computer Vision Backbones
U-Net Ronneberger et al.|(2015) | 0.6923 0.3909 | 0.8893 0.2629 | 0.9706 0.2292 | 1.0463 0.2054

ResNet|He et al.| (2016) — 02537 — 0.1538| — 0.1248| — 0.1029
DiT |Peebles & Xie (2023) 0.9390 0.3411 | 1.7051 0.2528 | 2.2474 0.2311|2.9139 0.2137
Spatiotemporal Models
HEH ConvLSTM |Shi et al.|(2015) 0.7135 0.3585]0.8920 0.2292|0.9726 0.1957 | 1.0545 0.1735
B SimVP|Tan et al.[(2022) 0.6729 0.3749 | 0.8345 0.2736 | 0.8864 0.2413|0.9296 0.2162
HH PastNet|Wu et al.[(2024b) 1.3876 0.1867 | 1.4230 0.1760 | 1.4287 0.1733 | 1.4353 0.1705
¥ Ocean-E2E 0.5659 0.4285 | 0.6596 0.3230 | 0.6911 0.2874 | 0.7194 0.2580
Promotion — 20% | 58% 15.1% | 9.5% 17.4% | 11.6% 16.8%
Initial Condition Ground Truth Ours (Ocean-E2E) K
T
.
-0
ClimODE FourcastNet
- : ’\ - _2
> >

Figure 2: Snapshots of our framework and other baseline simulations at 60-day lead time. The
simulations are initialized on August 7th, 2020. Red solid boxs represent MHW events while red
dashed box indicates physical inconsistency in forecasting results.

Cui et al.| (2025)), the ocean simulation utilizes the current state of SSTA (Y to forecast future state
C} under the realistic atmosphere forcing Ag.;. In contrast, the end-to-end forecast task includes
assimilating the initial analysis field of SSTA C and forecasting only based on the current atmosphere
state Ag.

We compare the simulation performance of Ocean-E2E with 4 main catergories of data-driven models:
ocean forecasting models (Fourcastnet Kurth et al.| (2023)), CirT |Liu et al.|(2025)), Wenhai |Cui et al.
(2025) and ClimODE |Verma et al.| (2024)), operator learning models (FNO Li et al.| (2021, CNO
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Table 2: In operational global ocean forecast task, we compare the performance of our Ocean-E2E
with S2S. The average results for global SSTA of RMSE are recorded for 2020 and 2021. A small
RMSE () indicates better performance. The best results are in bold.

| METRIC (RMSE)

MODEL ‘ 2020 2021

| 10-DAY | 20-DAY | 30-DAY | 40-DAY | 10-DAY | 20-DAY | 30-DAY | 40-DAY
S2S 0.8140 | 0.8870 | 0.9514 | 0.9965 | 0.8261 | 0.8897 | 0.9450 | 0.9895
OCEAN-E2E (OURS) 0.5750 | 0.6047 | 0.7514 | 0.8747 | 0.6414 | 0.7447 | 0.8147 | 0.8729

OCEAN-E2E (PROMOTION) | 29.4% | 31.8% |21.02% | 12.2% | 22.4% | 16.3% | 13.7% | 11.7%

Ground Truth Prediction (ConvLSTM) Prediction (OceanE2E)

RMSE Comparison Across Models CSI Comparison Across Models

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Lead Time (days) Lead Time (days)
SimvpP ConvLSTM PastNet U-Net OceanE2E SimvpP ConvLSTM PastNet U-Net OceanE2E

Figure 3: Results of our regional high resolution MHWs simulation in western Atlantic Ocean.
a)-c) Snapshots of our simulation, where yellow parts indicate MHWs. d)-e) RMSE and CSI of our
Ocean-E2E and other baselines.

Raonic et al.| (2023) and LSM [Wu et al.| (2023))), computer vision backbones (U-Net Ronneberger
et al. (2015), ResNetHe et al.| (2016]) and DiT [Peebles & Xie|(2023))) and spatiotemporal models
(ConvLSTM Shi et al.| (2015), SimVP Tan et al.| (2022) and PastNet|Wu et al.| (2024b)).

We also compare the end-to-end operational forecast ability against traditional numerical opera-
tional forecast system: ECWMF sub-seasonal to seasonal prediction (S2S). S2S is currently the
superior subseasonal-to-seasonal weather forecast model that provides the forecast of atmosphere
and ocean surface physics at a lead time of 40 days. The original resolution is 1.5°, and we upsample
the data to 1/2° for comparison.

3.2 EVALUTION METRIC

We utilized two metrics, RMSE (Root Mean Square Error) and CSI (Critical Success Index), to
evaluate the forecast performance. The RMSE represents the overall performance of our framework’s
forecast, while CSI mainly focuses on the most extreme MHW events. What’s more, we utilize
assimilation bias (BIAS) to assess the systematic bias induced by our neural assimilation system.
More details can be found in Appendix E.

3.3 EVALUTION OF OCEAN SIMULATION PERFORMANCE (RQ1)

As shown in Table[T] it can be found that in long-term ocean simulations (40-60 days), our framework
performs better compared to the baseline. On day 60, the RMSE decreased by an average of 11.6%
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and the CSI increased by an average of 9.2%. In shorter simulations (20 days), our model was slightly
lower than WenHai but significantly higher than other baselines. This indicates that our Ocean-E2E
can capture both general patterns and extreme events of MHWSs. To further illustrate our simulation
ability, we select a snapshot of our 60 days simulation, as shown in Figure[2] It can be found that a
strong MHW is growing in the West Pacific Ocean (red solid box in Figure[2). Compared to other
baselines, our Ocean-E2E shows a robust forecast result and better consistency with ground truth.

3.4 EVALUATION OF THE END-TO-END NEURAL ASSIMILATION AND FORECAST
PERFORMANCE (RQ?2)

We conducted two sets of assimilation experiments using analysis fields from January 1, 2020 and
January 1, 2021 as initial conditions, respectively. Both experiments employed a 6-day assimilation
window to assimilate SSTA fields over a full year. As shown in Appendix G.1 (Figure [3)), the
RMSE and BIAS evolution reveal that assimilation errors rapidly increase and stabilize during the
assimilation process, demonstrating the stability of our assimilation framework.

Using these assimilated fields as initial conditions and GLORYS12V1 reanalysis as ground truth, we
evaluate the forecasting performance of Ocean-E2E against the S2S system. Since S2S provides
46 days of forecast data, in this study, we only compare the 10-40 days’ forecast results of
Ocean-E2E with it. To ensure experimental fairness, results in Table 2| were calculated after the
assimilation outputs stabilized (12 days post-initialization). It can be found that Ocean-E2E achieves
an average 10% reduction in RMSE compared to superior end-to-end numerical prediction systems
across 40-day subseasonal-to-seasonal forecasts. Additional comparative experiments have been
conducted using S2S assimilation fields as both reference truth and initial conditions (see Appendix
G). In all experimental configurations, Ocean-E2E demonstrates superior performance relative to
S28S, confirming its robust competitiveness.

3.5 REGIONAL HIGH-RESOLUTION SIMULATION (RQ3)

As discussed in Section 2.1, our framework builds upon the GM90 theoretical framework, which is
also applicable to high-resolution data. To validate its performance, we implement a regional high-
resolution simulation (1/12°) of the western Atlantic Ocean. Figure a)-c) illustrate a comparison
between Ocean-E2E and baselines. Compared to the ground truth, our model has more physical
details with more extreme MHW events (yellow parts). Evaluation based on RMSE and CSI (Figure 3]
d)-e)) also confirmed that Ocean-E2E achieves a state-of-the-art performance in regional simulations.
Furthermore, to verify physical consistency, we calculated the power spectrum of the Ocean-E2E
simulation results and compared it with the baselines (see Appendix G.2). The results demonstrate that
our model exhibits higher consistency with the real physical fields at small scales (high frequencies).

Table 3: CSI of our ablation studies on model design, forcings, and neural architecture. The best
results are in bold.

| Global Simulation | Regional Simulation

Variants

| 20day 60 day | 10 day 30 day
Physical Model Design
Se (S only) 0.3884 0.1658 | 0.3913 0.1877
(ug 4+ uy)VC (ADV only) 0.3207  0.1504 | 0.3207 0.0963

uy, VC (pure numerical) — — — _

Time-Varying Forcings
Static Atmosphere (A (t) < A(0)) 0.2652  0.1223 | 0.3021 0.1470
Static Background Flow (ug(t) < ug(0)) | 0.3988  0.2115 | 0.4080  0.2245

Neural Architecture Analysis

w/o GABLock (in M) 04015 02245 |04322  0.2588
wlo MidXnet (in Sp, ug) 03540 0.1810 | 03890  0.2015
(ug + u,)VC + Sp (Ours) 0.4285 0.2580 |0.4615  0.2926
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3.6 ABLATION STUDIES

To validate the effectiveness of the proposed framework, we perform an ablation analysis by se-
quentially removing core components in our global and regional simulation task. Since our main
contribution is the framework rather than neural network design, we choose the two key components
of our framework: the advection term (ug(u,, C) + u,)VC (denoted as ADV) and the source term
Sg(A, C') (denoted as S). As demonstrated in Table the Critical Success Index (CSI) exhibits a
marked reduction when either component is omitted, confirming their essential roles in enhancing
simulation accuracy, particularly for extreme marine heatwaves (MHWs). Notably, the source term
contributes most significantly to forecasting performance, underscoring the critical influence of
air-sea interaction dynamics on MHW evolution. Moreover, if the neural networks are removed from
the model (i.e., a pure numerical model), the model collapses quickly due to the numerical instability
caused by large horizontal gradients in the advection terms. This stresses the importance of the GM
‘bolus’ velocity, which acts as a subgrid ‘damping’ term.

Furthermore, we investigated the impact of time-varying forcings by fixing the atmospheric forcing
(A) and background flow (uy) to their initial states. As shown in the second section of TableEI, using
static atmospheric forcing results in a significant performance drop (e.g., Global 60-day CSI decreases
to 0.1223), confirming that dynamic heat flux is critical for SSTA prediction. Similarly, fixing the
background flow degrades performance, indicating the necessity of capturing the time-varying nature
of large-scale ocean circulation.

Finally, we analyzed the contribution of specific neural network components. We examined the Group
Attention Block (GABlock) in the background modeling branch and the MidXnet in the dynamical
evolution branch. The results in the third section of Table [3]indicate that removing the GABlock
leads to a noticeable decline in accuracy, verifying its importance in encoding background physics.
Moreover, removing the MidXnet causes a substantial drop in performance, validating its critical
role in capturing complex spatiotemporal dynamics in the latent space.

4 CONCLUSIONS

In this study, we introduce Ocean-E2E, a hybrid framework merging data-driven and numerical
methods for end-to-end marine heatwave (MHW) forecasting. By resolving mesoscale advection
and air-sea interactions with a dynamic kernel, it delivers stable 40-day global-to-regional MHW
predictions in both simulation and forecast tasks. Neural assimilation enables independent high-
resolution forecasting with enhanced accuracy and stability, via rapid error stabilization. Results
confirm its robustness across scales, advancing MHW prediction and climate insights.

10
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REPRODUCIBILITY STATEMENT

To guarantee the reproducibility of our results, the complete source code and data associ-
ated with this study have been made publicly available. The implementation, which com-
prises the simulation framework, training procedures, and evaluation scripts, can be accessed
via the following anonymous GitHub link: https://anonymous.4open.science/r/
Ocean-E2E—anonymous—5994,
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A ALGORITHM

We summarize the overall framework of Ocean-E2E in Algorithm 1.

Algorithm 1 Ocean-E2E Framework for Global MHW:s Forecast

Require: Initial SSTA observation C¢%%, analysis field C¢_, (at time ¢ — 1), current state of atmo-
spheric forcing A; and ocean current velocity Oy .
Ensure: Current step SSTA analysis field Cf, Next step SSTA prediction Cyy .
1: Initialize Ocean-E2E
2: repeat
3:  Data Assimilation )
4:  Perturb the initial SSTA field C2 , with N = 10 Perlin noise C*Y) = €2 | + @ i =
1,2,...,N.
5:  Feeding the perturbed ensembles into our trained forecast model to generate forecast ensemble:
Cf 9() _ qﬁg (Cf_(ll) ,A;_1.t), which are also called background fields at time ¢.
6:  Using the neural assimilation network ¢§ to produce the analysis field at time ¢: C} =
¢g (Cfg(i), Cfbs)
7. Hybrid physics data-driven forecast
8:  Calculate the future atmospheric forcing and ocean current velocity: A;p; =
No(Ay), Opp1 = Mg(Oy).
9:  Taking the current analysis field C'¢, and integrating the equation (17) with A;.;y1 and Oy.41
to get the forecast field Cyy;
10: until converged
11: return Ocean — E2E

B DATA DETAILS

B.1 DATASET

In this section, we will introduce the dataset used in this study in detail.

Data used to train \y. As mentioned in Section 3.2, we need to pretrain an neural network Ny to
model the evolution of the atmosphere forcing A. In this study, we utilize one of the state-of-the-art
weather forecast model: OneForecast |Gao et al.| (2025). The data used to train OneForecast is
obtained from weatherbench2 [Rasp et al.|(2024)) benchmark, which is a subset of ERAS5 reanalysis
data[Hersbach et al| (2020). Details can be found in Table [}

Table 4: The data used to train Ny.

VARIABLE LAYERS SPATIAL DT LAT-LON TIME
NAME RESOLUTION RANGE

GEOPOTENTIAL (Z) 13 1.5° 6H GLOBAL 1959~2021
SPECIFIC HUMIDITY (Q) 13 1.5° 6H GLOBAL 1959~2021
TEMPERATURE (T) 13 1.5° 6H GLOBAL 1959~2020
U COMPONENT OF WIND (U) 13 1.5° 6H GLOBAL 1959~2021
V COMPONENT OF WIND (V) 13 1.5° 6H GLOBAL 1959~2021
10 METRE U WIND COMPONENT (U10M) 1 1.5° 6H GLOBAL 1959~2021
10 METRE V WIND COMPONENT (V10M) 1 1.5° 6H GLOBAL 1959~2021
2 METRE TEMPERATURE (T2M) 1 1.5° 6H GLOBAL 1959~2021
MEAN SEA LEVEL PRESSURE (MSLP) 1 1.5° 6H GLOBAL 1959~2021

Data used to train My. As shown in Section 3.1, like the atmosphere forcing A, we need an-
other neural network My to model the ocean surface current dynamics. The data of surface
current is obtained from satellie observation, which can be downloaded from https://data.
marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047. Details of
this dataset can be found in Table[3
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Table 5: The data used to train My.

VARIABLE
NAME

SPATIAL - LAT-LON
RESOLUTION RANGE

TIME

EASTWARD SURFACE GEOSTROPHIC CURRENT VELOCITY (Uy)
NORTHWARD SURFACE GEOSTROPHIC CURRENT VELOCITY (V)

0.25° 24H GLOBAL 1993~2021
0.25° 24H GLOBAL 1993~2021

Data used to train the hybrid data-driven network. The training of Sg and uy involves three atmo-
sphere variables and three ocean varibales, which can be found in Table@ The SST dataset is selected
from GLORYS12V1, which can be downloaded from https://data.marine.copernicus.
eu/product/GLOBAL_MULTIYEAR PHY 001_030. For regional high-resolution simulation,

we choose a regional subset of GLORYS12V 1 (Table[7).

Table 6: The data used to train Sy and ug (global simulation).

VARIABLE

SPATIAL LAT-LON

NAME RESOLUTION DT RANGE TIME
10 METRE U WIND COMPONENT (U10M) 0.25° 24H GLOBAL 1993~2021
10 METRE V WIND COMPONENT (V10M) 0.25° 24H GLOBAL 1993~2021
2 METRE TEMPERATURE (T2M) 0.25° 24H GLOBAL 1993~2021
EASTWARD SURFACE GEOSTROPHIC CURRENT VELOCITY (Uy) 0.25° 24H GLOBAL 1993~2021
NORTHWARD SURFACE GEOSTROPHIC CURRENT VELOCITY (V) 0.25° 24H GLOBAL 1993~2021
SEA SURFACE TEMPERATURE (SST) 1/12° 24H GLOBAL 1993~2021
Table 7: The data used to train Se and uy (regional simulation).
VARIABLE| SPATIAL DT LAT-LON TIME
NAME |RESOLUTION RANGE
Ul1oM 0.25° 24H 20 ~ 60°N, 30 ~ 80°W 1993~2021
VIiOM 0.25° 24H 20 ~ 60°N, 30 ~ 80°W 1993~2021
M 0.25° 24H 20 ~ 60°N, 30 ~ 80°W 1993~2021
Uy 1/12° 24H 20 ~ 60°N, 30 ~ 80°W 1993~2021
Vg 1/12° 24H 20 ~ 60°N, 30 ~ 80°W 1993~2021
SST 1/12° 24H 20 ~ 60°N, 30 ~ 80°W 1993~2021
Observational data. For observational data, we utlilize the Hadley Centre In-

tegrated Ocean Database (sparse observations) and Global Ocean ODYSSEA
L4 Sea Surface Temperature (satellite observations), = which can be down-
loaded from https://climatedataguide.ucar.edu/climate-data/
hadiod-met-office-hadley—-centre—-integrated-ocean—-databaseland https:
//data.marine.copernicus.eu/product/SST_GLO_PHY_ L4 MY 010_044, respec-
tively.

B.2 DATA PREPROCESSING: DATA NORMALIZATION

Given that this study takes into account the primitive equations of the ocean, to avoid disrupting
physical laws through normalization, we do not apply normalization to any ocean variables (including
SSTA, Uy, V) in this research. Instead, normalization is only applied to atmospheric variables
(including U10M, V10M, T2M).

Significant magnitude disparities exist among different atmospheric variables. To prioritize predictive
capability over inter-variable magnitude differences, we implemented standardized preprocessing
through normalization. Statistical parameters (mean value ;4 and standard deviation o) were derived
from the 1991-2018 training period, with each climate variable being assigned independent scaling
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coefficients. To be specific, the normalization procedure applied the transformation: X’ = (X —pu) /o,
where X denotes the raw input data.

B.3 DATA PREPROCESSING: RESOLUTION ALIGNMENT

Since this study utilizes data from multiple sources with varying resolutions, alignment is required in
both temporal and spatial dimensions. For temporal resolution, we directly combine daily averages
and daily snapshots at the daily scale without special processing. For spatial resolution, we use
bilinear interpolation (specifically, the torch.nn.functional.interpolate function) to
interpolate data with different resolutions onto a unified grid of 1/2-degree (for global simulation) or
1/12-degree (for regional simulation). Additionally, for the sparse global in-situ observation data, we
first filter out all sea surface observations and construct a 1/2-degree global grid. For each observation
point, all corresponding grid cells within a 1.5°x1.5° area centered on the observation point are
assigned the respective observation data.

C DETAILS OF DYNAMICAL CORE OF OCEAN-E2E

In this section, we are going to introduce the design of our hybrid physics data-driven model. As
shown in Section 3.2, the evolution equation of our hybrid physics data-driven framework can be
written as:

C, = / t —(ug(t) + ug(uy(t), C)VC + Sp(A(t), C)dt + Cy (26)
0

Spatial Discretization. In this study, we utilized two-order center discretization to approximate VC'
To be sepcific,

VC(i,j) = (Dx x C(i, j), Dy x C(4, j)) (27
Where and * is convolution operator, Dy and D, are horizontal gradients, which has the form
0 0 0 0 1/s;; O
Dy=|-1/d;; 0 1/d;;|,Dy=1{0 0 0], (28)
0 0 0 0 —1/s;; O

d; ; and s; ; are longtitudal and latitdual grid scale at (¢, 7).

What’s more, unlike atmosphere variables, the ocean MHW s have coastline boundary, which should
be treated properly to aviod any numerical instability. In our study, we mitigate this boundary effect
through a boundary mask M, where

0, if the grid cell is situated on land,
M(i, j) = or if any of its neighboring cells are on land (29)
1, else

Furthermore, a scaling factor €4, = 0.1 is employed on ug,, to avoid the instability of training. The
equation [26] then becomes

Ci= [ (1) + gy (0).©) VCI M
0

+ So(A(t), C) dt + Cy

(30)

Time Integration. In this study, we employ the forward Euler method to approximate the time
integration of the system, as described by the following discrete updates:

Citvar = Ciat + { — (wiat +ug(wing, Cing)) VCint

+ So(Aiar, Ajr)ar CiAt)} At, (€29
Ugirnar = Wiar + Mg(uiag) At, (32)
Ajirnar = Aiar + No(Aiag) At. (33)
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For global low-resolution simulations at 1/2° grid spacing, we set the time step At = 24 hours
and integrate over a total period of ¢ = 4 days, resulting in 4 discrete steps. This coarser temporal
discretization is sufficient given the relatively slower dynamics captured at this scale.

In contrast, for regional high-resolution simulations at 1/12° grid spacing, the rapid evolution of
oceanic processes—such as mesoscale eddies and submesoscale fronts—necessitates a finer time step
to maintain numerical stability and accuracy. Accordingly, we adopt At = 1800 seconds (0.5 hours)
and integrate over the same total period of ¢ = 4 days, amounting to 192 small steps. However, to
balance computational efficiency with fidelity, the neural network corrections ug and Sy are applied
only every 48 small steps (corresponding to one day).

This hybrid approach is formalized as follows: for each daily interval indexed by £ = 0,1,2,3
(spanning the 4-day period), we perform 48 sub-steps indexed by 7 = 0, . .., 47, with the full updates
applied at the end of each daily block. For j = 0 to 47:

C(k-48+j+1)At = C(k~48+j)At

(34)
+ [ = W(ka8+j)At VO (kasyj)ae | At
Then, at the end of the daily block:
U(k.48448)A¢ < U(k.48148)At (35)
+ g (U(k.48448)Ats Clh-a84+48)At)
Clr-a8+48)at < Clr.agra8)as + Se (36)

This design ensures that the computationally intensive neural network evaluations are invoked daily,
while the advection term is resolved at high temporal frequency to capture fast-changing dynamics.

Furthermore, as stated in the main text, our lightweight dynamical kernel imposes no substantial
computational overhead on the simulations. As demonstrated in Table[§] in regional high-resolution
simulations, incorporating the dynamical core results in only a 14% increase in inference time for the
Ocean-E2E model.

Table 8: Inference time for Ocean-E2E 30-day forecast (batch size=1, on a single NVIDIA RTX 3090
GPU).

Model Variant Inference Time (ms)
Ocean-E2E w/ Dynamical Kernel 195.29
Ocean-E2E w/o Dynamical Kernel 171.58

D DETAILS OF OUR NEURAL NETWORKS

D.1 MULTI-SCALE CONVOLUTION

Inspired by [Wu et al.|(2024b)), this section details the architectures of the neural network modules
My (for modelling ocean surface geostrophic velocity). As shown in Figure[d] both modules leverage
the GABlock (Group Attention Block) as their core building unit, designed to efficiently capture
multi-scale spatio-temporal features.

The foundational GABlock (specifically, a GASubBlock) processes an input feature X &
RBXCinxHXW Tpitially, X is normalized to Xyomi = BN(X). This normalized feature is then
passed through a Spatial Attention (SA) module. The SA module comprises an initial 1x1 convolu-
tional projection P, an activation function o, (e.g., GELU), a Spatial Gating Unit (SGU), and a final
Ix1 convolutional projection Ps. The core SGU employs depth-wise convolutions (DWConwvg) and
depth-wise dilated convolutions (DWDConvgpatia1). Its output is formed by a feature transformation
followed by a gating mechanism:

Fg = COHV1><1 (DWDCOHVspanal (DWCOI]VO (Uact (7)1 (Xnorml))))) (37)
F., G, = split (F,,dim = 1) (38)
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Figure 4: Core components of the GABlock. (Top) Core computational flow of the Multilayer
Perceptron (Mlp) module, including a 1x1 convolution, a depthwise convolution, GELU activation,
and Dropout. (Bottom) Core computational flow of the Spatial Attention (SA) module, illustrating the
generation of feature F, and gating signal G, through an initial 1x1 convolution, GELU activation,
and a depthwise convolution. The gating signal GG, is then passed through a Sigmoid activation and
element-wise multiplied with F,.. The result is processed by a final 1x1 convolution and integrated
with the input via a residual connection. These two components collectively form the key information
processing units within the GABlock.

SGUgy = Osigmoid (Gz) OF, (39

The result from the SA module, Po(SGU,y,), is integrated back into the input via a residual connection,
scaled by a learnable parameter A\1: X, = X + A1 - DropPath(P2(SGU,y)). Subsequently, X,
undergoes another normalization to X;,o;m> = BN(X,) and is processed by a Multilayer Perceptron
(M1p) module. The M1p typically consists of two 1x1 convolutions sandwiching a depth-wise
convolution, along with activations and dropout. Its output, Mlp(Xom2), is also added residually
with a learnable scale Ay: Xoy = Xaun + A2 - DropPath(MIp(Xporm2))-

The module for approximating the geostrophic velocity, ug, adopts a U-Net-like encoder-decoder
architecture. It takes the initial conditions of geostrophic currents u, € RE*2*H*W aq input.
The encoder path, composed of L. stages, utilizes downsampling convolutions (e.g., ConvSC)
and GABlocks to extract multi-scale features, denoted as H; for the [-th stage. Deeper encoder
layers, particularly the bottleneck which processes H,, with stacked GABlocks, are crucial for
capturing non-local spatial dependencies inherent in subgrid effects. The decoder path, with L,
stages, symmetrically reconstructs spatial resolution using upsampling convolutions and GABlocks,
integrating features from corresponding encoder stages #_ ;11 via skip connections. A final

convolutional layer then maps the decoder’s output to the future geostrophic velocity field u, €
RB X2x Hx W'

D.2 NEURAL DATA ASSIMILATION NETWORK

Inspired by |Liu et al.|(2024)), we apply an edge-reparameterization and attention-guided network
to project the observation to analysis data, which achieves efficent assimilation for real-time ap-
plication. It primarily consists of four parts, i.e., a convolutional layer (ConvL), a Kirsch-guided
reparameterization module (KRM), a channel attention module (CAM), and a spatial attention module
(SAM).

D.2.1 CONVOLUTIONAL LAYER

The convolutional layer (ConvL) can defined as:

ConvL(zi,) = PR(LN (Conv(ziy))), (40)
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where z;, € RE*H*W s the input of ConvL. Conv, LN, and PR represent the convolution

operation, the layer normalization, and parametric rectified linear unit (PReLU), respectively.

D.2.2 ATTENTION MECHANISM

The attention mechanism can realize the efficient allocation of information processing resources
and can give more attention to key area of observatiuon while temporarily ignoring the missing
locations. Therefore, the attention mechanism is used to focus on important information with high
weights, ignore irrelevant information with low weights, and continuously adjust the weights during
the network learning process. Therefore, a single model can extract more valuable feature information
in different imaging environments. In this work, both channel attention and spatial attention are
jointly exploited to further improve the assimilation performance.

Channel Attention Module. The channel attention mechanism is thus exploited to reconstruct the
relationship between target analysis features and the input of different observation fields. The channel
attention module (CAM) can be defined as:

CAM = o(MLP(Avg(z5,)) + MLP(Max(z$,))), 41)

where z¢, is the input of CAM, MLP denotes the multilayer perceptron, and ¢ is the Sigmoid

m
nonlinear activation function.

Spatial Attention Module. In data assimilation, the spatial attention module (SAM) is used to
concentrate on crucial regions, which can be defined as:
SAM = o (Conv"* ([Avg(z;,); Max(z5,)])) , (42)

in n

where z{,, is the input of SAM, [ ; ] is exploited to concatenate two types of pooled features.

D.2.3 KIRSCH-GUIDED REPARAMETERIZATION MODULE

To facilitate efficient assimilation in real-world MHW s forecasting, we employ the Kirsch-guided
reparameterization module (KRM) with shared parameters, as proposed by Liu et al. [Liu et al.| (2024).
The KRM is composed of three principal elements: (1) a standard convolutional layer that captures
local spatial features; (2) an expand—squeeze convolutional layer that adaptively adjusts the receptive
field; and (3) a family of eight directional edge-detection operators that guide the learning and
inference of the convolutional kernels. Specifically, the standard convolutional and expand—squeeze
operations can be formulated as follows:

Fy =Wy x xfn + By, (43)

Feo =W, % (We*x§n+Be) + Bs, @4)

where xfn denotes the input of KRM. W,,, Wy, W,, B,, Bs, B, are the weights and bias of
convolution operation. F;, represents the output of the normal convolutional layer. F,, denotes the
output of the expanding-and-squeezing convolutional layer. We first reparameterize the Eqs. (3)) and
(@4). Subsequently, we merge them into a single normal convolution with parameters W, and Be:

Wes = perm (We) x W, (45)
Bes = Wy xrep (Be) + B, (46)

where perm(-) denotes the permute operation which exchanges the 1st and 2nd dimensions of a
tensor, rep(-) denotes the spatial broadcasting operation. And the predefined eight-direction Kirsch
edge filters K; are incorporated into the reparameterization module. To memorize the edge features,
the input feature x¥, will first be processed by C' x C' x 1 x 1 convolution and then use a custom
Kirsch filter to extract the feature map gradients in eight different directions. Therefore, the edge

information in eight directions can be expressed as follows:
Fic = (Sk © Ki) @ (W =2}, + Bi) + B, )

where W; and B; are the weights and bias of 1 x 1 convolution for branches in eight directions,
S} and B, are the scaling parameters and bias with the shape of C' x 1 x 1 x 1, © indicates the
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channel-wise broadcasting multiplication. The combined edge information, extracted by the scaled
Kirsch filters, is given by:

8
Fx = Z Fi. (48)

Therefore, the final weights and bias after reparameterization can be expressed as:

8
Wrep =W, + Wes + Z (perm (Wl) * Wf() ) (49)
=1
8
Biep = By + Bes + Y (perm (B;) = Bx,) . (50)
=1

Finally, the output can be obtained using a single normal convolution in the inference stage:

F = Wiep * 25, + Brep. (51)

D.2.4 THE ASSIMILATION NETWROK

We fist define the basic block:

res; = PR(G(Conv(zb)))), (52)

ress = PR(G(Conv(resy))), (53)
reSattention = SAM(CAM (res2)), (54)
ress = PR(G(Conv(resatention)) + 5., (55)
resy = PR(G(Conv(ress))), (56)

where, ¥ is the input of basic block, G represents GroupNorm. In summary, the basic block can be
defined as

resy = Block(z?). 57
Therefore, for the obsevation data x,, it can be processed to analysis data as follow:

= Block(KRM(xo) + z,), (58)

= Block(KRM (y.) + ya), (59)

Block;(KRM(yi) +y2), (60)

= Block(KRM (y2) + v2), (61)

= Block(KRM (y*) + y), (62)

va" = Clya), (63)

where, C denotes the final convolution operation, which maps the latent information to the analysis
data.

E EXPERIMENTS DETAILS

E.1 EVALUATION METRIC

Definition of MHWSs. The |[Hobday et al.| (2016)) definition of MHW categories is applied to detect
MHWs from original SST field. More precisely, any interval in which the SST anomalies surpass the
90th percentile for a minimum of five days in a row is classified as an MHW event.

Metrics. In this study, to evaluate the performance of our model, we use three metrics: Root Mean
Square Error (RMSE), Critical Success Index (CSI) and Bias (BIAS). RMSE represents the overall
performance of our SST anomaly forecast, which is calculated as:

RMSE(1) = \/ e S s (Cg 1) — Gy ()2 64

2,
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Where C; ;(t) and C; ;(¢) is the ground truth and prediction of SST anomaly at lead time ¢, w; ; is
the weighting coefficient and the subscript (4, j) indicates the data at grid point (7, j) while H and W
follow the same definition in Section 2. CSI is the metric that evaluate the forecast ability of extreme
events and can be expressed as:

TP

() s S—
OSIY) = Tp TP+ PN

(65)

Where TP (True Positive) denotes the number of cases that a MHW event is accurately predicted. FP
(False Positive), FN (False Negative), and TN (True Negative) follow a similar definition.

BIAS is used to evaluate the systematic difference between the analysis field and the ground truth:

1 ~
BIAS(t) = T D wi i (Cijt) = Cij(1)) (66)
,J

E.2 MODEL TRAINING

All baseline models and Ocean-E2E were trained under identical experimental configurations to
ensure fair comparison. The training process employed 100 epochs with an initial learning rate of
1 x 1073, utilizing a step-wise learning rate scheduler to dynamically adjust training parameters
until convergence was achieved. For objective evaluation, model checkpoints demonstrating optimal
performance on the validation set were selected as final candidates for comparative analysis.

F RELATED WORK AND LIMITATIONS

F.1 NUMERICAL MODEL BASED OCEAN FORECASTING

Traditional MHW:s forecasting predominantly relies on numerical models solving oceanic primitive
equations. These approaches are typically categorized into two types: (1) seasonal forecasting, which
predicts large-scale MHW characteristics including onset timing, duration, and intensity evolution
Jacox et al.| (2022); Brodie et al.| (2023)), and (2) sub-seasonal forecasting, which resolves finer
spatiotemporal variations at the cost of reduced prediction horizons Benthuysen et al.| (2021); |Yu et al.
(2024)). While physics-based models demonstrate reasonable forecast skill, they face two principal
limitations: prohibitive computational costs scaling with model resolution Xiong et al.| (2023)); Wang
et al.| (2024)), and systematic underestimation of extreme MHW magnitudes Jacox et al.[(2022).

F.2 DEEP LEARNING BASED OCEAN FORECASTING

Machine learning (ML) techniques have emerged as promising alternatives for oceanic modeling,
offering orders-of-magnitude speedup over conventional methods|Liu & Mal(2024));[Hao et al.|(2025).
Recent efforts have developed spatio-temporal architectures including NMO Wu et al.| (2024al),
neXtSIM [Finn et al.[(2024), and OceanVP [Shi et al.| (2024b) for regional ocean modeling, alongside
specialized models for specific oceanic phenomena such as ENSO [Ham et al.| (2019); (Chen et al.
(2025), MJO Kim et al.|(2021)); Delaunay & Christensen| (2022)); |Shin et al.| (2024), and MHW:s [Shi
et al.[(2024a)); Jacox et al.| (2022); [Shu et al.| (2025). Building on advances in atmospheric foundation
models [Pathak et al.|(2022); Bi et al.| (2023)), the community has recently proposed global ocean
foundation models like AI-GOMS [Xiong et al.|(2023)), Xihe [Wang et al.| (2024}, and WenHai |Cui
et al.[(2025)).

F.3 DEEP LEARNING BASED DATA ASSIMILATION

Deep learning (DL) has shown transformative potential in weather and climate data assimilation (DA),
with progress evolving along three directions: (1) Conceptual validation using idealized systems like
Lorenz models and shallow water equations Brajard et al.| (2020); |Arcucci et al.| (2021)); [Fablet et al.
(2021); Legler & Janjic (2022); (2) Component replacement within conventional DA frameworks,
including physical parameterization [Hatfield et al.|(2021)), observation operators |Liang et al.| (2022);
Stegmann et al.| (2022)), and optimization cost functions Melinc & Zaplotnik! (2024); [Xiao et al.
(2024); (3) End-to-end DA system replacement, exemplified by FengWu-Adas and DiffDA that
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implement complete DL-based assimilation pipelines using ERAS reanalysis data|Chen et al.|(2023b);
Huang et al.| (2024).

F.4 LIMITATIONS

Despite the promising results demonstrated by our proposed Ocean-E2E framework, several limi-
tations should be acknowledged. First, the hybrid approach relies on certain simplifications of the
underlying physical processes, which may not fully capture the complex, multi-scale interactions in
certain oceanic regimes. Second, the current model does not explicitly account for potential feedback
mechanisms between marine heatwaves and larger-scale climate modes, which may affect the accu-
racy of long-term forecasts. Future work could focus on refining the physical constraints, expanding
the evaluation across diverse marine environments, and exploring more efficient architectures to
enhance robustness and operational feasibility.

G ADDITIONAL RESULTS

G.1 ADDITIONAL RESULTS OF OUR END-TO-END FORECAST SYSTEM

In this section, we are going to show additional results of our end-to-end forecast system.

Details of the performance of our assimilation framework. Figure [5]illustrates the performance of
our assimilation, including a snapshot of our analysis field and temporal evolution of our assimilation
error.

Additional comparsions between our framework and S2S. To be specific, we take the S2S analysis
field as the groundtruth, and use it to initialize our Ocean-E2E. The atmospheric boundary condition
is acquired through one of the state-of-the-art Al-driven weather forecast model: OneForecast|Gao
et al.|(2025)). As shown in Table@ our model still performs better than S2S.

Ablation Analysis on Error Propagation. We further present the ablation results for the core
components of the marine heatwave forecasting task to investigate how errors propagate through
the atmospheric forcing forecast module Ny and the assimilation module ¢§. As shown in Table
comparing the full Ocean-E2E model with variants using real atmospheric forcing (w/o Np) and real
initial conditions (w/o ¢g), we observe that the error in the atmospheric forecast module accumulates
gradually over time (e.g., the gap between w/o Ny and Full model widens at 40-day lead time). This
underscores the critical role of accurate atmospheric forcing fields. In contrast, the assimilation
module does not exhibit a significant cumulative error effect, as it primarily impacts the state fields in
the immediate vicinity of the assimilation timestamp, thereby exerting a localized effect.

Table 9: Ablation study on core components regarding error propagation. We compare the RMSE of
Global SSTA across different lead times (20 and 40 days) for the years 2020 and 2021.

| 2020 | 2021
| 20-day 40-day | 20-day 40-day

0.5944 0.8325 | 0.7297 0.8132
0.5832 0.8691 | 0.6965 0.8531
0.6047 0.8747 | 0.7447 0.8729

Model Variants

w/o Ny (real atmosphere)
wlo ¢g (real IC)
Ocean-E2E (Full)

G.2 ADDITONAL EVALUATIONS OF OUR MODEL’S PERFORMANCE

In this section, we present the power spectrum of the squared modulus of the SSTA gradient, |[VC'|?,
on day 20. As shown in Figure[f] our Ocean-E2E model, especially at small scales (corresponding to
a large wave number), is closer to the ground truth. This additional evaluation metric demonstrates
the accuracy of our model in simulating the heatwave system.
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Figure 5: Results of our end-to-end assimilation framework. a) Snapshots of our analysis field and
the groundtruth after 300 days of the initialization of our assimilation in 2020 b) Temporal evolution
of RMSE and BIAS during the assimilation period.

Comparison of Power Spectral Density at Simulation Day 20

103

H
2
.

Power Density
5

—— Ground Truth

----  SimVP

---- PastNet

71 .- ConvLSTM
U-Net

—— Ocean-E2E

. :
10° 10! 10?
Wavenumber k (cycles/domain)

Figure 6: Power Spectrum of |VC'|? on day 20 from our regional simulation experiment.

G.3 VISUALIZATION OF GLOBAL MHWS SIMULATION

In this section, we visualize the global MHW:s forecast result of our Ocean-E2E, as shown in Figure
We plot the global SSTA field, where darkred parts indicate strong MHWs.

G.4 VISUALIZATION OF GLOBAL MHWS FORECAST

In this section, we visualize the global MHWs forecast result of our Ocean-E2E, as shown in Figure
[TOHT2] We plot the global SSTA field, where darkred parts indicate strong MHWs.
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Table 10: Additional comparison with S2S. The average results for global SSTA of RMSE are
recorded. A small RMSE (]) indicates better performance. The best results are in bold, and the
second best are with underline.

| METRIC (RMSE)

MODEL TIME INTERVAL

| 14-DAY | 21-DAY | 28-DAY | 35-DAY
S28S (2020) 0.5249 | 0.5994 | 0.6618 | 0.7086
OCEAN-E2E (2020) 0.4321 | 0.5242 | 0.5891 | 0.6304

OCEAN-E2E (PROMOTION) | 17.8 % | 12.5% | 11.0% | 11.0 %

S2S (2021) 0.5175 | 0.5703 | 0.6121 | 0.6448
OCEAN-E2E (2021) 0.4350 | 0.5167 | 0.5626 | 0.6022

OCEAN-E2E (PROMOTION) | 15.9% | 94% | 81% | 6.6%

G.5 VISUALIZATION OF REGIONAL HIGH RESOLUTION SIMULATION

In this section, we visualize the regional (western Atlantic) simulation, as shown in Figure [T3}{I5] We
plot the regional SSTA field, where yellow parts indicate MHWs.

H LARGE LANGUAGE MODEL (LLM) USE DISCLOSURE

No large language models were used in the creation of this work for the purposes of writing assistance,
literature retrieval, research ideation, or any other aspect of the research and manuscript preparation
process.
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Figure 7: Global Simulation of MHWs Initialized on January 13, 2020
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Figure 9: Global Simulation of MHWs Initialized on July 11, 2020
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Figure 10: Global Forecast of MHWs Initialized on January 13, 2020
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Figure 11: Global Forecast of MHWs Initialized on May 12, 2020
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Figure 12: Global Forecast of MHWs Initialized on July 11, 2020
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Figure 13: Regional Simulation of West Atlantic Initialized on January 13, 2020
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Figure 14: Regional Simulation of West Atlantic Initialized on March 13, 2020
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Figure 15: Regional Simulation of West Atlantic Initialized on May 12, 2020
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