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Emerging bioimaging technologies enable us to capture various dynamic cellular activities

in vivo. As large amounts of data are obtained these days and it is becoming unrealistic to

manually process massive number of images, automatic analysis methods are required. One of
the issues for automatic image segmentation is that image-taking conditions are variable. Thus,

commonly, many manual inputs are required according to each image. In this paper, we propose

a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be

related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs
to segment BMC, we classi¯ed the texture pattern using wavelet transformation and support

vector machine. We also integrated the result of texture pattern classi¯cation into the graph-

cuts-based image segmentation method because texture analysis does not consider spatial
continuity. Our method is applicable to a particular frame in an image sequence in which the

condition of °uorescent material is variable. In the experiment, we evaluated our method with

nine types of mother wavelets and several sets of scale parameters. The proposed method with

graph-cuts and texture pattern classi¯cation performs well without manual inputs by a user.

Keywords: Image segmentation; °uorescence microscopy images; wavelet texture analysis.

1. Introduction

Advance in bioimaging technologies such as microscopic imaging techniques has

made it possible to capture various dynamic cellular activities in vivo. These

technologies are expected to contribute to the discovery of new drugs and will clarify
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the mechanisms of disease. Multiphoton excitation microscopy is one of the new

imaging technologies that can observe deeply the cellular activities in living tissues

in vivo. It was previously di±cult to observe bone marrow in vivo because it resides

inside of hard bones which mainly consist of calcium. Multiphoton excitation mi-

croscopy enabled observation images inside bone marrow in vivo, such as blood °ow

and cellular activities. Kikuta et al. utilized intravital multiphoton microscopy to

observe osteoclast resorption and di®erentiate between static-resorptive (R) osteo-

clasts and moving-nonresorptive (N) osteoclasts.1

In order to reveal cellular activities in images of speci¯c tissues, speci¯c cellular

activities or regions must be accurately detected from among a large number of

image sequences. In some cases, image sequences to be searched are four-dimensional

and the resolution of microscopes are improved day by day. That is, the size of the

bioimage data is too large for manual analysis such as detecting a particular cellular

activity. Therefore, it is necessary to be able to detect speci¯c regions or cellular

activities within the large image data. Since many phenomena related to the

mechanism of bone remodeling and osteoporosis are observed in bone marrow cavity

(BMC), it is required to automatically segment BMC regions from bone images.

However, there are several issues in BMC segmentation because these images con-

tain ambiguities due to overlapping of the BMC, blood °ow, cells, bone, and other

tissues. Furthermore, in some types of image sequences, the intensity of the BMC

regions varies due to seeping of °uorescent material. We have been working on auto-

matic segmentation of BMC.2–4 Although our previous methods produce good results,

manual inputs by a user are required such as clicking or drawing some positions of

the foreground (BMCs) and background (not BMCs) pixels for each image or dataset.

As it is assumed that data will increase rapidly, it is becoming important to

perform automatic analysis at once for a large amount of data and to discover new

biological knowledge by statistical analysis. Another importance of automatic

analysis is that it enables bias-free evaluation. When analyzing images manually, a

bias is generated when selecting the regions, which might lead to di®erent conclu-

sions for each researcher. The reproducibility is guaranteed with the automatic

analysis, which enables objective discussion on the data. To reduce manual inputs

and to achieve automatic segmentation, we propose a method for detecting BMC

regions by texture analysis with wavelet transformation (WT) and classifying by

using support vector machine (SVM). Furthermore, since the output of texture

analysis does not consider spatial continuity, we also apply graph-cuts for image

segmentation with the results of wavelet analysis.

2. Related Works

Bioimaging technologies generate massive and a wide variety of bioimages. Based on

such technologies, many bioimage processing methods have been studied. Cell

tracking is one of the main problems in bioimage processing. Fujisaki et al. proposed

a method to detect and track protein molecules.5 Meijering et al. surveyed several

H. Shigeta et al.
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methods of cell tracking, and one of their conclusions indicates that there is no

universal solution for tracking problems in cell and developmental biology.6

In bioimage tracking, there are some special events including cell fusion, cell division,

cell death, and so on. Liu et al. proposed a method to detect and track such events.7

The studies of Olivieri et al. analyzed images taken with multiphoton excitation

microscopy.8 They proposed a cell tracking method and a tool for live cell images of

lymphocytes. Since each bioimage has its unique attributes, suitable image analysis

methods tend to be combined. For example, graph-cuts and wavelet are combined to

segment retinal layers9 or choroid layers.10 However, it is not applicable to BMC

segmentation because these methods are specialized in their target images and the

way of combination is also adjusted according to target attributes.

In addition to the studies focusing on cell appearance or behavior in images, there

are also studies focusing on the imaging process of a microscope. Yin et al. modeled

imaging with phase contrast microscopy.11 In their study, they modeled character-

istics of microscopy and simpli¯ed captured images. As a result, the images were

simpli¯ed and the cells were easily segmented by simple thresholding. As mentioned

above, there is no universal solution for analyzing bioimages due to the diversity of

the characteristics of the microscope and the variety of target cells. The in vivo

images inside the bone tissue captured by multiphoton excitation microscopy are one

such type of bioimages.

3. BMC Segmentation

Figure 1 shows an example of BMC image including bone, blood vessels, BMCs, and

so on. This image was taken by multiphoton excitation microscopy. In the experi-

ment, the mouse is injected with °uorescein isothiocyanate (FITC) into the blood

vessels in the skull bone tissue. FITC is shown as the green channel in Fig. 1, mainly

°owing through blood vessels. However, as shown in Fig. 2, FITC seeps into bone

marrow areas with time. As a result of seeping, the intensity in BMC regions

increases over time. Although a simple image segmentation based on intensity per-

forms well in early frames, it is basically unavailable after seeping because the in-

tensity in bone marrow regions gets closer to the blood vessels' level. Ideally,

Fig. 1. Example of BMC image. (scale bar: 50�m).

BMC segmentation using graph-cuts with wavelet-based texture feature
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segmentation under particular seeping conditions should be achieved so that

observations may be made multiple times for a mouse. Therefore, a more robust

segmentation method is required than the intensity-based method. As shown in

Fig. 2, the intensity in the BMC region is high but heterogeneous, and there is a

pattern di®erent from the pattern of the blood vessel region. This kind of BMC

pattern commonly appears in other BMC images. We therefore propose a method to

analyze texture pattern analysis using WT. The result of texture analysis is classi¯ed

by SVM to judge the area. This approach makes it possible to classify arbitrary pixels

in an arbitrary frame. However, as spatial continuity is not taken into consideration,

we integrated the result of texture pattern classi¯cation into graph-cuts-based seg-

mentation method, commonly used for image segmentation. The overview of our

system is shown in Fig. 3.

3.1. Wavelet transformation

Two-dimensional continuous WT for a function fðxÞ is de¯ned by the following

equations:

Tfða; b; �Þ ¼
Z
R 2

fðxÞ 1
a
� r��

x� b

a

� �� �
dx; ð1Þ

r� ¼
cosð�Þ � sinð�Þ
sinð�Þ cosð�Þ

� �
; � 2 ½0; 2�Þ; ð2Þ

where  , aða 2 RþÞ, and bðb 2 R2Þ means mother wavelet, scale parameter, and

shift parameter, respectively, and � denotes the complex conjugate of  . Since scale

parameter a has the e®ect to stretch the function, it is possible to correspond to

various frequency of signals. Shift parameter b virtually represents coordinates in

two-dimensional WT. � represents the direction to apply WT. r� has the function to

rotate input signals. There are two types of WT, continuous and non-continuous. We

use continuous WT because it is suitable for describing image features. To save

processing time, we employ fast WT. As the scale parameter a is ¯xed in fast WT, the

wavelet function in Eq. (1) becomes a convolution form of input signal and mother

Fig. 2. Temporal variation of images: time advances from left to right.

H. Shigeta et al.
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wavelet, which enables fast calculation by Fourier transform. Although the conti-

nuity regarding the scale parameter a is unavailable, we apply multiple scale para-

meters as an approximation of continuous scale parameter.

3.2. BMC classi¯cation

In the proposed method, absolute values of wavelet coe±cients are used for the

feature values. Since the scale parameter a is constant in fast WT, we provide several

scale parameters. AlthoughWT has directional parameter �, the feature value should

be independent from the directional variation of input image. To ignore the direc-

tional variation, it is suitable to use isotropic wavelets. However, also to examine

results of anisotropic wavelets, the summation of all directions is used as the feature

value at each wavelet equally. Eventually, the dimension of a feature vector of each

pixel (represented by b) is the same as the element count of a chosen scale parameter

set. Because the magni¯cation ratio of an input image depends on the dataset, the

scale parameter a should be normalized along with that. Therefore, a is de¯ned as

a ¼ ab � PD, where ab denotes the base scale parameter and PD is the scale factor and

de¯ned as the number of pixels in 50�m. Since the BMCs appear only in the blood

channel, the green channel is used.

There are many types of mother wavelet applicable for our method. As mentioned

above, it is also necessary to provide a set of several scale parameters. Eventually,

mother wavelet  and sets of base scale parameters ab should be evaluated. In order

to classify the BMCs using WT, our method generates a texture feature vector array

Fig. 3. Overview of our method.

BMC segmentation using graph-cuts with wavelet-based texture feature
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and classify vector arrays. When classifying textures using SVM, it is also necessary

to optimize two SVM parameters: kernel scale and cost parameters. Since the clas-

si¯cation performance for each parameter can be evaluated by cross-validation loss

with ground truth data, our method searches for better classi¯cation parameters.

Manually segmented images for each dataset are prepared as ground truth data.

Given the mother wavelet  and sets of base scale parameters ab, we apply the

following procedure to obtain theSVM classi¯er for the input datasets:

(1) Generating a texture feature vector array.

. ApplyWT with the mother wavelet  and the set of scale parameters a to each

image.

. Choose sample points and calculate feature vectors from WT results.

— Although more sample points are better, we choose 80 sample points

randomly from each image of every dataset because of computational

limitation.

. Create one feature vector array by accumulating feature vectors of all images.

(2) Optimize the parameters for SVM. (Generate random initial parameters and

search local minimum nearby.)

. Partition the texture feature vector array for k-fold cross-validation.

. Randomly generate initial values for each parameter: the kernel scale and the

cost parameter.

— More trials are better to get appropriate parameters while computational

costs increase more. Therefore, 15 initial values are chosen respectively

considering computational complexity.

. For each initial parameter set,

— Conduct k-fold cross-validation with the initial parameter set and calcu-

late cross-validation loss using ground truth images.

— Find local minimum loss nearby the initial parameter set by the Nelder–

Mead simplex method.12

— Output the loss value.

. Select a parameter set with the smallest loss value from the 15 optimized

parameter sets. (The best parameters set is chosen.)

(3) Train the classi¯er again using the all texture feature vector array with the

selected parameter set.

(4) Output the SVM classi¯er.

3.3. Segmentation

Graph-cuts consist of an energy minimization algorithm widely used in low-level

image processing, typi¯ed by image binarization. An energy function EðXÞ with

H. Shigeta et al.
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label L ¼ f0; 1g (0 for background, 1 for foreground) and a set of pixels V is de¯ned

as follows:

EðXÞ ¼
X
v2V

gvðXvÞ þ
X

ðu;vÞ2E
huvðXu;XvÞ; ð3Þ

whereXv is the label assigned to v, E � V � V is the set of interacting pairs of pixels,

and ðu; vÞ 2 E are adjacent pixels. In case of an image binarization problem, the

function gv is de¯ned as the likelihood of foreground and background, and huv is

de¯ned as a smoothness function. Therefore, the term including gv is called the

data term and the term including huv is called the smoothness term. The labels

that minimize the energy function are obtained by solving as a max-°ow min-cut

algorithm.

In commonly used graph-cuts methods as typi¯ed by Boykov's graph cuts,13,14 the

data term is basically de¯ned only by intensity. However, as mentioned above, an

intensity-based data term cannot segment the target images due to seeping of FITC,

overlapping of other tissues, and others. In the proposed method, we utilized the

above-mentioned SVM classi¯er fromWT. It classi¯es the input image and generates

a binary image. This binary image is used as input of the graph-cuts to segment the

entire image. Also, since the BMCs appear only in the blood channel, the green

channel is used. We apply the following equation as the data term:

gvðXv ¼ 0Þ ¼ e
�Iv 2

2� 2 þ �gcðvÞ; ð4Þ

gvðXv ¼ 1Þ ¼ e
�ð1�IvÞ 2

2� 2 þ �ð1� gcðvÞÞ; ð5Þ

gcðvÞ ¼
1; BMC;

0; otherwise;

�

where Iv is intensity of pixel v in the green channel that is de¯ned as 0 � Iv � 1, gc is

the result of classi¯cation by the SVM, � is a weight parameter for the result of

texture pattern classi¯cation, and � is a constant value to choose suitable to the

input images.

We applied the smoothness term used in Boykov's graph-cuts:

huvðXu;XvÞ ¼
0; ðXu ¼ XvÞ;
c � e�ðIu�IvÞ2

2�2 ; ðXu 6¼ XvÞ;

(
ð6Þ

where u is located next to v, c is a constant weight for the smooth term against the

data term, and � is also a constant, which controls the in°uence of intensity di®er-

ences of two adjacent pixels. The parameters c, � are manually chosen respectively.

4. Experiment

The target °uorescent material is shown in the green channel. We extracted the

green channel and processed the images as gray scale images. The variation of � in

BMC segmentation using graph-cuts with wavelet-based texture feature
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WT is de¯ned as every �=4, and the sum of them is used as a feature value. Regarding

SVM, we applied RBF kernel, and the number of partitions for the k-fold cross-

validation is 15. The error function for the cross-validation is the number of incorrect

classi¯cations. We used MATLAB R2017a with Image Processing Toolbox, Statis-

tics Toolbox, and Wavelet Toolbox for the implementation. We also utilized max-

°ow 3.01 by Boykov et al.15 for graph-cuts. Max°ow is written in C language and is

used by MATLAB mex indirectly.

In the experiment, we used four sets of image sequences, each with its own image

size, number of frames, and magni¯cation ratio. Figure 4 shows the ¯rst frame of

each image sequence and the BMC regions, which are manually segmented by a

specialist. The resolution of the images, the number of frames, and the number of

BMC regions are shown in Table 1. Due to the mouse's pulsing motion and others,

the target image sequences need to be aligned with the ¯rst frame. To align the image

sequences, we used ImageJ16 plug ins, Turboreg17 and Stackreg.18

2egami1egami

4egami3egami

Fig. 4. Images used for the evaluation: all scale bars are 100�m. The BMCs manually segmented by a
specialist are circumscribed by white line. These regions are used for supervised data and ground truth.

The green channel shows °uorescence of injected FITC and the blue channel shows bone.

H. Shigeta et al.
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4.1. Wavelet selection

In order to obtain better classi¯cation, we evaluated the nine types of mother

wavelets and sets of several base scale parameters. Cross-validation among datasets

is conducted for the experiments: three datasets are used for the SVM training

datasets, and the remaining one dataset is for testing. All the values shown in

Tables 2 and 3 are the average of each combination.

Table 2 shows the results when the set of base scale parameter ab is f2; 4;
16; 32; 64g. The examples of classifying test datasets for each wavelet are shown

in Fig. 5. These results indicate that the performance of our method is highly de-

pendent on the type of mother wavelet, and the Sinc wavelet performs better than

Table 1. Details of BMC image used for the experiment.

Resolution No. of frames No. of BMC region

Image #1 752� 752 7 6

Image #2 1059� 1000 15 6

Image #3 958� 1000 22 4
Image #4 1001� 1000 13 12

Table 2. Comparison among nine types of mother
wavelets when the set of base scale parameter ab is

f2; 4; 16; 32; 64g: Gaussian 1, 2, and 3 mean order of

derivative in Gaussian wavelet.

Mother wavelet Precision Recall F -measure

Cauchy 0.047 0.005 0.009

DOG 0.417 0.074 0.126
Gaussian 1 0.308 0.058 0.097

Gaussian 2 0.314 0.068 0.112

Gaussian 3 0.314 0.068 0.112
Mexican hat 0.236 0.033 0.058

Morlet 0.154 0.026 0.044

Paul 0.094 0.012 0.028

Sinc 0.650 0.266 0.378

Table 3. Comparison among combinations of base scale

parameters when the mother wavelet  ¼ Sinc.

Combination of scales Precision Recall F -measure

1, 5, 10 0.343 0.046 0.081

2, 10 0.290 0.037 0.066

10, 40 0 0 ���
1, 2, 4, 8, 16 0.191 0.028 0.049
2, 4, 8, 16, 32 0.313 0.093 0.144

1, 5, 10, 40 0.271 0.050 0.084

2, 4, 16, 32, 64 0.650 0.266 0.378

2, 4, 8, 16, 32, 64 0.602 0.261 0.364

BMC segmentation using graph-cuts with wavelet-based texture feature
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others. While it is considered that there is generally no big di®erence in mother

wavelet selection, the mother wavelet re°ects the type of features of the input sig-

nals.19 As other wavelets do not perform well, we consider that the response of the

Sinc WT matches well with the texture pattern of the images taken by the multi-

photon excitation microscopy. The Fourier transform of a/the Sinc wavelet is as

follows:

 ̂ð!x; !yÞ ¼ ½sincðAxð!x � !0xÞÞsincðAyð!y � !0yÞÞ�p; ð7Þ
where ð!x; !yÞ is angular frequency de¯ned from a and Ax;Ay; !0x; !0yð2 RÞ are

given and de¯ned as Ax ¼ Ay ¼ p ¼ 1; !0x ¼ !0y ¼ 0.

We evaluated the combination of base scale parameter sets as mentioned in

Sec. 3.2. Table 3 shows a comparison among the combinations of base scale para-

meters when the mother wavelet  ¼ Sinc. This result demonstrates that the set of

f2; 4; 16; 32; 64g is better than the other combinations.

The other results of SVM with Sinc wavelet and a set of base scale parameters

f2; 4; 16; 32; 64g are shown in the second column in Fig. 6. Ground truth for com-

parison is also shown in Fig. 4. From these results, the pixels classi¯ed as BMC

regions are essentially correct, and the blood vessel regions are also correctly clas-

si¯ed. However, in some datasets, there are some false negative pixels.

As wavelet analysis just shows the likelihood of BMC for each pixel in terms of the

texture, it can only provide limited information. Although recognition accuracy is

not so high, it is considered that using them as one of the segmentation hints

is su±ciently e®ective enough to substitute for user input. It should be noted

that even if the user inputs information using a mouse, it is equivalent in that only

very limited information can be obtained. This result of wavelet analysis is used

in graph-cuts-based BMC segmentation.

Fig. 5. Example of classi¯cation: The original image is shown in Fig. 4 (Image 3). Red channel means BMC
region classi¯ed by SVM, blue channel shows region classi¯ed by a specialist (ground truth), and green

channel is the same as the original image. Thus, magenta pixels are true positive, red pixels are false

positive, and blue pixels are false negative.

H. Shigeta et al.
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4.2. BMC segmentation

The results of BMC segmentation by graph-cuts are shown in the \Result" column

in Fig. 6. As mentioned in Sec. 4.1, cross-validation is conducted: three datasets

are used for SVM training, remaining one is for testing. In segmentation, we used

# 1
c = 0.1
σ = 0.1
λ = 0.1
ρ = 1
# 2
c = 0.1
σ = 0.1
λ = 0.3
ρ = 0.5

# 3
c = 0.1
σ = 0.1
λ = 0.5
ρ = 0.5
# 4
c = 0.1
σ = 0.1
λ = 0.3
ρ = 0.5
# 5-1
c = 0.1
σ = 0.1
λ = 0.3
ρ = 0.5
# 5-2
c = 0.1
σ = 0.1
λ = 0.3
ρ = 0.5
# 5-3
c = 0.1
σ = 0.1
λ = 0.3
ρ = 0.5

Input SVM w/ GC w/ Int. GC w/ Result
Sinc WT & SVM Intensity

Fig. 6. Examples of the results: Regarding the images of Nos. 1–4, the classi¯er is trained from all datasets

except itself. Regarding the images of No. 5, there are no ground truths, and the classi¯er is trained from
dataset Nos. 1–4. The ¯rst column shows image No. and parameters for energy function. The second column

shows input images (the ¯rst frame of each dataset), where each channel shows the same as Fig. 4. The third

column shows the results of classi¯cation with SVM and Sinc WT. The fourth column shows the results of

graph-cuts with proposed energy function consisting of intensity and classi¯cation with SVM and SincWT.
The ¯fth column shows the results of graph-cuts with intensity. The sixth column shows superposition as a

result of bone segmentation, a result of proposedgraph-cuts, and the ground truth,where green shows regions

segmented as blood vessel, red shows regions segmented as BMC, blue shows the ground truth of BMC, and

white shows the regions segmented as bone. Thus, magenta pixels mean true positive.

BMC segmentation using graph-cuts with wavelet-based texture feature
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the binary image generated from SVM classi¯ers trained from all datasets except

itself. For example, the second column of Image No. 1 in Fig. 6 is generated using

classi¯ers trained from Image Nos. 2, 3, and 4, and then this image is used for the

graph-cuts input. Bone regions are excluded from evaluation by segmenting with a

simple method: Gaussian smoothing and thresholding. As the result of searching

parameters manually, the standard deviation of the Gaussian ¯lter is set to 30, the

¯lter size 30� 30, and threshold 0.2. Table 4 shows the quantitative comparison

between the proposed method and intensity-based graph-cuts (namely � ¼ 0 in

Eqs. (4) and (5).

In Image No. 1, the BMC regions cannot be obtained. Possible causes include too

low intensity across the image sequence. Regarding Image No. 2, there are also many

false negative pixels. However, in this case, pixel-based segmentation performs well.

Regarding Image Nos. 3 and 4, the proposed segmentation method is better than

that even though the intensity-based graph-cuts performs well. Moreover, while the

low intensity areas in the blood vessel region are not correctly segmented with the

intensity-based graph-cuts, our method tends to correctly segment continuous blood

vessel region. As shown in Table 4, precision improves overall while recall reduces.

Since precision and recall are in a trade-o® relationship, F -measure is introduced for

evaluation, and the F -measures are totally improved in the proposed method. In the

case of Image Nos. 3 and 4, the BMC regions seem to be segmented correctly and

quantitative evaluation also re°ects that. Even if the texture classi¯cation fails, the

segmentation result is not extremely worse. This result indicates that the wavelet-

based texture feature is e®ective for BMC segmentation, and the proposed method

essentially improves the segmentation results without many manual inputs for each

image or dataset by a user.

Image Nos. 5-1–5-3 are additional examples of a continuous sequence that FITC

seeps out from blood vessels. Although there is no ground truth in this sequence,

basically the blood vessel region is the green area in Image No. 5-1. In this experi-

ment, the classi¯er of texture pattern is generated using all datasets Nos. 1–4. In case

the intensity-based segmentation is applied to this sequence, the segmented blood

Table 4. Comparison with intensity based segmentation.

Dataset Method Precision Recall F -measure

1 Intensity 0.129 0.947 0.227

1 Proposed 0.123 0.725 0.219

2 Intensity 0.470 0.860 0.608

2 Proposed 0.496 0.807 0.615

3 Intensity 0.493 0.974 0.655

3 Proposed 0.681 0.830 0.745

4 Intensity 0.507 0.948 0.660
4 Proposed 0.631 0.861 0.728

H. Shigeta et al.
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vessels are not correctly segmented in some low intensity areas. However, some of

them are recovered using our method.

The trend similar to Image No. 5 is found in some other image sequences.

Moreover, although some high intensity areas in BMC regions are possibly seg-

mented as blood vessels with the intensity-based method, they are essentially seg-

mented as the correct region with the proposed method.

5. Conclusion

In this paper, we presented a BMC segmentation method for an image using mul-

tiphoton excitation microscopy. To reduce the need for manual inputs by a user, we

applied BMC classi¯cation based on wavelet-based texture analysis. We also inte-

grated the result of texture pattern classi¯cation into the graph-cuts-based seg-

mentation method to consider spatial continuity. In the experiment, we evaluated

various types of mother wavelets and sets of scale parameters, and con¯rmed that

Sinc wavelet and the base scale parameter set f2; 4; 16; 32; 64g works better than

others. The comparison with intensity-based graph-cuts demonstrates that our

method essentially improves BMC segmentation. Even if texture classi¯cation fails,

the segmentation result is not extremely worse. Future work includes an automated

adjustment of the parameters and automated preprocessing of input images. Also,

deep learning has been widely used these days. In order to apply deep learning to our

research, the amount of data is considered to be insu±cient. It is necessary to study

methods that work well with less data such as data augmentation.
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