
Synthesize, Partition, then Adapt:
Eliciting Diverse Samples from Foundation Models

Yeming Wen∗& Swarat Chaudhuri
Department of Computer Science
The University of Texas at Austin

Abstract

Presenting users with diverse responses from foundation models is crucial for
enhancing user experience and accommodating varying preferences. However,
generating multiple high-quality and diverse responses without sacrificing accu-
racy remains a challenge, especially when using greedy sampling. In this work,
we propose a novel framework, Synthesize-Partition-Adapt (SPA), that leverages
the abundant synthetic data available in many domains to elicit diverse responses
from foundation models. By leveraging signal provided by data attribution meth-
ods such as influence function, SPA partitions data into subsets, each targeting
unique aspects of the data, and trains multiple model adaptations optimized for
these subsets. Experimental results demonstrate the effectiveness of our approach
in diversifying foundation model responses while maintaining high quality, show-
cased through the HumanEval and MBPP tasks in the code generation domain
and several tasks in the natural language understanding domain, highlighting its
potential to enrich user experience across various applications.

1 Introduction

Give me a personal website template

Response #1 Response #2

Prompt

Figure 1: A user is expecting two diverse
templates from the foundation model.

Transformer-based foundation models have revolu-
tionized the fields of natural language processing
(NLP) and code generation with their remarkable abil-
ities a wide range of understanding and generation
tasks (Vaswani et al., 2017; Devlin et al., 2019; Brown
et al., 2020; Chen et al., 2021). These models are
typically pre-trained on vast amounts of text data and
then undergo instruction fine-tuning — a post-training
process — to improve alignment with user expecta-
tions and enhance the overall user experience (Ouyang
et al., 2022). Due to the high cost of human-annotated
data, synthetically generated datasets (Wang et al.,
2022b) such as OSS-Instruct (Wei et al., 2023) and Al-
paca (Taori et al., 2023) have become an important component of instruction tuning, demonstrating
strong effectiveness in improving foundation model performance.

To date, these synthetic datasets have been primarily used to align foundation models with instruc-
tions or to induce certain preferable behaviors. In this paper, we focus on a different use of synthetic
data: in improving the diversity of foundation models’ outputs. Diversifying the generated responses
is crucial for accommodating diverse user preferences and enhancing user satisfaction. Consider the
scenario illustrated in Fig. 1, where a user prompts a foundation model with “Give me a personal
website template”. In this case, we would prefer the model to generate two diverse templates while

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

∗ywen@utexas.edu

ywen@utexas.edu

maintaining good quality, providing users with a variety of styles and layouts. Conventional meth-
ods for improving diversity, such as temperature sampling (Ackley et al., 1985; Hinton et al., 2015;
Wang et al., 2019, 2023), rely on sampling techniques that anneal the probabilistic distribution of
outputs. These methods often trade off diversity for quality, as the generated responses may deviate
from the learned distribution and produce hallucination or less coherent outputs (Lee, 2023). More-
over, these techniques are not applicable when using greedy sampling, which is often preferred for
its simplicity and precision. This highlights the need for approaches that not only align foundation
model outputs with user expectations but also elicit diverse responses without sacrificing quality.

In this paper, we present a framework, Synthesize-Partition-Adapt (SPA), that achieves these objec-
tives. The framework partitions the synthetic data and adapts foundation models to these partitions
in the post-training stage. By leveraging the inherent diversity in the training data, this approach can
generate diverse responses without compromising accuracy. The potential of partition-and-adapt
approach is further amplified by the increasing availability of large-scale synthetic datasets because
the utility of instruction-tuning a single model on the entire dataset diminishes. In particular, we
show that influence function (Koh & Liang, 2017) can be an effective signal to partition synthetic
datasets into subsets, each targeting unique aspects that elicit distinct model behaviors. However,
SPA is not limited to influence function and can be extended to other partitioning strategies. By
training multiple adaptations on these subsets using parameter-efficient fine-tuning techniques, such
as LoRA (Hu et al., 2021), we enable the generation of diverse and accurate responses.

To demonstrate the effectiveness of our approach, we conduct experiments on a range of tasks in
both the code generation and natural language understanding domains. We evaluate our method on
the HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) datasets for code generation,
as well as several natural language understanding tasks. The results showcase the ability of our
approach to diversify model responses while maintaining high accuracy, highlighting its potential to
enrich user experience across various applications.

To summarize, the main contributions of this paper are as follows:

• We propose SPA, a novel framework that leverages synthetic data, data partitioning, and model
adaptation to elicit diverse responses from foundation models.

• We demonstrate the effectiveness of SPA in diversifying foundation model responses while
maintaining sampling quality through extensive experiments on code generation and natural
language understanding tasks.

• We highlight the potential of SPA to leverage the increasing availability of large-scale synthetic
datasets for improving the diversity of foundation model responses.

2 Background

2.1 Instruction Fine-tuning

By fine-tuning foundation models on human-annotated data that demonstrates desired behaviors,
instruction tuning aims to improve the alignment between the model’s outputs and the user’s inten-
tions (Ouyang et al., 2022; Wei et al., 2021; Sanh et al., 2022). Let D = (xi, yi)

N
i=1 denote a dataset

of input-output pairs, where xi represents the input instruction and yi represents the correspond-
ing desired output. The objective of instruction tuning is to minimize the following loss function:
L(θ) = − 1

N

∑N
i=1 logθ(yi|xi) where θ represents the parameters of the foundation model, and

pθ(yi|xi) is the probability of generating the target response yi given the input xi.

Classical approaches for instruction tuning typically require a substantial amount of parallel labeled
data of NL intents and gold model responses. Collecting large-scale, high-quality annotated datasets
is often time-consuming and expensive. To mitigate this issue, researchers have explored the use of
synthetic data for instruction tuning. By leveraging techniques such as data augmentation (Wei &
Zou, 2019; Sennrich et al., 2016) and back-translation (Edunov et al., 2018), synthetic data can be
generated at scale, providing a cost-effective alternative to human-annotated datasets. Furthermore,
synthetic instruction-following data can also be generated from the foundation model itself (Wang
et al., 2022a; Honovich et al., 2022; Taori et al., 2023; Peng et al., 2023; Wen et al., 2024, inter alia).

2

2.2 Data Attribution and influence function

Data attribution methods aim to quantify the importance or influence of individual training points on
a model’s predictions. One such method is the influence function (Koh & Liang, 2017). Formally, let
L(θ) denote the loss function of the model, where θ represents the model parameters. The influence
of a training point z on the model’s parameters θ is given by I(z) = −H−1

θ ∇θL(z, θ). where Hθ is
the Hessian matrix of the loss function with respect to the model parameters, and ∇θL(z, θ) is the
gradient of the loss function with respect to the model parameters, evaluated at the training point z.
Next, the influence of elevating the weight of z on the loss associated with a test point ztest is:

I(z, ztest) = −∇θL(ztest, θ̂)⊤H−1

θ̂
∇θL(z, θ̂) (1)

It is impossible to calculate the full Hessian H−1
θ matrix in deep neural networks. Koh & Liang

(2017) developed a simple and efficient implementation that requires only oracle access to gradients
and Hessian-vector products. This implementation makes it feasible to apply influence function
to large-scale models. However, the vast parameter space of foundation models presents an even
greater challenge, rendering the direct application of influence function impractical. In response to
this, recent advancements in Grosse et al. (2023) have further refined the methodology, enabling the
application of influence function to large language models.

3 Problem Formulation

1 2 5 10 15 20
Percentage of Dataset Used

0.42

0.44

0.46

0.48

0.50

Pass@1 on HumanEval

Figure 2: pass@1 on HumanEval after
fine-tuning on some percentage of OSS-
Instruct dataset (Wei et al., 2023) using
LORA. The plot demonstrates the dimin-
ishing returns observed with increasing
amounts of data used for parameter effi-
cient fine-tuning.

Given a user input x, our goal is to generate a di-
verse set of high-quality responses y1,y2, ...,yK from
a foundation model M. One approach to generating
diverse responses is to sample from the model multi-
ple times using techniques like temperature sampling:
yk = M(x; θ, τ), where k = 1, 2, ...,K and θ rep-
resents the model parameters and τ is the temperature
hyperparameter. However, this approach often trades
off diversity for quality as studied in Chung et al.
(2023). An alternative approach is to train multiple
model adaptations M1,M2, ...,MK and sample one
response from each adaptation:

yk = Mk(x; θk), k = 1, 2, ...,K, (2)
where θk represents the parameters of the k-th model
adaptation. By training each adaptation on a differ-
ent subset of the data that captures unique aspects and
yields distinct model behaviors, we can generate di-
verse responses while maintaining their quality. Moreover, this approach allows us to elicit diverse
samples even with greedy sampling, which is often preferred for maximum precision.

Traditionally, training multiple model adaptations has been considered unfavorable due to the re-
peated training process, which can be computationally expensive and time-consuming. However,
with the increasing popularity of instruction tuning, it has become common practice to go through
a post-training stage using instruction data before deploying the model to users. This post-training
stage presents an opportunity to train multiple model adaptations without incurring significant addi-
tional costs, making the approach more feasible and practical in real-world scenarios.

As the volume of synthetic data grows, the utility of fine-tuning a single model on the entire dataset
diminishes due to the diminishing returns in the post-training stage, as demonstrated in Fig. 2. The
pass@1 accuracy after fine-tuning on the entire synthetic dataset using LORA is roughly the same
as only consuming 15% of the data2. This creates an opportunity to leverage the abundant synthetic
data to train multiple model adaptations, each specializing in a specific subset of the data. In this
work, we propose the Synthesize, Partition, then Adapt (SPA) framework to address the diverse re-
sponse generation problem. SPA leverages existing synthetic datasets, data partitioning techniques,
and parameter-efficient fine-tuning methods to train multiple model adaptations. By sampling from
the collection of these adaptations, SPA generates diverse and high-quality responses, enhancing the
overall user experience.

2This does not suggest full parameter fine-tuning shares the same diminishing return.

3

Instruction
tuning

Generate a Python function to
check if a number is even.

Multiple Adaptations
def strlen(string: str):
 return num % 2 == 0

def strlen(string: str):
 return (num & 1) == 0

def strlen(string: str):
 return num / 2 == num // 2

…

1

2

3

Generate 1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Data attribution 1
. 2
. 3
.

1
. 2
. 3
.

1

2

3

Synthetic dataLanguage model Partition by attribution score

1
. 2
. 3
.

1
. 2
. 3
.

1

2

3

1
. 2
. 3
.

1
. 2
. 3
.

1

2

3

Instruction
tuning

PromptSampling

Figure 3: An illustration of the Synthesize, Partition, then Adapt (SPA) framework. SPA partitions
synthetic dataset according to data attribution scores, which can be obtained using various methods
such as influence function or lexical overlap. Multiple foundation model adaptations are then trained
on each subset. Sampling from the collection of these model adaptations can present users with
diverse responses. SPA is not limited to a specific attribution method.

4 Partitioning Synthetic Data and Training Adaptations

We present the technical details of our proposed SPA framework for training multiple adaptations.
We leverage an existing synthetic dataset D = {xi,yi}Ni=1 for the purpose of this study. The use
of an existing synthetic dataset allows us to focus on the effectiveness of the Partition then Adapt
steps in eliciting diverse samples, while demonstrating the flexibility of our framework to work
with various synthetic datasets. Fig. 3 provides an overview of the framework. After obtaining the
synthetic data, our approach consists of three main steps: (1) computing data attribution scores for
synthetic data points, (2) partitioning the synthetic dataset based on these scores, and (3) training
multiple foundation model adaptations using parameter-efficient fine-tuning techniques like LORA.

4.1 Computing Data Attribution Scores

Consider a pre-trained foundation model M with parameters θ. Our goal is to leverage the synthetic
dataset D to train a set of K foundation model adaptations {Mk}Kk=1. Each adaptation focuses on a
specific subset of the data that yields similar model behaviors. To partition the synthetic dataset, we
employ data attribution methods that measure the importance of each training point to the model’s
predictions. Although we use influence function as an example to label the data, the SPA framework
is not limited to influence function and can be extended to other data attribution methods, such as
lexical overlap or TRAK (Park et al., 2023). To calculate the influence function, we first fine-tune the
pre-trained foundation model M on the synthetic dataset D. The fine-tuning process optimizes the
model parameters θ to minimize the loss function L(θ) on the synthetic dataset using LORA (Hu
et al., 2021): L(θ) = 1

N

∑N
i=1 ℓ(yi,M(xi; θ)), where ℓ(·, ·) is a suitable loss function, such as

cross-entropy loss for language modeling tasks. This fine-tuning process yields the optimized model
parameters θ̂.

Next, we select a set of M test queries {(x(m)
t ,y

(m)
t)}Mm=1, which can be a collection of questions

requiring various expertise knowledge to solve. For each test query (x
(m)
t ,y

(m)
t), we compute the

influence score of each synthetic data point (xi,yi) ∈ D using Eq. (1):

I((xi,yi), (x
(m)
t ,y

(m)
t)) = −∇θℓ(y

(m)
t ,M(x

(m)
t ; θ̂))⊤H−1

θ̂
∇θℓ(yi,M(xi; θ̂)). (3)

To efficiently compute the influence scores, we employ the stochastic estimation method proposed
by Koh & Liang (2017), which approximates the inverse Hessian-vector product using conjugate

4

gradients. Although even this method is generally infeasible in foundation models due to their vast
parameter space, the use of LORA (Hu et al., 2021) makes it feasible by significantly reducing the
number of trainable parameters. The computational cost of estimating the influence of a test query
between the entire dataset D is the same as calculating the gradient of D. Another option to address
this issue is to use the K-FAC approximation of the Hessian, as proposed by Grosse et al. (2023).
We focus on the LORA approach and leave the exploration of K-FAC and other approximations for
future work.

4.2 Partitioning Synthetic Dataset

After computing the data attribution scores for each synthetic data point with respect to the M test
points, we obtain an influence matrix I ∈ RN×M , where Ii,m represents the attribution score of the
i-th synthetic data point for the m-th test point. To partition the synthetic dataset D into K subsets
{Dk}Kk=1, a clustering algorithm can be applied to solve the following objective:

min
{Dk}K

k=1

K∑
k=1

∑
(xi,yi)∈Dk

∑
(xj ,yj)∈Dk

|Ii,: − Ij,:|22 , (4)

where Ii,: denotes the i-th row of the influence matrix I, subject to
⋃K

k=1 Dk = D and Dk∩Dk′ = ∅
for all k ̸= k′. In this work, we assume partitions are disjoint for the simplicity of the study.

The clustering algorithm assigns each synthetic data point (xi,yi) to one of the K subsets based
on the similarity of its influence scores across the M test points. This partitioning ensures that
data points within each subset have similar impacts on the model’s predictions. The choice of the
clustering algorithm may depend on the specific characteristics of the dataset. For simplicity and
ease of implementation, in this study, we use a ranking heuristic to partition the synthetic dataset.
The details of this heuristic will be explained in the experiment section §5.1. However, it is important
to note that our SPA framework is not limited to any specific clustering algorithm.

4.3 Training Multiple Adaptations with LORA

Once the synthetic dataset is partitioned into K subsets, we train a foundation model Mk for each
subset Dk using parameter-efficient fine-tuning techniques like LORA (Hu et al., 2021). LORA
adapts the pre-trained foundation model parameters θ by learning low-rank matrices Ak ∈ Rr×d

and Bk ∈ Rd×r for each weight matrix W ∈ Rd×d in the pre-trained foundation model, where
r ≪ d is the rank of the adaptation matrices.

The adapted weight matrix Wk for the foundation model adaptation Mk is computed as: Wk =
W +BkAk. During the fine-tuning process, only the adaptation matrices Ak and Bk are learned,
while the pre-trained weights W remain frozen. This significantly reduces the number of trainable
parameters, making it feasible to train multiple foundation model adaptations with limited com-
putational resources. The training objective for each foundation model adaptation Mk is given
by minθk

1
|Dk|

∑
(xi,yi)∈Dk

ℓ(yi,Mk(xi; θk)) where θk represents the parameters of Mk, which
include the pre-trained weights θ and the LoRA adaptation matrices Ak,Bk. By training multi-
ple foundation model adaptations using LORA, we can efficiently adapt the pre-trained foundation
model to different subsets of the synthetic data, each focusing on a specific aspect of the data that
yields similar model behaviors. This approach enables the creation of a diverse set of specialized
models that capture different knowledge or expertise present in the synthetic data, while leveraging
the knowledge acquired during the pre-training phase.

Inference with Multiple Adaptations During inference, given a user input x, our goal is to gen-
erate a diverse set of responses by leveraging the multiple foundation model adaptations trained on
different subsets of the synthetic data. To achieve this, we randomly sample a foundation model
adaptation Mk from the set of K adaptations {Mk}Kk=1 and generate the output y using the se-
lected adaptation. By randomly sampling from the set of adaptations, we can generate a diverse
set of responses for the user input x. This approach ensures that the generated responses are not
only diverse but also maintain reasonable quality. It is worth noting that this approach is compatible
with various sampling techniques, such as temperature scaling, top-k and top-p sampling, which can
further enhance the diversity of the generated responses.

5

To generate multiple diverse responses for the user input x, we can repeat the random sampling
process multiple times, each time selecting a different adaptation and generating a response. This
allows us to present the user with a set of alternative responses that capture different perspectives
or styles, enhancing the overall user experience. Unlike temperature sampling, which can degrade
the quality of the generated responses, our approach maintains the quality of each response by
leveraging the specialized knowledge captured by each adaptation. Moreover, our approach can
generate diverse samples even when greedy sampling is used.

5 Experiments

In this section, we present the experimental setup and results for evaluating the effectiveness of our
proposed SPA framework in improving the diversity of foundation model outputs. We conduct ex-
periments on both code generation tasks such as HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) and several natural language understanding tasks.

5.1 Experimental Setup

Base Model and Synthetic Dataset For the code generation experiments, we use CodeLLaMA
7B (Rozière et al., 2023) as the base foundation model. CodeLLaMA is a state-of-the-art language
model specifically designed for code-related tasks, pre-trained on a large corpus of code and natu-
ral language data. For the synthetic dataset, we utilize the OSS-Instruct dataset (Wei et al., 2023),
which consists of 75,000 code-related question-answering pairs generated by GPT-3.5 Turbo (Ope-
nAI, 2023). In the natural language understanding domain, we employ Llama-2 13B (Touvron
et al., 2023) as the base foundation model. Llama-2 is a powerful language model trained on a di-
verse range of web-scale data, demonstrating strong performance across various natural language
understanding tasks. For the synthetic dataset, we use Platypus (Lee et al., 2023), which focuses
on improving LLMs’ STEM and logic knowledge. Platypus consists of a curated sub-selection of
public text datasets, comprising approximately 25,000 question-answer pairs.

Data Attribution Scores We compare two methods for computing data attribution scores: influ-
ence function and lexical overlap.

For the influence-based method, we hand-write 12 examples that cover a wide range of knowledge
for each domain. For each of these examples, we calculate the influence score with respect to
each training example in the corresponding synthetic dataset using Equation 3. We then select the
top 8 test queries whose distribution of influence scores over the dataset has the highest variance.
This ensures that the selected test queries have diverse impacts on the synthetic dataset, capturing
different aspects of the domain knowledge. The resulting influence matrices Icode ∈ R8×75,000 and
Inlu ∈ R8×25,000 are used for partitioning the OSS-Instruct and Platypus datasets, respectively.

For the lexical overlap method, we compute the BM25 score (Robertson et al., 1994) between each
training example and the hand-written test queries. The BM25 score is calculated as follows:

I(z, zquery) =
∑

t∈zquery

log
N + 1

Nt
·
(

(k1 + 1)f(z, t)

k1

(
(1− b) + b · L(z)

Lavg

)
+ f(z, t)

+ 1

)
(5)

where f(z, t) is the overlap count, N is the number of training examples, L(z) is the length of the
example, and Lavg is the average example length. We adopted the framework and the hyperpa-
rameters in Lv & Zhai (2011). While we focus on influence function in this work, exploring the
effectiveness of alternative data attribution methods like BM25 could be an interesting direction for
future research. More details are provided in Appendix A.

Partitioning the Synthetic Datasets To train multiple foundation model adaptations, we first set
the hyperparameter K, which represents the total number of adaptations. We use K = 8 for both
code generation and natural langauge understanding domain. For each data point in the synthetic
dataset, we aim to find the test queries that provides the most influence. Formally, for each synthetic
data point (xi,yi), we assign it to the subset D∗

k corresponding to the test point with the highest
influence score or the BM25 score: k∗ = argmaxk∈{1,...,K} Ik,i. where Ik,i represents either
the influence matrix or the BM25 score matrix. This process partitions the OSS-Instruct dataset

6

Methods HUMANEVAL MBPP
pass@1 pass@5 diversity avg. KL pass@1 pass@5 diversity avg. KL

Single (τ = 0.1) 50.02 56.42 0.58 NA 60.15 64.16 0.53 NA
Random (τ = 0) 50.15 63.10 0.69 0.008 60.65 70.42 0.64 0.014
Lexical (τ = 0) 50.30 66.74 0.78 0.011 60.33 71.17 0.71 0.018
Influence (τ = 0) 50.15 69.05 0.85 0.017 60.46 73.68 0.78 0.020

Table 1: Results on the HumanEval and MBPP. τ denotes the temperature used for sampling. SPA
with influence function achieves the best performance in terms of diversity score and avg. KL
divergence) while maintaining comparable pass@1 performance to the single adaptation baseline.
pass@5 measures sample quality but also has a positive correlation with diversity.

into K groups for code generation and the Platypus dataset into K groups for natural language
understanding. Each group is associated with a specific test example that has the highest influence
on the data points within the group.

With the partitioned synthetic dataset, we train K model adaptations using the LORA technique, as
described in §4.3. Each adaptation Mk is trained on the corresponding subset Dk of the synthetic
dataset, focusing on the specific coding knowledge captured by the associated test point.

Evaluation Metrics We use the following two metrics to assess the diversity:

1. Average KL Divergence: Let Pi and Pj be the probability distributions of the generated responses
from two model adaptations i and j, respectively. The KL divergence between Pi and Pj is defined
as DKL(Pi ∥ Pj) =

∑
x Pi(x) log

Pi(x)
Pj(x)

. The average KL divergence is calculated by averaging
the pairwise KL divergence between all possible pairs of model adaptations. A higher average KL
divergence indicates greater diversity among the model adaptations,

Average KL Divergence =
1(
K
2

) N−1∑
i=1

N∑
j=i+1

DKL(Pi ∥ Pj) (6)

2. Sample Diversity: The average KL divergence evaluates the diversity at the distributional level.
We also consider the sample diversity which measures the uniqueness of individual responses. We
calculate the diversity score among K randomly generated samples for each problem. The diversity
score is defined as the proportion of unique samples within the generated set. Specifically, it is
calculated by taking one minus the ratio of the number of duplicate pairs to the total number of
generated pairs.

Baselines We consider two baselines in the evaluation: (1) Single Adaptation, where a single
model adaptation is trained on the entire synthetic dataset using LORA, and (2) Multiple Adapta-
tions (random), where multiple adaptations are trained on randomly partitioned subsets of the syn-
thetic dataset using LORA. Hyperparameters used to train adaptations are provided in Appendix A.

5.2 Code Generation Results

In the code generation domain, we evaluate the performance of our proposed methodology on two
popular code generation benchmarks: HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021). HumanEval consists of 164 hand-written programming problems with corresponding test
cases, while MBPP contains 399 held-out programming problems collected from online resources3.
These benchmarks assess the ability to generate functionally correct code.

pass@k metric In addition to the diversity metrics, we also evaluate the sample quality by pass@1
and pass@5, measuring the percentage of problems for which at least one of the k generated samples
passes all the test cases. Note that the pass@5 metric has a strong correlation to the diversity of the
samples. More diverse samples generally lead to higher pass@5 for k > 1.

Tab. 1 presents the evaluation results of our SPA framework and the baselines on the HumanEval
and MBPP benchmarks. For the multiple adaptation methods, including random partitioning, lexical

3We used the evalplus (Liu et al., 2023) framework to evaluate samples.

7

0.0 0.1 0.2 0.3 0.4 0.5

0.470

0.475

0.480

0.485

0.490

0.495

0.500

0.505
Pass@1

0.0 0.1 0.2 0.3 0.4 0.5

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Pass@5

0.0 0.1 0.2 0.3 0.4 0.5

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Percentage of unique solutions

single
influence
lexical
random

Figure 4: How sampling temperature affects pass@1, pass@5, and Diversity Score for different
methods on the HumanEval benchmark. The results are averaged over 4 checkpoints.

overlap, and influence function, we use greedy decoding (τ = 0) to generate samples. For the single
adaptation baseline, we use a temperature of τ = 0.1 to induce some diversity in the generated
samples, as greedy decoding would not produce any diversity in this case.

Our primary focus is on comparing the diversity metrics, namely the Diversity Score and the Average
KL Divergence (avg. KL), across the different methods. SPA with influence function achieves the
highest Diversity Scores of 85% and 78% on HumanEval and MBPP, respectively, indicating that the
generated samples are more unique and diverse compared to the other methods. Similarly, SPA with
influence function yields the highest Average KL Divergence of 0.017 and 0.020 on HumanEval and
MBPP, demonstrating greater diversity at the distributional level.

The random partitioning and lexical overlap approaches also improve upon the single adaptation
baseline in terms of diversity metrics, but to a lesser extent than influence function. In particular,
the lexical overlap induces more diversity than the random adaptations baseline. This suggests that
even simpler data attribution methods can be beneficial for enhancing diversity when training mul-
tiple specialized adaptations. It is worth noting that the pass@5 scores, while primarily measuring
sample quality, also have a positive correlation with diversity. SPA with influence function achieves
the highest pass@5 scores of 69.05% and 73.68% on HumanEval and MBPP, indicating that the
generated samples not only exhibit greater diversity but also maintain high quality.

In summary, these results underscore the effectiveness of our SPA framework in generating diverse
code samples without compromising quality. By leveraging influence function for data partitioning
and training multiple adaptations using LORA, SPA enables the generation of diverse and accurate
code solutions, even when using greedy decoding. We also showed that training more adaptations
than 8 did not lead to more diversity in Appendix B.

Impact of Temperature Fig. 4 presents the impact of temperature on pass@1, pass@5, and Di-
versity Score for different methods on the HumanEval benchmark. The first plot shows that all
methods, including Single, Random, Lexical, and Influence, exhibit similar patterns in terms of
pass@1 performance. They achieve maximum accuracy (around 50.2%) when τ = 0 and gradually
decrease to approximately 46.5% as the temperature increases to 0.5.

However, both pass@5 and Diversity Score improve for all methods as the temperature increases,
which is expected as higher temperatures encourage the model to generate more diverse samples.
Notably, SPA with influence function (Influence) maintains its advantage over other methods across
all temperature values, outperforming Single, Random, and Lexical methods. Although the perfor-
mance gap between Influence and other methods narrows as the temperature increases due to the
inherent diversity promotion of higher temperatures, Influence still maintains a lead at τ = 0.5.

5.3 Natural Language Understanding Results

To demonstrate the effectiveness of SPA in the natural language understanding domain, we evaluate
its performance on several diverse tasks, including Big-Bench Hard (BBH) (Suzgun et al., 2022),
GPQA (Rein et al., 2023), MMLU (Hendrycks et al., 2020), and WinoGrande (Sakaguchi et al.,
2019). For tasks that involve multiple-choice questions, we asked the model to continue generating
text even after producing an answer choice for the purpose of measuring sample diversity. As shown
in Fig. 5, SPA with influence function consistently achieves higher diversity scores and average KL
divergence compared to the lexical overlap and random adaptation across all tasks. Interestingly,

8

BBH
GPQ

A
MMLU

Wino
Gran

de
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

KL
 D

iv
er

ge
nc

e

0.019
0.013

0.156

0.028

0.010 0.009

0.092

0.021

0.005
0.011

0.045

0.011

Avg. KL divergence across NLU tasks

BBH
GPQ

A
MMLU

Wino
Gran

de
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
ve

rs
ity

 S
co

re

0.35

0.56
0.60

0.80

0.32

0.47

0.59

0.73

0.25

0.56

0.48

0.62

Diversity score NLU tasks

influence
lexical
random

Figure 5: Average KL divergence and diversity score on various natural language understanding
tasks. SPA with influence function consistently outperforms the lexical overlap and random adapta-
tions, demonstrating its effectiveness in generating diverse samples across different NLU tasks.

random adaptations achieve better diversity than lexical overlap on the GPQA task, suggesting that
the effectiveness of partitioning methods may change depending on the task.

The diversity scores and average KL divergence values vary across tasks, reflecting the inherent
differences in the nature and complexity of each task. Tasks like MMLU, which cover a wide
range of subjects, tend to yield higher average KL divergence. We also notice that a larger gap
in average KL divergence does not necessarily translate to a proportionally greater difference in
diversity scores. This suggests that while average KL divergence captures the dissimilarity between
the generated sample distributions, it may not always directly correlate with the actual diversity of
the samples. Nonetheless, the consistent improvement achieved by SPA with influence function
highlights its robustness and adaptability to various natural language understanding challenges.

6 Related Work

Sampling-based methods have been widely explored to generate diverse text from language models.
One of the most common approaches is temperature sampling (Ackley et al., 1985; Hinton et al.,
2015). Several studies have investigated the impact of temperature on model sampling and its effect
on the diversity-quality trade-off (Caccia et al., 2018; Renze & Guven, 2024; Wang et al., 2023).
Higher temperatures lead to more diverse but potentially less coherent samples, while lower temper-
atures produce more conservative and deterministic outputs. When using high temperatures, human
interventions can help to correct errors during the sampling process (Chung et al., 2023). Dynamic
temperature strategies have also been explored during the model training and inference stages (Lin
et al., 2018; Zhang et al., 2018; Wang et al., 2019; Chang et al., 2023).

Besides adjusting temperature, top-k, top-p (nucleus) sampling (Holtzman et al., 2019) and their
variants are common sampling methods (Fan et al., 2018; Meister et al., 2022; Hewitt et al., 2022;
Ravfogel et al., 2023), which restrict the sampling space or dynamically adjust the number of tokens
considered at each step. Another line of works studied how to formulate quality-diversity trade-off
as a search or RL problem (Naik et al., 2023; Lim et al., 2024; Mudgal et al., 2023; Bradley et al.,
2023; Ji et al., 2023).

7 Conclusion

In summary, we proposed SPA, which that leverages synthetic data, data partitioning, and model
adaptation to elicit diverse responses from foundation models. By partitioning synthetic datasets into
subsets that capture unique aspects of the data and training multiple model adaptations optimized
for these subsets, SPA enables the generation of diverse and high-quality responses.

Limitation One main challenges is the computational cost associated with influence function,
which require several extra epochs of backward passes to estimate. Future work could explore more
efficient data attribution methods, such as TRAK (Park et al., 2023) and K-FAC (Grosse et al., 2023).

9

Additionally, the ranking heuristics used to approximate Eq. (4) can be replaced by more advanced
clustering algorithms. Additionally, serving multiple LoRA adaptations poses significant computa-
tional challenge in real-time serving framework. Recent works such as S-LoRA and FLoRA (Sheng
et al., 2023; Wen & Chaudhuri, 2024) can be considered to accommodate this overhead.

References
David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for boltz-

mann machines. Cogn. Sci., 9:147–169, 1985. URL https://api.semanticscholar.org/
CorpusID:12174018.

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. J. Mach. Learn. Res., 18:116:1–116:40, 2016. URL https://api.
semanticscholar.org/CorpusID:10569090.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Herbie Bradley, Andrew Dai, Hannah Benita Teufel, Jenny Zhang, Koen Oostermeijer, Marco Bel-
lagente, Jeff Clune, Kenneth O. Stanley, Grégory Schott, and Joel Lehman. Quality-diversity
through ai feedback. ArXiv, abs/2310.13032, 2023. URL https://api.semanticscholar.
org/CorpusID:264405960.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Massimo Caccia, Lucas Caccia, William Fedus, H. Larochelle, Joelle Pineau, and Laurent Char-
lin. Language gans falling short. ArXiv, abs/1811.02549, 2018. URL https://api.
semanticscholar.org/CorpusID:53208122.

Chung-Ching Chang, D. Reitter, Renat Aksitov, and Yun-Hsuan Sung. Kl-divergence guided tem-
perature sampling. ArXiv, abs/2306.01286, 2023. URL https://api.semanticscholar.org/
CorpusID:259063711.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri-
son Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. ArXiv, abs/2107.03374, 2021. URL
https://api.semanticscholar.org/CorpusID:235755472.

John Joon Young Chung, Ece Kamar, and Saleema Amershi. Increasing diversity while main-
taining accuracy: Text data generation with large language models and human interventions.
In Annual Meeting of the Association for Computational Linguistics, 2023. URL https:
//api.semanticscholar.org/CorpusID:259096160.

10

https://api.semanticscholar.org/CorpusID:12174018
https://api.semanticscholar.org/CorpusID:12174018
https://api.semanticscholar.org/CorpusID:10569090
https://api.semanticscholar.org/CorpusID:10569090
https://api.semanticscholar.org/CorpusID:264405960
https://api.semanticscholar.org/CorpusID:264405960
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:53208122
https://api.semanticscholar.org/CorpusID:53208122
https://api.semanticscholar.org/CorpusID:259063711
https://api.semanticscholar.org/CorpusID:259063711
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:259096160
https://api.semanticscholar.org/CorpusID:259096160

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the As-
sociation for Computational Linguistics, 2019. URL https://api.semanticscholar.org/
CorpusID:52967399.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at
scale. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 489–500,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1045. URL https://aclanthology.org/D18-1045.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In An-
nual Meeting of the Association for Computational Linguistics, 2018. URL https://api.
semanticscholar.org/CorpusID:44134226.

Roger Baker Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamil.e Lukovsiut.e, Ka-
rina Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Sam Bowman. Studying
large language model generalization with influence functions. ArXiv, abs/2308.03296, 2023. URL
https://api.semanticscholar.org/CorpusID:260682872.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:221516475.

John Hewitt, Christopher D. Manning, and Percy Liang. Truncation sampling as language model
desmoothing. In Conference on Empirical Methods in Natural Language Processing, 2022. URL
https://api.semanticscholar.org/CorpusID:253157390.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural net-
work. ArXiv, abs/1503.02531, 2015. URL https://api.semanticscholar.org/CorpusID:
7200347.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. ArXiv, abs/1904.09751, 2019. URL https://api.semanticscholar.org/
CorpusID:127986954.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. ArXiv, abs/2212.09689, 2022.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,
2021. URL https://api.semanticscholar.org/CorpusID:235458009.

Haozhe Ji, Pei Ke, Hongning Wang, and Minlie Huang. Language model decoding as direct met-
rics optimization. ArXiv, abs/2310.01041, 2023. URL https://api.semanticscholar.org/
CorpusID:263605885.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017. URL https://api.semanticscholar.
org/CorpusID:13193974.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. ArXiv, abs/2308.07317, 2023. URL https://api.semanticscholar.org/CorpusID:
260886870.

Minhyeok Lee. A mathematical investigation of hallucination and creativity in gpt models. Mathe-
matics, 2023. URL https://api.semanticscholar.org/CorpusID:258768397.

Bryan Lim, Manon Flageat, and Antoine Cully. Large language models as in-context ai generators
for quality-diversity. ArXiv, abs/2404.15794, 2024. URL https://api.semanticscholar.
org/CorpusID:269362584.

11

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://aclanthology.org/D18-1045
https://api.semanticscholar.org/CorpusID:44134226
https://api.semanticscholar.org/CorpusID:44134226
https://api.semanticscholar.org/CorpusID:260682872
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:253157390
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:127986954
https://api.semanticscholar.org/CorpusID:127986954
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:263605885
https://api.semanticscholar.org/CorpusID:263605885
https://api.semanticscholar.org/CorpusID:13193974
https://api.semanticscholar.org/CorpusID:13193974
https://api.semanticscholar.org/CorpusID:260886870
https://api.semanticscholar.org/CorpusID:260886870
https://api.semanticscholar.org/CorpusID:258768397
https://api.semanticscholar.org/CorpusID:269362584
https://api.semanticscholar.org/CorpusID:269362584

Junyang Lin, Xu Sun, Xuancheng Ren, Muyu Li, and Qi Su. Learning when to concentrate or
divert attention: Self-adaptive attention temperature for neural machine translation. In Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2985–2990, Brussels,
Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1331. URL https://aclanthology.org/D18-1331.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Yuanhua Lv and ChengXiang Zhai. Lower-bounding term frequency normalization. In Interna-
tional Conference on Information and Knowledge Management, 2011. URL https://api.
semanticscholar.org/CorpusID:14029221.

James Martens. Deep learning via hessian-free optimization. In International Conference on Ma-
chine Learning, 2010. URL https://api.semanticscholar.org/CorpusID:11154521.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Typical decoding for natural lan-
guage generation. ArXiv, abs/2202.00666, 2022. URL https://api.semanticscholar.org/
CorpusID:246442062.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models. ArXiv, abs/2310.17022, 2023. URL https:
//api.semanticscholar.org/CorpusID:264491118.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi.
Diversity of thought improves reasoning abilities of llms. 2023. URL https://api.
semanticscholar.org/CorpusID:267938465.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. In International Conference on Machine Learning, 2023.
URL https://api.semanticscholar.org/CorpusID:257757261.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. ArXiv, abs/2304.03277, 2023.

Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. Conformal nucleus sampling. In An-
nual Meeting of the Association for Computational Linguistics, 2023. URL https://api.
semanticscholar.org/CorpusID:258479879.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. ArXiv, abs/2311.12022, 2023. URL https://api.semanticscholar.org/CorpusID:
265295009.

Matthew Renze and Erhan Guven. The effect of sampling temperature on problem solving in large
language models. ArXiv, abs/2402.05201, 2024. URL https://api.semanticscholar.org/
CorpusID:267547769.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and Mike Gatford.
Okapi at trec-3. In Text Retrieval Conference, 1994. URL https://api.semanticscholar.
org/CorpusID:41563977.

12

https://aclanthology.org/D18-1331
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://api.semanticscholar.org/CorpusID:14029221
https://api.semanticscholar.org/CorpusID:14029221
https://api.semanticscholar.org/CorpusID:11154521
https://api.semanticscholar.org/CorpusID:246442062
https://api.semanticscholar.org/CorpusID:246442062
https://api.semanticscholar.org/CorpusID:264491118
https://api.semanticscholar.org/CorpusID:264491118
https://api.semanticscholar.org/CorpusID:267938465
https://api.semanticscholar.org/CorpusID:267938465
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257757261
https://api.semanticscholar.org/CorpusID:258479879
https://api.semanticscholar.org/CorpusID:258479879
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:267547769
https://api.semanticscholar.org/CorpusID:267547769
https://api.semanticscholar.org/CorpusID:41563977
https://api.semanticscholar.org/CorpusID:41563977

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton, Man-
ish P Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. ArXiv, abs/2308.12950, 2023. URL
https://api.semanticscholar.org/CorpusID:261100919.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande. Com-
munications of the ACM, 64:99 – 106, 2019. URL https://api.semanticscholar.org/
CorpusID:198893658.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le
Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted
training enables zero-shot task generalization. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
with monolingual data. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 86–96,
Berlin, Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1009. URL https://aclanthology.org/P16-1009.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher
Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-
lora: Serving thousands of concurrent lora adapters. ArXiv, abs/2311.03285, 2023. URL
https://api.semanticscholar.org/CorpusID:265033787.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Andrew Trotman, Antti Puurula, and Blake Burgess. Improvements to bm25 and language models
examined. Proceedings of the 19th Australasian Document Computing Symposium, 2014. URL
https://api.semanticscholar.org/CorpusID:207220720.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

13

https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:198893658
https://api.semanticscholar.org/CorpusID:198893658
https://openreview.net/forum?id=9Vrb9D0WI4
https://aclanthology.org/P16-1009
https://api.semanticscholar.org/CorpusID:265033787
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:207220720
https://api.semanticscholar.org/CorpusID:13756489

Chi Wang, Susan Liu, and Ahmed Hassan Awadallah. Cost-effective hyperparameter optimization
for large language model generation inference. ArXiv, abs/2303.04673, 2023. URL https:
//api.semanticscholar.org/CorpusID:257405357.

Pei-Hsin Wang, Sheng-Iou Hsieh, Shih-Chieh Chang, Yu-Ting Chen, Jia-Yu Pan, Wei Wei, and Da-
Chang Juan. Contextual temperature for language modeling. ArXiv, abs/2012.13575, 2019. URL
https://api.semanticscholar.org/CorpusID:214250287.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
ArXiv, abs/2212.10560, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
2022b.

Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting performance on
text classification tasks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
6382–6388, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1670. URL https://aclanthology.org/D19-1670.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. ArXiv,
abs/2109.01652, 2021. URL https://api.semanticscholar.org/CorpusID:237416585.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120, 2023.

Yeming Wen and Swarat Chaudhuri. Batched low-rank adaptation of foundation models. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=w4abltTZ2f.

Yeming Wen, Pengcheng Yin, Kensen Shi, Henryk Michalewski, Swarat Chaudhuri, and Alex
Polozov. Grounding data science code generation with input-output specifications. ArXiv,
abs/2402.08073, 2024. URL https://api.semanticscholar.org/CorpusID:267637235.

Xu Zhang, Felix X. Yu, Svebor Karaman, Wei Zhang, and Shih-Fu Chang. Heated-up soft-
max embedding. ArXiv, abs/1809.04157, 2018. URL https://api.semanticscholar.org/
CorpusID:52193504.

A Experimental Setup Details

This section provides additional details on the experimental setup that were not included in the main
content due to space constraints.

Computing Data Attribution Scores For the lexical overlap method, we use a publicly available
BM25 (Lv & Zhai, 2011; Trotman et al., 2014) implementation written in Python and released under
https://pypi.org/project/rank-bm25/. We used the default hyperparameters.

When calculating the influence function, we employ the conjugate gradient method with LiSSA
approximation (Martens, 2010; Agarwal et al., 2016). We leverage a publicly available implementa-
tion from https://github.com/alstonlo/torch-influence/. For the OSS-Instruct dataset,
we use a damping factor of 0.001, a depth of 120, and 500 repeats, following the guideline that the
product of depth and repeats should be roughly equal to the dataset size. For the Platypus dataset,
we use a depth of 120 and 200 repeats. It is worth noting that computing the influence function is
also intensive with LORA. Each column of the I matrix in Eq. (4) requires approximately one epoch
of backward passes over the entire synthetic dataset. On the OSS-Instruct dataset, this takes roughly
5 hours using a single A100 80GB GPU. However, this is offline computation which is consumed
before deploying the model to users.

14

https://api.semanticscholar.org/CorpusID:257405357
https://api.semanticscholar.org/CorpusID:257405357
https://api.semanticscholar.org/CorpusID:214250287
https://aclanthology.org/D19-1670
https://api.semanticscholar.org/CorpusID:237416585
https://openreview.net/forum?id=w4abltTZ2f
https://openreview.net/forum?id=w4abltTZ2f
https://api.semanticscholar.org/CorpusID:267637235
https://api.semanticscholar.org/CorpusID:52193504
https://api.semanticscholar.org/CorpusID:52193504
https://pypi.org/project/rank-bm25/
https://github.com/alstonlo/torch-influence/

After obtaining the data attribution matrix, we observe that using the ranking heuristic presented
in §5.1 leads to imbalanced partitions. To achieve more balanced partitions, we normalize the data
attribution matrix before applying the heuristics. We leave the exploration of more advanced clus-
tering algorithms, such as k-means, for future work.

Details for Model Adaptations In this section, we provide details on the computing resources
and hyperparameters used for training the model adaptations in both the code generation and nat-
ural language understanding domains. For the code generation experiments, we use a machine
with 3 A100 40GB GPUs and train each partition for 400 steps, which takes approximately 80
minutes (each partition). The hyperparameters are mostly adopted from https://github.com/
bigcode-project/starcoder/tree/main. The base model is CodeLLaMA-7B-Python, and we
use bf16 precision to accelerate training. The per-device train batch size is set to 1, with a gradient
accumulation step of 20. We use a learning rate of 2e-4 with a cosine learning rate scheduler and 20
warmup steps. For the LORA hyperparameters, we use a rank (r) of 16, an alpha of 16.

8 9 10 11 12

0.700

0.725

0.750

0.775

0.800

0.825

0.850
Diversity v.s. # adaptations

influence
lexical
random

Figure 6: Diversity score as function of
the number of adaptations on the Hu-
manEval benchmark.

In the natural language understanding domain, we train
each partition for 400 steps, which takes approximately
40 minutes, using the Llama-2 13B model as the base
model. The training time is shorter compared to the
code generation domain because the Platypus dataset
is much smaller than OSS-Instruct. The hyperparame-
ters are mostly adopted from https://github.com/
arielnlee/Platypus. We use a per-device batch size
of 1 and a gradient accumulation step of 4. The learning
rate is set to 1e-4, with a total of 20 warmup steps.

All the computational costs mentioned in this section,
including the time and resources required for comput-
ing data attribution scores and training model adapta-
tions, are offline. These costs are incurred before de-
ploying the models to users, and they do not affect the
inference time.

B Impact of Number of Adaptations

In this section, we investigate the impact of the number of model adaptations on the diversity of the
generated responses. We focus on the HumanEval benchmark in the code generation domain and
vary the number of adaptations from 8 to 12. The results are presented in Fig. 6.

As shown in Fig. 6, the diversity score remains relatively stable as the number of adaptations in-
creases from 8 to 12, regardless of the partitioning method used. These results suggest that increas-
ing the number of adaptations beyond a certain point may not necessarily lead to an improvement in
the diversity of the generated responses.

C Test Queries

In this appendix, we provide the hand-written test queries used in our experiments for both the code
generation and text generation domains. These examples were utilized to compute data attribution
scores. Most of the examples are generated by GPT-4 (OpenAI, 2023).

C.1 Code Generation Domain

1 1. """Title: Longest Palindromic Subsequence
2 Query: Write a function to find the longest palindromic subsequence in a given

string.↪→
3 Solution:
4 """
5 def longest_palindromic_subsequence(s):
6 n = len(s)
7 dp = [[0] * n for _ in range(n)]

15

https://github.com/bigcode-project/starcoder/tree/main
https://github.com/bigcode-project/starcoder/tree/main
https://github.com/arielnlee/Platypus
https://github.com/arielnlee/Platypus

8

9 for i in range(n):
10 dp[i][i] = 1
11

12 for length in range(2, n+1):
13 for i in range(n-length+1):
14 j = i + length - 1
15 if s[i] == s[j] and length == 2:
16 dp[i][j] = 2
17 elif s[i] == s[j]:
18 dp[i][j] = dp[i+1][j-1] + 2
19 else:
20 dp[i][j] = max(dp[i+1][j], dp[i][j-1])
21

22 return dp[0][n-1]
23

24 2. """Title: Nth Fibonacci Number
25 Query: Implement a function to calculate the nth Fibonacci number using dynamic

programming.↪→
26 Solution:
27 """
28 def fibonacci(n):
29 if n <= 0:
30 return 0
31 elif n == 1:
32 return 1
33

34 fib = [0] * (n + 1)
35 fib[1] = 1
36

37 for i in range(2, n + 1):
38 fib[i] = fib[i - 1] + fib[i - 2]
39

40 return fib[n]
41

42 3. """Title: Sum of Two Largest Elements
43 Query: Create a function that takes a list of integers and returns the sum of the

two largest elements in the list.↪→
44 Solution:
45 """
46 def sum_of_two_largest(nums):
47 if len(nums) < 2:
48 return sum(nums)
49

50 largest = second_largest = float('-inf')
51

52 for num in nums:
53 if num > largest:
54 second_largest = largest
55 largest = num
56 elif num > second_largest:
57 second_largest = num
58

59 return largest + second_largest
60

61 4. """Title: Maximum Subarray Sum
62 Query: Implement a function to find the maximum subarray sum in a given array of

integers.↪→
63 Solution:
64 """
65 def max_subarray_sum(nums):
66 max_sum = float('-inf')
67 current_sum = 0
68

69 for num in nums:

16

70 current_sum = max(num, current_sum + num)
71 max_sum = max(max_sum, current_sum)
72

73 return max_sum
74

75 5. """Title: First Non-Repeating Character
76 Query: Create a function that takes a string and returns the first non-repeating

character in the string.↪→
77 Solution:
78 """
79 def first_non_repeating_character(s):
80 char_count = {}
81

82 for char in s:
83 char_count[char] = char_count.get(char, 0) + 1
84

85 for char in s:
86 if char_count[char] == 1:
87 return char
88

89 return None
90

91 6. """Title: Merge Two Sorted Lists
92 Query: Write a function to merge two sorted lists into a single sorted list.
93 Solution:
94 """
95 def merge_sorted_lists(list1, list2):
96 merged_list = []
97 i = j = 0
98

99 while i < len(list1) and j < len(list2):
100 if list1[i] <= list2[j]:
101 merged_list.append(list1[i])
102 i += 1
103 else:
104 merged_list.append(list2[j])
105 j += 1
106

107 while i < len(list1):
108 merged_list.append(list1[i])
109 i += 1
110

111 while j < len(list2):
112 merged_list.append(list2[j])
113 j += 1
114

115 return merged_list
116

117 7. """Title: Remove Prime Numbers from List
118 Query: Create a function that takes a list of integers and returns a new list with

all the prime numbers removed.↪→
119 Solution:
120 """
121 def is_prime(num):
122 if num < 2:
123 return False
124 for i in range(2, int(num ** 0.5) + 1):
125 if num % i == 0:
126 return False
127 return True
128

129 def remove_prime_numbers(nums):
130 return [num for num in nums if not is_prime(num)]
131

132 8. """Title: Longest Common Substring

17

133 Query: Write a function to find the longest common substring between two given
strings.↪→

134 Solution:
135 """
136 def longest_common_substring(str1, str2):
137 m, n = len(str1), len(str2)
138 dp = [[0] * (n + 1) for _ in range(m + 1)]
139 max_length = 0
140 end_index = 0
141

142 for i in range(1, m + 1):
143 for j in range(1, n + 1):
144 if str1[i - 1] == str2[j - 1]:
145 dp[i][j] = dp[i - 1][j - 1] + 1
146 if dp[i][j] > max_length:
147 max_length = dp[i][j]
148 end_index = i
149 else:
150 dp[i][j] = 0
151

152 start_index = end_index - max_length
153 return str1[start_index : end_index]
154

155 9. """Title: Kth Largest Element in an Unsorted Array
156 Query: Implement a function to find the kth largest element in an unsorted array.
157 Solution:
158 """
159 def kth_largest_element(nums, k):
160 k = len(nums) - k
161

162 def partition(left, right):
163 pivot = nums[right]
164 i = left - 1
165

166 for j in range(left, right):
167 if nums[j] <= pivot:
168 i += 1
169 nums[i], nums[j] = nums[j], nums[i]
170

171 nums[i + 1], nums[right] = nums[right], nums[i + 1]
172 return i + 1
173

174 def quick_select(left, right):
175 if left == right:
176 return nums[left]
177

178 pivot_index = partition(left, right)
179

180 if k == pivot_index:
181 return nums[k]
182 elif k < pivot_index:
183 return quick_select(left, pivot_index - 1)
184 else:
185 return quick_select(pivot_index + 1, right)
186

187 return quick_select(0, len(nums) - 1)
188

189 10. """Title: Product of Array Elements
190 Query: Create a function that takes a list of integers and returns the product of

all the elements.↪→
191 Solution:
192 """
193 def product_of_elements(nums):
194 product = 1
195 for num in nums:

18

196 product *= num
197 return product
198

199 11. """Title: Binary Search
200 Query: Implement a function to perform binary search on a sorted list of integers.
201 Solution:
202 """
203 def binary_search(nums, target):
204 left = 0
205 right = len(nums) - 1
206

207 while left <= right:
208 mid = (left + right) // 2
209

210 if nums[mid] == target:
211 return mid
212 elif nums[mid] < target:
213 left = mid + 1
214 else:
215 right = mid - 1
216

217 return -1
218

219 12. """Title: Find Missing Number
220 Query: Create a function that takes a list of integers from 0 to n (inclusive) with

one number missing and returns the missing number.↪→
221 Solution:
222 """
223 def find_missing_number(nums):
224 n = len(nums)
225 expected_sum = (n * (n + 1)) // 2
226 actual_sum = sum(nums)
227 return expected_sum - actual_sum

C.2 Text Generation Domain

1 1. Title: Economic Impacts of the Black Death
2 Query: Explain the economic impacts of the Great Mortality in medieval Europe.
3 Response: The the Great Mortality drastically reduced the population of Europe,

leading to severe labor shortages, higher wages, lower prices for land, and a
shift in economic power from the feudal lords to the working class and
merchants.

↪→
↪→
↪→

4

5 2. Title: Photosynthesis Process
6 Query: Describe the process of photosynthesis and its importance to the Earth's

ecosystem.↪→
7 Response: Photosynthesis is the process by which green plants and some other

organisms use sunlight to synthesize nutrients from carbon dioxide and water. It
generates oxygen as a byproduct, which is vital for most life forms on Earth.

↪→
↪→

8

9 3. Title: Calculating Travel Distance
10 Query: If a car travels at 60 miles per hour for 3 hours, how far has it gone?

Explain your calculation.↪→
11 Response: The car has traveled 180 miles, calculated as 60 miles/hour * 3 hours.
12

13 4. Title: Utilitarianism vs Deontological Ethics
14 Query: Discuss the main differences between utilitarianism and deontological ethics.
15 Response: Utilitarianism focuses on the outcomes or consequences of actions to

determine morality, while deontological ethics considers the actions themselves
and the adherence to duties or rules as the basis for morality.

↪→
↪→

16

17 5. Title: Advancements in Quantum Computing
18 Query: What are the key advancements in quantum computing over the last decade?

19

19 Response: Key advancements include the development of quantum supremacy, error
correction, and the creation of more stable qubits, enhancing computing power
and reliability.

↪→
↪→

20

21 6. Title: Wedding Traditions in India
22 Query: Compare the wedding traditions of Northern and Southern India.
23 Response: Northern Indian weddings often feature elaborate rituals like Sangeet and

Mehendi, while Southern Indian weddings are marked by rituals like Kashi Yatra
and Oonjal. Both have vibrant traditions but differ in cultural practices and
attire.

↪→
↪→
↪→

24

25 7. Title: Deforestation in the Amazon
26 Query: What are the primary causes of the Amazon rainforest's deforestation and what

measures are being taken to address it?↪→
27 Response: Primary causes include agriculture, logging, and infrastructure

development. Measures to address this include enforcement of laws, satellite
monitoring, and international cooperation on sustainable practices.

↪→
↪→

28

29 8. Title: Theme of Ambition in Macbeth
30 Query: Analyze the theme of ambition in Shakespeare's 'Macbeth'.
31 Response: Ambition in 'Macbeth' serves as both a driving force and a tragic flaw for

the characters, particularly Macbeth, leading to his rise and eventual downfall
as he succumbs to the ambition spurred by the prophecy and his wife’s
encouragement.

↪→
↪→
↪→

32

33 9. Title: Global Impact of Renewable Energy
34 Query: Discuss the global impact of renewable energy sources on climate change.
35 Response: Renewable energy sources like solar and wind have a significant impact on

mitigating climate change by reducing dependence on fossil fuels, decreasing
greenhouse gas emissions, and promoting sustainability. Countries adopting
renewable energy contribute to a global reduction in carbon footprints, which
can help meet the goals set by international climate agreements like the Paris
Agreement.

↪→
↪→
↪→
↪→
↪→

36

37 10. Title: The Role of Artificial Intelligence in Healthcare
38 Query: Explain how artificial intelligence is transforming healthcare.
39 Response: Artificial intelligence in healthcare is transforming the industry by

enhancing diagnostic accuracy, improving treatment personalization, and
optimizing operational efficiencies. AI applications include predictive
analytics for patient management, automated imaging and diagnostics, and
robot-assisted surgeries, leading to faster, more accurate patient care and
reduced healthcare costs.

↪→
↪→
↪→
↪→
↪→

40

41 11. Title: Cultural Significance of Food in Japan
42 Query: Describe the cultural significance of food in Japan and how it reflects

Japanese society.↪→
43 Response: Food in Japan is deeply intertwined with the nation's culture, reflecting

aspects of beauty, seasonality, and regional diversity. Traditional dishes like
sushi and bento embody aesthetic principles and social customs, such as respect
for nature and meticulous attention to detail. Food rituals, such as tea
ceremonies, also highlight the importance of mindfulness and harmony in Japanese
society.

↪→
↪→
↪→
↪→
↪→

44

45 12. Title: Economic Effects of Globalization
46 Query: Analyze the economic effects of globalization on developing countries.
47 Response: Globalization has both positive and negative economic effects on

developing countries. On the positive side, it allows access to international
markets, increases capital inflow, and promotes technology transfer, leading to
job creation and economic growth. However, it can also lead to economic
dependency, cultural homogenization, and the potential exploitation of local
resources and labor, which might exacerbate inequalities and social tensions.

↪→
↪→
↪→
↪→
↪→

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose the SPA framework which is the main contribution of this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is stated in the Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

21

Justification: No theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Hyper-parameters are given in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [Yes]
Justification: In the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are averaged over 4 checkpoints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is given in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No violation.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational research on how to generate diverse samples. It is
not directly applied in any product.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use existing dataset and models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the used datasets, models and the repos.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The code is included in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

26

	Introduction
	Background
	Instruction Fine-tuning
	Data Attribution and influence function

	Problem Formulation
	Partitioning Synthetic Data and Training Adaptations
	Computing Data Attribution Scores
	Partitioning Synthetic Dataset
	Training Multiple Adaptations with LoRA

	Experiments
	Experimental Setup
	Code Generation Results
	Natural Language Understanding Results

	Related Work
	Conclusion
	Experimental Setup Details
	Impact of Number of Adaptations
	Test Queries
	Code Generation Domain
	Text Generation Domain

