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ABSTRACT

Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning
visual and textual modalities, enabling a wide range of applications in multimodal
understanding and generation. While they excel in zero-shot and transfer learning
scenarios, VLMs remain susceptible to misclassification, often yielding confident
yet incorrect predictions. This limitation poses a significant risk in safety-critical
domains, where erroneous predictions can lead to severe consequences. In this
work, we introduce TrustVLM, a training-free framework designed to address the
critical challenge of estimating when VLM’s predictions can be trusted. Motivated
by the observed modality gap in VLMs and the insight that certain concepts are
more distinctly represented in the image embedding space, we propose a novel
confidence-scoring function that leverages this space to improve misclassification
detection. We rigorously evaluate our approach across 17 diverse datasets, em-
ploying 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance,
with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in
FPR95 compared to existing baselines. By improving the reliability of the model
without requiring retraining, TrustVLM paves the way for safer deployment of
VLMs in real-world applications. The code is available in Supplementary Material.

1 INTRODUCTION

Recent advances in Vision-Language Models (VLMs) have substantially transformed the field
of multimodal learning by integrating visual and textual information within a unified framework.
Models such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) have been widely adopted
for diverse tasks, including zero-shot classification (Zhou et al., 2022), cross-modal retrieval (Ma
et al., 2022), and image captioning (Barraco et al., 2022). Trained on large-scale image-text datasets
scraped from the web, these models learn rich and transferable representations. However, despite their
substantial capabilities, VLMs often encounter critical limitations when applied in real-world settings.
One pressing concern is misclassification, where the model produces a confident, yet incorrect,
prediction that may appear both semantically plausible and visually aligned with the input. While
much of the existing research has focused on improving the accuracy of VLMs outputs, the equally
important issue of trustworthiness, that is, determining whether a prediction should be accepted or
flagged for human review, remains largely underexplored. This challenge is particularly consequential
in safety-critical domains (Sun et al., 2024; Dong et al., 2023) such as autonomous driving, medical
diagnostics, and surveillance, where erroneous predictions can lead to severe outcomes.

The challenge of misclassification detection (MisD) has been widely studied in the context of unimodal
vision models, with numerous approaches proposed, including confidence-based scoring (Hendrycks
& Gimpel, 2017; Jiang et al., 2018), outlier exposure (Cheng et al., 2024; Zhu et al., 2023; Liu et al.,
2025), and confidence learning (Corbière et al., 2019; Moon et al., 2020). However, these approaches
often overlook the unique complexities of multimodal models, where the interaction between visual
inputs and textual semantics introduces additional sources of uncertainty (Dong et al., 2025; 2024a).
Recently, Nguyen et al. (Nguyen et al., 2025) proposed utilizing human-level concepts to detect
misclassification of VLMs. However, their approach necessitates the construction of numerous
concepts for each class through the use of large language models, which can be a demanding process.
Although MisD and out-of-distribution (OOD) detection (Dong et al., 2024b; Li et al., 2024) share
the similar goal of identifying problematic inputs for a trained model, they target fundamentally
distinct challenges. MisD focuses primarily on identifying in-distribution samples that are incorrectly
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“a photo of a seaplane”

“a photo of a dog” 0.73

0.440.16

0.29

(a) CLIP embedding space (b) Cosine similarity between image and text with CLIP embedding
Figure 1: (a) CLIP’s image and text embeddings are located in two completely separate regions of
the embedding space. (b) The concept of "dog" and "seaplane" is more distinguishable in the image
embedding space than in the text embedding space. When using image-to-text similarity, the score
difference between the concepts “dog” and “seaplane” is only 0.13 (0.29 – 0.16), making them less
separable. In contrast, using image-to-image similarity yields a larger difference of 0.29 (0.73 – 0.44),
indicating better separation between concepts within the image embedding space and potentially
more reliable confidence estimation.

assigned to one of the known classes, often due to their proximity to decision boundaries or atypical
feature representations within the learned data manifold. In contrast, OOD detection focuses on
identifying inputs from entirely unseen distributions, representing novel or irrelevant stimuli rather
than misclassifications within known classes. Consequently, methods tailored for one task often
perform poorly on the other (Jaeger et al., 2022; Zhu et al., 2023).

To address the specific challenge of misclassification detection in VLMs, we propose TrustVLM –
a training-free framework for evaluating the reliability of VLM predictions. Traditional zero-shot
classification with VLMs relies primarily on the cosine similarity between text and image embeddings,
often overlooking the structure and discriminative capacity of the image embedding space. This
is a critical limitation, as previous work has shown a modality gap in VLMs like CLIP, where
image and text embeddings reside in distinct regions of the shared representation space (Liang et al.,
2022) (see Fig. 1). In particular, some concepts are more distinguishable in the image embedding
space than in the text embedding space (Fig. 1 (b)). Building on this insight, TrustVLM leverages
additional information from the image embedding space to design a novel confidence-scoring function
for improved misclassification detection. Specifically, our framework employs an auxiliary vision
encoder to store visual prototypes for each class and assess prediction reliability through image-to-
image similarity with these prototypes. Beyond misclassification detection, these visual prototypes
can also improve classification results on fine-grained datasets and be fine-tuned for improved
downstream performance.

We conduct a rigorous evaluation of TrustVLM across 17 diverse datasets, 4 architectures, and 2
distinct VLMs. Our method achieves state-of-the-art performance in misclassification detection, with
improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 over existing
baselines. In addition, the use of visual prototypes improves the accuracy of fine-grained classification,
giving an average improvement of 5.65%. The primary contributions of this work are as follows:

• We provide an empirical analysis of the limitations of existing MisD paradigms in VLMs, high-
lighting the value of leveraging information from the image embedding space.

• We propose TrustVLM, a training-free framework that combines image-to-text and image-to-image
similarity to compute a robust confidence score for improved MisD.

• We show that visual prototypes not only support more reliable confidence estimation, but also
improve fine-grained classification accuracy, and can optionally be fine-tuned for further gains.

• We extensively validate TrustVLM across datasets, model architectures, and VLMs, demonstrating
its generality and effectiveness. Our source code will be made publicly available to support future
research in MisD for VLMs.
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2 PRELIMINARIES

Vision-Language Models typically comprise an image encoder that projects high-dimensional
images into a low-dimensional embedding space and a text encoder that embeds natural language
into a corresponding text embedding space. A prominent example is CLIP (Radford et al., 2021),
trained on 400 million image-text pairs, which employs a contrastive loss to align image and text
embeddings. Specifically, given a batch of image-text pairs, CLIP maximizes the cosine similarity
for the matched pairs while minimizing it for unmatched ones. During inference, the class names
of a target dataset are embedded using the text encoder with a prompt of the form “a photo of a
[CLASS]”, where [CLASS] is replaced with specific class names. The text encoder then generates
text embeddings tc for each class c ∈ Y = {1, 2, . . . , C}, and the prediction probability for an input
image x with embedding fx is computed as:

p(y = ŷ|x) = exp (cos (fx, tŷ) /τ)∑C
c=1 exp (cos (fx, tc) /τ)

, (1)

where cos(·, ·) denotes cosine similarity and τ is a temperature parameter. The final prediction for x
is ŷ = argmaxy∈Y p(y|x), where ŷ can be either correctly classified or misclassified.

Misclassification Detection, also known as failure detection (Corbière et al., 2019), serves as a critical
safeguard for the reliable deployment of machine learning models in real-world applications. Its
primary objective is to distinguish between correctly and incorrectly classified predictions, typically
by leveraging confidence scores. Formally, let κ denote a confidence-scoring function that quantifies
the confidence of the model in its prediction. Given a threshold δ ∈ R+, a decision function g can be
defined to detect misclassifications based on whether the confidence score exceeds this threshold. For
a given input x:

g(x) =

{
correct if κ(x) ≥ δ,

misclassified otherwise.
(2)

Baselines for MisD of VLMs. Given the prediction from Eq. (1), Maximum Softmax Probabil-
ity (Hendrycks & Gimpel, 2017) can be readily computed as a confidence-scoring function. For
a given input x, MSP is defined as κ(x) = maxy∈Y p(y|x), where p(y|x) denotes the predicted
probability for class y. Similarly, various confidence scoring functions can be adopted from previous
work on OOD detection, such as MaxLogit (Hendrycks et al., 2022), Energy (Liu et al., 2020),
Entropy (Chan et al., 2021), and Maximum Concept Matching (MCM) (Ming et al., 2022).

3 METHODOLOGY

3.1 LIMITATIONS OF THE BASELINES

Consistent with findings from previous work on misclassification detection research (Jaeger et al.,
2022; Zhu et al., 2023), the simple MSP often outperforms more sophisticated OOD detection
methods, as shown in Tab. 1. This observation suggests that advanced OOD detection methods
frequently struggle to effectively capture misclassification errors in VLMs, underscoring the need
to develop novel confidence-scoring functions tailored to this setting. Furthermore, the standard
paradigm for zero-shot classification with VLM is mainly based on computing the cosine similarity
between text and image embeddings (i.e., image-to-text similarity), as defined in Eq. (1). However,
this approach often overlooks important characteristics of the image embedding space, such as
image-to-image similarity. As demonstrated by Liang et al. (Liang et al., 2022), a modality gap exists
within the representation space of VLMs; for example, the CLIP image and text embeddings reside in
distinct regions of the joint embedding space, as illustrated in Fig. 1 (a). Consequently, relying solely
on image-to-text similarity for zero-shot classification and misclassification detection may neglect
critical information, potentially leading to suboptimal performance. For example, Fig. 1 (b) provides
a concrete example using CLIP embeddings for the concepts ’dog’ and ’seaplane’. In this case, the
separation margin based on image-to-text similarity is only 0.13, whereas image-to-image similarity
could yields a substantially larger margin of 0.29, indicating that the two concepts are more clearly
distinguishable in the image embedding space.

This insight has practical implications. When an image-to-text prediction is incorrect – for instance,
classifying an image of a dog as a ’seaplane’ – the image-to-image similarity between the input image

3
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Figure 2: The proposed TrustVLM framework comprises three main steps. Initially, visual prototypes
for each class are generated and stored using a pre-trained vision encoder. Subsequently, the VLMs
perform zero-shot classification and yield an image-to-text similarity score, Si−t. In the third step,
the initial prediction is verified using image-to-image similarity, providing an additional confidence
score, Si−i. Finally, these two scores are combined to determine the overall prediction confidence.

and a visual prototype for ’seaplane’ would likely be low, helping mitigate overconfidence. Con-
versely, for correct predictions (e.g., classifying a dog image as ’dog’), the image-to-image similarity
with the corresponding prototype would generally be high, thereby reinforcing the prediction with
greater confidence. Therefore, exploring image-to-image similarity is crucial for designing effective
confidence-scoring functions to enhance misclassification detection performance in VLMs.

3.2 PROPOSED TRUSTVLM FRAMEWORK

Inspired by the modality gap phenomenon observed in VLMs and the enhanced distinguishability
of certain concepts within the image embedding space, we propose TrustVLM. Our framework
leverages information from the image embedding space to design the confidence-scoring function.
In addition to the conventional confidence score derived from image-to-text similarity (calculated
via Eq. (1)), TrustVLM incorporates a second score derived from image-to-image similarity and
computed using an auxiliary vision encoder. These two scores are complementary, and their effective
combination leads to more robust misclassification detection. The auxiliary vision encoder can be the
original CLIP image encoder or other pre-trained vision models, such as MoCo v2 or DINOv2. The
selection of a more powerful auxiliary vision encoder can further improve misclassification detection
performance.

Integrate Vision Encoder for Misclassification Detection. Our TrustVLM framework operates in
three main steps, as shown in Fig. 2. The first step involves generating and storing visual prototypes.
Specifically, for each class c, embeddings are extracted from N -shot samples in the training data
using a pre-trained vision encoder, E (e.g., the CLIP image encoder, MoCo v2, or DINOv2). The
prototype embedding for class c, Pc, is then computed by averaging these N embeddings. These
class prototypes {Pc} are subsequently stored. In the second step, for a given input image x, a
zero-shot prediction ŷ is obtained using the VLM, as defined in Eq. (1), where the prediction ŷ could
be either correct or wrong. Concurrently, an initial confidence score, Si−t = maxy∈Y p(y|x), is
derived from the image-to-text similarity. The third step focuses on generating a complementary
image-to-image confidence score. An embedding Ex of the input image x is extracted using the
same vision encoder E employed in the first step. Since in the second step, the VLM believes x to be
class ŷ, we calculate the cosine similarity between Ex and Pŷ as the image-to-image similarity score
Si−i = Ex ·Pŷ . This Si−i score is expected to be low if the prediction ŷ is incorrect, as Ex would be
compared against an inappropriate prototype, thereby helping to mitigate overconfidence. Conversely,
a correct prediction ŷ should result in a high Si−i, reinforcing the prediction’s reliability. Finally, this
verification mechanism yields the combined confidence score for input x is κ(x) = Si−t + Si−i.

Integrate Vision Encoder for Fine-grained Classification. Visual prototypes and image-to-image
similarity can also be utilized to enhance the fine-grained classification capabilities of VLMs. Given
the visual prototypes {Pc} for each class c ∈ Y = {1, 2, . . . , C}, the probability of predicting class
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ŷ for an input image x (with embedding Ex), based on image-to-image similarity, is computed as:

p(y = ŷ|x) = exp (cos (Ex, Pŷ) /τ)∑C
c=1 exp (cos (Ex, Pc) /τ)

. (3)

Combining Eq. (1) and Eq. (3), we get the ensemble prediction from both image-to-text and image-
to-image similarity as:

p(y = ŷ|x) = exp (cos (fx, tŷ) /τ)∑C
c=1 exp (cos (fx, tc) /τ)

+
exp (cos (Ex, Pŷ) /τ)∑C
c=1 exp (cos (Ex, Pc) /τ)

. (4)

For this variant, termed TrustVLM*, the confidence-scoring function for a given input x is κ(x) =
maxy∈Y p(y|x) + Si−i.

Visual Prototypes with Fine-tuning. Visual prototypes extracted from pre-trained vision encoders
are typically fixed by default. In this section, we introduce TrustVLM*(F) to treat these visual
prototypes as learnable parameters initialized with their pre-computed values. These parameters
are subsequently fine-tuned using stochastic gradient descent. The rationale is that updating the
visual prototypes can enhance affinity estimation, thereby enabling a more accurate calculation
of cosine similarities between test and training images, as demonstrated by (Zhang et al., 2022).
Specifically, we freeze the parameters of the VLMs and the vision encoder, while fine-tuning only the
visual prototypes via a cross-entropy loss for 10 epochs with a learning rate of 0.001. We perform
fine-tuning using the N-shot labeled samples from Step 1, where we compute predictions via Eq. (4)
and optimize the cross-entropy loss between these predictions and the ground-truth labels. Finally,
these learned prototypes replace the original fixed prototypes {Pc} in Eq. (4). This fine-tuning step is
lightweight. For example, on Flowers102 (Nilsback & Zisserman, 2008), it takes only 2 minutes on a
single GeForce RTX 3090 GPU.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. We evaluate our framework on a wide variety of 17 datasets. Fine-grained Classification
Datasets, including 10 publicly available image classification datasets: Caltech101 (Fei-Fei et al.,
2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback &
Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao
et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019) and UCF101 (Soomro et al.,
2012). These datasets constitute a comprehensive benchmark, which covers a diverse set of vision
tasks including classification on generic objects, scenes, actions and fine-grained categories, as well
as specialized downstream tasks such as recognizing textures and satellite imagery. ImageNet and
Its Variants, including ImageNet (Deng et al., 2009), ImageNetV2 (Recht et al., 2019), ImageNet-
Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al.,
2021a), with distribution shifts in image style, data domains, etc. We also evaluate our framework on
CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) to compare with ORCA (Nguyen et al., 2025).

Implementation Details. We utilize CLIP ViT-B/16 (Dosovitskiy et al., 2020) backbone to perform
zero-shot prediction on the benchmarks and calculate the related performance metrics. We also
compare with ORCA (Nguyen et al., 2025) on CLIP ResNet-101 (He et al., 2016) and ViT-B/32
following its setup. To demonstrate the generalization of the proposed framework to different VLMs,
we further evaluate on CLIP ResNet-50 and SigLIP (Zhai et al., 2023) ViT-B/16. For the auxiliary
vision encoder, we use both the original CLIP image encoder as well as other pre-trained models
such as DINOv2 (Oquab et al., 2023) and MoCo v2 (Chen et al., 2020). We use 16-shot samples
from the training data to calculate the prototypes by default and set the temperature τ to 0.01.

Evaluation Metrics. AURC. The area under the risk-coverage curve (AURC) (Geifman & El-Yaniv,
2017) depicts the error rate which is computed by using samples whose confidence is higher than
some confidence thresholds. AUROC. The area under the receiver operating characteristic curve
(AUROC) (Davis & Goadrich, 2006) depicts the relationship between true positive rate (TPR) and
false positive rate (FPR). FPR95. The FPR at 95% TPR denotes the probability that a misclassified
example is predicted as a correct one when the TPR is as high as 95%. ACC. Test accuracy (ACC) is
also an important metric.
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Flowers102 DTD Aircraft Pets
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

MaxLogit 167.14 74.92 81.61 67.36 395.13 69.63 85.23 44.39 731.25 55.73 93.77 23.85 48.75 75.37 68.59 88.23
Energy 194.67 69.00 91.93 67.36 433.25 64.82 90.01 44.39 780.11 45.48 97.71 23.85 56.23 71.90 70.67 88.23
Entropy 117.27 84.88 63.48 67.36 319.02 79.03 77.05 44.39 575.71 73.12 83.96 23.85 21.91 89.31 53.35 88.23
MCM 153.63 78.22 71.02 67.36 333.43 78.16 78.45 44.39 583.28 72.58 81.65 23.85 44.95 77.03 64.90 88.23

DOCTOR 112.82 85.82 62.48 67.36 314.37 79.66 76.51 44.39 575.53 73.05 83.84 23.85 21.08 89.92 55.20 88.23
MSP 112.27 85.91 63.98 67.36 313.43 79.81 77.36 44.39 576.97 72.62 85.61 23.85 21.04 89.94 52.19 88.23

TrustVLM-C 101.42 88.69 54.91 67.36 302.18 82.52 67.27 44.39 563.77 75.20 81.51 23.85 20.93 89.89 51.73 88.23
TrustVLM-M 103.68 88.29 53.42 67.36 298.17 83.16 65.50 44.39 574.57 73.22 84.31 23.85 20.41 90.38 48.27 88.23
TrustVLM-D 77.30 95.05 30.06 67.36 268.71 88.55 44.10 44.39 562.02 75.62 83.21 23.85 20.69 90.05 50.81 88.23

TrustVLM*-D 0.52 95.96 13.04 99.07 124.15 78.39 72.14 71.57 554.12 75.36 83.05 24.60 20.05 90.30 49.07 88.28
TrustVLM*(F)-D 0.41 98.26 7.69 98.42 96.45 80.30 70.96 74.76 544.40 76.85 78.63 24.90 20.05 90.30 49.07 88.28

Caltech101 Cars EuroSAT UCF101
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

MaxLogit 53.72 52.43 94.55 93.31 259.81 61.94 89.58 65.61 522.56 59.42 87.79 42.10 258.47 61.85 91.41 65.21
Energy 59.26 48.81 96.36 93.31 304.90 54.85 93.89 65.61 568.57 53.44 88.30 42.10 299.84 55.38 94.83 65.21
Entropy 15.79 82.47 79.39 93.31 145.61 79.83 75.76 65.61 389.07 72.18 83.16 42.10 130.10 83.97 70.52 65.21
MCM 45.55 61.00 83.54 93.31 248.87 63.77 85.97 65.61 416.37 71.28 81.18 42.10 188.00 74.14 75.47 65.21

DOCTOR 12.89 86.06 76.36 93.31 138.00 81.50 73.66 65.61 368.77 74.43 81.69 42.10 123.41 85.67 65.81 65.21
MSP 12.23 86.99 67.88 93.31 136.27 81.95 72.25 65.61 355.66 76.39 80.65 42.10 122.44 85.98 64.89 65.21

TrustVLM-C 13.25 86.81 70.30 93.31 129.45 83.67 67.73 65.61 322.52 82.90 55.73 42.10 111.95 88.69 55.93 65.21
TrustVLM-M 10.81 88.97 64.24 93.31 134.25 82.53 72.29 65.61 320.12 83.03 56.32 42.10 114.60 87.93 58.81 65.21
TrustVLM-D 11.11 90.51 47.27 93.31 137.54 82.05 70.62 65.61 303.79 85.48 53.52 42.10 107.13 90.21 50.68 65.21

TrustVLM*-D 5.69 89.48 35.62 97.04 137.97 81.73 71.25 65.83 72.96 74.87 73.50 83.56 65.26 86.23 62.93 77.11
TrustVLM*(F)-D 2.61 93.29 35.71 97.16 132.54 82.58 68.70 66.02 54.35 77.31 72.48 85.69 55.81 87.26 66.06 78.35

Food101 SUN397 Average
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

MaxLogit 67.81 75.81 78.13 83.66 278.17 62.77 90.46 62.57 278.28 64.99 86.11 63.63
Energy 76.05 72.33 84.69 83.66 304.50 58.34 93.47 62.57 307.74 59.44 90.19 63.63
Entropy 55.80 83.76 63.73 83.66 194.33 75.19 80.97 62.57 196.46 80.37 73.14 63.63
MCM 60.90 79.90 67.23 83.66 242.95 69.09 83.62 62.57 231.79 72.52 77.30 63.63

DOCTOR 54.99 84.39 61.11 83.66 184.41 77.35 77.37 62.57 190.63 81.78 71.40 63.63
MSP 54.80 84.51 59.73 83.66 182.39 77.90 76.42 62.57 188.75 82.20 70.10 63.63

TrustVLM-C 36.02 88.34 57.67 83.66 171.89 80.39 69.20 62.57 177.34 84.71 63.20 63.63
TrustVLM-M 40.92 86.65 59.01 83.66 172.98 79.83 71.63 62.57 179.05 84.40 63.38 63.63
TrustVLM-D 36.18 88.52 55.96 83.66 156.16 83.80 58.44 62.57 168.06 86.98 54.47 63.63

TrustVLM*-D 35.01 88.49 57.47 84.10 104.25 82.31 72.82 72.18 112.00 84.31 59.09 76.33
TrustVLM*(F)-D 34.16 88.79 56.19 84.15 103.05 83.43 72.68 71.33 104.38 85.84 57.82 76.91

Table 1: Misclassification detection performance on fine-grained classification datasets with CLIP
ViT-B/16, where -C, -M, and -D are with CLIP-I, MoCo v2, and DINOv2 as auxiliary vision encoders.
AURC is multiplied by 103 following previous work Zhu et al. (2023).

Baselines. We compare our method against well-established confidence-scoring functions, includ-
ing MaxLogit (Hendrycks et al., 2022), Energy (Liu et al., 2020), Entropy (Chan et al., 2021),
MCM (Ming et al., 2022), MSP (Hendrycks & Gimpel, 2017), and DOCTOR (Granese et al., 2021),
where DOCTOR fully exploits all available information contained in the soft-probabilities of the
predictions to estimate the confidence. We also compare with the most recent concept-based method
ORCA (Nguyen et al., 2025).

4.2 RESULTS

MisD Results on Fine-grained Classification Datasets. As presented in Tab. 1, the simple MSP
baseline consistently surpasses prominent OOD detection methods in MisD, including MaxLogit,
Energy, and MCM. This indicates that current OOD detection techniques are limited in capturing
misclassification errors effectively, highlighting a promising direction for future research: the devel-
opment of confidence estimation methods that integrate OOD detection and MisD within a unified
framework. Incorporating an image-to-image similarity confidence score in TrustVLM significantly
enhances MisD performance, irrespective of the vision encoder employed (e.g., CLIP-I, MoCo v2,
or DINOv2), thereby demonstrating the proposed framework’s versatility. Notably, TrustVLM-D
utilizing the DINOv2 encoder yields the best overall performance, achieving average improvements
of 20.69% in AURC, 4.78% in AUROC, and 15.63% in FPR95 relative to the strongest baseline.

When visual prototypes are employed for zero-shot classification (TrustVLM*-D), the accuracy
improves substantially by an average of 12.7%. This enhanced accuracy reduces the overall risk
(error rate) across all coverage levels; consequently, the Area Under the Risk-Coverage curve (AURC)
also decreases markedly, by an average of 56.06% compared to TrustVLM-D. However, its AUROC
and FPR95 metrics are marginally lower than those of TrustVLM-D. A potential explanation for
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ImageNet-A ImageNet-V2 ImageNet-R
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

MaxLogit 387.23 64.16 86.59 50.08 254.37 68.58 85.22 61.20 138.25 72.98 79.48 74.19
Energy 421.78 59.15 90.00 50.08 278.89 64.64 89.26 61.20 160.84 67.39 86.55 74.19
Entropy 298.23 75.46 77.47 50.08 189.58 77.57 79.90 61.20 79.64 85.80 63.13 74.19
MCM 341.67 71.99 78.27 50.08 236.32 71.62 80.38 61.20 109.67 80.49 64.73 74.19

DOCTOR 290.78 76.67 76.93 50.08 181.67 79.32 73.67 61.20 75.33 87.14 60.81 74.19
MSP 290.46 76.70 77.06 50.08 180.32 79.72 71.82 61.20 74.36 87.50 59.66 74.19

TrustVLM-D 274.46 79.17 70.27 50.08 176.82 81.27 66.02 61.20 72.10 88.03 57.70 74.19
TrustVLM*-D 266.48 75.94 77.67 53.02 172.65 77.93 74.92 63.92 71.72 87.50 60.03 74.62

TrustVLM*(F)-D 264.36 77.09 76.90 52.61 176.13 77.71 72.98 63.98 71.15 87.42 60.37 74.83
ImageNet-Sketch ImageNet Average

AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑
MaxLogit 422.41 65.28 87.25 45.67 228.56 65.95 85.80 66.68 286.16 67.39 84.87 59.56

Energy 472.36 58.03 92.25 45.67 253.77 61.61 89.95 66.68 317.53 62.16 89.60 59.56
Entropy 313.83 78.37 74.27 45.67 149.69 78.26 78.01 66.68 206.19 79.09 74.56 59.56
MCM 400.13 70.10 76.52 45.67 206.72 69.73 81.27 66.68 258.90 72.79 76.23 59.56

DOCTOR 300.85 80.49 70.75 45.67 140.70 80.48 74.46 66.68 197.87 80.82 71.32 59.56
MSP 299.57 80.74 70.51 45.67 138.99 81.00 72.74 66.68 196.74 81.13 70.36 59.56

TrustVLM-D 280.72 84.35 58.99 45.67 132.10 83.38 64.04 66.68 187.24 83.24 63.40 59.56
TrustVLM*-D 264.51 74.74 84.77 53.13 126.31 78.82 77.43 70.58 180.33 78.99 74.96 63.05

TrustVLM*(F)-D 243.44 73.80 76.90 58.20 129.38 77.33 75.28 71.75 176.89 78.67 72.49 64.27

Table 2: Misclassification detection performance on ImageNet and its variants with CLIP ViT-B/16.

this is that as model accuracy improves, the confidence scores for many correct predictions might
increase significantly. Nevertheless, some correctly classified but inherently “difficult” instances may
still receive lower confidence scores. If the confidence scores of the few remaining misclassifications
become more similar to these "hard but correct" instances, the overlap between the confidence
distributions of misclassifications and correct classifications increases. This makes it harder for the
detector to find a good threshold. Finally, fine-tuning on visual prototypes (TrustVLM*(F)-D) further
enhances performance across all evaluated metrics compared to TrustVLM*-D.
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Figure 3: MisD performance on ImageNet and
its variants using CLIP ViT-B/16, under distribu-
tion shifts defined by prototypes computed exclu-
sively on ImageNet and deployed directly to vari-
ant datasets.

MisD Results on ImageNet and Its Variants.
Tab. 2 presents results from large-scale experi-
ments conducted on ImageNet and its variants.
As the variant datasets solely provide test splits,
N samples per class were selected from these
test sets to compute prototypes, with the re-
maining samples utilized for evaluation. Con-
sistent with the findings in Tab. 1, the simple
MSP baseline consistently outperforms strong
OOD detection methods. Our TrustVLM-D with
DINOv2 encoder demonstrates superior over-
all performance in most cases, achieving aver-
age improvements of 9.5% in AURC, 2.11% in
AUROC, and 6.96% in FPR95 relative to the
strongest baseline. While TrustVLM*-D and
TrustVLM*(F)-D yield significant improvements in ACC and AURC, they adversely affect AUROC
and FPR95 on these large-scale benchmarks. To further evaluate the robustness of our proposed
method to distribution shifts, prototypes were computed using only N samples per class from the
ImageNet training split. These prototypes were then applied directly to the ImageNet variants,
thereby obviating the need to compute variant-specific prototypes. As illustrated in Fig. 3, our method
demonstrates the overall leading performance of all metrics evaluated in this challenging scenario.
Detailed results are provided in Tab. 10.

Comparison with Concept-based Method. We further compare our method against the most recent
ORCA (Nguyen et al., 2025) with CLIP ResNet-101 and ViT-B/32 on CIFAR-10, CIFAR-100, and
EuroSAT. ORCA leverages human-level concepts to detect when and interpret why a model fails. As
shown in Tab. 3, while ORCA generally outperforms the MSP baseline in most cases, our proposed
method demonstrates a significant performance margin over ORCA. Specifically, with the CLIP
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CIFAR-10 CIFAR-100 EuroSAT Average
AUROC↑ FPR95↓ ACC↑ AUROC↑ FPR95↓ ACC↑ AUROC↑ FPR95↓ ACC↑ AUROC↑ FPR95↓ ACC↑

ResNet-101 MSP 85.98 62.98 78.01 80.72 73.40 48.50 61.73 88.98 30.30 76.14 75.12 52.27
ORCA 85.93 62.68 80.60 80.46 72.38 53.11 69.01 86.43 34.76 78.47 73.83 56.16

TrustVLM-D 94.76 26.82 78.01 90.03 39.46 48.50 74.03 66.69 30.30 86.27 44.32 52.27
TrustVLM*-D 90.97 41.88 95.63 82.27 65.52 79.35 72.08 72.15 81.78 81.77 59.85 85.59

ViT-B/32 MSP 88.92 58.66 88.92 81.15 71.09 58.42 76.42 80.24 41.11 82.16 70.00 62.82
ORCA 89.00 52.70 90.00 83.40 67.00 66.50 77.55 71.29 50.00 83.32 63.66 68.83

TrustVLM-D 94.94 31.85 88.92 89.13 45.63 58.42 78.88 69.36 41.11 87.65 48.95 62.82
TrustVLM*-D 94.06 29.58 95.91 84.95 62.99 79.98 74.70 72.77 82.81 84.57 55.11 86.23

Table 3: MisD performance compared with ORCA with CLIP ResNet-101 and ViT-B/32.

Method Aircraft Caltech101 Cars DTD EuroSAT Flowers102 Food101 Pets SUN397 UCF101 Average

CLIP-RN50 15.54 85.88 55.74 40.37 23.70 61.75 73.95 83.65 58.81 58.74 55.81
CoOp (Zhou et al., 2022) 22.20 87.70 61.30 52.20 63.20 81.00 76.30 86.20 63.40 67.00 66.05
Tip-Adapter (Zhang et al., 2022) 23.70 88.80 63.90 54.70 72.50 83.20 76.70 86.40 66.70 72.10 68.87
CuPL (Pratt et al., 2023) 19.59 89.29 57.28 48.64 38.38 65.44 76.94 84.84 62.55 58.97 60.19
TPT (Shu et al., 2022) 17.58 87.02 58.46 40.84 28.33 62.69 74.88 84.49 61.46 60.82 57.66
DMN (Zhang et al., 2024) 20.22 89.09 58.36 50.53 44.94 68.33 74.69 86.29 63.70 64.02 62.02
TDA (Karmanov et al., 2024) 17.61 89.70 57.78 43.74 42.11 68.74 77.75 86.18 62.53 64.18 61.03
ECALP (Li et al., 2025) 21.12 89.94 60.56 54.49 49.09 69.39 76.97 88.20 64.97 66.67 64.14

TrustVLM*-C 29.34 89.98 66.09 60.34 75.11 90.62 74.53 85.94 66.30 72.09 71.03
TrustVLM*-M 19.89 93.27 57.52 65.43 86.85 87.25 74.85 90.22 67.16 73.28 71.57
TrustVLM*-D 20.25 96.43 56.08 71.34 82.43 99.11 75.23 83.65 71.45 75.34 73.13
TrustVLM*(F)-D 27.27 96.59 56.19 74.70 85.43 98.50 75.17 83.76 70.71 76.90 74.52

Table 4: Classification results on fine-grained datasets with CLIP ResNet-50.

ResNet-101 backbone, our approach achieves maximum improvements over ORCA of 9.57% in
AUROC, 35.86% in FPR95, and 47.02% in ACC. When employing the CLIP ViT-B/32 backbone,
these respective maximum improvements are 5.94%, 21.37%, and 32.81%.

Improved Classification Results on Fine-grained Datasets. Visual prototypes and image-to-
image similarity can also enhance the prediction accuracy of VLMs. In Tab. 4, we compare our
method against various zero-shot, few-shot, and test-time adaptation baselines using CLIP ResNet-50.
Notably, without requiring any training phase, our method achieves the best overall performance,
yielding an average accuracy improvement of 4.36% relative to these baselines. Furthermore, our
approach is compatible with diverse vision encoders, including CLIP-I, MoCo v2, and DINOv2, and
demonstrates robust performance across all of them. Subsequent fine-tuning of the visual prototypes,
as implemented in TrustVLM*(F)-D, further improves accuracy by an additional 1.29% compared to
TrustVLM*-D.

4.3 ABLATION STUDIES

Different Architectures and VLMs. To demonstrate the versatility of the proposed framework,
we evaluated its performance with different architectures and VLMs. Specifically, we replaced the
CLIP ViT-B/16 backbone in Tab. 1 with CLIP ResNet-50 and SigLIP ViT-B/16, reporting average
performance metrics across 10 fine-grained datasets in Tab. 5. Consistent with the observations in
Tab. 1, our method demonstrates robust compatibility across these varied architectures and VLMs,
significantly surpassing the baseline methods in both configurations. More detailed results, including
performance on ImageNet and its variants, are provided in the Appendix.

CLIP ResNet-50 SigLIP ViT-B/32
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 259.56 80.55 73.83 55.82 149.27 85.69 58.63 70.69
MSP 259.76 80.63 73.11 55.82 149.13 85.86 57.31 70.69

TrustVLM-D 226.95 87.31 53.98 55.82 129.84 90.35 44.49 70.69
TrustVLM*-D 135.81 83.51 59.97 73.13 87.35 87.47 53.97 79.99

Table 5: Ablation on different architectures and VLMs. The average
results on fine-grained classification datasets are reported.

i-t i-i AURC↓ AUROC↑ FPR95↓
✓ 188.75 82.20 70.10

✓ 214.14 77.15 62.26
✓ ✓ 168.06 86.98 54.47

Table 6: Ablation on each
component.
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Figure 4: Score distribution for correct and wrong predictions. Our TrustVLM achieves better
separation between the score distributions of correct and wrong predictions, leading to improved
performance in misclassification detection.

GT: Sweet pea
Pred: Sweet pea

Visual prototype 
of Sweet pea

GT: Canterbury bells
Pred: Sweet pea

0.40 > 0.38 0.88 < 1.1

Figure 5: Illustration of TrustVLM’s mechanism. Initially, the incorrect prediction receives a higher
confidence score Si−t than the correct one, indicating overconfidence. By performing verification
in the image embedding space using Si−i, this overconfidence is mitigated. As a result, the final
confidence score κ(x) is significantly higher for the correct prediction than for the incorrect one.

Ablation on Each Component. We conducted comprehensive ablation studies to evaluate the
contribution of each proposed module, as detailed in Tab. 6. We denote ’i-t’ as a baseline relying
solely on image-to-text similarity (akin to MSP), and ’i-i’ as the confidence score derived from our
proposed image-to-image similarity module, which utilizes a vision encoder. The results indicate that
employing either the ’i-t’ or ’i-i’ component alone yields suboptimal performance. These findings
underscore the complementary nature of the two components, with the best results obtained when
they are used in combination.

Visualization. We visualized the confidence score distributions for correct and incorrect predictions
on the Flowers102 dataset in Fig. 4. The baseline MSP exhibits a poorer separation in confidence
scores between correctly classified and misclassified samples. In contrast, our solution assigns
higher confidence scores to correct predictions and lower scores to incorrect ones, leading to more
distinct distributions and, thereby, improved misclassification detection. Fig. 5 illustrates TrustVLM’s
mechanism for mitigating overconfidence, with more examples provided in Fig. 7.

5 CONCLUSION

In this work, we tackle the critical issue of misclassifications in VLMs, which hinders their reliable
use, especially in safety-sensitive domains. We introduce TrustVLM, a novel training-free framework
that substantially improves misclassification detection. TrustVLM uniquely leverages the commonly
overlooked image embedding space by incorporating image-to-image similarity with an auxiliary
vision encoder to derive a more discerning confidence score. The auxiliary vision encoder can also
help VLMs make better predictions on fine-grained datasets and can be fine-tuned to achieve better
performance. Our rigorous evaluations across 17 datasets, 4 architectures, and 2 VLMs demonstrated
TrustVLM’s state-of-the-art performance. These findings highlight the considerable benefits of
our approach in identifying confident, yet incorrect, VLM predictions. By enhancing the ability
to determine when VLM outputs are trustworthy, TrustVLM contributes to the safer and more
dependable deployment of these powerful models in real-world scenarios.
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, large language models (LLMs) were employed in a limited capacity
as general-purpose writing assistants. Specifically, they were used to improve clarity of expression,
refine grammar and sentence structure, and correct typographical or spelling errors. The models
did not contribute to the generation of research ideas, the design of experiments, the analysis or
interpretation of results, or the formulation of the scientific claims presented in this work.

B BROADER IMPACT, LIMITATIONS, AND FUTURE WORK

Broader Impact. The development of TrustVLM offers significant positive societal impacts by
directly addressing the critical need for more reliable and trustworthy Vision-Language Models
(VLMs). As VLMs become increasingly integrated into real-world applications, particularly in safety-
critical domains such as autonomous driving, medical diagnostics, and public safety surveillance,
the ability to accurately discern when a model’s prediction can be trusted is paramount. Erroneous
and overconfident predictions in these areas can lead to severe adverse consequences. TrustVLM
contributes to mitigating such risks by providing a robust framework for misclassification detection,
thereby enhancing the safety of VLM-powered systems.

Limitations. While TrustVLM demonstrates strong performance across diverse benchmarks, several
limitations remain. First, our method assumes access to clean class-level visual prototypes, which may
not always be feasible in noisy or open-world settings. Second, our current work primarily focuses
on zero-shot classification. While the core principles may be adaptable, the direct applicability
and performance of TrustVLM on other VLM tasks, such as visual question answering or image
captioning, have not yet been extensively evaluated. Third, the approach relies on a fixed auxiliary
vision encoder and does not account for scenarios where the underlying data distribution evolves over
time, such as in continual learning or streaming environments.

Future Work. Building upon the promising results of TrustVLM, several avenues for future research
warrant exploration. A key direction is the extension of the TrustVLM framework to a broader
range of multimodal tasks beyond zero-shot classification, including visual question answering,
image retrieval, and image captioning, to assess its generalizability and adapt its mechanisms where
necessary. Besides, incorporating human-in-the-loop feedback for refining confidence scores may
further improve VLM reliability in complex, real-world deployments. Finally, it is also an interesting
direction to explore the use of LLMs for correcting the model’s prediction and identifying the true
class, as demonstrated in recent work (Huang et al., 2023).
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(a) Fine-grained classification datasets

Aircraft Caltech101 Cars DTD EuroSAT

Flower102 Food101 Pets SUN397 UCF101

ImageNetV2

(b) ImageNet and its variants

ImageNet-Sketch ImageNet-RImageNet-AImageNet

Figure 6: Representative examples from each dataset used in this work.

C RELATED WORK

Misclassification Detection. The primary goal of MisD is to distinguish misclassified samples
from correctly classified ones, often by evaluating the reliability of the prediction. Early approaches
used simple baselines such as Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017),
although these were limited by model overconfidence. TrustScore (Jiang et al., 2018) estimates
the reliability of predictions based on distances to training samples in the feature space, though
it can struggle with high-dimensional or domain-shifted data. DOCTOR (Granese et al., 2021)
introduces a simple rule-based rejection mechanism for black-box models without retraining, yet
its performance depends on carefully tuned thresholds. Another direction involves directly learning
confidence scores or training auxiliary components to predict prediction failure, such as learning
the true class probability (Corbière et al., 2019) or adding dedicated confidence branches (DeVries
& Taylor, 2018). OpenMix (Zhu et al., 2023) enhances robustness by generating synthetic outliers
during training, improving calibration on misclassified samples. Recent literature (Nguyen et al.,
2025) has also explored MisD with VLMs by leveraging human-level concepts to detect when and
interpret why a model fails.

Out-of-distribution Detection shares a similar objective with MisD but addresses fundamentally
distinct challenges. OOD detection aims to identify test samples that exhibit semantic shifts without
compromising in-distribution (ID) classification accuracy, which can be broadly categorized into post
hoc methods and training-time regularization. Post hoc methods design OOD scores based on the
classification outputs of neural networks, offering the advantage of ease of use without modifying the
training procedure or objective (Hendrycks & Gimpel, 2017; Hendrycks et al., 2022; Liu et al., 2020).
Training-time regularization methods address prediction overconfidence by imposing a constant
vector norm on the logits during training (Wei et al., 2022) or using external OOD samples from
other datasets during training to improve discrimination between ID and OOD samples (Hendrycks
et al., 2019; Nejjar et al., 2024). Recently, some works (Ming et al., 2022; Jiang et al., 2024; Wang
et al., 2023) have also explored OOD detection via use of VLMs. However, methods optimized for
OOD detection often underperform on MisD (Jaeger et al., 2022; Zhu et al., 2023), underscoring the
need for specialized MisD approaches.

D MORE DETAILS ON THE DATASETS

We mainly evaluate our framework on 15 datasets from Fine-grained Classification Datasets and
ImageNet and Its Variants. The fine-grained classification datasets include 10 publicly available image
classification datasets, covering species of plants or animals (Flowers102 (Nilsback & Zisserman,
2008), OxfordPets (Parkhi et al., 2012)), scenes (SUN397 (Xiao et al., 2010)), textures (DTD (Cimpoi
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GT: english marigold
Pred: english marigold

Visual prototype 
of english 
marigold

GT: barbeton daisy
Pred: english marigold

0.62 > 0.58 1.28 < 1.34

0.62

0.58
0.76

0.66 1.28

1.34

GT: canterbury bells
Pred: canterbury bells

Visual prototype 
of canterbury bells

GT: columbine
Pred: canterbury bells

0.50 < 0.52 1.14 < 1.40

0.50

0.52
0.88

0.64 1.14

1.40

(a) TrustVLM can help to mitigate overconfidence when the prediction is incorrect

(b) TrustVLM can reinforce the prediction’s reliability when the prediction is correct
Figure 7: More illustration on TrustVLM’s mechanism.

et al., 2014)), food (Food101 (Bossard et al., 2014)), transportation(StanfordCars (Krause et al., 2013),
FGVCAircraft (Maji et al., 2013)), human actions (UCF101 (Soomro et al., 2012)), satellite images
(EuroSAT (Helber et al., 2019)), and general objects (Caltech101 (Fei-Fei et al., 2004)). The ImageNet
and Its Variants features the original ImageNet (Deng et al., 2009), along with several key variants:
ImageNetV2 (Recht et al., 2019), an independent test set with natural images from a different source;
ImageNet-Sketch (Wang et al., 2019), comprising black and white sketches; ImageNet-A (Hendrycks
et al., 2021b), a challenging test set of ’natural adversarial examples’ often misclassified by standard
ResNet-50 models (He et al., 2016); and ImageNet-R (Hendrycks et al., 2021a), featuring artistic
renditions of ImageNet categories. These variants collectively introduce diverse distribution shifts in
image style, data domains, and other factors. Fig. 6 illustrates representative examples from these
datasets.

E FURTHER EXPERIMENTAL RESULTS

More illustration on TrustVLM’s mechanism. Fig. 7 demonstrates more examples on how
TrustVLM works. The Si−i score is expected to be low if the prediction ŷ is incorrect, as the
embedding Ex would be compared against an inappropriate prototype, thereby helping to mitigate
overconfidence. Conversely, a correct prediction ŷ should result in a high Si−i, reinforcing the
prediction’s reliability.

Influence of N. We investigated the effect of N , the number of samples per class used for computing
prototypes, on AUROC performance. As illustrated in Fig. 8, performance steadily improves with
an increasing number of samples per class. Notably, using only a single sample per class (N = 1)
already achieves results superior to the baseline. The performance improvement tends to saturate
when N exceeds 4.

Robustness to the selection of N-shot samples. To evaluate the robustness of our method with
respect to the selection of N-shot samples, we randomly sample three different sets of only one image
per class (N=1) from the training data. As shown in Tab. 7, the performance remains consistent across
different sample sets. This suggests that our framework is not overly sensitive to the specific choice of
labeled examples, and can generalize well even when using a single randomly chosen image per class.
For further evaluation, we randomly sample three different sets of 4 images per class from the training
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Figure 8: Influence of N in prototypes.

AURC↓ AUROC↑ FPR95↓
Set 1 82.40 93.53 38.39
Set 2 80.83 94.02 33.91
Set 3 80.96 93.97 34.66

Table 7: Robustness to the selection of N-shot samples (TrustVLM-D on Flowers102 with N=1).

AURC↓ AUROC↑ FPR95↓
Set 1 78.15 94.80 29.69
Set 2 78.47 94.74 29.07
Set 3 78.18 94.81 29.81

Table 8: Robustness to the selection of N-shot samples (TrustVLM-D on Flowers102 with N=4).

AURC↓ AUROC↑ FPR95↓
MSP 122.44 85.98 64.89
TrustVLM-D (SD3) 119.90 86.96 62.31
TrustVLM-D 107.13 90.21 50.68

Table 9: Robustness under privacy-sensitive settings. We use Stable Diffusion 3 (SD3) Medium to
generate 16 images per class for UCF101 to calculate visual prototypes.

data and report performance for each. As shown in Tab. 8, the results remain consistently strong
and stable, confirming that our method is not overly sensitive to the specific choice of representative
samples. This also shows that increasing the number of labeled examples per class is an effective
way to mitigate the effect of outlier or noisy samples in the embedding space.

Robustness under privacy-sensitive settings. Our framework is designed to be highly data-efficient.
As shown in Fig. 8, using just a single labeled sample per class is sufficient for our method to
outperform the baseline, demonstrating its effectiveness even in low-data regimes. To address the
scenario without labeled data, we explored using a generative model as a substitute. We conducted
a new experiment using Stable Diffusion 3 (SD3) Medium (Rombach et al., 2022) to generate 16
images per class for UCF101 (e.g., with the prompt "a photo of a person doing [action name]").
We call this variant TrustVLM-D (SD3). As shown in Tab. 9, TrustVLM-D (SD3) outperforms the
strong MSP baseline, even though a distribution gap between generated images and real images
prevents it from matching the performance of using real data. This result validates the feasibility
of using generated data as an alternative when labeled examples are unavailable. Additionally, for
privacy-sensitive settings, we propose a practical deployment strategy: clients can locally generate
prototypes using their private labeled data, and only share the prototype embeddings (not the raw
data) with the system. Since our framework operates on these prototypes, access to raw sensitive data
is not required, making it a privacy-conscious solution suitable for high-risk domains.
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ImageNet-A ImageNet-V2 ImageNet-R
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 316.50 75.98 77.76 47.85 180.06 80.09 73.38 60.88 76.39 87.12 60.54 73.98
MSP 315.99 76.07 77.76 47.85 178.82 80.45 71.26 60.88 75.47 87.46 59.43 73.98

TrustVLM-D 324.07 75.87 77.20 47.85 174.23 82.18 64.82 60.88 74.94 87.69 58.09 73.98
ImageNet-Sketch ImageNet Average

AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑
DOCTOR 296.20 80.54 70.94 46.09 140.21 80.53 74.58 66.71 201.87 80.85 71.44 59.10

MSP 294.85 80.82 70.29 46.09 138.52 81.04 72.85 66.71 200.73 81.17 70.32 59.10
TrustVLM-D 289.52 82.40 65.59 46.09 133.17 83.08 64.47 66.71 199.19 82.24 66.03 59.10

Table 10: MisD performance on ImageNet and its variants using CLIP ViT-B/16, under distribution
shifts defined by prototypes computed exclusively on ImageNet and deployed directly to variant
datasets.

Flowers102 DTD Aircraft Pets
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 26.03 93.13 38.75 83.76 183.86 79.14 72.67 61.29 513.33 78.08 80.74 27.42 7.65 95.55 30.65 91.55
MSP 25.14 93.63 34.75 83.76 181.52 79.66 72.52 61.29 514.42 77.78 76.98 27.42 7.65 95.54 28.71 91.55

TrustVLM-D 16.62 98.42 9.50 83.76 144.44 87.64 49.01 61.29 503.98 79.56 75.83 27.42 7.66 95.58 28.71 91.55
TrustVLM*-D 0.13 97.82 15.38 99.47 98.27 82.72 71.92 72.64 496.11 78.79 79.14 28.23 7.55 95.56 29.97 91.63

Caltech101 Cars EuroSAT UCF101
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 2.31 94.88 27.50 96.75 18.84 89.37 59.81 89.42 481.80 72.61 89.46 31.26 85.35 88.73 55.21 70.31
MSP 2.20 95.21 26.25 96.75 18.73 89.48 58.87 89.42 485.10 72.31 90.39 31.26 84.54 88.97 56.28 70.31

TrustVLM-D 2.08 95.52 26.25 96.75 18.63 89.57 57.58 89.42 390.00 90.09 42.82 31.26 74.35 92.14 41.23 70.31
TrustVLM*-D 1.76 95.65 21.13 97.12 22.18 87.92 54.05 89.42 72.64 75.64 73.41 82.91 54.41 87.91 64.74 78.03

Food101 SUN397 Average
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 40.90 84.68 56.72 87.54 132.64 80.73 74.81 67.62 149.27 85.69 58.63 70.69
MSP 40.70 84.84 54.70 87.54 131.29 81.15 73.63 67.62 149.13 85.86 57.31 70.69

TrustVLM-D 22.97 89.84 54.70 87.54 117.67 85.10 59.27 67.62 129.84 90.35 44.49 70.69
TrustVLM*-D 23.20 89.56 56.14 87.80 97.28 83.11 73.78 72.63 87.35 87.47 53.97 79.99

Table 11: Misclassification detection performance on fine-grained classification datasets with SigLIP
ViT-B/16.

MisD performance on ImageNet and its variants under distribution shifts. To evaluate the
robustness of our proposed method to distribution shifts, the visual prototypes were computed using
only N samples per class from the ImageNet training split. These prototypes were then applied
directly to the ImageNet variants, thereby obviating the need to compute variant-specific prototypes.
As illustrated in Tab. 10, our method demonstrates the overall leading performance of all metrics
evaluated in this challenging scenario, achieving average improvements of 1.54% in AURC, 1.07%
in AUROC, and 4.29% in FPR95 relative to the baseline.

Different architectures and VLMs. To demonstrate the versatility of the proposed framework, we
evaluated its performance with different architectures and VLMs. Specifically, we replaced the default
CLIP ViT-B/16 backbone with CLIP ResNet-50 and SigLIP ViT-B/16, reporting average performance
metrics across fine-grained datasets and ImageNet and its variants from Tab. 11 to Tab. 14. Consistent
with the observations with CLIP ViT-B/16, our method demonstrates robust compatibility across these
varied architectures and VLMs, significantly surpassing the baseline methods in both configurations.

F FURTHER ANALYSIS

Clarification on image-to-text and image-to-image similarities. The image-to-text and image-to-
image similarities are complementary to each other. Each of them captures different aspects of the
data, and their combination leads to superior performance. For example, visually similar objects like
"lemon" and "tennis ball" (both round and yellow) may be hard to distinguish in the image embedding
space. Yet, image-to-text similarity, which leverages semantic cues (e.g., “a sour fruit” vs “a sports
object”), can help disambiguate them more effectively. Conversely, some subtle visual variations
(e.g., among different flower species) may be better captured by image-to-image similarity.

To analyze this, we conducted the following experiment: for each image, we randomly sample one
positive (same label) and one negative (different label) image, and compute both image-to-image
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ImageNet-A ImageNet-V2 ImageNet-R
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 299.17 79.28 72.72 47.62 124.64 83.03 67.64 67.55 21.40 91.53 45.00 87.82
MSP 299.17 79.25 72.58 47.62 124.12 83.21 67.08 67.55 20.92 91.90 43.06 87.82

TrustVLM-D 278.77 82.13 65.09 47.62 123.39 83.76 65.28 67.55 19.55 92.07 42.05 87.82
TrustVLM*-D 266.12 77.68 78.19 51.82 122.70 83.05 67.17 68.17 19.49 91.85 43.33 87.98

ImageNet-Sketch ImageNet Average
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 136.52 84.98 62.35 64.29 86.80 83.40 67.59 74.74 133.71 84.44 63.06 68.40
MSP 135.32 85.31 61.24 64.29 85.84 83.78 66.03 74.74 133.07 84.69 62.00 68.40

TrustVLM-D 133.55 85.84 59.61 64.29 84.46 84.36 63.73 74.74 127.94 85.63 59.15 68.40
TrustVLM*-D 132.62 84.76 64.17 65.14 83.96 83.40 67.89 75.45 124.98 84.15 64.15 69.71

Table 12: Misclassification detection performance on ImageNet and its variants with SigLIP ViT-
B/16.

Flowers102 DTD Aircraft Pets
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 154.49 83.85 67.94 61.75 374.42 75.61 83.55 40.37 695.10 74.86 79.37 15.54 36.51 87.78 62.33 83.65
MSP 154.02 83.99 69.57 61.75 374.63 75.58 83.85 40.37 693.70 75.15 80.97 15.54 35.63 88.30 59.83 83.65

TrustVLM-D 106.43 94.74 27.07 61.75 309.72 87.72 47.87 40.37 675.03 79.38 79.37 15.54 35.02 88.62 58.00 83.65
TrustVLM*-D 0.23 98.10 4.55 99.11 130.86 77.64 75.46 71.34 622.50 75.35 79.68 20.25 34.37 88.95 57.67 83.65

Caltech101 Cars EuroSAT UCF101
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 30.50 87.30 69.54 85.88 212.51 80.23 74.73 55.74 618.09 70.73 83.87 23.70 169.84 84.01 72.38 58.82
MSP 29.55 87.95 66.38 85.88 209.07 80.93 72.99 55.74 633.47 67.67 87.27 23.70 166.92 84.77 68.98 58.82

TrustVLM-D 22.17 93.16 36.49 85.88 206.48 81.70 70.75 55.74 514.75 87.02 54.70 23.70 144.99 89.67 49.71 58.82
TrustVLM*-D 6.06 89.61 40.91 96.43 205.62 81.41 70.92 56.08 101.58 70.14 74.00 82.43 73.84 85.69 62.81 75.34

Food101 SUN397 Average
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 94.96 83.59 65.77 73.95 209.19 77.49 78.84 58.81 259.56 80.55 73.83 55.82
MSP 94.32 83.83 64.86 73.95 206.31 78.16 76.41 58.81 259.76 80.63 73.11 55.82

TrustVLM-D 76.19 87.05 58.46 73.95 178.75 84.08 57.38 58.81 226.95 87.31 53.98 55.82
TrustVLM*-D 70.64 87.03 60.27 75.23 112.43 81.19 73.47 71.45 135.81 83.51 59.97 73.13

Table 13: Misclassification detection performance on fine-grained classification datasets with CLIP
ResNet-50.

ImageNet-A ImageNet-V2 ImageNet-R
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 672.36 66.71 86.78 22.79 256.91 79.22 75.41 51.50 188.11 84.28 68.02 56.36
MSP 673.06 66.68 86.39 22.79 255.65 79.53 74.83 51.50 187.18 84.51 66.21 56.36

TrustVLM-D 629.41 72.99 75.33 22.79 242.91 82.75 62.07 51.50 172.53 87.58 56.44 56.36
TrustVLM*-D 583.73 67.67 85.08 27.99 231.81 77.67 75.42 56.13 166.54 83.35 71.47 60.34

ImageNet-Sketch ImageNet Average
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

DOCTOR 446.07 78.27 74.71 32.99 204.36 79.44 73.82 58.18 353.56 77.58 75.75 44.36
MSP 444.12 78.62 73.94 32.99 202.30 79.96 72.03 58.18 352.46 77.86 74.68 44.36

TrustVLM-D 409.65 85.09 52.28 32.99 183.69 84.24 58.35 58.18 327.64 82.53 60.89 44.36
TrustVLM*-D 338.03 71.57 80.89 48.05 168.30 77.91 74.34 65.00 297.68 75.63 77.44 51.50

Table 14: Misclassification detection performance on ImageNet and its variants with CLIP ResNet-50.

and image-to-text similarity differences, as shown in Tab. 15. We find that the relative discriminative
power varies by dataset. For example, on Flowers102, image-to-image similarity yields larger
differences in 97.68% of cases. On Cars, this number drops to 42.99%, indicating that image-to-text
similarity can be more informative on certain datasets.

Influences of weights on the confidence-scoring function. Based on our analysis above, assigning a
higher weight to the image-to-image (i-i) similarity term can be beneficial when it provides stronger
discriminative signals—for example, on datasets like Flowers102, where visual features are more
distinctive. As shown in Tab. 16 and Tab. 17, increasing the i-i weight improves performance on
Flowers102 but degrades performance on Cars, where fine-grained classes are better distinguished by
image-to-text (i-t) similarity. This observation is consistent with our earlier findings that the relative
effectiveness of i-i vs. i-t varies across datasets.
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MSP TrustVLM-D ratio where Si−i > Si−t

Flower102 85.91 95.05 0.97
DTD 79.81 88.55 0.83
Aircraft 72.62 75.62 0.63
Pets 89.94 90.05 0.70
Caltech101 86.99 90.51 0.98
Cars 81.95 82.05 0.42
EuroSAT 76.39 85.48 0.83
UCF101 85.98 90.21 0.91
Food101 84.51 88.52 0.76
SUN397 77.90 83.80 0.95

Table 15: For each image, we randomly sampled one positive example (same class) and one negative
example (different class), and computed both Si−i and Si−t. We then measured the proportion of
cases where the Si−i exceeds Si−t. This ratio directly quantifies the relative discriminative strength
of the visual features compared to the text-aligned semantic features. The AUROC is reported.

Weight AURC↓ AUROC↑ FPR95↓
0.2 100.53 88.68 54.41
1.0 77.30 95.05 30.06
2.0 67.19 97.96 12.55

Table 16: Influence of different weights on the confidence-scoring function (TrustVLM-D on Flow-
ers102 with N=16).

Weight AURC↓ AUROC↑ FPR95↓
0.2 135.21 82.26 71.92
1.0 137.54 82.05 70.62
2.0 148.86 79.82 72.76

Table 17: Influence of different weights on the confidence-scoring function (TrustVLM-D on Cars
with N=16).

Prompt AURC↓ AUROC↑ FPR95↓
A photo of a [class] 77.30 95.05 30.06
A figure of a [class] 73.96 95.30 26.08
An image of a [class] 70.32 95.55 24.90

Table 18: Influence of different text prompts (TrustVLM-D on Flowers102 with N=16).

In our experiments, we find that using equal weights (i.e., weight = 1.0 for both terms) yields strong
and stable performance across diverse datasets, without the need for dataset-specific tuning. This
simple uniform weighting offers a good balance between robustness and generality, though we agree
that adaptive weighting based on dataset characteristics could be a promising future direction.

Influences of different text prompts. In our experiments, we use the default CLIP-style prompt "A
photo of a [class]". To assess the robustness of our method to prompt variations, we replaced it with
alternative prompts such as "A figure of a [class]" and "An image of a [class]". As shown in the results
from Tab. 18 to Tab. 20, the performance remains stable—and in some cases even improves—with
these alternative prompts. This suggests that our framework is robust to reasonable prompt variations
and does not rely heavily on a specific prompt template. We believe this robustness stems from the
way our method estimates confidence based on both image-to-text and image-to-image similarity,
rather than being overly sensitive to minor linguistic changes in the input text prompts.

Robustness to spurious correlation. To investigate the robustness of our framework to spurious
correlations, we experimented on the Waterbirds dataset (Sagawa et al., 2019). Using N-shot
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Prompt AURC↓ AUROC↑ FPR95↓
A photo of a [class] 562.02 75.62 83.21
A figure of a [class] 576.58 77.08 77.34
An image of a [class] 566.30 77.41 80.70

Table 19: Influence of different text prompts (TrustVLM-D on Aircraft with N=16).

Prompt AURC↓ AUROC↑ FPR95↓
A photo of a [class] 11.11 90.51 47.27
A figure of a [class] 9.42 92.71 42.39
An image of a [class] 7.39 93.36 41.10

Table 20: Influence of different text prompts (TrustVLM-D on Caltech101 with N=16).

AURC↓ AUROC↑ FPR95↓
MSP 76.73 76.65 84.35
TrustVLM-D 70.18 79.80 76.57

Table 21: Robustness to spurious correlation on Waterbirds dataset.

samples from the (spurious-biased) training split to build our visual prototypes, TrustVLM-D still
outperforms MSP, although the gap narrows. We attribute this to a domain shift introduced by the
spurious correlation between training prototypes and test images. We then select N-shot samples
from the testing data to calculate visual prototypes and evaluate on the remaining test data. As
shown in Tab. 21, without a domain shift between visual prototypes and testing data, our TrustVLM-
D significantly outperforms the baseline. This confirms that, even under pronounced spurious
correlations, our method’s reliance on complementary embedding spaces can robustly distinguish
correct from incorrect predictions, so long as prototype and evaluation domains align.

Comparison of different auxiliary vision encoders. DINOv2’s strong performance can be attributed
to a combination of training methodology and training data. DINOv2 uses a self-distillation without
labels framework with ViT backbones, encouraging the model to learn semantically rich and spatially
coherent features. This typically results in embeddings that generalize well across diverse downstream
tasks. DINOv2 is trained on a large and diverse dataset without human-annotated labels, which
helps it capture generic visual patterns useful across many domains. We observe that on fine-grained
datasets like Pets and Cars, MoCo v2 and CLIP-I sometimes outperform DINOv2. This suggests
that CLIP-I, trained with image-text alignment, may emphasize semantic-level features that are more
aligned with class labels defined by textual concepts (e.g., specific car models or pet breeds). MoCo
v2, trained with contrastive learning on ImageNet, might preserve low-level visual cues better than
DINOv2, which can help in datasets where subtle details (e.g., fur texture, head shape) are critical for
class discrimination. These differences imply that each vision encoder has different feature biases,
depending on what features they emphasize in their embedding space. DINOv2 is strong on semantic
abstraction and global structure. CLIP-I is strong on semantic alignment with language. MoCo v2 is
strong on local patterns and fine-grained visual features. This suggests that the choice of the auxiliary
vision encoder can impact performance in a dataset-dependent way, and a promising direction is to
adaptively choose or fuse multiple encoders depending on the domain characteristics.

Incorporating more than one auxiliary vision encoder. We incorporate both CLIP-I and DINOv2
as auxiliary vision encoders for experiments. Specifically, we construct two separate sets of visual
prototypes—one from each encoder—and compute two image-to-image similarity scores, which are
then summed to obtain the final confidence score. Our experiments show that combining multiple
vision encoders improves misclassification detection performance in most cases. For example, on
Flowers102, the combined model achieves 74.21 on AURC, 95.94 on AUROC, and 23.60 on FPR95,
all better than using either CLIP-I or DINOv2 alone. Similarly, on UCF101, it achieves 104.26 on
AURC, 91.04 on AUROC, and 45.14 on FPR95, again outperforming single-encoder baselines. These
results suggest that different vision encoders capture complementary visual features, and combining
them leads to more robust and reliable confidence estimation. This points to an exciting direction
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for future work — further exploring encoder fusion strategies for enhanced misclassification and
uncertainty detection.

Comparison with large vision-language models (LVLMs) for confidence estimation. We con-
ducted experiments using Qwen2.5-VL-3B-Instruct (Bai et al., 2025) to evaluate whether it can assess
the validity of predictions made by a custom VLM. For each test image, we provided the following
prompt:

"You are given an image and a predicted label from a vision-language model.

Predicted label: "{predicted_label}"

Please answer the following: On a scale from 0 to 100, how confident are you that this label is
correct? (0 = not confident at all, 100 = completely confident)".

We find that Qwen2.5-VL produces reasonable confidence estimates. On the AUROC metric, it
achieves 73.05 on Flowers102, 71.20 on Cars, 72.62 on UCF101, and 82.77 on Caltech101. These
results are promising and demonstrate that LVLMs can serve as an alternative way to estimate
prediction confidence. However, our proposed framework still outperforms Qwen2.5-VL across
all datasets, highlighting the advantage of our tailored design for reliable confidence estimation.
Moreover, our method is more lightweight and data-efficient, requiring neither large-scale instruction
tuning nor expensive inference. This experiment validates the potential of LVLMs in this space and
opens up exciting directions for future research, such as integrating LVLM-based reasoning into
confidence estimation pipelines.

Comparison with Monte Carlo dropout and data augmentation for confidence estimation.
We first explored Monte Carlo (MC) Dropout (Gal & Ghahramani, 2016) for estimating epistemic
uncertainty. However, the CLIP ViT-B/16 model does not include dropout layers in its transformer
blocks by default. To enable MC Dropout, we inserted dropout into the MLP and attention layers
and performed 64 stochastic forward passes. We then computed uncertainty using the variance of the
predicted class probabilities. MC Dropout showed limited effectiveness in detecting misclassifications
in our experiments. For example, on the Flowers102 dataset, it achieved an AURC of 408.38, AUROC
of 47.65, and FPR95 of 95.72—significantly worse than our proposed method and other baselines.
On UCF101, the results were similarly poor: AURC 510.05, AUROC 42.54, and FPR95 97.54.
We hypothesize that this degradation stems from two issues: (1) CLIP’s pretrained transformer
architecture is not optimized for stochastic perturbations, and inserting dropout disrupts its learned
representations; (2) MC Dropout’s predictive variance is not well-calibrated in high-dimensional
vision-language settings, making it less effective for uncertainty estimation in multimodal models
like CLIP.

We then experimented with using data augmentation to estimate aleatoric uncertainty. Specifically,
we generated 64 augmented views of each input image using standard techniques such as random
rotation, translation, resized cropping, and horizontal flipping. We then computed the variance of the
predicted class probabilities across these augmented views as a measure of uncertainty. However,
this approach also did not perform well in detecting misclassifications in our experiments. For
example, on the Flowers102 dataset, it achieved an AURC of 314.75, AUROC of 52.89, and FPR95
of 96.06—significantly worse than our proposed method and other baselines. On UCF101, the results
were similarly poor, with AURC of 415.78, AUROC of 43.36, and FPR95 of 97.47. We believe the
limited performance stems from two main challenges: (1) Data augmentation primarily captures
input noise (aleatoric uncertainty), which does not sufficiently explain the model’s confidence on
out-of-distribution or hard in-distribution examples; (2) CLIP’s zero-shot predictions tend to be
highly stable across augmented views, which can lead to low measured variability even on incorrect
predictions, thus reducing the effectiveness of augmentation-based uncertainty estimation.

G DISCUSSION ON THE POTENTIAL REASONS BEHIND THE ROBUSTNESS OF
TRUSTVLM

In multimodal learning, if one modality is significantly less reliable or noisy, a naive ensemble of
confidence scores could allow the noisy signal to degrade the high-quality signal. In our experiments,
we showed that TrustVLM remains robust even under severely mismatched or imbalanced modality
pairs. For severely mismatched modality pairs, we simulate scenarios where the visual prototypes
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are intentionally degraded while the image-text is well aligned. This creates a controlled mismatch
between image embeddings and visual prototypes. We evaluate TrustVLM under two visual prototype
degradation scenerios: synthetic-real shift (Tab. 9) and distribution shift (Tab. 10). These results
demonstrate that TrustVLM’s ensemble score remains stable even under severely mismatched modal-
ity conditions. Results in Tab. 15 demonstrate that TrustVLM consistently outperforms baselines
under imbalanced modality pairs where one modality is inherently more discriminative than the other.
Below, we discuss the potential reasons behind this behavior.

Si−i acts as a verification signal. Si−i is explicitly conditioned on the VLM’s prediction ŷ. If ŷ is
wrong, then Ex is compared to the wrong class prototype Pŷ , which is typically far in the embedding
space and Si−i tends to be low. If ŷ is correct, then Ex is compared to the right prototype Pŷ , which
is close and Si−i tends to be high. Thus, Si−i behaves as a consistency check on Si−t. When both
Si−i and Si−t are high (Agreement), κ increases and the prediction appears trustworthy. When one
is high and the other is low (Disagreement), κ decreases and the prediction is flagged as risky. This
is quite different from ensembling arbitrary scores from unrelated modalities (like tactile–thermal),
where there is no such verify the predicted class structure.

MisD metrics depend on ranking, not absolute values. MisD metrics (AUROC, AURC, FPR@95)
depend on relative ranking of κ between correct and wrong predictions, not the absolute scale. As
long as, on average, E[Si−i | correct] ≳ E[Si−i | wrong], adding Si−i to Si−t tends to improve or
preserve the ranking. Correct predictions receive a positive contribution from Si−i, while wrong
predictions receive little or even negative contribution. This widens the separation between the score
distributions of correct and incorrect predictions, thereby improving MisD performance.

Averaging over prototypes mitigates severe mismatch. Prototypes are averages over N-shot
embeddings per class. Thus, even if some training images are noisy, or the auxiliary encoder has a
domain bias, the class prototype Pc lies near the center of the class cluster, not at single outlier points.
This means for a correct test image, similarity to Pŷ is typically higher than to other prototypes, even
under shift. For a wrong prediction, similarity to the wrong class prototype tends to be much lower.
So even in the presence of moderate mismatch, Si−i retains the correct > wrong tendency at the class
level, which is exactly what the MisD ranking needs.
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