

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TO TRUST OR NOT TO TRUST YOUR VISION-LANGUAGE MODEL'S PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce **TrustVLM**, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code is available in Supplementary Material.

1 INTRODUCTION

Recent advances in Vision-Language Models (VLMs) have substantially transformed the field of multimodal learning by integrating visual and textual information within a unified framework. Models such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) have been widely adopted for diverse tasks, including zero-shot classification (Zhou et al., 2022), cross-modal retrieval (Ma et al., 2022), and image captioning (Barraco et al., 2022). Trained on large-scale image-text datasets scraped from the web, these models learn rich and transferable representations. However, despite their substantial capabilities, VLMs often encounter critical limitations when applied in real-world settings. One pressing concern is misclassification, where the model produces a confident, yet incorrect, prediction that may appear both semantically plausible and visually aligned with the input. While much of the existing research has focused on improving the accuracy of VLMs outputs, the equally important issue of trustworthiness, that is, determining whether a prediction should be accepted or flagged for human review, remains largely underexplored. This challenge is particularly consequential in safety-critical domains (Sun et al., 2024; Dong et al., 2023) such as autonomous driving, medical diagnostics, and surveillance, where erroneous predictions can lead to severe outcomes.

The challenge of misclassification detection (MisD) has been widely studied in the context of unimodal vision models, with numerous approaches proposed, including confidence-based scoring (Hendrycks & Gimpel, 2017; Jiang et al., 2018), outlier exposure (Cheng et al., 2024; Zhu et al., 2023; Liu et al., 2025), and confidence learning (Corbière et al., 2019; Moon et al., 2020). However, these approaches often overlook the unique complexities of multimodal models, where the interaction between visual inputs and textual semantics introduces additional sources of uncertainty (Dong et al., 2025; 2024a). Recently, Nguyen et al. (Nguyen et al., 2025) proposed utilizing human-level concepts to detect misclassification of VLMs. However, their approach necessitates the construction of numerous concepts for each class through the use of large language models, which can be a demanding process. Although MisD and out-of-distribution (OOD) detection (Dong et al., 2024b; Li et al., 2024) share the similar goal of identifying problematic inputs for a trained model, they target fundamentally distinct challenges. MisD focuses primarily on identifying in-distribution samples that are incorrectly

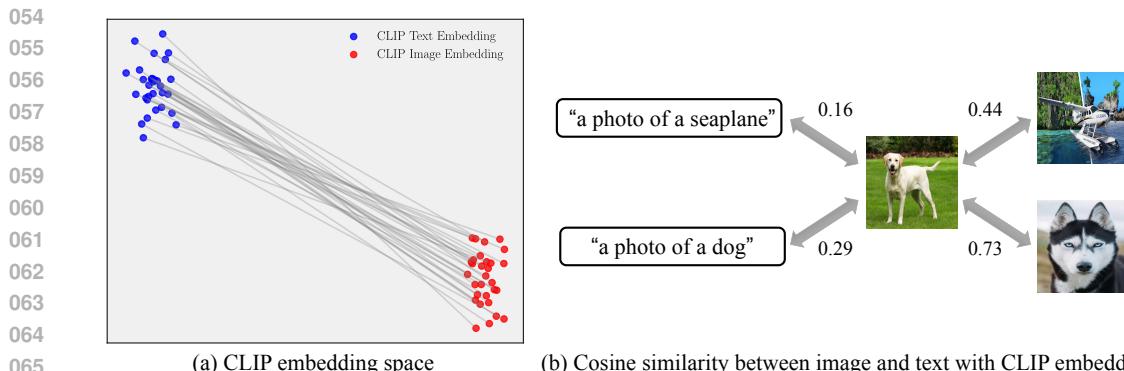


Figure 1: (a) CLIP’s image and text embeddings are located in two completely separate regions of the embedding space. (b) The concept of “dog” and “seaplane” is more distinguishable in the image embedding space than in the text embedding space. When using image-to-text similarity, the score difference between the concepts “dog” and “seaplane” is only **0.13** ($0.29 - 0.16$), making them less separable. In contrast, using image-to-image similarity yields a larger difference of **0.29** ($0.73 - 0.44$), indicating better separation between concepts within the image embedding space and potentially more reliable confidence estimation.

assigned to one of the known classes, often due to their proximity to decision boundaries or atypical feature representations within the learned data manifold. In contrast, OOD detection focuses on identifying inputs from entirely unseen distributions, representing novel or irrelevant stimuli rather than misclassifications within known classes. Consequently, methods tailored for one task often perform poorly on the other (Jaeger et al., 2022; Zhu et al., 2023).

To address the specific challenge of misclassification detection in VLMs, we propose **TrustVLM** – a training-free framework for evaluating the reliability of VLM predictions. Traditional zero-shot classification with VLMs relies primarily on the cosine similarity between text and image embeddings, often overlooking the structure and discriminative capacity of the image embedding space. This is a critical limitation, as previous work has shown a modality gap in VLMs like CLIP, where image and text embeddings reside in distinct regions of the shared representation space (Liang et al., 2022) (see Fig. 1). In particular, some concepts are more distinguishable in the image embedding space than in the text embedding space (Fig. 1 (b)). Building on this insight, TrustVLM leverages additional information from the image embedding space to design a novel confidence-scoring function for improved misclassification detection. Specifically, our framework employs an auxiliary vision encoder to store visual prototypes for each class and assess prediction reliability through image-to-image similarity with these prototypes. Beyond misclassification detection, these visual prototypes can also improve classification results on fine-grained datasets and be fine-tuned for improved downstream performance.

We conduct a rigorous evaluation of TrustVLM across 17 diverse datasets, 4 architectures, and 2 distinct VLMs. Our method achieves state-of-the-art performance in misclassification detection, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 over existing baselines. In addition, the use of visual prototypes improves the accuracy of fine-grained classification, giving an average improvement of 5.65%. The primary contributions of this work are as follows:

- We provide an empirical analysis of the limitations of existing MisD paradigms in VLMs, highlighting the value of leveraging information from the image embedding space.
- We propose TrustVLM, a training-free framework that combines image-to-text and image-to-image similarity to compute a robust confidence score for improved MisD.
- We show that visual prototypes not only support more reliable confidence estimation, but also improve fine-grained classification accuracy, and can optionally be fine-tuned for further gains.
- We extensively validate TrustVLM across datasets, model architectures, and VLMs, demonstrating its generality and effectiveness. Our source code will be made publicly available to support future research in MisD for VLMs.

108
109

2 PRELIMINARIES

110
111 **Vision-Language Models** typically comprise an image encoder that projects high-dimensional
112 images into a low-dimensional embedding space and a text encoder that embeds natural language
113 into a corresponding text embedding space. A prominent example is CLIP (Radford et al., 2021),
114 trained on 400 million image-text pairs, which employs a contrastive loss to align image and text
115 embeddings. Specifically, given a batch of image-text pairs, CLIP maximizes the cosine similarity
116 for the matched pairs while minimizing it for unmatched ones. During inference, the class names
117 of a target dataset are embedded using the text encoder with a prompt of the form “a photo of a
118 [CLASS]”, where [CLASS] is replaced with specific class names. The text encoder then generates
119 text embeddings \mathbf{t}_c for each class $c \in \mathcal{Y} = \{1, 2, \dots, C\}$, and the prediction probability for an input
image \mathbf{x} with embedding \mathbf{f}_x is computed as:
120

121
122
$$p(y = \hat{y} | \mathbf{x}) = \frac{\exp(\cos(\mathbf{f}_x, \mathbf{t}_{\hat{y}}) / \tau)}{\sum_{c=1}^C \exp(\cos(\mathbf{f}_x, \mathbf{t}_c) / \tau)}, \quad (1)$$
123
124

125 where $\cos(\cdot, \cdot)$ denotes cosine similarity and τ is a temperature parameter. The final prediction for \mathbf{x}
126 is $\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p(y | \mathbf{x})$, where \hat{y} can be either correctly classified or misclassified.
127128 **Misclassification Detection**, also known as failure detection (Corbière et al., 2019), serves as a critical
129 safeguard for the reliable deployment of machine learning models in real-world applications. Its
130 primary objective is to distinguish between correctly and incorrectly classified predictions, typically
131 by leveraging confidence scores. Formally, let κ denote a confidence-scoring function that quantifies
132 the confidence of the model in its prediction. Given a threshold $\delta \in \mathbb{R}^+$, a decision function g can be
133 defined to detect misclassifications based on whether the confidence score exceeds this threshold. For
134 a given input \mathbf{x} :
135

136
137
$$g(\mathbf{x}) = \begin{cases} \text{correct} & \text{if } \kappa(\mathbf{x}) \geq \delta, \\ \text{misclassified} & \text{otherwise.} \end{cases} \quad (2)$$
138
139

140 **Baselines for MisD of VLMs.** Given the prediction from Eq. (1), Maximum Softmax Probability
141 (Hendrycks & Gimpel, 2017) can be readily computed as a confidence-scoring function. For
142 a given input \mathbf{x} , MSP is defined as $\kappa(\mathbf{x}) = \max_{y \in \mathcal{Y}} p(y | \mathbf{x})$, where $p(y | \mathbf{x})$ denotes the predicted
143 probability for class y . Similarly, various confidence scoring functions can be adopted from previous
144 work on OOD detection, such as MaxLogit (Hendrycks et al., 2022), Energy (Liu et al., 2020),
145 Entropy (Chan et al., 2021), and Maximum Concept Matching (MCM) (Ming et al., 2022).
146147
148
149
150
151
152
153
154
155
156
157
158
159
160

3 METHODOLOGY

161
162
163

3.1 LIMITATIONS OF THE BASELINES

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
185

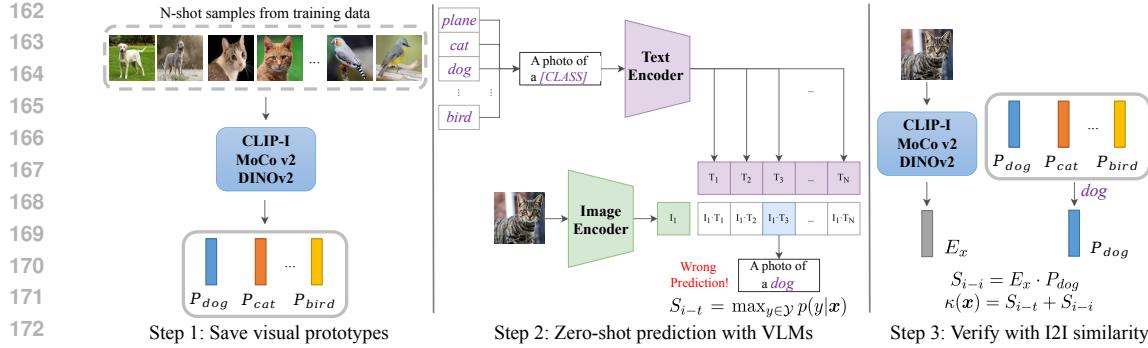


Figure 2: The proposed TrustVLM framework comprises three main steps. Initially, visual prototypes for each class are generated and stored using a pre-trained vision encoder. Subsequently, the VLMs perform zero-shot classification and yield an image-to-text similarity score, S_{i-t} . In the third step, the initial prediction is verified using image-to-image similarity, providing an additional confidence score, S_{i-i} . Finally, these two scores are combined to determine the overall prediction confidence.

and a visual prototype for 'seaplane' would likely be low, helping mitigate overconfidence. Conversely, for correct predictions (e.g., classifying a dog image as 'dog'), the image-to-image similarity with the corresponding prototype would generally be high, thereby reinforcing the prediction with greater confidence. Therefore, exploring image-to-image similarity is crucial for designing effective confidence-scoring functions to enhance misclassification detection performance in VLMs.

3.2 PROPOSED TRUSTVLM FRAMEWORK

Inspired by the modality gap phenomenon observed in VLMs and the enhanced distinguishability of certain concepts within the image embedding space, we propose TrustVLM. Our framework leverages information from the image embedding space to design the confidence-scoring function. In addition to the conventional confidence score derived from image-to-text similarity (calculated via Eq. (1)), TrustVLM incorporates a second score derived from image-to-image similarity and computed using an auxiliary vision encoder. These two scores are complementary, and their effective combination leads to more robust misclassification detection. The auxiliary vision encoder can be the original CLIP image encoder or other pre-trained vision models, such as MoCo v2 or DINOv2. The selection of a more powerful auxiliary vision encoder can further improve misclassification detection performance.

Integrate Vision Encoder for Misclassification Detection. Our **TrustVLM** framework operates in three main steps, as shown in Fig. 2. The first step involves generating and storing visual prototypes. Specifically, for each class c , embeddings are extracted from N -shot samples in the training data using a pre-trained vision encoder, E (e.g., the CLIP image encoder, MoCo v2, or DINOv2). The prototype embedding for class c , P_c , is then computed by averaging these N embeddings. These class prototypes $\{P_c\}$ are subsequently stored. In the second step, for a given input image x , a zero-shot prediction \hat{y} is obtained using the VLM, as defined in Eq. (1), where the prediction \hat{y} could be either correct or wrong. Concurrently, an initial confidence score, $S_{i-t} = \max_{y \in \mathcal{Y}} p(y|x)$, is derived from the image-to-text similarity. The third step focuses on generating a complementary image-to-image confidence score. An embedding E_x of the input image x is extracted using the same vision encoder E employed in the first step. Since in the second step, the VLM believes x to be class \hat{y} , we calculate the cosine similarity between E_x and $P_{\hat{y}}$ as the image-to-image similarity score $S_{i-i} = E_x \cdot P_{\hat{y}}$. This S_{i-i} score is expected to be low if the prediction \hat{y} is incorrect, as E_x would be compared against an inappropriate prototype, thereby helping to mitigate overconfidence. Conversely, a correct prediction \hat{y} should result in a high S_{i-i} , reinforcing the prediction's reliability. Finally, this verification mechanism yields the combined confidence score for input x is $\kappa(x) = S_{i-t} + S_{i-i}$.

Integrate Vision Encoder for Fine-grained Classification. Visual prototypes and image-to-image similarity can also be utilized to enhance the fine-grained classification capabilities of VLMs. Given the visual prototypes $\{P_c\}$ for each class $c \in \mathcal{Y} = \{1, 2, \dots, C\}$, the probability of predicting class

216 \hat{y} for an input image \mathbf{x} (with embedding E_x), based on image-to-image similarity, is computed as:
 217

$$218 \quad p(y = \hat{y}|\mathbf{x}) = \frac{\exp(\cos(E_x, P_{\hat{y}})/\tau)}{\sum_{c=1}^C \exp(\cos(E_x, P_c)/\tau)}. \quad (3)$$

219 Combining Eq. (1) and Eq. (3), we get the ensemble prediction from both image-to-text and image-
 220 to-image similarity as:
 221

$$223 \quad p(y = \hat{y}|\mathbf{x}) = \frac{\exp(\cos(\mathbf{f}_x, \mathbf{t}_{\hat{y}})/\tau)}{\sum_{c=1}^C \exp(\cos(\mathbf{f}_x, \mathbf{t}_c)/\tau)} + \frac{\exp(\cos(E_x, P_{\hat{y}})/\tau)}{\sum_{c=1}^C \exp(\cos(E_x, P_c)/\tau)}. \quad (4)$$

225 For this variant, termed **TrustVLM***, the confidence-scoring function for a given input \mathbf{x} is $\kappa(\mathbf{x}) =$
 226 $\max_{y \in \mathcal{Y}} p(y|\mathbf{x}) + S_{i-i}$.
 227

228 **Visual Prototypes with Fine-tuning.** Visual prototypes extracted from pre-trained vision encoders
 229 are typically fixed by default. In this section, we introduce **TrustVLM*(F)** to treat these visual
 230 prototypes as learnable parameters initialized with their pre-computed values. These parameters
 231 are subsequently fine-tuned using stochastic gradient descent. The rationale is that updating the
 232 visual prototypes can enhance affinity estimation, thereby enabling a more accurate calculation
 233 of cosine similarities between test and training images, as demonstrated by (Zhang et al., 2022).
 234 Specifically, we freeze the parameters of the VLMs and the vision encoder, while fine-tuning only the
 235 visual prototypes via a cross-entropy loss for 10 epochs with a learning rate of 0.001. We perform
 236 fine-tuning using the N-shot labeled samples from Step 1, where we compute predictions via Eq. (4)
 237 and optimize the cross-entropy loss between these predictions and the ground-truth labels. Finally,
 238 these learned prototypes replace the original fixed prototypes $\{P_c\}$ in Eq. (4). This fine-tuning step is
 239 lightweight. For example, on Flowers102 (Nilsback & Zisserman, 2008), it takes only 2 minutes on a
 240 single GeForce RTX 3090 GPU.

241 4 EXPERIMENTS

243 4.1 EXPERIMENTAL SETTING

245 **Dataset.** We evaluate our framework on a wide variety of 17 datasets. *Fine-grained Classification*
 246 *Datasets*, including 10 publicly available image classification datasets: Caltech101 (Fei-Fei et al.,
 247 2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback &
 248 Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao
 249 et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019) and UCF101 (Soomro et al.,
 250 2012). These datasets constitute a comprehensive benchmark, which covers a diverse set of vision
 251 tasks including classification on generic objects, scenes, actions and fine-grained categories, as well
 252 as specialized downstream tasks such as recognizing textures and satellite imagery. *ImageNet and*
 253 *Its Variants*, including ImageNet (Deng et al., 2009), ImageNetV2 (Recht et al., 2019), ImageNet-
 254 Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al.,
 255 2021a), with distribution shifts in image style, data domains, etc. We also evaluate our framework on
 256 CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) to compare with ORCA (Nguyen et al., 2025).

257 **Implementation Details.** We utilize CLIP ViT-B/16 (Dosovitskiy et al., 2020) backbone to perform
 258 zero-shot prediction on the benchmarks and calculate the related performance metrics. We also
 259 compare with ORCA (Nguyen et al., 2025) on CLIP ResNet-101 (He et al., 2016) and ViT-B/32
 260 following its setup. To demonstrate the generalization of the proposed framework to different VLMs,
 261 we further evaluate on CLIP ResNet-50 and SigLIP (Zhai et al., 2023) ViT-B/16. For the auxiliary
 262 vision encoder, we use both the original CLIP image encoder as well as other pre-trained models
 263 such as DINOv2 (Oquab et al., 2023) and MoCo v2 (Chen et al., 2020). We use 16-shot samples
 264 from the training data to calculate the prototypes by default and set the temperature τ to 0.01.

265 **Evaluation Metrics.** **AURC.** The area under the risk-coverage curve (AURC) (Geifman & El-Yaniv,
 266 2017) depicts the error rate which is computed by using samples whose confidence is higher than
 267 some confidence thresholds. **AUROC.** The area under the receiver operating characteristic curve
 268 (AUROC) (Davis & Goadrich, 2006) depicts the relationship between true positive rate (TPR) and
 269 false positive rate (FPR). **FPR95.** The FPR at 95% TPR denotes the probability that a misclassified
 270 example is predicted as a correct one when the TPR is as high as 95%. **ACC.** Test accuracy (ACC) is
 271 also an important metric.

		Flowers102				DTD				Aircraft				Pets			
		AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑
270	MaxLogit	167.14	74.92	81.61	67.36	395.13	69.63	85.23	44.39	731.25	55.73	93.77	23.85	48.75	75.37	68.59	88.23
271	Energy	194.67	69.00	91.93	67.36	433.25	64.82	90.01	44.39	780.11	45.48	97.71	23.85	56.23	71.90	70.67	88.23
272	Entropy	117.27	84.88	63.48	67.36	319.02	79.03	77.05	44.39	575.71	73.12	83.96	23.85	21.91	89.31	53.35	88.23
273	MCM	153.63	78.22	71.02	67.36	333.43	78.16	78.45	44.39	583.28	72.58	81.65	23.85	44.95	77.03	64.90	88.23
274	DOCTOR	112.82	85.82	62.48	67.36	314.37	79.66	76.51	44.39	575.53	73.05	83.84	23.85	21.08	89.92	55.20	88.23
275	MSP	112.27	85.91	63.98	67.36	313.43	79.81	77.36	44.39	576.97	72.62	85.61	23.85	21.04	89.94	52.19	88.23
276	TrustVLM-C	101.42	88.69	54.91	67.36	302.18	82.52	67.27	44.39	563.77	75.20	81.51	23.85	20.93	89.89	51.73	88.23
277	TrustVLM-M	103.68	88.29	53.42	67.36	298.17	83.16	65.50	44.39	574.57	73.22	84.31	23.85	20.41	90.38	48.27	88.23
278	TrustVLM-D	77.30	95.05	30.06	67.36	268.71	88.55	44.10	44.39	362.02	75.62	83.21	23.85	20.69	90.05	50.81	88.23
279	TrustVLM*-D	0.52	95.96	13.04	99.07	124.15	78.39	72.14	71.57	554.12	75.36	83.05	24.60	20.05	90.30	49.07	88.28
280	TrustVLM*(F)-D	0.41	98.26	7.69	98.42	96.45	80.30	70.96	74.76	544.40	76.85	78.63	24.90	20.05	90.30	49.07	88.28
281	Caltech101																
282	Cars				EuroSAT				UCF101								
283	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	
284	MaxLogit	53.72	52.43	94.55	93.31	259.81	61.94	89.58	65.61	522.56	59.42	87.79	42.10	258.47	61.85	91.41	65.21
285	Energy	59.26	48.81	96.36	93.31	304.90	54.85	93.89	65.61	568.57	53.44	88.30	42.10	299.84	55.38	94.83	65.21
286	Entropy	15.79	82.47	79.39	93.31	145.61	79.83	75.76	65.61	389.07	72.18	83.16	42.10	130.10	83.97	70.52	65.21
287	MCM	45.55	61.00	83.54	93.31	248.87	63.77	85.97	65.61	416.37	71.28	81.18	42.10	188.00	74.14	75.47	65.21
288	DOCTOR	12.89	86.06	76.36	93.31	138.00	81.50	73.66	65.61	368.77	74.43	81.69	42.10	123.41	85.67	65.81	65.21
289	MSP	12.23	86.99	67.88	93.31	136.27	81.95	72.25	65.61	355.66	76.39	80.65	42.10	122.44	85.98	64.89	65.21
290	TrustVLM-C	13.25	86.81	70.30	93.31	129.45	83.67	67.73	65.61	322.52	82.90	55.73	42.10	111.95	88.69	55.93	65.21
291	TrustVLM-M	10.81	88.97	64.24	93.31	134.25	82.53	72.29	65.61	320.12	83.03	56.32	42.10	114.60	87.93	58.81	65.21
292	TrustVLM-D	11.11	90.51	47.27	93.31	137.54	82.05	70.62	65.61	303.79	85.48	53.52	42.10	107.13	90.21	50.68	65.21
293	TrustVLM*-D	5.69	89.48	35.62	97.04	137.97	81.73	71.25	65.83	72.96	74.87	73.50	83.56	65.26	86.23	62.93	77.11
294	TrustVLM*(F)-D	2.61	93.29	35.71	97.16	132.54	82.58	68.70	66.02	54.35	77.31	72.48	85.69	55.81	87.26	66.06	78.35
295	Food101																
296	SUN397				Average												
297	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	
298	MaxLogit	67.81	75.81	78.13	83.66	278.17	62.77	90.46	62.57	278.28	64.99	86.11	63.63				
299	Energy	76.05	72.33	84.69	83.66	304.50	58.34	93.47	62.57	307.74	59.44	90.19	63.63				
300	Entropy	55.80	83.76	63.73	83.66	194.33	75.19	80.97	62.57	196.46	80.37	73.14	63.63				
301	MCM	60.90	79.90	67.23	83.66	242.95	69.09	83.62	62.57	231.79	72.52	77.30	63.63				
302	DOCTOR	54.99	84.39	61.11	83.66	184.41	77.35	77.37	62.57	190.63	81.78	71.40	63.63				
303	MSP	54.80	84.51	59.73	83.66	182.39	77.90	76.42	62.57	188.75	82.20	70.10	63.63				
304	TrustVLM-C	36.02	88.34	57.67	83.66	171.89	80.39	69.20	62.57	177.34	84.71	63.20	63.63				
305	TrustVLM-M	40.92	86.65	59.01	83.66	172.98	79.83	71.63	62.57	179.05	84.40	63.38	63.63				
306	TrustVLM-D	36.18	88.52	55.96	83.66	156.16	83.80	58.44	62.57	168.06	86.98	54.47	63.63				
307	TrustVLM*-D	35.01	88.49	57.47	84.10	104.25	82.31	72.82	72.18	112.00	84.31	59.09	76.33				
308	TrustVLM*(F)-D	34.16	88.79	56.19	84.15	103.05	83.43	72.68	71.33	104.38	85.84	57.82	76.91				

Table 1: Misclassification detection performance on fine-grained classification datasets with CLIP-ViT-B/16, where -C, -M, and -D are with CLIP-I, MoCo v2, and DINOv2 as auxiliary vision encoders. AURC is multiplied by 10^3 following previous work [Zhu et al. \(2023\)](#).

Baselines. We compare our method against well-established confidence-scoring functions, including MaxLogit ([Hendrycks et al., 2022](#)), Energy ([Liu et al., 2020](#)), Entropy ([Chan et al., 2021](#)), MCM ([Ming et al., 2022](#)), MSP ([Hendrycks & Gimpel, 2017](#)), and DOCTOR ([Granese et al., 2021](#)), where DOCTOR fully exploits all available information contained in the soft-probabilities of the predictions to estimate the confidence. We also compare with the most recent concept-based method ORCA ([Nguyen et al., 2025](#)).

4.2 RESULTS

MisD Results on Fine-grained Classification Datasets. As presented in Tab. 1, the simple MSP baseline consistently surpasses prominent OOD detection methods in MisD, including MaxLogit, Energy, and MCM. This indicates that current OOD detection techniques are limited in capturing misclassification errors effectively, highlighting a promising direction for future research: the development of confidence estimation methods that integrate OOD detection and MisD within a unified framework. Incorporating an image-to-image similarity confidence score in TrustVLM significantly enhances MisD performance, irrespective of the vision encoder employed (e.g., CLIP-I, MoCo v2, or DINOv2), thereby demonstrating the proposed framework’s versatility. Notably, TrustVLM-D utilizing the DINOv2 encoder yields the best overall performance, achieving average improvements of 20.69% in AURC, 4.78% in AUROC, and 15.63% in FPR95 relative to the strongest baseline. When visual prototypes are employed for zero-shot classification (TrustVLM*-D), the accuracy improves substantially by an average of 12.7%. This enhanced accuracy reduces the overall risk (error rate) across all coverage levels; consequently, the Area Under the Risk-Coverage curve (AURC) also decreases markedly, by an average of 56.06% compared to TrustVLM-D. However, its AUROC and FPR95 metrics are marginally lower than those of TrustVLM-D. A potential explanation for

		ImageNet-A				ImageNet-V2				ImageNet-R			
		AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
324	MaxLogit	387.23	64.16	86.59	50.08	254.37	68.58	85.22	61.20	138.25	72.98	79.48	74.19
325	Energy	421.78	59.15	90.00	50.08	278.89	64.64	89.26	61.20	160.84	67.39	86.55	74.19
326	Entropy	298.23	75.46	77.47	50.08	189.58	77.57	79.90	61.20	79.64	85.80	63.13	74.19
327	MCM	341.67	71.99	78.27	50.08	236.32	71.62	80.38	61.20	109.67	80.49	64.73	74.19
328	DOCTOR	290.78	76.67	76.93	50.08	181.67	79.32	73.67	61.20	75.33	87.14	60.81	74.19
329	MSP	290.46	76.70	77.06	50.08	180.32	79.72	71.82	61.20	74.36	87.50	59.66	74.19
330	TrustVLM-D	274.46	79.17	70.27	50.08	176.82	81.27	66.02	61.20	72.10	88.03	57.70	74.19
331	TrustVLM*-D	266.48	75.94	77.67	53.02	172.65	77.93	74.92	63.92	71.72	87.50	60.03	74.62
332	TrustVLM*(F)-D	264.36	77.09	76.90	52.61	176.13	77.71	72.98	63.98	71.15	87.42	60.37	74.83
333	ImageNet-Sketch				ImageNet				Average				
334	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	
335	MaxLogit	422.41	65.28	87.25	45.67	228.56	65.95	85.80	66.68	286.16	67.39	84.87	59.56
336	Energy	472.36	58.03	92.25	45.67	253.77	61.61	89.95	66.68	317.53	62.16	89.60	59.56
337	Entropy	313.83	78.37	74.27	45.67	149.69	78.26	78.01	66.68	206.19	79.09	74.56	59.56
338	MCM	400.13	70.10	76.52	45.67	206.72	69.73	81.27	66.68	258.90	72.79	76.23	59.56
339	DOCTOR	300.85	80.49	70.75	45.67	140.70	80.48	74.46	66.68	197.87	80.82	71.32	59.56
340	MSP	299.57	80.74	70.51	45.67	138.99	81.00	72.74	66.68	196.74	81.13	70.36	59.56
341	TrustVLM-D	280.72	84.35	58.99	45.67	132.10	83.38	64.04	66.68	187.24	83.24	63.40	59.56
342	TrustVLM*-D	264.51	74.74	84.77	53.13	126.31	78.82	77.43	70.58	180.33	78.99	74.96	63.05
343	TrustVLM*(F)-D	243.44	73.80	76.90	58.20	129.38	77.33	75.28	71.75	176.89	78.67	72.49	64.27

Table 2: Misclassification detection performance on ImageNet and its variants with CLIP ViT-B/16.

this is that as model accuracy improves, the confidence scores for many correct predictions might increase significantly. Nevertheless, some correctly classified but inherently “difficult” instances may still receive lower confidence scores. If the confidence scores of the few remaining misclassifications become more similar to these “hard but correct” instances, the overlap between the confidence distributions of misclassifications and correct classifications increases. This makes it harder for the detector to find a good threshold. Finally, fine-tuning on visual prototypes (TrustVLM*(F)-D) further enhances performance across all evaluated metrics compared to TrustVLM*-D.

MisD Results on ImageNet and Its Variants.

Tab. 2 presents results from large-scale experiments conducted on ImageNet and its variants. As the variant datasets solely provide test splits, N samples per class were selected from these test sets to compute prototypes, with the remaining samples utilized for evaluation. Consistent with the findings in Tab. 1, the simple MSP baseline consistently outperforms strong OOD detection methods. Our TrustVLM-D with DINOv2 encoder demonstrates superior overall performance in most cases, achieving average improvements of 9.5% in AURC, 2.11% in AUROC, and 6.96% in FPR95 relative to the strongest baseline. While TrustVLM*-D and TrustVLM*(F)-D yield significant improvements in ACC and AURC, they adversely affect AUROC and FPR95 on these large-scale benchmarks. To further evaluate the robustness of our proposed method to distribution shifts, prototypes were computed using only N samples per class from the ImageNet training split. These prototypes were then applied directly to the ImageNet variants, thereby obviating the need to compute variant-specific prototypes. As illustrated in Fig. 3, our method demonstrates the overall leading performance of all metrics evaluated in this challenging scenario. Detailed results are provided in Tab. 10.

Comparison with Concept-based Method. We further compare our method against the most recent ORCA (Nguyen et al., 2025) with CLIP ResNet-101 and ViT-B/32 on CIFAR-10, CIFAR-100, and EuroSAT. ORCA leverages human-level concepts to detect when and interpret why a model fails. As shown in Tab. 3, while ORCA generally outperforms the MSP baseline in most cases, our proposed method demonstrates a significant performance margin over ORCA. Specifically, with the CLIP

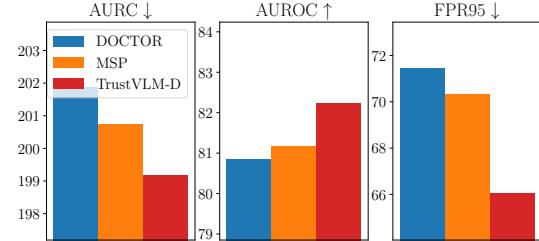


Figure 3: MisD performance on ImageNet and its variants using CLIP ViT-B/16, under distribution shifts defined by prototypes computed exclusively on ImageNet and deployed directly to variant datasets.

		CIFAR-10			CIFAR-100			EuroSAT			Average		
		AUROC↑	FPR95↓	ACC↑									
ResNet-101	MSP	85.98	62.98	78.01	80.72	73.40	48.50	61.73	88.98	30.30	76.14	75.12	52.27
	ORCA	85.93	62.68	80.60	80.46	72.38	53.11	69.01	86.43	34.76	78.47	73.83	56.16
	TrustVLM-D	94.76	26.82	78.01	90.03	39.46	48.50	74.03	66.69	30.30	86.27	44.32	52.27
	TrustVLM*-D	90.97	41.88	95.63	82.27	65.52	79.35	72.08	72.15	81.78	81.77	59.85	85.59
ViT-B/32	MSP	88.92	58.66	88.92	81.15	71.09	58.42	76.42	80.24	41.11	82.16	70.00	62.82
	ORCA	89.00	52.70	90.00	83.40	67.00	66.50	77.55	71.29	50.00	83.32	63.66	68.83
	TrustVLM-D	94.94	31.85	88.92	89.13	45.63	58.42	78.88	69.36	41.11	87.65	48.95	62.82
	TrustVLM*-D	94.06	29.58	95.91	84.95	62.99	79.98	74.70	72.77	82.81	84.57	55.11	86.23

Table 3: MisD performance compared with ORCA with CLIP ResNet-101 and ViT-B/32.

Method	Aircraft	Caltech101	Cars	DTD	EuroSAT	Flowers102	Food101	Pets	SUN397	UCF101	Average
CLIP-RN50	15.54	85.88	55.74	40.37	23.70	61.75	73.95	83.65	58.81	58.74	55.81
CoOp (Zhou et al., 2022)	22.20	87.70	61.30	52.20	63.20	81.00	76.30	86.20	63.40	67.00	66.05
Tip-Adapter (Zhang et al., 2022)	23.70	88.80	63.90	54.70	72.50	83.20	76.70	86.40	66.70	72.10	68.87
CuPL (Pratt et al., 2023)	19.59	89.29	57.28	48.64	38.38	65.44	76.94	84.84	62.55	58.97	60.19
TPT (Shu et al., 2022)	17.58	87.02	58.46	40.84	28.33	62.69	74.88	84.49	61.46	60.82	57.66
DMN (Zhang et al., 2024)	20.22	89.09	58.36	50.53	44.94	68.33	74.69	86.29	63.70	64.02	62.02
TDA (Karmanov et al., 2024)	17.61	89.70	57.78	43.74	42.11	68.74	77.75	86.18	62.53	64.18	61.03
ECALP (Li et al., 2025)	21.12	89.94	60.56	54.49	49.09	69.39	76.97	88.20	64.97	66.67	64.14
TrustVLM*-C	29.34	89.98	66.09	60.34	75.11	90.62	74.53	85.94	66.30	72.09	71.03
TrustVLM*-M	19.89	93.27	57.52	65.43	86.85	87.25	74.85	90.22	67.16	73.28	71.57
TrustVLM*-D	20.25	96.43	56.08	71.34	82.43	99.11	75.23	83.65	71.45	75.34	73.13
TrustVLM*(F)-D	27.27	96.59	56.19	74.70	85.43	98.50	75.17	83.76	70.71	76.90	74.52

Table 4: Classification results on fine-grained datasets with CLIP ResNet-50.

ResNet-101 backbone, our approach achieves maximum improvements over ORCA of 9.57% in AUROC, 35.86% in FPR95, and 47.02% in ACC. When employing the CLIP ViT-B/32 backbone, these respective maximum improvements are 5.94%, 21.37%, and 32.81%.

Improved Classification Results on Fine-grained Datasets. Visual prototypes and image-to-image similarity can also enhance the prediction accuracy of VLMs. In Tab. 4, we compare our method against various zero-shot, few-shot, and test-time adaptation baselines using CLIP ResNet-50. Notably, without requiring any training phase, our method achieves the best overall performance, yielding an average accuracy improvement of 4.36% relative to these baselines. Furthermore, our approach is compatible with diverse vision encoders, including CLIP-I, MoCo v2, and DINOv2, and demonstrates robust performance across all of them. Subsequent fine-tuning of the visual prototypes, as implemented in TrustVLM*(F)-D, further improves accuracy by an additional 1.29% compared to TrustVLM*-D.

4.3 ABLATION STUDIES

Different Architectures and VLMs. To demonstrate the versatility of the proposed framework, we evaluated its performance with different architectures and VLMs. Specifically, we replaced the CLIP ViT-B/16 backbone in Tab. 1 with CLIP ResNet-50 and SigLIP ViT-B/16, reporting average performance metrics across 10 fine-grained datasets in Tab. 5. Consistent with the observations in Tab. 1, our method demonstrates robust compatibility across these varied architectures and VLMs, significantly surpassing the baseline methods in both configurations. More detailed results, including performance on ImageNet and its variants, are provided in the Appendix.

	CLIP ResNet-50				SigLIP ViT-B/32				i-t i-i	AURC↓	AUROC↑	FPR95↓	
	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑					
DOCTOR	259.56	80.55	73.83	55.82	149.27	85.69	58.63	70.69	✓	188.75	82.20	70.10	
MSP	259.76	80.63	73.11	55.82	149.13	85.86	57.31	70.69	✓	214.14	77.15	62.26	
TrustVLM-D	226.95	87.31	53.98	55.82	129.84	90.35	44.49	70.69	✓	168.06	86.98	54.47	
TrustVLM*-D	135.81	83.51	59.97	73.13	87.35	87.47	53.97	79.99					

Table 5: Ablation on different architectures and VLMs. The average results on fine-grained classification datasets are reported.

Table 6: Ablation on each component.

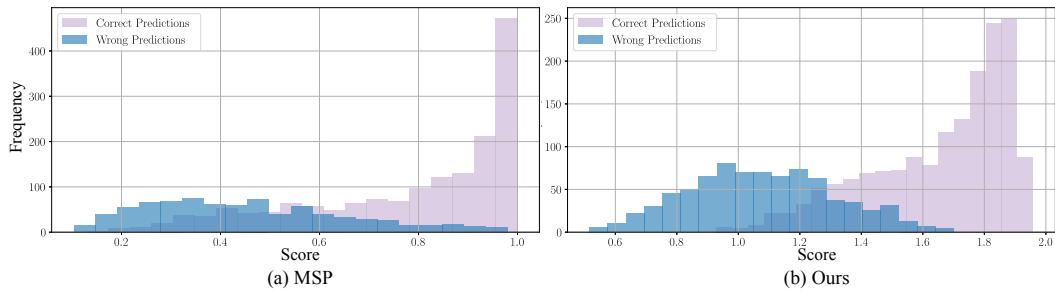


Figure 4: Score distribution for correct and wrong predictions. Our TrustVLM achieves better separation between the score distributions of correct and wrong predictions, leading to improved performance in misclassification detection.

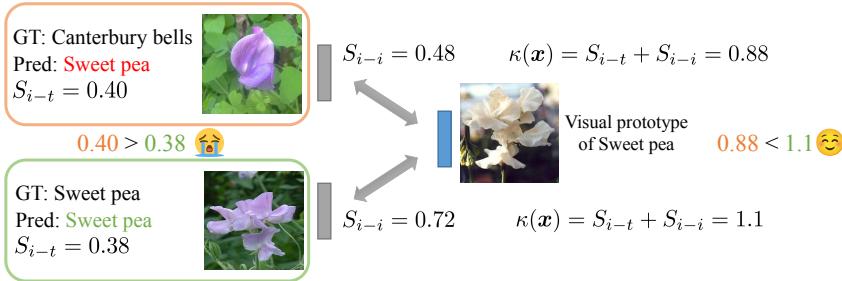


Figure 5: Illustration of TrustVLM’s mechanism. Initially, the incorrect prediction receives a higher confidence score S_{i-t} than the correct one, indicating overconfidence. By performing verification in the image embedding space using S_{i-i} , this overconfidence is mitigated. As a result, the final confidence score $\kappa(\mathbf{x})$ is significantly higher for the correct prediction than for the incorrect one.

Ablation on Each Component. We conducted comprehensive ablation studies to evaluate the contribution of each proposed module, as detailed in Tab. 6. We denote ‘i-t’ as a baseline relying solely on image-to-text similarity (akin to MSP), and ‘i-i’ as the confidence score derived from our proposed image-to-image similarity module, which utilizes a vision encoder. The results indicate that employing either the ‘i-t’ or ‘i-i’ component alone yields suboptimal performance. These findings underscore the complementary nature of the two components, with the best results obtained when they are used in combination.

Visualization. We visualized the confidence score distributions for correct and incorrect predictions on the Flowers102 dataset in Fig. 4. The baseline MSP exhibits a poorer separation in confidence scores between correctly classified and misclassified samples. In contrast, our solution assigns higher confidence scores to correct predictions and lower scores to incorrect ones, leading to more distinct distributions and, thereby, improved misclassification detection. Fig. 5 illustrates TrustVLM’s mechanism for mitigating overconfidence, with more examples provided in Fig. 7.

5 CONCLUSION

In this work, we tackle the critical issue of misclassifications in VLMs, which hinders their reliable use, especially in safety-sensitive domains. We introduce TrustVLM, a novel training-free framework that substantially improves misclassification detection. TrustVLM uniquely leverages the commonly overlooked image embedding space by incorporating image-to-image similarity with an auxiliary vision encoder to derive a more discerning confidence score. The auxiliary vision encoder can also help VLMs make better predictions on fine-grained datasets and can be fine-tuned to achieve better performance. Our rigorous evaluations across 17 datasets, 4 architectures, and 2 VLMs demonstrated TrustVLM’s state-of-the-art performance. These findings highlight the considerable benefits of our approach in identifying confident, yet incorrect, VLM predictions. By enhancing the ability to determine when VLM outputs are trustworthy, TrustVLM contributes to the safer and more dependable deployment of these powerful models in real-world scenarios.

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.

491 Manuele Barraco, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, and Rita Cucchiara. The
492 unreasonable effectiveness of clip features for image captioning: an experimental analysis. In
493 *CVPR*, 2022.

494 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
495 nents with random forests. In *ECCV*, 2014.

496 Robin Chan, Matthias Rottmann, and Hanno Gottschalk. Entropy maximization and meta classifica-
497 tion for out-of-distribution detection in semantic segmentation. In *ICCV*, 2021.

498 Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
499 contrastive learning. *arXiv preprint arXiv:2003.04297*, 2020.

500 Zhen Cheng, Fei Zhu, Xu-Yao Zhang, and Cheng-Lin Liu. Breaking the limits of reliable prediction
501 via generated data. In *IJCV*, 2024.

502 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
503 scribing textures in the wild. In *CVPR*, 2014.

504 Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Addressing
505 failure prediction by learning model confidence. In *NeurIPS*, 2019.

506 Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In *ICML*,
507 2006.

508 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
509 hierarchical image database. In *CVPR*, 2009.

510 Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection in
511 neural networks. *arXiv preprint arXiv:1802.04865*, 2018.

512 Hao Dong, Gaëtan Frusque, Yue Zhao, Eleni Chatzi, and Olga Fink. NNG-Mix: Improving Semi-
513 supervised Anomaly Detection with Pseudo-anomaly Generation. *arXiv preprint arXiv:2311.11961*,
514 2023.

515 Hao Dong, Eleni Chatzi, and Olga Fink. Towards multimodal open-set domain generalization and
516 adaptation through self-supervision. *arXiv preprint arXiv:2407.01518*, 2024a.

517 Hao Dong, Yue Zhao, Eleni Chatzi, and Olga Fink. MultiOOD: Scaling out-of-distribution detection
518 for multiple modalities. In *NeurIPS*, 2024b.

519 Hao Dong, Moru Liu, Kaiyang Zhou, Eleni Chatzi, Juho Kannala, Cyrill Stachniss, and Olga Fink.
520 Advances in multimodal adaptation and generalization: From traditional approaches to foundation
521 models. *arXiv preprint arXiv:2501.18592*, 2025.

522 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
523 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
524 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
525 arXiv:2010.11929*, 2020.

526 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
527 examples: An incremental bayesian approach tested on 101 object categories. In *CVPRW*, 2004.

528 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
529 uncertainty in deep learning. In *ICML*, 2016.

530 Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In *NeurIPS*,
531 2017.

540 Federica Granese, Marco Romanelli, Daniele Gorla, Catuscia Palamidessi, and Pablo Piantanida.
 541 Doctor: A simple method for detecting misclassification errors. In *NeurIPS*, 2021.

542

543 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 544 recognition. In *CVPR*, 2016.

545 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 546 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 547 Topics in Applied Earth Observations and Remote Sensing*, 2019.

548

549 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 550 examples in neural networks. In *ICLR*, 2017.

551

552 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 553 exposure. In *ICLR*, 2019.

554

555 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 556 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 557 analysis of out-of-distribution generalization. In *ICCV*, 2021a.

558

559 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 560 examples. In *CVPR*, 2021b.

561

562 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi,
 563 Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
 564 *ICML*, 2022.

565

566 Zhuo Huang, Chang Liu, Yinpeng Dong, Hang Su, Shibaoh Zheng, and Tongliang Liu. Machine
 567 vision therapy: Multimodal large language models can enhance visual robustness via denoising
 568 in-context learning. *arXiv preprint arXiv:2312.02546*, 2023.

569

570 Paul F Jaeger, Carsten T Lüth, Lukas Klein, and Till J Bungert. A call to reflect on evaluation
 571 practices for failure detection in image classification. *arXiv preprint arXiv:2211.15259*, 2022.

572

573 Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier. In
 574 *NeurIPS*, 2018.

575

576 Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu, Feng Zheng, and Bo Han. Negative label
 577 guided ood detection with pretrained vision-language models. *arXiv preprint arXiv:2403.20078*,
 578 2024.

579

580 Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient
 581 test-time adaptation of vision-language models. In *CVPR*, 2024.

582

583 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 584 categorization. In *ICCVW*, 2013.

585

586 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

587

588 Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, and Yue Zhao. Dpu: Dynamic
 589 prototype updating for multimodal out-of-distribution detection. *arXiv preprint arXiv:2411.08227*,
 590 2024.

591

592 Yushu Li, Yongyi Su, Adam Goodge, Kui Jia, and Xun Xu. Efficient and context-aware label
 593 propagation for zero-/few-shot training-free adaptation of vision-language model. In *ICLR*, 2025.

594

595 Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the gap:
 596 Understanding the modality gap in multi-modal contrastive representation learning. In *NeurIPS*,
 597 2022.

598

599 Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, and Mario Trapp. Extremely simple multimodal outlier
 600 synthesis for out-of-distribution detection and segmentation. *arXiv preprint arXiv:2505.16985*,
 601 2025.

594 Weitang Liu, Xiaoyun Wang, John D Owens, and Yixuan Li. Energy-based out-of-distribution
 595 detection. In *NeurIPS*, 2020.

596

597 Haoyu Ma, Handong Zhao, Zhe Lin, Ajinkya Kale, Zhangyang Wang, Tong Yu, Jiuxiang Gu,
 598 Sunav Choudhary, and Xiaohui Xie. Ei-clip: Entity-aware interventional contrastive learning for
 599 e-commerce cross-modal retrieval. In *CVPR*, 2022.

600 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 601 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

602

603 Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
 604 distribution detection with vision-language representations. In *NeurIPS*, 2022.

605 Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. Confidence-aware learning for
 606 deep neural networks. In *ICML*, 2020.

607

608 Ismail Nejjar, Hao Dong, and Olga Fink. Recall and refine: A simple but effective source-free
 609 open-set domain adaptation framework. *arXiv preprint arXiv:2411.12558*, 2024.

610 Kien X Nguyen, Tang Li, and Xi Peng. Interpretable failure detection with human-level concepts. In
 611 *AAAI*, 2025.

612

613 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 614 of classes. In *ICVGIP*, 2008.

615

616 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 617 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 618 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

619

620 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *CVPR*,
 621 2012.

622

623 Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? generating
 624 customized prompts for zero-shot image classification. In *ICCV*, 2023.

625

626 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 627 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 628 models from natural language supervision. In *ICML*, 2021.

629

630 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 631 generalize to imagenet? In *ICML*, 2019.

632

633 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 634 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

635

636 Shiori Sagawa, Pang Wei Koh, Tatsumi Hashimoto, and Percy Liang. Distributionally robust
 637 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 638 *arXiv preprint arXiv:1911.08731*, 2019.

639

640 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
 641 Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models. In *NeurIPS*,
 642 2022.

643

644 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 645 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

646

647 Han Sun, Yunkang Cao, and Olga Fink. Cut: A controllable, universal, and training-free visual
 648 anomaly generation framework. *arXiv preprint arXiv:2406.01078*, 2024.

649

650 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
 651 by penalizing local predictive power. In *NeurIPS*, 2019.

652

653 Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
 654 clip to say no. In *ICCV*, 2023.

648 Hongxin Wei, RENCHUNZI XIE, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural
 649 network overconfidence with logit normalization. In *ICML*, 2022.
 650

651 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 652 Large-scale scene recognition from abbey to zoo. In *CVPR*, 2010.
 653

654 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 655 image pre-training. In *ICCV*, 2023.
 656

657 Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
 658 Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *ECCV*,
 659 2022.
 660

661 Yabin Zhang, Wenjie Zhu, Hui Tang, Zhiyuan Ma, Kaiyang Zhou, and Lei Zhang. Dual memory
 662 networks: A versatile adaptation approach for vision-language models. In *CVPR*, 2024.
 663

664 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 665 language models. In *IJCV*, 2022.
 666

667 Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-Lin Liu. Openmix: Exploring outlier samples for
 668 misclassification detection. In *CVPR*, 2023.
 669

670 A THE USE OF LARGE LANGUAGE MODELS

671 In preparing this manuscript, large language models (LLMs) were employed in a limited capacity
 672 as general-purpose writing assistants. Specifically, they were used to improve clarity of expression,
 673 refine grammar and sentence structure, and correct typographical or spelling errors. The models
 674 did not contribute to the generation of research ideas, the design of experiments, the analysis or
 675 interpretation of results, or the formulation of the scientific claims presented in this work.
 676

677 B BROADER IMPACT, LIMITATIONS, AND FUTURE WORK

678 **Broader Impact.** The development of TrustVLM offers significant positive societal impacts by
 679 directly addressing the critical need for more reliable and trustworthy Vision-Language Models
 680 (VLMs). As VLMs become increasingly integrated into real-world applications, particularly in safety-
 681 critical domains such as autonomous driving, medical diagnostics, and public safety surveillance,
 682 the ability to accurately discern when a model’s prediction can be trusted is paramount. Erroneous
 683 and overconfident predictions in these areas can lead to severe adverse consequences. TrustVLM
 684 contributes to mitigating such risks by providing a robust framework for misclassification detection,
 685 thereby enhancing the safety of VLM-powered systems.
 686

687 **Limitations.** While TrustVLM demonstrates strong performance across diverse benchmarks, several
 688 limitations remain. First, our method assumes access to clean class-level visual prototypes, which may
 689 not always be feasible in noisy or open-world settings. Second, our current work primarily focuses
 690 on zero-shot classification. While the core principles may be adaptable, the direct applicability
 691 and performance of TrustVLM on other VLM tasks, such as visual question answering or image
 692 captioning, have not yet been extensively evaluated. Third, the approach relies on a fixed auxiliary
 693 vision encoder and does not account for scenarios where the underlying data distribution evolves over
 694 time, such as in continual learning or streaming environments.
 695

696 **Future Work.** Building upon the promising results of TrustVLM, several avenues for future research
 697 warrant exploration. A key direction is the extension of the TrustVLM framework to a broader
 698 range of multimodal tasks beyond zero-shot classification, including visual question answering,
 699 image retrieval, and image captioning, to assess its generalizability and adapt its mechanisms where
 700 necessary. Besides, incorporating human-in-the-loop feedback for refining confidence scores may
 701 further improve VLM reliability in complex, real-world deployments. **Finally, it is also an interesting
 702 direction to explore the use of LLMs for correcting the model’s prediction and identifying the true
 703 class, as demonstrated in recent work (Huang et al., 2023).**

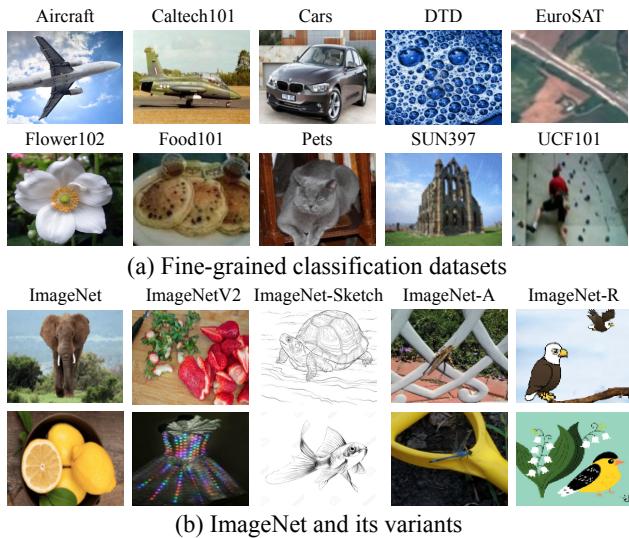


Figure 6: Representative examples from each dataset used in this work.

C RELATED WORK

Misclassification Detection. The primary goal of MisD is to distinguish misclassified samples from correctly classified ones, often by evaluating the reliability of the prediction. Early approaches used simple baselines such as Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017), although these were limited by model overconfidence. TrustScore (Jiang et al., 2018) estimates the reliability of predictions based on distances to training samples in the feature space, though it can struggle with high-dimensional or domain-shifted data. DOCTOR (Granese et al., 2021) introduces a simple rule-based rejection mechanism for black-box models without retraining, yet its performance depends on carefully tuned thresholds. Another direction involves directly learning confidence scores or training auxiliary components to predict prediction failure, such as learning the true class probability (Corbière et al., 2019) or adding dedicated confidence branches (DeVries & Taylor, 2018). OpenMix (Zhu et al., 2023) enhances robustness by generating synthetic outliers during training, improving calibration on misclassified samples. Recent literature (Nguyen et al., 2025) has also explored MisD with VLMs by leveraging human-level concepts to detect when and interpret why a model fails.

Out-of-distribution Detection shares a similar objective with MisD but addresses fundamentally distinct challenges. OOD detection aims to identify test samples that exhibit semantic shifts without compromising in-distribution (ID) classification accuracy, which can be broadly categorized into post hoc methods and training-time regularization. *Post hoc* methods design OOD scores based on the classification outputs of neural networks, offering the advantage of ease of use without modifying the training procedure or objective (Hendrycks & Gimpel, 2017; Hendrycks et al., 2022; Liu et al., 2020). *Training-time regularization* methods address prediction overconfidence by imposing a constant vector norm on the logits during training (Wei et al., 2022) or using external OOD samples from other datasets during training to improve discrimination between ID and OOD samples (Hendrycks et al., 2019; Nejjar et al., 2024). Recently, some works (Ming et al., 2022; Jiang et al., 2024; Wang et al., 2023) have also explored OOD detection via use of VLMs. However, methods optimized for OOD detection often underperform on MisD (Jaeger et al., 2022; Zhu et al., 2023), underscoring the need for specialized MisD approaches.

D MORE DETAILS ON THE DATASETS

We mainly evaluate our framework on 15 datasets from *Fine-grained Classification Datasets* and *ImageNet and Its Variants*. The fine-grained classification datasets include 10 publicly available image classification datasets, covering species of plants or animals (Flowers102 (Nilsback & Zisserman, 2008), OxfordPets (Parkhi et al., 2012)), scenes (SUN397 (Xiao et al., 2010)), textures (DTD (Cimpoi

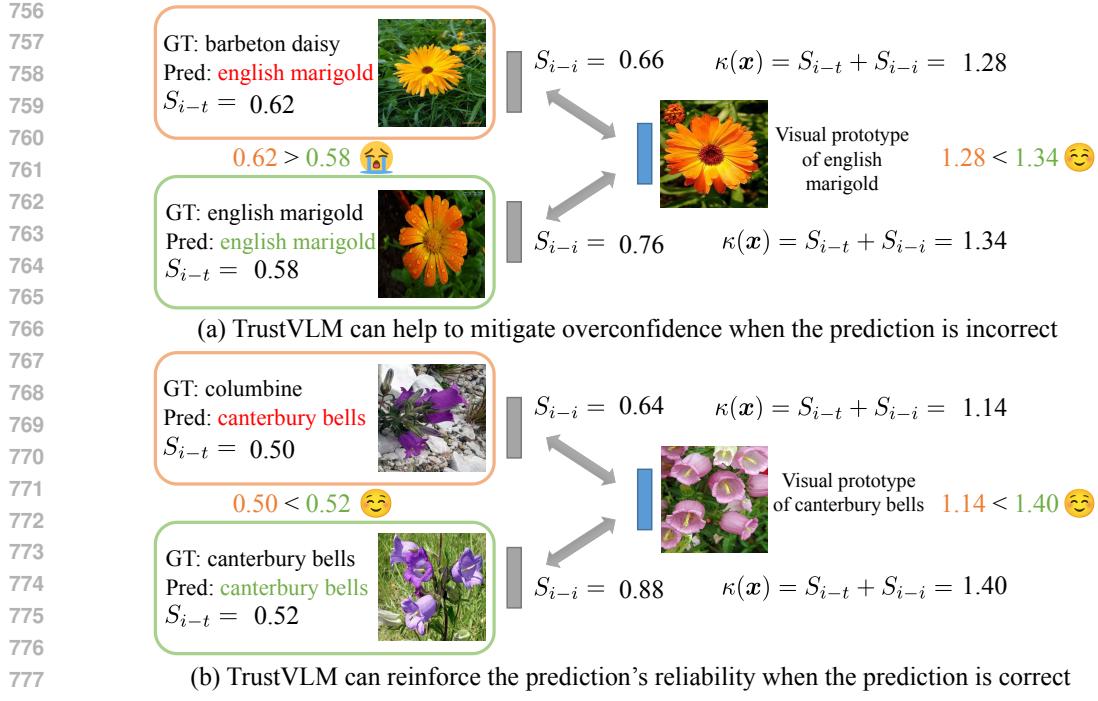


Figure 7: More illustration on TrustVLM’s mechanism.

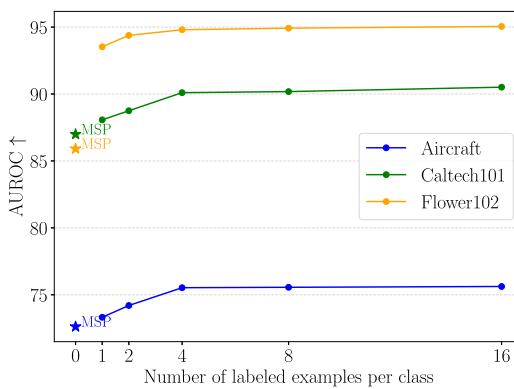
et al., 2014)), food (Food101 (Bossard et al., 2014)), transportation (StanfordCars (Krause et al., 2013), FGVC Aircraft (Maji et al., 2013)), human actions (UCF101 (Soomro et al., 2012)), satellite images (EuroSAT (Helber et al., 2019)), and general objects (Caltech101 (Fei-Fei et al., 2004)). The ImageNet and Its Variants features the original ImageNet (Deng et al., 2009), along with several key variants: ImageNetV2 (Recht et al., 2019), an independent test set with natural images from a different source; ImageNet-Sketch (Wang et al., 2019), comprising black and white sketches; ImageNet-A (Hendrycks et al., 2021b), a challenging test set of ‘natural adversarial examples’ often misclassified by standard ResNet-50 models (He et al., 2016); and ImageNet-R (Hendrycks et al., 2021a), featuring artistic renditions of ImageNet categories. These variants collectively introduce diverse distribution shifts in image style, data domains, and other factors. Fig. 6 illustrates representative examples from these datasets.

E FURTHER EXPERIMENTAL RESULTS

More illustration on TrustVLM’s mechanism. Fig. 7 demonstrates more examples on how TrustVLM works. The S_{i-i} score is expected to be low if the prediction \hat{y} is incorrect, as the embedding E_x would be compared against an inappropriate prototype, thereby helping to mitigate overconfidence. Conversely, a correct prediction \hat{y} should result in a high S_{i-i} , reinforcing the prediction’s reliability.

Influence of N. We investigated the effect of N , the number of samples per class used for computing prototypes, on AUROC performance. As illustrated in Fig. 8, performance steadily improves with an increasing number of samples per class. Notably, using only a single sample per class ($N = 1$) already achieves results superior to the baseline. The performance improvement tends to saturate when N exceeds 4.

Robustness to the selection of N-shot samples. To evaluate the robustness of our method with respect to the selection of N-shot samples, we randomly sample three different sets of only one image per class ($N=1$) from the training data. As shown in Tab. 7, the performance remains consistent across different sample sets. This suggests that our framework is not overly sensitive to the specific choice of labeled examples, and can generalize well even when using a single randomly chosen image per class. For further evaluation, we randomly sample three different sets of 4 images per class from the training

Figure 8: Influence of N in prototypes.

	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
Set 1	82.40	93.53	38.39
Set 2	80.83	94.02	33.91
Set 3	80.96	93.97	34.66

Table 7: Robustness to the selection of N-shot samples (TrustVLM-D on Flowers102 with $N=1$).

	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
Set 1	78.15	94.80	29.69
Set 2	78.47	94.74	29.07
Set 3	78.18	94.81	29.81

Table 8: Robustness to the selection of N-shot samples (TrustVLM-D on Flowers102 with $N=4$).

	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
MSP	122.44	85.98	64.89
TrustVLM-D (SD3)	119.90	86.96	62.31
TrustVLM-D	107.13	90.21	50.68

Table 9: Robustness under privacy-sensitive settings. We use Stable Diffusion 3 (SD3) Medium to generate 16 images per class for UCF101 to calculate visual prototypes.

data and report performance for each. As shown in Tab. 8, the results remain consistently strong and stable, confirming that our method is not overly sensitive to the specific choice of representative samples. This also shows that increasing the number of labeled examples per class is an effective way to mitigate the effect of outlier or noisy samples in the embedding space.

Robustness under privacy-sensitive settings. Our framework is designed to be highly data-efficient. As shown in Fig. 8, using just a single labeled sample per class is sufficient for our method to outperform the baseline, demonstrating its effectiveness even in low-data regimes. To address the scenario without labeled data, we explored using a generative model as a substitute. We conducted a new experiment using Stable Diffusion 3 (SD3) Medium (Rombach et al., 2022) to generate 16 images per class for UCF101 (e.g., with the prompt "a photo of a person doing [action name]"). We call this variant TrustVLM-D (SD3). As shown in Tab. 9, TrustVLM-D (SD3) outperforms the strong MSP baseline, even though a distribution gap between generated images and real images prevents it from matching the performance of using real data. This result validates the feasibility of using generated data as an alternative when labeled examples are unavailable. Additionally, for privacy-sensitive settings, we propose a practical deployment strategy: clients can locally generate prototypes using their private labeled data, and only share the prototype embeddings (not the raw data) with the system. Since our framework operates on these prototypes, access to raw sensitive data is not required, making it a privacy-conscious solution suitable for high-risk domains.

	ImageNet-A				ImageNet-V2				ImageNet-R			
	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑
DOCTOR	316.50	75.98	77.76	47.85	180.06	80.09	73.38	60.88	76.39	87.12	60.54	73.98
MSP	315.99	76.07	77.76	47.85	178.82	80.45	71.26	60.88	75.47	87.46	59.43	73.98
TrustVLM-D	324.07	75.87	77.20	47.85	174.23	82.18	64.82	60.88	74.94	87.69	58.09	73.98
ImageNet-Sketch				ImageNet				Average				
DOCTOR	296.20	80.54	70.94	46.09	140.21	80.53	74.58	66.71	201.87	80.85	71.44	59.10
MSP	294.85	80.82	70.29	46.09	138.52	81.04	72.85	66.71	200.73	81.17	70.32	59.10
TrustVLM-D	289.52	82.40	65.59	46.09	133.17	83.08	64.47	66.71	199.19	82.24	66.03	59.10

Table 10: MisD performance on ImageNet and its variants using CLIP ViT-B/16, under distribution shifts defined by prototypes computed exclusively on ImageNet and deployed directly to variant datasets.

	Flowers102				DTD				Aircraft				Pets			
	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑	AURC↓	AUROC↑	FPR95↓	ACC↑
DOCTOR	26.03	93.13	38.75	83.76	183.86	79.14	72.67	61.29	513.33	78.08	80.74	27.42	7.65	95.55	30.65	91.55
MSP	25.14	93.63	34.75	83.76	181.52	79.66	72.52	61.29	514.42	77.78	76.98	27.42	7.65	95.54	28.71	91.55
TrustVLM-D	16.62	98.42	9.50	83.76	144.44	87.64	49.01	61.29	503.98	79.56	75.83	27.42	7.66	95.58	28.71	91.55
TrustVLM*-D	0.13	97.82	15.38	99.47	98.27	82.72	71.92	72.64	496.11	78.79	79.14	28.23	7.55	95.56	29.97	91.63
Caltech101				Cars				EuroSAT				UCF101				
DOCTOR	2.31	94.88	27.50	96.75	18.84	89.37	59.81	89.42	481.80	72.61	89.46	31.26	85.35	88.73	55.21	70.31
MSP	2.20	95.21	26.25	96.75	18.73	89.48	58.87	89.42	485.10	72.31	90.39	31.26	84.54	88.97	56.28	70.31
TrustVLM-D	2.08	95.52	26.25	96.75	18.63	89.57	57.58	89.42	390.00	90.09	42.82	31.26	74.35	92.14	41.23	70.31
TrustVLM*-D	1.76	95.65	21.13	97.12	22.18	87.92	54.05	89.42	72.64	75.64	73.41	82.91	54.41	87.91	64.74	78.03
Food101				SUN397				Average								
DOCTOR	40.90	84.68	56.72	87.54	132.64	80.73	74.81	67.62	149.27	85.69	58.63	70.69				
MSP	40.70	84.84	54.70	87.54	131.29	81.15	73.63	67.62	149.13	85.86	57.31	70.69				
TrustVLM-D	22.97	89.84	54.70	87.54	117.67	85.10	59.27	67.62	129.84	90.35	44.49	70.69				
TrustVLM*-D	23.20	89.56	56.14	87.80	97.28	83.11	73.78	72.63	87.35	87.47	53.97	79.99				

Table 11: Misclassification detection performance on fine-grained classification datasets with SigLIP ViT-B/16.

MisD performance on ImageNet and its variants under distribution shifts. To evaluate the robustness of our proposed method to distribution shifts, the visual prototypes were computed using only N samples per class from the ImageNet training split. These prototypes were then applied directly to the ImageNet variants, thereby obviating the need to compute variant-specific prototypes. As illustrated in Tab. 10, our method demonstrates the overall leading performance of all metrics evaluated in this challenging scenario, achieving average improvements of 1.54% in AURC, 1.07% in AUROC, and 4.29% in FPR95 relative to the baseline.

Different architectures and VLMs. To demonstrate the versatility of the proposed framework, we evaluated its performance with different architectures and VLMs. Specifically, we replaced the default CLIP ViT-B/16 backbone with CLIP ResNet-50 and SigLIP ViT-B/16, reporting average performance metrics across fine-grained datasets and ImageNet and its variants from Tab. 11 to Tab. 14. Consistent with the observations with CLIP ViT-B/16, our method demonstrates robust compatibility across these varied architectures and VLMs, significantly surpassing the baseline methods in both configurations.

F FURTHER ANALYSIS

Clarification on image-to-text and image-to-image similarities. The image-to-text and image-to-image similarities are complementary to each other. Each of them captures different aspects of the data, and their combination leads to superior performance. For example, visually similar objects like "lemon" and "tennis ball" (both round and yellow) may be hard to distinguish in the image embedding space. Yet, image-to-text similarity, which leverages semantic cues (e.g., "a sour fruit" vs "a sports object"), can help disambiguate them more effectively. Conversely, some subtle visual variations (e.g., among different flower species) may be better captured by image-to-image similarity.

To analyze this, we conducted the following experiment: for each image, we randomly sample one positive (same label) and one negative (different label) image, and compute both image-to-image

	ImageNet-A				ImageNet-V2				ImageNet-R			
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
DOCTOR	299.17	79.28	72.72	47.62	124.64	83.03	67.64	67.55	21.40	91.53	45.00	87.82
MSP	299.17	79.25	72.58	47.62	124.12	83.21	67.08	67.55	20.92	91.90	43.06	87.82
TrustVLM-D	278.77	82.13	65.09	47.62	123.39	83.76	65.28	67.55	19.55	92.07	42.05	87.82
TrustVLM*-D	266.12	77.68	78.19	51.82	122.70	83.05	67.17	68.17	19.49	91.85	43.33	87.98
ImageNet-Sketch				ImageNet				Average				
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
DOCTOR	136.52	84.98	62.35	64.29	86.80	83.40	67.59	74.74	133.71	84.44	63.06	68.40
MSP	135.32	85.31	61.24	64.29	85.84	83.78	66.03	74.74	133.07	84.69	62.00	68.40
TrustVLM-D	133.55	85.84	59.61	64.29	84.46	84.36	63.73	74.74	127.94	85.63	59.15	68.40
TrustVLM*-D	132.62	84.76	64.17	65.14	83.96	83.40	67.89	75.45	124.98	84.15	64.15	69.71

Table 12: Misclassification detection performance on ImageNet and its variants with SigLIP ViT-B/16.

	Flowers102				DTD				Aircraft				Pets			
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
DOCTOR	154.49	83.85	67.94	61.75	374.42	75.61	83.55	40.37	695.10	74.86	79.37	15.54	36.51	87.78	62.33	83.65
MSP	154.02	83.99	69.57	61.75	374.63	75.58	83.85	40.37	693.70	75.15	80.97	15.54	35.63	88.30	59.83	83.65
TrustVLM-D	106.43	94.74	27.07	61.75	309.72	87.72	47.87	40.37	675.03	79.38	79.37	15.54	35.02	88.62	58.00	83.65
TrustVLM*-D	0.23	98.10	4.55	99.11	130.86	77.64	75.46	71.34	622.50	75.35	79.68	20.25	34.37	88.95	57.67	83.65
Caltech101				Cars				EuroSAT				UCF101				
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
DOCTOR	30.50	87.30	69.54	85.88	212.51	80.23	74.73	55.74	618.09	70.73	83.87	23.70	169.84	84.01	72.38	58.82
MSP	29.55	87.95	66.38	85.88	209.07	80.93	72.99	55.74	633.47	67.67	87.27	23.70	166.92	84.77	68.98	58.82
TrustVLM-D	22.17	93.16	36.49	85.88	206.48	81.70	70.75	55.74	514.75	87.02	54.70	23.70	144.99	89.67	49.71	58.82
TrustVLM*-D	6.06	89.61	40.91	96.43	205.62	81.41	70.92	56.08	101.58	70.14	74.00	82.43	73.84	85.69	62.81	75.34
Food101				SUN397				Average								
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow				
DOCTOR	94.96	83.59	65.77	73.95	209.19	77.49	78.84	58.81	259.56	80.55	73.83	55.82				
MSP	94.32	83.83	64.86	73.95	206.31	78.16	76.41	58.81	259.76	80.63	73.11	55.82				
TrustVLM-D	76.19	87.05	58.46	73.95	178.75	84.08	57.38	58.81	226.95	87.31	53.98	55.82				
TrustVLM*-D	70.64	87.03	60.27	75.23	112.43	81.19	73.47	71.45	135.81	83.51	59.97	73.13				

Table 13: Misclassification detection performance on fine-grained classification datasets with CLIP ResNet-50.

	ImageNet-A				ImageNet-V2				ImageNet-R			
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
DOCTOR	672.36	66.71	86.78	22.79	256.91	79.22	75.41	51.50	188.11	84.28	68.02	56.36
MSP	673.06	66.68	86.39	22.79	255.65	79.53	74.83	51.50	187.18	84.51	66.21	56.36
TrustVLM-D	629.41	72.99	75.33	22.79	242.91	82.75	62.07	51.50	172.53	87.58	56.44	56.36
TrustVLM*-D	583.73	67.67	85.08	27.99	231.81	77.67	75.42	56.13	166.54	83.35	71.47	60.34
ImageNet-Sketch				ImageNet				Average				
	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow	ACC \uparrow
DOCTOR	446.07	78.27	74.71	32.99	204.36	79.44	73.82	58.18	353.56	77.58	75.75	44.36
MSP	444.12	78.62	73.94	32.99	202.30	79.96	72.03	58.18	352.46	77.86	74.68	44.36
TrustVLM-D	409.65	85.09	52.28	32.99	183.69	84.24	58.35	58.18	327.64	82.53	60.89	44.36
TrustVLM*-D	338.03	71.57	80.89	48.05	168.30	77.91	74.34	65.00	297.68	75.63	77.44	51.50

Table 14: Misclassification detection performance on ImageNet and its variants with CLIP ResNet-50.

and image-to-text similarity differences, as shown in Tab. 15. We find that the relative discriminative power varies by dataset. For example, on Flowers102, image-to-image similarity yields larger differences in 97.68% of cases. On Cars, this number drops to 42.99%, indicating that image-to-text similarity can be more informative on certain datasets.

Influences of weights on the confidence-scoring function. Based on our analysis above, assigning a higher weight to the image-to-image (i-i) similarity term can be beneficial when it provides stronger discriminative signals—for example, on datasets like Flowers102, where visual features are more distinctive. As shown in Tab. 16 and Tab. 17, increasing the i-i weight improves performance on Flowers102 but degrades performance on Cars, where fine-grained classes are better distinguished by image-to-text (i-t) similarity. This observation is consistent with our earlier findings that the relative effectiveness of i-i vs. i-t varies across datasets.

	MSP	TrustVLM-D	ratio where $S_{i-i} > S_{i-t}$
Flower102	85.91	95.05	0.97
DTD	79.81	88.55	0.83
Aircraft	72.62	75.62	0.63
Pets	89.94	90.05	0.70
Caltech101	86.99	90.51	0.98
Cars	81.95	82.05	0.42
EuroSAT	76.39	85.48	0.83
UCF101	85.98	90.21	0.91
Food101	84.51	88.52	0.76
SUN397	77.90	83.80	0.95

Table 15: For each image, we randomly sampled one positive example (same class) and one negative example (different class), and computed both S_{i-i} and S_{i-t} . We then measured the proportion of cases where the S_{i-i} exceeds S_{i-t} . This ratio directly quantifies the relative discriminative strength of the visual features compared to the text-aligned semantic features. The AUROC is reported.

Weight	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
0.2	100.53	88.68	54.41
1.0	77.30	95.05	30.06
2.0	67.19	97.96	12.55

Table 16: Influence of different weights on the confidence-scoring function (TrustVLM-D on Flowers102 with N=16).

Weight	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
0.2	135.21	82.26	71.92
1.0	137.54	82.05	70.62
2.0	148.86	79.82	72.76

Table 17: Influence of different weights on the confidence-scoring function (TrustVLM-D on Cars with N=16).

Prompt	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
A photo of a [class]	77.30	95.05	30.06
A figure of a [class]	73.96	95.30	26.08
An image of a [class]	70.32	95.55	24.90

Table 18: Influence of different text prompts (TrustVLM-D on Flowers102 with N=16).

In our experiments, we find that using equal weights (i.e., weight = 1.0 for both terms) yields strong and stable performance across diverse datasets, without the need for dataset-specific tuning. This simple uniform weighting offers a good balance between robustness and generality, though we agree that adaptive weighting based on dataset characteristics could be a promising future direction.

Influences of different text prompts. In our experiments, we use the default CLIP-style prompt "A photo of a [class]". To assess the robustness of our method to prompt variations, we replaced it with alternative prompts such as "A figure of a [class]" and "An image of a [class]". As shown in the results from Tab. 18 to Tab. 20, the performance remains stable—and in some cases even improves—with these alternative prompts. This suggests that our framework is robust to reasonable prompt variations and does not rely heavily on a specific prompt template. We believe this robustness stems from the way our method estimates confidence based on both image-to-text and image-to-image similarity, rather than being overly sensitive to minor linguistic changes in the input text prompts.

Robustness to spurious correlation. To investigate the robustness of our framework to spurious correlations, we experimented on the Waterbirds dataset (Sagawa et al., 2019). Using N-shot

Prompt	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
A photo of a [class]	562.02	75.62	83.21
A figure of a [class]	576.58	77.08	77.34
An image of a [class]	566.30	77.41	80.70

Table 19: Influence of different text prompts (TrustVLM-D on Aircraft with N=16).

Prompt	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
A photo of a [class]	11.11	90.51	47.27
A figure of a [class]	9.42	92.71	42.39
An image of a [class]	7.39	93.36	41.10

Table 20: Influence of different text prompts (TrustVLM-D on Caltech101 with N=16).

	AURC \downarrow	AUROC \uparrow	FPR95 \downarrow
MSP	76.73	76.65	84.35
TrustVLM-D	70.18	79.80	76.57

Table 21: Robustness to spurious correlation on Waterbirds dataset.

samples from the (spurious-biased) training split to build our visual prototypes, TrustVLM-D still outperforms MSP, although the gap narrows. We attribute this to a domain shift introduced by the spurious correlation between training prototypes and test images. We then select N-shot samples from the testing data to calculate visual prototypes and evaluate on the remaining test data. As shown in Tab. 21, without a domain shift between visual prototypes and testing data, our TrustVLM-D significantly outperforms the baseline. This confirms that, even under pronounced spurious correlations, our method’s reliance on complementary embedding spaces can robustly distinguish correct from incorrect predictions, so long as prototype and evaluation domains align.

Comparison of different auxiliary vision encoders. DINOv2’s strong performance can be attributed to a combination of training methodology and training data. DINOv2 uses a self-distillation without labels framework with ViT backbones, encouraging the model to learn semantically rich and spatially coherent features. This typically results in embeddings that generalize well across diverse downstream tasks. DINOv2 is trained on a large and diverse dataset without human-annotated labels, which helps it capture generic visual patterns useful across many domains. We observe that on fine-grained datasets like Pets and Cars, MoCo v2 and CLIP-I sometimes outperform DINOv2. This suggests that CLIP-I, trained with image-text alignment, may emphasize semantic-level features that are more aligned with class labels defined by textual concepts (e.g., specific car models or pet breeds). MoCo v2, trained with contrastive learning on ImageNet, might preserve low-level visual cues better than DINOv2, which can help in datasets where subtle details (e.g., fur texture, head shape) are critical for class discrimination. These differences imply that each vision encoder has different feature biases, depending on what features they emphasize in their embedding space. DINOv2 is strong on semantic abstraction and global structure. CLIP-I is strong on semantic alignment with language. MoCo v2 is strong on local patterns and fine-grained visual features. This suggests that the choice of the auxiliary vision encoder can impact performance in a dataset-dependent way, and a promising direction is to adaptively choose or fuse multiple encoders depending on the domain characteristics.

Incorporating more than one auxiliary vision encoder. We incorporate both CLIP-I and DINOv2 as auxiliary vision encoders for experiments. Specifically, we construct two separate sets of visual prototypes—one from each encoder—and compute two image-to-image similarity scores, which are then summed to obtain the final confidence score. Our experiments show that combining multiple vision encoders improves misclassification detection performance in most cases. For example, on Flowers102, the combined model achieves 74.21 on AURC, 95.94 on AUROC, and 23.60 on FPR95, all better than using either CLIP-I or DINOv2 alone. Similarly, on UCF101, it achieves 104.26 on AURC, 91.04 on AUROC, and 45.14 on FPR95, again outperforming single-encoder baselines. These results suggest that different vision encoders capture complementary visual features, and combining them leads to more robust and reliable confidence estimation. This points to an exciting direction

1080 for future work — further exploring encoder fusion strategies for enhanced misclassification and
 1081 uncertainty detection.

1082 **Comparison with large vision-language models (LVLMs) for confidence estimation.** We con-
 1083 ducted experiments using Qwen2.5-VL-3B-Instruct (Bai et al., 2025) to evaluate whether it can assess
 1084 the validity of predictions made by a custom VLM. For each test image, we provided the following
 1085 prompt:

1086 "You are given an image and a predicted label from a vision-language model.

1088 Predicted label: "{predicted_label}"

1089 Please answer the following: On a scale from 0 to 100, how confident are you that this label is
 1090 correct? (0 = not confident at all, 100 = completely confident)".

1091 We find that Qwen2.5-VL produces reasonable confidence estimates. On the AUROC metric, it
 1092 achieves 73.05 on Flowers102, 71.20 on Cars, 72.62 on UCF101, and 82.77 on Caltech101. These
 1093 results are promising and demonstrate that LVLMs can serve as an alternative way to estimate
 1094 prediction confidence. However, our proposed framework still outperforms Qwen2.5-VL across
 1095 all datasets, highlighting the advantage of our tailored design for reliable confidence estimation.
 1096 Moreover, our method is more lightweight and data-efficient, requiring neither large-scale instruction
 1097 tuning nor expensive inference. This experiment validates the potential of LVLMs in this space and
 1098 opens up exciting directions for future research, such as integrating LVLM-based reasoning into
 1099 confidence estimation pipelines.

1100 **Comparison with Monte Carlo dropout and data augmentation for confidence estimation.**
 1101 We first explored Monte Carlo (MC) Dropout (Gal & Ghahramani, 2016) for estimating epistemic
 1102 uncertainty. However, the CLIP ViT-B/16 model does not include dropout layers in its transformer
 1103 blocks by default. To enable MC Dropout, we inserted dropout into the MLP and attention layers
 1104 and performed 64 stochastic forward passes. We then computed uncertainty using the variance of the
 1105 predicted class probabilities. MC Dropout showed limited effectiveness in detecting misclassifications
 1106 in our experiments. For example, on the Flowers102 dataset, it achieved an AURC of 408.38, AUROC
 1107 of 47.65, and FPR95 of 95.72—significantly worse than our proposed method and other baselines.
 1108 On UCF101, the results were similarly poor: AURC 510.05, AUROC 42.54, and FPR95 97.54.
 1109 We hypothesize that this degradation stems from two issues: (1) CLIP’s pretrained transformer
 1110 architecture is not optimized for stochastic perturbations, and inserting dropout disrupts its learned
 1111 representations; (2) MC Dropout’s predictive variance is not well-calibrated in high-dimensional
 1112 vision-language settings, making it less effective for uncertainty estimation in multimodal models
 1113 like CLIP.

1114 We then experimented with using data augmentation to estimate aleatoric uncertainty. Specifically,
 1115 we generated 64 augmented views of each input image using standard techniques such as random
 1116 rotation, translation, resized cropping, and horizontal flipping. We then computed the variance of the
 1117 predicted class probabilities across these augmented views as a measure of uncertainty. However,
 1118 this approach also did not perform well in detecting misclassifications in our experiments. For
 1119 example, on the Flowers102 dataset, it achieved an AURC of 314.75, AUROC of 52.89, and FPR95
 1120 of 96.06—significantly worse than our proposed method and other baselines. On UCF101, the results
 1121 were similarly poor, with AURC of 415.78, AUROC of 43.36, and FPR95 of 97.47. We believe the
 1122 limited performance stems from two main challenges: (1) Data augmentation primarily captures
 1123 input noise (aleatoric uncertainty), which does not sufficiently explain the model’s confidence on
 1124 out-of-distribution or hard in-distribution examples; (2) CLIP’s zero-shot predictions tend to be
 1125 highly stable across augmented views, which can lead to low measured variability even on incorrect
 1126 predictions, thus reducing the effectiveness of augmentation-based uncertainty estimation.

1127 G DISCUSSION ON THE POTENTIAL REASONS BEHIND THE ROBUSTNESS OF 1128 TRUSTVLM

1131 In multimodal learning, if one modality is significantly less reliable or noisy, a naive ensemble of
 1132 confidence scores could allow the noisy signal to degrade the high-quality signal. In our experiments,
 1133 we showed that TrustVLM remains robust even under severely mismatched or imbalanced modality
 pairs. For severely mismatched modality pairs, we simulate scenarios where the visual prototypes

1134 are intentionally degraded while the image-text is well aligned. This creates a controlled mismatch
 1135 between image embeddings and visual prototypes. We evaluate TrustVLM under two visual prototype
 1136 degradation scenerios: synthetic-real shift (Tab. 9) and distribution shift (Tab. 10). These results
 1137 demonstrate that TrustVLM’s ensemble score remains stable even under severely mismatched modal-
 1138 ity conditions. Results in Tab. 15 demonstrate that TrustVLM consistently outperforms baselines
 1139 under imbalanced modality pairs where one modality is inherently more discriminative than the other.
 1140 Below, we discuss the potential reasons behind this behavior.

1141 **S_{i-i} acts as a verification signal.** S_{i-i} is explicitly conditioned on the VLM’s prediction \hat{y} . If \hat{y} is
 1142 wrong, then E_x is compared to the wrong class prototype $P_{\hat{y}}$, which is typically far in the embedding
 1143 space and S_{i-i} tends to be low. If \hat{y} is correct, then E_x is compared to the right prototype $P_{\hat{y}}$, which
 1144 is close and S_{i-i} tends to be high. Thus, S_{i-i} behaves as a consistency check on S_{i-t} . When both
 1145 S_{i-i} and S_{i-t} are high (Agreement), κ increases and the prediction appears trustworthy. When one
 1146 is high and the other is low (Disagreement), κ decreases and the prediction is flagged as risky. This
 1147 is quite different from ensembling arbitrary scores from unrelated modalities (like tactile–thermal),
 1148 where there is no such *verify the predicted class structure*.

1149 **MisD metrics depend on ranking, not absolute values.** MisD metrics (AUROC, AURC, FPR@95)
 1150 depend on relative ranking of κ between correct and wrong predictions, not the absolute scale. As
 1151 long as, on average, $\mathbb{E}[S_{i-i} \mid \text{correct}] \gtrsim \mathbb{E}[S_{i-i} \mid \text{wrong}]$, adding S_{i-i} to S_{i-t} tends to improve or
 1152 preserve the ranking. Correct predictions receive a positive contribution from S_{i-i} , while wrong
 1153 predictions receive little or even negative contribution. This widens the separation between the score
 1154 distributions of correct and incorrect predictions, thereby improving MisD performance.

1155 **Averaging over prototypes mitigates severe mismatch.** Prototypes are averages over N-shot
 1156 embeddings per class. Thus, even if some training images are noisy, or the auxiliary encoder has a
 1157 domain bias, the class prototype P_c lies near the center of the class cluster, not at single outlier points.
 1158 This means for a correct test image, similarity to $P_{\hat{y}}$ is typically higher than to other prototypes, even
 1159 under shift. For a wrong prediction, similarity to the wrong class prototype tends to be much lower.
 1160 So even in the presence of moderate mismatch, S_{i-i} retains the *correct > wrong* tendency at the class
 1161 level, which is exactly what the MisD ranking needs.

1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187