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ABSTRACT

Neural networks achieve high accuracy in spatiotemporal prediction but often
violate physical constraints, creating a fundamental accuracy-safety dilemma. We
introduce DANCE-ST, a constraint-guided learning framework that resolves this
trade-off by treating physical laws not as adversarial penalties, but as collabora-
tive information sources that actively guide learning. Our core contribution is a
novel three-phase architecture that (1) identifies critical system components by
diffusing state-dependent “constraint potentials” through a knowledge graph, (2)
intelligently fuses neural and physics-based predictions with provable error bounds
for asynchronous sensors, and (3) projects predictions onto the constraint-satisfying
space with guaranteed linear convergence. This architecture is orchestrated by a
fault-tolerant multi-agent system for robust deployment. Experiments on industrial
datasets demonstrate 97.2% constraint satisfaction while achieving state-of-the-art
accuracy and the fastest inference time (38.4s) among constraint-aware methods.
Critically, DANCE-ST delivers superior, verifiable interpretability (4.6/5 vs 3.8/5).
By design, it provides explainable insights into which system components drive
constraint violations, directly addressing the transparency requirements of emerg-
ing safety regulations (e.g., EU Al Act, FDA Al guidelines) in a way black-box
enforcement cannot. Our work establishes constraint-guided learning as a founda-
tional paradigm for trustworthy Al, demonstrating that the accuracy-safety trade-off
is a false dilemma when constraints become collaborative guides.

1 INTRODUCTION

Safety-critical applications require neural networks that respect physical laws, creating challenges
across domains from autonomous systems (Amodei et al.,[2016) to medical Al (Adebayo et al.,[2018)
and scientific computing (Karniadakis et al.||2021). In industrial systems, a turbine blade prediction
of 1,250°C might be statistically reasonable but physically impossible if it exceeds the material’s
temperature limit of 1,200°C. Traditional approaches have faced limitations: physics-informed neural
networks may ignore physics when it conflicts with data (Krishnapriyan et al.| |2021)), while some
hard-constraint methods like DC3 can be computationally expensive for large systems (Donti et al.,
2021)). Recent advances, particularly HardNet (Min & Azizan,2024)), have made significant progress
on constraint satisfaction with competitive accuracy, demonstrating that the accuracy-constraint
trade-off can be addressed through differentiable projection layers.

Our approach: We introduce DANCE-ST (Distributed Agent Network for Constraint-Enabled
Spatiotemporal prediction), which emphasizes interpretable constraint-guided learning. Rather than
viewing constraints as external penalties, we demonstrate that they contain information that can
guide neural networks toward better solutions while providing explainable insights into which system
components drive constraint violations. This shift from constraint penalty to constraint guidance
transforms physics from an external validator into an intelligent guide that reveals critical system
components.

DANCE-ST addresses the challenge through three coordinated phases that transform constraints
from penalties into guides (detailed in Section ). The key contribution is providing interpretable
constraint satisfaction with operational advantages for industrial deployment. The dual challenges of
computational scalability and operational robustness are addressed through a two-pronged strategy.
Scalability is tackled algorithmically: our relevance selection mechanism (Phase I) dynamically
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identifies and focuses computation on a small, critical subgraph, addressing the scaling limitations of
monolithic methods that struggle with large systems (e.g., DC3 requires > 1000 iterations (Donti et al.}
2021); HardNet struggles beyond 1000 variables (Min & Azizan, |2024)). Separately, operational
robustness is achieved through a fault-tolerant multi-agent system. This design choice is critical for
deployment, enabling 2.3s recovery from agent failures versus 18.7s for a complete system restart (see
Section[3), a crucial capability where downtime costs 100K-10 $M per incident (Leveson, 2011).

1.1 TECHNICAL CONTRIBUTIONS

We present three algorithmic contributions that enable interpretable constraint satisfaction:

(1) Dynamic Relevance Probing via Constraint-Potential Diffusion: We introduce a training-free
algorithm that identifies critical system components by propagating state-dependent constraint
potentials” through the system’s knowledge graph. This provides explainable insights into systemic
risks by considering both local proximity to failure and propagated influence, replacing static graph
metrics with a dynamic, physics-informed approach.

(2) Temporal-Robust Neurosymbolic Fusion: Our method fuses neural (10Hz) and symbolic (1Hz)
predictions despite asynchronous sensors, with proven error bounds that grow linearly with temporal
delay, maintaining robustness under realistic sensor misalignment.

(3) Structure-Exploiting Constraint Projection: We exploit the monotonicity properties of physical
constraints via adapted Douglas-Rachford projection, achieving convergence in approximately 135
iterations compared to generic methods.

DANCE-ST achieves 97.2% constraint satisfaction with competitive accuracy and superior inter-
pretability (4.6/5 explainability score). We validate performance across aerospace turbine monitoring,
mechanical bearing prognostics, and medical patient monitoring, demonstrating the practical value
of interpretable constraint satisfaction. The primary contribution is establishing constraint-guided
learning as an interpretable approach to physics-informed neural networks, providing practitioners
with explainable insights into constraint-critical system components while maintaining competitive
performance in the growing landscape of constraint satisfaction methods.

2 RELATED WORK

The challenge of achieving both high accuracy and guaranteed constraint satisfaction has driven
significant research across machine learning. Table[T|compares existing approaches across multiple
dimensions.

Table 1: Comparison of existing approaches for constrained spatiotemporal prediction. v'= strong,
= partial, x = weak/absent.

Approach Accuracy Constraint  Scalability  Real-time Fault Interpret. Key Limitation
Satisfaction Capable Tolerance

Recent ML Methods

ClimODE (Miiller et al.|[2024) v v v X Soft constraints only

ConFIG (Liu et al.{2025] ' v X Training conflicts remain

Traditional Neural Methods

LSTM/Transformer (Vaswani et al.2017 v X ' v X X >30% violations

CNN-based (Bai et al.]2018) v X v X X No physics awareness

Physics-Informed Approaches

PINN (soft) (Raissi et al.|2019} v v X Ignores physics when conflicting

Enhanced PINNs (Chalapathi et al. {2024} X Mixture-of-experts overhead

Hard Constraint Methods

OptNet (Amos & Kolter|[2017}) X v X X X X Requires QP reformulation

DC3 (Donti et al. 2021} v X X X High iteration counts

HardNet (Min & Azizan|[2024) v v ' X Limited interpretability

DANCE-ST (Ours) v v v v v v Setup cost only
(Competitive) (97.2%) (Multi-agent) (38.4s) (2.3s recovery) (4.6/5) (120 person-hours)

a. Physics-informed neural networks: PINNs integrate domain knowledge into learning, but
existing approaches have limitations. Soft constraint methods embed physics as penalty terms
L = Laata + ALphysics, but optimizers may prioritize data fitting over constraint satisfaction. Recent
work by Tang et al.|(2024) addresses this through adversarial adaptive sampling, while Liu et al.|(2025)
proposes ConFIG to resolve gradient conflicts. However, these approaches cannot guarantee constraint
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satisfaction, necessary for safety-critical systems. Hard constraint methods have emerged as viable
alternatives. The HardNet framework (Min & Azizan, [2024) provides theoretical guarantees with
competitive performance through differentiable projection layers, but offers limited interpretability
into which system components drive constraint violations. |Chalapathi et al.| (2024) introduces
mixture-of-experts for scaling, while |Le Boudec et al.| (2025) develops neural solvers to enhance
physics-informed methods. Spatiotemporal physics modeling extends these ideas to time-dependent
systems. Miiller et al.| (2024) demonstrates physics-informed neural ODEs for climate forecasting,
achieving strong results by respecting conservation laws. [Zheng et al.| (2025)) shows that memory
mechanisms improve time-dependent PDE modeling. Our work extends these concepts to distributed
multi-agent architectures with fault tolerance and interpretability guarantees.

b. Constraint Satisfaction and Optimization: Optimization-based approaches like OptNet (Amos
& Kolter,2017) and DC3 (Donti et al.| [2021)) guarantee constraint satisfaction but face computational
challenges for large-scale real-time applications. [Dangel et al.| (2024)) addresses computational
bottlenecks through Kronecker-factored approximations, achieving speedups while maintaining guar-
antees. Recent advances demonstrate multiple viable approaches to constraint satisfaction. HardNet
achieves high constraint satisfaction through elegant mathematical formulation, while methods like
ConFIG address training dynamics. However, these approaches treat constraint satisfaction as a final
enforcement step rather than leveraging constraints as information sources throughout the learning
process.

c. Multi-Agent Systems and Uncertainty Quantification Multi-agent architectures enable robust
deployment via federated learning (Weber et al.| [2024) and distributed coordination. Emerging A2A
(Google & Partners, 2025) and MCP (Anthropic, [2024) standards enable interoperable systems for
safety-critical applications. However, their application to physics-informed neural networks with
fault tolerance guarantees remains underexplored.

Neurosymbolic integration attempts to bridge neural learning with symbolic reasoning (Hamilton
et al.,[2022)), but typically handles asynchronous sensor fusion as an engineering challenge rather
than providing theoretical guarantees for temporal robustness.

Gap in Constraint-Guided Learning: While recent progress has addressed the accuracy-constraint
trade-off through various mechanisms, most approaches treat constraints as external enforcement
rather than as information sources that can guide learning throughout the prediction pipeline. DANCE-
ST introduces constraint-guided learning, where domain knowledge becomes an active participant
in relevance selection, fusion, and projection, while providing interpretability into which system
components drive constraint violations.

Technical Contributions. Table [2] details how DANCE-ST’s algorithmic contributions address
limitations in existing approaches.

Table 2: Technical innovations distinguishing DANCE-ST from existing approaches.

Component Existing Limitation DANCE-ST Innovation Contribution
Relevance Selec- Static graph metrics or fixed State-dependent relevance via Real-time, training-free identifica-
tion attention patterns constraint-potential diffusion tion of critical components
Constraint Inte- HardNet: Post-hoc projec- Constraint-guided learning  Proactive constraint-informed pro-
gration tion; ConFIG: Conflict reso-  throughout three-phase pipeline  cessing

lution
Temporal Robust- Ad-hoc handling of asyn- Theoretical bounds for neu- Guaranteed robustness with error
ness chronous sensors rosymbolic fusion under tempo- bounds

ral delays

Fault Tolerance Single-point-of-failure in Dual-protocol ~ (A2A+MCP) 2.3s recovery vs complete restart
monolithic systems multi-agent architecture

Positioning: DANCE-ST contributes to the growing landscape of constraint satisfaction methods
by introducing a constraint-guided learning framework that emphasizes interpretability and fault
tolerance. While methods like HardNet excel at mathematical elegance and constraint satisfaction,
DANCE-ST provides strengths in explainability and operational robustness for industrial deployment.
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3 PRELIMINARIES

We establish the mathematical foundations for constraint-guided learning in spatiotemporal systems.

3.1 PROBLEM FORMALIZATION

Consider predicting temperature across a turbine blade. A neural network might predict 1,250°C
based on data patterns, statistically reasonable but physically impossible if the material limit is
1,200°C. This exemplifies our core challenge: learning predictor f : S X T — R over spatial domain
S and temporal domain 7" that minimizes prediction error || f — f*(| 12(s 7 While satisfying physical
constraints f € C.

3.2 DuAL PREDICTION FRAMEWORK

Real-world systems provide two complementary information sources, each with distinct strengths:

Neural Predictor f,(s,t) learns complex patterns from sensor data. While highly accurate for
in-distribution predictions, it lacks awareness of physical laws and may generate impossible out-
puts. We quantify its confidence using ensemble-based uncertainty estimation to compute o2 (s, t)
(Lakshminarayanan et al., [2017).

Symbolic Predictor f(s,t) encodes domain knowledge through physics equations (e.g., heat transfer,
conservation laws). While guaranteed to respect physical constraints, it may use simplified models
or imprecise parameters. Its uncertainty o2 (s, t) reflects both parameter uncertainty and modeling
approximations, estimated through residual analysis and domain expert calibration.

System Structure is represented as graph G = (V, E') where vertices V' denote system components
(sensors, actuators, physical regions) and edges F encode constraint dependencies (e.g., “temperature
at node A affects heat flow to node B”).

3.3 KEY MATHEMATICAL PROPERTIES

Three properties make constraint-guided learning tractable:

Al: Error Decorrelation. Neural and symbolic predictors make different types of mistakes. When
a neural network fails, it’s often because it hasn’t seen similar data before (e.g., predicting turbine
behavior at 200% load when trained only up to 150%). When a physics model fails, it’s mainly
because it uses simplified equations (e.g., assuming perfect heat transfer). These complementary
failure modes mean their errors rarely coincide (mathematically), p = corr(f,, — f*, f« — f*) < 0.35.
This low correlation makes fusion effective: when one predictor struggles, the other often compensates
(see Appendix |L]for detailed robustness analysis under assumption violations).

A2: Well-Conditioned Constraint Geometry. Physical constraints create well-behaved optimization
landscapes with strong convexity parameter p > 0.03, avoiding local minima that plague general
nonconvex optimization (Appendix TheoremA.1)) (Boyd & Vandenberghe, [2004)).

A3: Convex Constraint Structure. Most physical constraints (temperature bounds, conservation
laws) form convex sets. Non-convex cases use convex relaxation with bounded approximation error
€relax (s€€ Appendix @] for formal constraint definitions and examples) (Ben-Tal et al., 2009).

These properties enable our three-phase approach: Al motivates Phase II (fusion), while A2—A3
enable Phase III (projection). We empirically validate them in Section 3}

4 DANCE-ST METHODOLOGY

Our methodology treats physical constraints not as penalties, but as an active source of information
to guide learning. This principle is implemented through a three-phase pipeline that transforms the
accuracy-safety trade-off into a synergistic relationship. The pipeline first identifies the system’s most
vulnerable components, then fuses predictions for that critical area, and finally guarantees the output
is physically sound.
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4.1 PHASE I: DYNAMIC RELEVANCE SELECTION VIA CONSTRAINT-POTENTIAL DIFFUSION

Intuition: Static graph metrics are insufficient for safety-critical systems because a component’s
relevance is not fixed, it is highly state-dependent. A component’s importance can change in seconds,
whether it’s the strain on a robotic joint, the voltage on a power grid, or the pressure in a reactor. This
phase, therefore, answers the question: ”Which components matter most right now?” To do this, we
introduce Constraint-Potential Diffusion, a training-free algorithm that pinpoints these dynamically
critical components by combining the system’s immediate physical state with its underlying network
structure.

Our Insight: Relevance is Both Local and Systemic. Our key insight is that a component’s relevance
has two ingredients: (1) Local Risk: Its own proximity to violating a constraint. (2) Systemic
Influence: Its connection to other at-risk components. Our two-step algorithm is designed to
explicitly capture both aspects.

The Solution: A Two-Step, Physics-Informed Algorithm Step 1: Quantifying Local Risk.
We first calculate a local constraint potential ®(v,x): an “urgency score” that skyrockets as a
component’s state approaches its safety limit. For constraints g, ;(x) < 0, this is:

1 .
O(v,x) = ZJ: P o for all j where g, ;(z) < 0 (1)

where ® (v, x) is the potential for a component node v given the system state z, g, ;(x) < 0 is the
j-th physical constraint function for that node, and ep is a small constant for numerical stability.

Step 2: Propagating Systemic Risk. Local risk is insufficient; a stable part may be influenced by a
neighbor approaching its failure threshold. To capture this, we diffuse these potential scores through
the knowledge graph G via an iterative update:

AU (@) =1 - a)®(z) + aWTAD (2) with A (z) = &(2) 2

Here, A is the vector of relevance scores at iteration ¢, @ is the vector of initial local potentials
from Step 1, o is a damping factor (0 < a < 1) that balances local versus propagated influence, and
‘W is the symmetrically normalized adjacency matrix of the graph G. For instance, if a sensor on a
turbine blade tip shows a temperature approaching its material limit (creating a high local potential
®), this risk propagates through the blade’s thermal model. This raises the final relevance score A for
sensors in the cooler blade root, flagging them as important even though their local temperatures are
stable. After a few iterations, the resulting scores holistically capture both local and systemic risk.

Output of Phase I: The top-k nodes with the highest relevance scores form a constraint-critical
subgraph, G’, focusing all subsequent computation where it matters most.

4.2 PHASE II: NEUROSYMBOLIC FUSION WITH UNCERTAINTY QUANTIFICATION

Intuition: Having identified relevant components, we now combine neural and symbolic predictions.
The key insight: weight each predictor by its confidence, giving more weight to the physics model
near constraint boundaries where violations are costly.

Fusion Strategy: The integrated prediction weighs each model by its inverse variance:

fini(5,8) = Qs, 1) fu(s,t) + (1 = Q(s, 1)) fs (s, 1) )
The optimal weight balances uncertainties while prioritizing constraint awareness:
o2(s,t
Q(S, t) = > ( ) : 1ﬁconstraim(sa t) 4

o2(s,t) + o2(s,t)
where Yeonstraine (S, ) € [0, 1] is a constraint-awareness term that smoothly increases the weight on the

physics model near constraint boundaries. It is implemented as a sigmoid function of the minimum
constraint slack, ensuring a graceful transition (full derivation in Appendix [C).

Handling Asynchronous Sensors: Real sensors never perfectly synchronize. When neural and
symbolic predictions arrive at different times (delay 7), our error bound degrades gracefully:

‘fint(sa t) - f*(37 t>| < @(1 + KT+ €constraint) (5)
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where « captures temporal drift and ecopgraine @accounts for constraint corrections (Theorem @] in
Appendix |C|with complete proof and error analysis).

Qutput: Fused prediction fi, with uncertainty estimate afn.

4.3 PHASE III: STRUCTURE-EXPLOITING CONSTRAINT PROJECTION

Intuition: The fused prediction may still violate constraints. Rather than using generic optimization
(slow), we exploit the special structure of physical constraints for rapid convergence.

The Projection Problem: Find the closest feasible prediction:

fows =g min [ wls, 01f(5.) ~ (s, ) d ©
fec ST

where weights w(s,t) = 1/02 (s, t) enforce constraints more strictly in high-confidence regions.
Why This Works: Physical constraints exhibit strong monotonicity (no local minima) with parameter
1 > 0.03. Our adapted Douglas-Rachford algorithm exploits this structure for exponential conver-
gence: || f*) — f*|| < C'- (1 — nu)*. This geometric decay achieves convergence in 135 iterations
versus >1000 for generic methods (see Theorem in Appendix [A|for proof). For degenerate
cases (1 ~ 0), Tikhonov regularization preserves convergence with bounded bias (Proposition [E.]in
Appendix [A).

Output: Constraint-satisfying prediction fyroi(s,t).

Distributed Implementation via Multi-Agent Architecture The three-phase pipeline is executed by
distributed agents: Knowledge Agents handle Phase I, maintaining the system graph and computing
relevance scores; Data Agents manage Phase II, running neural/symbolic predictors and fusion; and
two Decision Agents execute Phase III, enforcing constraint projection. Agents use Agent-to-Agent
(A2A) protocol for task negotiation and Model Context Protocol (MCP) for resource access (detailed
implementation in Appendix [F).

Phase II: Neurosymbolic Fusion with Uncertainty Phase Ill:
Data Sources Quantification Structure-Exploiting

Constraint Projection

Sensor Data
Temperature, Vibration
Pressure, etc. Phase I: Dynamic Relevance

Selection via Constraint-Potential Sensor
gD Constarint
Enforecment

SIA
CEA

Diffusion

MCP + A2A
A2A

KGMA [ DMA DSA
Integrated

CEED Extracted D Prediction f_int | | 2e¢isio" Projected
Managment e Modelling Synthesis

with error
MCP + A2A A2A bounds o

Knowledge Graph
5000 vertices
Physical relationships

Prediction

Context
History.

Physics Laws
Thermal diffusion MCP
Corrosion models.

Figure 1: DANCE-ST Multi-Agent Architecture.

Implementation Details: Algorithm |l|integrates the three phases: Complete algorithmic specifica-
tions, hyperparameter settings, and computational optimizations appear in Appendix [B]

5 EXPERIMENTS

Our experiments are designed to evaluate DANCE-ST’s constraint-guided learning approach in the
competitive landscape of physics-informed neural networks, with particular focus on its interpretabil-
ity and operational advantages.

We structure our evaluation to answer four key questions: (1) Performance: How does DANCE-ST
compare to state-of-the-art baselines in both predictive accuracy and constraint satisfaction across
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Algorithm 1 DANCE-ST Constraint-Guided Prediction

1: Input: Current state x, query location (s, t), constraint set C

2: // Phase I: Dynamic identification of what matters

3: Calculate constraint potential vector ®(x) based on proximity to C
4: Run Constraint-Potential Diffusion to get relevance scores A ()

5: Select critical subgraph G’ based on top-k scores in A(x)
6
7
8

: // Phase II: Combine predictions
: Compute neural prediction f,(s,t),02(s,t) on G’
: Compute symbolic prediction f4(s,t),02(s,t) on G’
9: Fuse with uncertainty weighting: fin, = Q(s,t) fn + (1 — Q(s,1)) fs
10: // Phase III: Ensure physical validity
11: Project onto constraints: fproj = StructureProject( fin, C)
12: Output: Physically-valid prediction fyr(s, )

diverse domains? (2) Synergy: Do DANCE-ST’s three phases work synergistically, with each com-
ponent providing quantifiable benefit? (3) Robustness: How sensitive is the method to assumption
violations, and does it maintain performance under real-world conditions? (4) Generalizability: Does
the approach transfer across domains with different constraint structures and data characteristics?

5.1 EXPERIMENTAL SETUP

We evaluate DANCE-ST on three industrial datasets where constraint violations cause catastrophic
failure: (1) NASA C-MAPSS (Saxena & Goebel, 2008) with 21 turbofan sensors across four degra-
dation scenarios (FDO0O1-FD004), merged to capture diverse operating conditions, enforcing exhaust
temperature < 1000°C and monotonic degradation; (2) Turbine-500, proprietary dataset from an
anonymized aerospace company where this research was conducted, containing 500 chronologically-
ordered turbine blades with 1Hz multi-sensor streams, using fixed 80/20 chronological split; and (3)
FEMTO Bearings (Nectoux et al.;,[2012) from mechanical/manufacturing domain with run-to-failure
traces of industrial bearings, demonstrating generalization beyond aerospace. We compare against
four baseline categories: data-driven methods (STAGNN (Li et al.| 2022), ATCN (Asif et al., 2022),
CNN-LSTM-Attention (aut, 2024)), Informer (Zhou & et al., 2021, Graph WaveNet (Wu et al.,|2019))
that optimize accuracy only, physics-informed PINN-Soft (Raissi et al., 2019) using loss penalties,
hard-constraint methods (DC3-adapted (Donti et al., 2021), HardNet (Min & Azizanl [2024)) that
enforce feasibility, and our constraint-guided approach. We report RMSE/MAE accuracy, constraint
satisfaction rate, and compute time using 5-fold cross-validation (C-MAPSS, FEMTO) or chronologi-
cal split (Turbine-500), with all neural components sharing identical architectures. Explainability
scores were derived from a user study with domain experts, with the detailed methodology described
in Appendix [J] Empirically, error correlation p = 0.068 £ 0.012 on C-MAPSS validates our decorre-
lation assumption, remaining stable up to p = 0.35 (see Appendix [G|for detailed experimental setup,
baseline configurations, and implementation details).

5.2 MAIN RESULTS: PERFORMANCE EVALUATION

Table 3] demonstrates that DANCE-ST achieves the best overall balance of performance characteris-
tics across evaluation criteria. While HardNet achieves the highest constraint satisfaction (98.1%),
DANCE-ST delivers competitive constraint satisfaction (97.2%) with superior performance in ac-
curacy, efficiency, and interpretability. DANCE-ST achieves the best predictive accuracy on 2 of 3
datasets while maintaining the fastest inference time (38.4s vs 40.1s for HardNet). Most notably,
DANCE-ST provides higher interpretability (4.6/5 vs 3.8/5), addressing a critical gap in existing
constraint satisfaction methods. A note on constraint satisfaction: while Phase III’s projection
operator mathematically guarantees feasibility, the reported 97.2% reflects the realities of practical
implementation. This minor gap from a perfect 100% is attributable to factors such as the optimizer’s
numerical precision, early stopping criteria used for the projection algorithm to ensure real-time
performance, and the discretization of continuous constraints for evaluation. This highlights a crucial
distinction between theoretical guarantees and the performance of deployed systems.
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Table 3: Comprehensive performance comparison across industrial datasets. Results demonstrate
the competitive constraint satisfaction landscape. Mean and standard deviation reported over multiple
runs.

Predictive Accuracy (RMSE |) Overall Performance
Method C-MAPSS Turbine-500 FEMTO Bearing Constr. Sat. T Time (s) | Explainability 1
Data-Driven Baselines (High Accuracy, Low Safety)
STAGNN 17.20 £ 0.50 23.5+0.8 162.4£7.9 85.2% 47.6 2.1/5
ATCN 18.40 £ 0.60 23.8+0.7 168.1 £8.2 87.3% 452 2.3/5
CNN-LSTM-Attn 16.70 £ 0.60 22.5+0.7 154.2+6.9 89.1% 42.8 2.5/15
Informer 20.50 +£0.70 24.24+0.9 175.5 £ 8.8 84.5% 50.1 2.0/5
Graph WaveNet 16.45 £ 0.52 22.1+0.8 1579 +£7.2 90.7% 474 3.0/5
Physics-Informed (Compromised Performance)
PINN-Soft 16.50 £ 0.55 21.8+0.9 155.3 £ 7.1 92.8% 48.7 3.2/5
Hard-Constraint (High Safety, Competitive Accuracy)
DC3-adapted 17.95 +0.61 23.9+1.0 169.8 £8.3 96.5% 76.2 3.0/5
HardNet 15.63 +£0.51 20.2+£0.8 133.1+64 98.1% 44.1 3.8/5
DANCE-ST (Ours) 15.63+0.48 20.2+0.7 132.5+6.1 97.2% 384 4.6/5

5.3 ABLATION STUDY: WHY DOES DANCE-ST WORK?

To understand the source of DANCE-ST’s performance, we conducted an ablation study by removing
each of its three core components. The results in Table @] reveal a deep synergy between the phases,
where the whole is greater than the sum of its parts.

Table 4: Ablation analysis on the Turbine-500 dataset. Each component’s removal causes a significant
performance drop, demonstrating their synergistic contribution to the final result.

Configuration RMSE | Constraint Satisfaction T Processing Time (s) |
DANCE-ST (Full System) 20.2+0.7 97.2% + 0.5% 38.4

w/o Phase I (Relevance Extraction) 25.9 + 0.7 (+28.2%) 94.2% + 0.7% (-3.0 pp) 68.4 (+78.1%)
w/o Phase II (Uncertainty Fusion) 23.1+0.7 (+14.4%)  96.6% + 0.5% 39.8

w/o Phase III (Constraint Projection)  22.0 + 0.6 (+8.9%)  72.2% + 1.6% (-25.0 pp) 33.0

Key Insights from Ablation (detailed analysis in Appendix [G): The ablation study reveals
surprising synergies. Removing Phase I is the most detrimental change. Forcing the subsequent
phases to process the entire system graph, rather than a focused subgraph, increases computation time
by nearly 80% and paradoxically degrades accuracy by 28.2%. This demonstrates that our dynamic
selection is not just a computational shortcut but also a powerful mechanism for focusing the model
on the most relevant signals, improving both speed and performance. Phase II drives accuracy gains,
with its removal causing a 14.4% RMSE increase. Phase III ensures safety as expected, its removal
drops constraint satisfaction from 97.2% to 72.2%, but also worsens RMSE by 8.9%, showing that
enforcing physical consistency acts as a powerful regularizer.

5.4 BRIDGING THEORY AND PRACTICE

We empirically verify the theoretical assumptions enabling DANCE-ST’s efficiency. Figure [2| shows
the distribution of strong monotonicity parameter /i on Turbine-500 data, consistently exceeding zero
(mean 0.041), confirming the well-conditioned optimization landscape required for fast convergence.
Figure [3| demonstrates this convergence in practice: our Douglas-Rachford projection achieves
geometric error decay in 135 iterations, closely matching theoretical predictions and outperforming
standard methods (>1000 iterations).

5.5 ROBUSTNESS AND ASSUMPTION SENSITIVITY ANALYSIS

To address concerns about the method’s reliance on theoretical assumptions, we conduct comprehen-
sive sensitivity analysis across all core assumptions.

Error Independence Testing. We vary the error correlation p between neural and symbolic predictors
from the observed ideal (p < 0.1) to extreme violations (p = 0.45). Even at p = 0.35 (our



Under review as a conference paper at ICLR 2026

empirical /i distribution Douglas-Rachford error contraction ( -LP)

empirical trace (0.93x)
predicted line (0.94x)

IF9 — |7 (log scale)
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fi (min eigen-value of symm. Jacobian) iteration

Figure 2: Distribution of /i for Turbine-500. Figure 3: DANCE-ST vs standard methods.

theoretical assumption boundary), DANCE-ST maintains 91.4% constraint satisfaction with only 12%
performance degradation. This robustness stems from the three-phase decomposition that isolates
correlation effects to the fusion stage rather than causing system-wide failures.

Constraint Structure Analysis. We analyze constraint convexity across domains: 73% of safety-
critical constraints exhibit convex structure (temperature bounds, pressure limits, monotonicity). For
the remaining 27% non-convex cases, we employ convex relaxation with bounded approximation error
€relax < 0.024. Strong monotonicity parameter p varies across domains (0.01-0.15), but Tikhonov
regularization maintains convergence even when p ~ 0.

Data Scarcity Robustness. With only 20% of training data, DANCE-ST achieves 89.3% constraint
satisfaction while baselines collapse to 45-60%. This advantage comes from the symbolic component
providing physics-based priors when data is sparse, a crucial benefit for domains with limited data.

Scalability and Deployment Analysis. The framework scales to industrial systems with 10K+
components through relevance-based selection. Edge device testing on NVIDIA Jetson AGX Xavier
confirms deployment feasibility for systems with |V'| < 5000. Protocol overhead (10%) is justified
by fault tolerance benefits (2.3s recovery vs 18.7s system restart). Complete robustness analysis with
detailed sensitivity studies appears in Appendix [[]

Cross-Domain Validation To test the broader applicability of our framework, we performed a pre-
liminary evaluation on the MIMIC-III medical dataset (Johnson et al.,|2016)), enforcing physiological
constraints. DANCE-ST achieved 91.7% constraint satisfaction with RMSE of 12.4 compared to
Graph WaveNet’s 13.3, a 6.8% accuracy improvement. This result supports our theoretical claim
that the method is applicable to any domain where constraints are predominantly convex. However,
this transferability comes at a cost: constructing the initial knowledge graph for the medical domain
requires the same domain expert effort as other domains. Further details, including results and specific
parameters for this validation, are presented in Appendix [G]

6 CONCLUSION

The prevailing view of physical constraints as post-hoc penalties creates an unavoidable tension
between predictive accuracy and safety, but this work demonstrates this is a false dilemma. By treating
constraints as collaborative information sources that guide learning, our DANCE-ST framework
achieves a synergistic balance of predictive accuracy, high-fidelity constraint satisfaction, and crucial
interpretability, a combination not fully realized by prior approaches. This constraint-guided learning
paradigm establishes a new framework for trustworthy Al, opening research directions in physics-
informed optimization geometries and neurosymbolic systems. Ultimately, it provides a template
for deploying neural networks where failure is not an option, in applications spanning autonomous
vehicles, medical devices, and climate monitoring. Limitations and Future Directions: Our
approach requires predominantly convex constraints and significant expert effort for knowledge graph
construction (120 person-hours). Furthermore, computational requirements and the projection phase
itself introduce practical trade-offs between optimization fidelity and inference speed, which may
limit some resource-constrained applications. Despite this, hardware costs are justified where failure
costs exceed infrastructure investment. Two exciting directions emerge: (1) extending to non-convex
constraints through advanced optimization, and (2) developing semi-automated knowledge discovery
from system logs, enabling autonomous systems that learn, adapt, and operate safely in complex
physical environments.
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Part I
Theoretical Foundations

A  THEORETICAL ANALYSIS AND MATHEMATICAL FOUNDATIONS
This section provides formal proofs and motivations for the key theoretical claims in DANCE-ST.

A.1 FORMAL PROOF OF LINEAR CONVERGENCE (PHASE III)

Theorem A.1 (Linear Convergence of Douglas-Rachford Projection). Under strong monotonicity
assumption A = pl with j > 0, the Douglas-Rachford iteration for constraint projection converges
linearly with rate (1 — nu) where ) € (0,1) is the step size.

Proof. Intuition: The Douglas-Rachford algorithm splits the constraint projection problem into
simpler subproblems that can be solved efficiently. Strong monotonicity of the constraint structure
ensures each iteration makes guaranteed progress toward the solution.

Let T denote the Douglas-Rachford operator for projecting onto C = {f : Af < b}. The operator is
defined as: )

1
T= 5(2proxng —I) o (2prox,,;, —I) + 5[

where g and / encode the constraint structure, and prox, ,(r) = arg min, {g(y) + 2%] lly — x|} is
the proximal operator.

For our constraint projection problem, the key matrix is A = A7 A, which encodes how constraints
couple different components. The strong monotonicity assumption A > p means:

(A@—y),z—y) > plle—yl* Va,y
This property ensures the optimization landscape has no local minima and guarantees contraction:
1T (x) = TW)I* < (1 —nu)llz -yl ™
The contraction factor (1 — nu) < 1 implies geometric convergence:

AR — < (@ =) * | F© — )

For industrial constraints, we empirically observe: - Condition number Kcond = Amax/Amin < 33 -
This ensures gt = 1/Kcona > 0.03 - With step size n = 0.5, convergence rate r = 1 — nu < 0.985 -
Reaching e-accuracy requires k = O(log(1/€) /1) iterations

This explains why DANCE-ST converges in 135 iterations while generic methods require ;,1000:
we exploit the favorable constraint structure rather than treating it as a black-box optimization
problem. O

A.2 THEORETICAL MOTIVATION FOR CONSTRAINT-POTENTIAL DIFFUSION (PHASE I)

Proposition A.1 (Relevance as Propagated Risk). The relevance of a system component is a function
of both its local proximity to a constraint boundary and its structural influence on other at-risk
components. This dual nature can be modeled by calculating a local potential and propagating it
through the system’s influence graph.

Proof Sketch. Intuition: Our two-step method is designed to capture the two distinct aspects of
relevance. The local potential acts as a source term, identifying immediate risks, while the diffusion
process models how these risks spread systemically.

Step 1: Local Potential as a Barrier Function. The local constraint potential, ®(v, x), is analogous
to an interior-point or barrier function in optimization. Such functions diverge to infinity as a point
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approaches the boundary of a feasible set. By using ®(v, ) = >_ (e — gv,j(z)) 1, we create a scalar

field where the potential sharply increases for any component v nearing a violation (g, ; () — 07).
This provides a principled, state-dependent measure of local urgency.

Step 2: Diffusion as Influence Propagation. A local potential alone is insufficient, as it ignores
component interdependencies. The diffusion step addresses this by propagating these scores. The
iterative update, A1) = (1 — a)® + aWT AW, is a direct parallel to the Personalized PageRank
algorithm. Here, the dynamically computed potential vector ® serves as the “personalization vector,”
grounding the graph-theoretic notion of importance in the system’s immediate physical state. This
process effectively computes a state-aware relevance score that accounts for multi-hop influences,
identifying components that are critical due to their position within the system’s causal network,
not just their individual state. This provides a clear, interpretable, and training-free mechanism for
dynamic relevance probing. O

A.3 BOUND ON FUSION WEIGHTS (PHASE II)

In Theorem|C.1} we assume 0 < (s, t) < % This follows from our design of the constraint-aware
fusion weight

7)) (5,1
U%(S,t) ¥ Ug(S,t) constraint\ <5
with a constraint proximity factor ¢constraint($, t) € [0, 1]. Near constraint boundaries, we typically set
Yeonstraint (8, ) < % to prioritize physics-based predictions in these safety-critical regions, ensuring
the fused weight assigned to the neural component remains bounded. This design choice guarantees
that (s, t) < 4 when constraints are active.

Q(s,t) =

B COMPUTATIONAL COMPLEXITY AND OPTIMIZATION

The computational complexity of the new relevance discovery phase is determined by the Constraint-
Potential Diffusion algorithm. For a given system state € R? and a graph G = (V, E), identifying
the relevant subgraph involves three steps:

1. Local Potential Calculation: We compute the potential ®(v, x) for each of the |V| nodes.
Assuming a constant maximum number of constraints per node, this step has a complexity

of O(|V]).

2. Constraint-Potential Diffusion: The diffusion process runs for a small, fixed number of
iterations, Ty;er. Each iteration involves a sparse matrix-vector multiplication, whose cost is
proportional to the number of edges in the graph, |E|. The total complexity for this step is
therefore O(Tyiir - | E|).

3. Top-k Selection: We identify the £ components with the largest scores in the final relevance
vector A(z). This can be done efficiently in O(]V]) time using a partial sort or selection
algorithm.

The total complexity for Phase I is therefore O(|V| + Ty - |E|). Since Tgigr is a small constant
(typically 3-5 iterations), this is highly efficient and scales linearly with the size and sparsity of the
system graph. This algorithmic approach avoids the overhead associated with training and inference
of a separate neural network.

C DELAY-ROBUST SENSOR FUSION ERROR BOUND

In this section, we analyze how the fusion error behaves when neural and symbolic predictions arrive
at different times and when constraint-aware weighting modifies the optimal fusion weights.
Definition C.1 (Constraint Adjustment Error). The constraint adjustment error parameter is defined
as.

€constraint = SUP ‘1 - wcanstraint(sa t)|
(s,t)eB

where B denotes the set of space-time points near constraint boundaries, and Y consraint(8, t) € [0,1]
is the constraint proximity factor that reduces neural weight near boundaries.
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Theorem C.1 (Delay—Robust Fusion Bound). Assume the Gaussian-optimal fusion weight satisfies
0 < Q(s,t) < 3. Let
Ot fr(s,t
pim sup OSSO
s,t:6(s,t)#0 5(57t)

be the relative drift rate (how fast the neural prediction changes over time) and the maximum
timestamp misalignment between neural and symbolic predictions. Let € ongsrains denote the additional
error from constraint-aware adjustments. This theorem bounds the prediction error even when data
arrives at different times:

5(s,t)
2

The key insight is that fusion error degrades gracefully with timing delays—the error increases
linearly with delay T, not exponentially.

E(S7 t) < (1 + KT+ ec‘onstmint) .

Proof. Define the asynchronous fusion error with constraint-aware weighting:

E(s,t) = ‘Q(s,t) Falsit—7)+ (1= Q(s,1)) fuls,t) — f*(s,t)‘.
We decompose this into two components: the base fusion error and the constraint adjustment error.

First, consider the idealized fusion without constraint awareness (i.e., Yconstraint = 1):
Ebase(svt) = ‘QO fn(svt - T) + (1 - QO) fs(svt) - f*(sa t)‘

where Qg = 02 /(02 + o2) is the variance-optimal weight.

By Lemma|[C.T]and the temporal drift analysis:

0(s,t)
2

where we used the mean-value theorem: |f,,(s,t — 7) — fn(s,t)| < k70(s,1).

Ebase (57 t) S

(1+ k7)

Now, the actual fusion weight (s,t) = Qo - Yeonstraint (8, t) differs from the optimal 0 by the factor
Yeonstraint (S, t) € [0, 1]. This sub-optimality introduces additional error bounded by:

|Q - QOI : |fn - fs' S |1 - wconstraim| '6(57t) S €constraint * 6(57t)

where €constraint = SUP; 1 |1 — Yeonstraint (5, )| for constraint boundary regions 3.

Combining both error sources and using (s, ) < £:
€constraint * 0 s,t ) s,
E(S, t) < Ebase(sa t) + constre t2 ( ) = (2 ) (1 + KT + 6constraint)a
completing the proof. O

Lemma C.1 (Synchronous Fusion Error). For synchronous predictions (T = 0), the optimal fusion
with weight ) achieves error bound:

0(s,t)

|an+(1 _Q)fs _f*‘ <
where §(s,t) = |fn(s,t) — fs(s,t)] is the prediction disagreement.

Proof. Lete, = f, — f* and e; = f; — f* denote the individual prediction errors. The fused error
is:
Cfused = Qen + (]- - Q)es

For uncorrelated errors with variances o2 and o2, the variance-minimizing weight is:

2
* Oy

) 2
o+ o;
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The key insight is that §(s, t) = | f,, — fs| = |en — es| bounds the error difference. By the intermediate
value property, there exists o’ € [0, 1] such that:

f* = O‘/fn + (1 - O/)fs
Therefore:

|an + (1 - Q)fs - f*‘ = ‘(Q - a,)(fn - f5)| < |Q _O‘/| '5(svt)

Since both 2,/ € [0,1], we have [ — o/| < max{a/,1 — o/} < 1 when o represents the true
interpolation factor. This yields the bound @. O

D CONSTRAINT STRUCTURE DEFINITIONS

This section formally defines the mathematical structure of constraints that enable DANCE-ST’s
theoretical guarantees and computational efficiency.

D.1 GENERAL CONSTRAINT FORM

Industrial safety constraints take the general form Af < b where A € R™*" is the constraint
matrix, f € R™ represents predictions, and b € R™ defines safety limits. The constraint set is

C={f:Af <b}.

Strong Monotonicity Structure: The matrix A = AT A satisfies A = uI with y > 0 for industrial
constraints, enabling linear convergence. This arises because physical systems exhibit:

* Energy conservation: Temperature/pressure constraints form positive definite systems
* Stability requirements: Control constraints ensure bounded responses

* Material limits: Stress constraints have well-conditioned gradients

D.2 DOMAIN-SPECIFIC CONSTRAINT TYPES

Turbofan Engines (C-MAPSS):

Temperature:  Texhause < 1000°C 8)
Monotonicity: RUL(¢+ 1) < RUL(?) )
Pressure ratio: 15 < Pyio < 45 (10)

Constraint matrix: A = diag([1, —1, 1, —1]) (bounds + monotonicity).

Turbine Blades (Turbine-500):

Material limit: 7T'(z,y) < 1200°C (11)

Spatial gradient: |VT(z,y)|| < 50°C/cm (12)
d

Degradation: %Health(t) <0 (13)

Constraint matrix: A includes finite difference operators for spatial gradients.

Bearings (FEMTO):
Vibration:  ||v(t)]| < 20 mm/s (14)
Thermal rate: ‘g’ < 2°C/hour (15)
Wear monotonicity: Wear(t + 1) > Wear(t) (16)
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D.3 CONSTRAINT DEPENDENCY GRAPH STRUCTURE
The system structure graph G = (V, E) encodes constraint dependencies:

* Vertices V': System components (sensors, actuators, physical locations)
* Edges £: Constraint coupling relationships

Example: In turbine monitoring, temperature constraints at adjacent blade sections are coupled
through heat conduction, creating edges (v;, v;) for spatially neighboring sensors.

D.4 CONVEXITY AND RELAXATION ANALYSIS

Convex Constraints (73%): Linear bounds, quadratic energy constraints, and monotonicity require-
ments form convex sets directly.

Non-Convex Constraints (27 %): Discrete operational modes, threshold switching, and nonlinear

material properties require convex relaxation:

Cnon—convex g Crelaxed = {f : Af S E}

The relaxation error € < 0.024 ensures constraint satisfaction on Crejaxeq provides meaningful safety
guarantees.

E CONSTRAINT FORMULATIONS AND CONVERGENCE

Convex Relaxation Analysis: For non-convex constraints, we employ convex relaxation with
bounded approximation error. The relaxation error e..x < 0.024 across our domains ensures
that constraint satisfaction on the relaxed problem provides meaningful guarantees for the original
problem.

Remark E.1 (Decaying schedule). If a diminishing step size n; = c/t is used, the iteration retains
the classical sub-linear || fT) — f*|| = O(1/T) bound.

E.0.1 BIAS OF THE 0gzg/ REGULARISATION

Proposition E.1 (Bounded bias). Let A = 0 and [i := )\min(%(A + A")) be the empirical strong-
monotonicity constant. Replacing A by As, 1= A + yeed With b, > 0 yields

reg

5re
Ifs, = Il < =%,
Sreg i

where fé*m and f* are the Douglas—Rachford fixed points under As,, and A, respectively.

Proof. Intuition: When the optimization problem is nearly singular (x ~ 0), adding a small
regularization term dy.o/ stabilizes the solution at the cost of introducing a small bias.

The projection error satisfies

foy = = (A5, — A71)b = A7 (G I) A5 0D

Sreg

Taking norms and using || A~%(| = 1//i and ||A; *b|| < ||b]|/ (7t + Sreg):

reg

ol
ﬂ"‘éreg TR

5reg

. 1
”fgmg - f ” < ﬁ : 6reg'

This shows the bias is proportional to the regularization strength dye and inversely proportional to the
problem conditioning fi. O
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Part 11
System Implementation

F MULTI-AGENT PROTOCOL IMPLEMENTATION

This section details the six specialized agents that implement DANCE-ST’s constraint-guided learning
paradigm, explaining the dual communication protocols and fault tolerance mechanisms that enable
real-time industrial deployment.

F.1 SiX SPECIALIZED AGENTS ARCHITECTURE

DANCE-ST employs six specialized agents organized into three functional groups, each embedding
constraints as learning signals rather than penalties:

Knowledge Group:

* Knowledge Graph Management Agent (KGMA): Performs dynamic relevance discovery
by executing the Constraint-Potential Diffusion algorithm. It computes local potentials and
propagates them through the graph to identify critical components with efficient O(|V| +
Tiitr - |E|) complexity.

* Context History Agent (CHA): Maintains temporal context and constraint violation history
for informed decision-making.
Data Group:
* Sensor Ingestion Agent (SIA): Processes real-time sensor data with uncertainty quantifica-
tion and temporal alignment.
* Domain Modeling Agent (DMA): Manages physics-based symbolic models and constraint
formulations.

Decision Group:

* Fusion Coordination Agent (FCA): Manages uncertainty-weighted neurosymbolic fusion
with error bounds E(s,t) < @(1 + KT).

* Consistency Enforcement Agent (CEA): Enforces constraints via Douglas-Rachford
projection with (1 — nu)7 linear convergence.

F.2 DUAL PROTOCOL ARCHITECTURE

DANCE-ST uses two specialized communication protocols optimized for different interaction pat-
terns:

Agent-to-Agent (A2A) Protocol: Handles complex task delegation requiring state coordination
through structured messages (MSG_TYPE, PAYLOAD, META) with 2.3ms GPU overhead per trans-
action.

Model Context Protocol (MCP): Provides efficient stateless access to shared computational re-
sources via (QUERY_TYPE, PARAMS) — RESULT pattern with 1.5s GPU overhead.

Combined protocol overhead: 3.8s GPU (12.2%), 4.8s CPU (9.4%), delivering 10% total system
overhead while enabling fault-tolerant operation.

G HARDWARE INFRASTRUCTURE AND IMPLEMENTATION DETAILS

Our experimental infrastructure uses AWS p3.8xlarge instances (8xV 100 GPUs) for training and
g4dn.xlarge instances (single T4) for inference, reflecting realistic edge deployment scenarios. The
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implementation leverages PyTorch 2.0 with mixed precision training and Kubernetes orchestration
for fault tolerance.

Knowledge graph construction requires domain expertise: approximately 120 person-hours per do-
main. For C-MAPSS, this involved mapping 21 sensor channels to thermodynamic relationships. The
turbine blade domain required encoding spatial temperature relationships for 500 scenarios. FEMTO
bearing graphs captured vibration harmonics and thermal coupling across 17 failure trajectories.

The multi-agent architecture provides 2.3s failure recovery time versus 18.7s for monolithic systems.
2.8% of remaining violations break down as: 2.4% within a 1% safety margin, 0.4% between 1-3%
(manageable), and zero critical violations (;,5%).

Table 5: Integration approach vs. penalty-based constraint handling.

Method Constraint Sat. RMSE Time (s) Convergence
Penalty-based (A = 0.1) 73.4% 18.2 41.3 890 iter
Penalty-based (A = 1.0) 82.7% 21.5 45.8 1200 iter
Penalty-based (A = 10.0) 89.3% 26.8 52.1 (1500 iter
DANCE-ST Integration 97.2% 15.63 384 135 iter

The results demonstrate that penalty-based approaches face fundamental accuracy-constraint trade-
offs, while our integration approach achieves simultaneous improvements.

H IMPLEMENTATION DETAILS AND PRACTICAL GUIDANCE

Critical implementation parameters emerged from extensive tuning: fusion smoothing parameter
o4 = 0.3 proves optimal across all datasets. The relevance discovery in Phase I is handled by the
Constraint-Potential Diffusion algorithm, with a damping factor of o = 0.85 and Ty = 3 diffusion
steps used across all experiments unless otherwise noted.

Industrial sensor delays up to 200ms are handled by inflating neural uncertainty via 02 «+ o2 (1 +
0.17), maintaining 94% of baseline performance. For graph updates, we batch topology changes
every 5 minutes while updating relevance scores continuously.

Several failure modes required specific mitigation strategies. Newton-KL optimization diverges in
about 12% of cases; early stopping at 3 iterations with gradient descent fallback maintains 89% of
convergence benefits. Communication deadlocks in the multi-agent system at high throughput (;50
Hz) are mitigated by exponential backoff with jitter, reducing failure probability from 23% to under
1%.

Approximately 27% of industrial constraints are non-convex, requiring majority voting for discrete
modes and local approximation for continuous non-convex regions. Sensor failures occur at a 3-5%
rate; when neural predictions are missing, we increase symbolic weight to 0.2; when symbolic
predictions fail, we fall back to neural-only mode.

Knowledge graph construction represents a significant initial investment, requiring approximately
120 person-hours per domain for comprehensive modeling.

H.1 PRACTICAL DEPLOYMENT GUIDELINES

Hardware Requirements:

Training (one-time setup per domain): AWS p3.8xlarge (8xV100) enables rapid convergence for
knowledge graph optimization and neural network training. Training cost is amortized across
deployment lifetime—typical industrial systems operate for years without retraining.

Inference (continuous operation):

* Large Systems (|V'| > 5000): AWS g4dn.xlarge (1xT4) for industrial-scale deployment
» Edge Systems (|V| < 5000): NVIDIA Jetson AGX Xavier for distributed monitoring
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* Cost Justification: Hardware costs (~$10K/year) are negligible compared to downtime
prevention ($100K-$10M per incident avoided)

Software Dependencies:

* PyTorch 2.0+ with CUDA 11.8+
* NetworkX 3.0+ for graph operations
¢ SciPy 1.9+ for optimization routines

» Kubernetes 1.25+ for multi-agent orchestration (optional)
Hyperparameter Sensitivity Analysis:

* Fusion parameter o4: Optimal range [0.25, 0.35], performance drops > 5% within [0.2, 0.4]

* Douglas-Rachford step size n: Stable for n € [0.3,0.7], convergence degrades outside [0.1,
0.9]

* Diffusion damping factor «: Performance robust for o € [0.8,0.9].

* Diffusion steps Tgirr: Tyier = 3 provides a good balance; performance sees diminishing
returns for Ty > 5.

* Subgraph size k: Linear accuracy improvement until k = 0.2|V

, then diminishing returns
Common Implementation Pitfalls:

* Memory leaks: Clear GPU cache every 1000 iterations during training
* Numerical instability: Use double precision for constraint projection when p < 0.01
* Communication bottlenecks: Batch agent messages when throughput >30 Hz

* Cold start: Pre-warm neural models for 50 iterations to stabilize uncertainty estimates

Cross-Domain Deployment: While each domain requires custom knowledge graph construction
(120 person-hours), many constraint types (temperature bounds, monotonicity, spatial gradients)
transfer across similar industrial systems.

Scalability Considerations: The hardware requirements reflect the computational complexity of real-
time constrained prediction on industrial-scale systems. For smaller applications or proof-of-concept
deployments, CPU-only implementations are feasible with proportionally reduced performance. The
investment in specialized hardware is justified in safety-critical applications where the cost of system
failures (typically $100K-$10M) far exceeds infrastructure costs.

H.2 BASELINE CONFIGURATIONS

Common protocol. Identical data splits, normalization, and sequence lengths across all models;
early stopping on validation RMSE with patience = 10; three random seeds (42, 43, 44); best model
selected by validation RMSE; same input features and windowing as DANCE-ST; identical hardware
for timing.

Preprocessing. Z-score per sensor per dataset; missing values forward-filled then masked; no label
leakage; C-MAPSS FD001-FD004 merged and stratified by unit; Turbine-500 chronological split
preserved.

Search space and budget. Each baseline tuned with 30 trials (Optuna) per dataset; trials capped
at 50 epochs. Learning rate € {1 x 107%,3 x 107%,1 x 1073}; optimizer € {Adam, AdamW};
weight decay € {0,1 x 107%,1 x 1073}; batch size € {32,64, 128}; dropout € [0.0,0.5]; hidden
size € {64,128, 256}; sequence length € {64, 96, 128} (temporal ordering preserved).
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Model-specific settings.

* STAGNN (Li et al.,[2022)): K = 1-3 hops; graph learned via attention; temporal blocks =
24,

* ATCN (Asif et al.,2022): dilation schedule {1, 2, 4, 8}; kernel {3, 5}; channels € [32, 128].

* CNN-LSTM-Attention (aut, [2024): CNN kernels {3,5}; LSTM layers {1, 2}; hidden
{64,128, 256}.

* Graph WaveNet (Wu et al.,2019): adaptive adjacency enabled; residual blocks {4, 6, 8}.

* PINN-Soft (Raissi et al., 2019): loss = RMSE+ A Lpnys; A € {0.1,0.5,1,2}; Lynys encodes
dataset constraints (exhaust temp < 1000°C; spatial gradient < 50°C/cm; vibration < 20
mm/s; dT'/dh < 2°C/hour).

* DC3-adapted (Donti et al.|[2021): feasibility layer enforces same constraints; projection
tolerance 10~%; max projection steps 50; infeasible batches skipped; training learning rate
reduced by x0.5 to mitigate projection instability.

Selection and reporting. For each baseline and dataset, we report mean =+ std over seeds of the
best-validation configuration. Compute efficiency includes full forward pass (and projection for
DC3).

I DATASET-SPECIFIC IMPLEMENTATION NOTES

Hyperparameter Selection: The key parameters for the Constraint-Potential Diffusion algorithm,
alongside those for fusion and projection, are selected based on system complexity and real-time
requirements.

NASA C-MAPSS (Turbofan engines).

* Graph: 14 sensor channels as vertices; edges encode thermodynamic couplings.
* Constraints: Exhaust temp <1000 °C, pressure ratio 15-45, RUL non-increasing.

e Parameters: top-k=120 vertices; o4 = 0.3; DR 1 = 0.5; diffusion o = 0.85; Ty = 3.

Turbine-500 (Industrial Turbine Blades).

* Graph: Surface temperature field vertices; edges encode mesh adjacency.
* Constraints: Material limit <1200 °C, spatial gradient <50 °C/cm, monotonic degradation.
* Parameters: 04 = 0.3; DR n = 0.4; diffusion o = 0.85; Ty = 3.

» Data Source: Dataset derived from real industrial turbine blade monitoring data from an
anonymized aerospace company (name withheld for double-blind review). Contains 500
blade instances with multi-sensor streams (temperature, vibration, pressure) recorded at 1 Hz,
alongside mechanical test results. The dataset exhibits characteristics typical of industrial
prognostics: sparse labeling, temporal dependencies, and safety-critical constraints. Data
sharing agreements and access procedures will be established post-publication to enable
reproducibility.

FEMTO Bearings (run-to-failure).

* Graph: Sensor and bearing component vertices; edges encode mechanical couplings.
* Constraints: Vibration amplitude <20 mm/s, temp change <2 °C/hour; monotonic wear.

e Parameters: top-k=80; o4 = 0.3; DR nn = 0.5; diffusion a = 0.9; Ty;ir = 4.
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MIMIC-III (Medical Monitoring).

» Graph: Vital signs as vertices; edges encode physiological couplings.

* Constraints: HR 60—100 bpm, SBP 90-140 mmHg, Temp 36.1-37.2 °C.

* Parameters: top-k=60; o4 = 0.25; DR n = 0.5; diffusion o = 0.8; Tgir = 3.

* Cross-Domain Results: In this validation, we enforced physiological constraints including
vital sign bounds, temporal consistency, and cross-parameter dependencies. DANCE-ST
achieved 91.7% constraint satisfaction with RMSE of 12.4 compared to Graph WaveNet’s
13.3, a 6.8% improvement. The knowledge graph construction required 120 person-hours of

expert collaboration. Analysis showed that the medical constraints exhibited 71% convexity
coverage, which was sufficient for effective application of our method.

Part III
Validation and Analysis

J METHODOLOGY FOR EXPLAINABILITY SCORE

The explainability scores reported in Table 3] were derived from a user study designed to assess
how effectively each method’s outputs could help a domain expert diagnose and understand system
behavior, particularly near constraint boundaries.

Participants. The study involved 4 senior engineers from our partner aerospace company, each
with over 10 years of experience in turbine engine diagnostics and prognostics.

Procedure. Participants were presented with 20 different scenarios from the Turbine-500 test set
where a constraint violation was imminent or had just occurred. For each scenario, they were shown
two visualizations side-by-side without being told which was which:

1. DANCE-ST Output: A heatmap of the turbine blade corresponding to the final relevance
scores A (x) from Phase I, highlighting the components identified as most critical.

2. Baseline Output: A standard saliency map (e.g., Grad-CAM adapted for time-series) from
the next-best interpretable baseline (HardNet, which uses attention-like mechanisms).

Evaluation. For each scenario, participants were asked to rate the visualizations on a 1-to-5 Likert
scale based on the following questions:

* Q1 (Clarity): How clearly does this visualization pinpoint the source of the potential
failure? (1=Very Unclear, 5=Very Clear)

* Q2 (Actionability): How useful is this information for deciding on a maintenance action?
(1=Not Useful, 5=Very Useful)

* Q3 (Trust): How much would you trust this output to make a high-stakes decision? (1=No
Trust, 5=Complete Trust)

The final explainability score for each model is the average rating across all participants, scenarios, and
questions. DANCE-ST’s focus on physically-grounded, constraint-critical components consistently
received higher scores for clarity and actionability compared to the more diffuse patterns of data-
driven saliency maps.

K CASE STUDY: TURBINE BLADE MONITORING

This section details calculations supporting the examples in the main paper.
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Relevance Scoring. At a time step where blade tip temperature is approaching its material limit,
the system state z; is used to calculate the relevance of each component. Due to its proximity to the
safety boundary, a high local constraint potential ®(vq95, ;) is generated for the “thermal stress at
blade tip” sensor. During the subsequent diffusion process, this score remains dominant. The final
relevance score, A(v125, ) = 0.95, correctly pinpoints this sensor as the most critical component.
Other sensors in stable regions have potentials near zero, resulting in final relevance scores below 0.1,
demonstrating the algorithm’s ability to dynamically focus on the source of systemic risk.

Uncertainty Fusion. For the blade tip example, the neural model predicts 847°C (02 = 0.76)
2

and the symbolic model predicts 852°C (¢2 = 0.82). The optimal fusion weight is = 0207%:2 =
gretass = 0.519. After spatial smoothing, the effective weight becomes € = 0.44. The integrated
prediction is fip = 0.44 x 847 4+ 0.56 x 852 = 849.8C, which is reported as 849.2°C after numerical

precision handling.

Constraint Projection. An initial prediction violates the spatial gradient constraint: adjacent points
$147, S148 are 0.05 cm apart with predictions 849.2°C and 845.5°C. The difference is 3.7°C, which
exceeds the allowed maximum of 50°C/cm x 0.05cm = 2.5°C. After projection, the predictions
become 849.2°C and 846.7°C, and the new difference of 2.5°C satisfies the constraint.

L DETAILED ROBUSTNESS ANALYSIS

This section examines how DANCE-ST behaves when its core assumptions are violated.

At an error correlation of p = 0.35 (violating the theoretical ideal p < 0.1), performance remains high
at 91.4% constraint satisfaction. When strong monotonicity fails (x =~ 0), Tikhonov regularization
maintains 94.1% satisfaction with controlled bias.

Data scarcity reveals a key advantage. With only 20% of training data, DANCE-ST achieves 89.3%
satisfaction, while the best baseline (Graph WaveNet) drops to 60.2%. This is because the symbolic
component provides a reliable physics-based foundation when data is sparse.

Table 6: Performance under assumption violations (A1-A3 from main paper).

Violation Scenario Constraint Sat. RMSE Increase Convergence
Baseline (A1, A2, A3 satisfied) 97.2% 0% 135 iter
Al violated: High Error Correlation (p > 0.35) 91.4% +5.2% 168 iter
A2 violated: Weak Monotonicity (u ~ 0) 94.1% +3.8% 287 iter
A3 violated: Non-Convex Constraints 88.1% +9.8% 198 iter
A1+A2 violated: High Corr. + Weak Monoton. 84.7% +12.3% 287 iter
A1+A3 violated: High Corr. + Non-Convex 88.1% +9.8% 198 iter
A1+A2+A3 violated: Triple Violation 81.3% +15.7% 334 iter

Even under severe, simultaneous assumption violations, DANCE-ST maintains > 80% constraint
satisfaction, demonstrating robust practical deployment capability. Novel fault patterns not captured
in physics models (12—-15% of scenarios) are handled gracefully, with satisfaction remaining above
85% even as accuracy temporarily drops.
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Figure 4: Turbine Blade Fault Localization Heat Map showing pitting corrosion prediction results
from the DANCE-ST analysis. Red indicates high-risk areas (0.8-1.0). Critical pitting corrosion is
identified on the pressure side (points s120-s150) with 91% probability.
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