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ABSTRACT

Mechanistic interpretability aims to provide human-understandable insights into
the inner workings of neural network models by examining their internals. Existing
approaches typically require significant manual effort and prior knowledge, with
strategies tailored to specific tasks. In this work, we take a step toward automat-
ing the understanding of the network by investigating the existence of distinct
sub-networks. Specifically, we explore a novel automated and task-agnostic ap-
proach based on the notion of functionally similar representations within neural
networks, reducing the need for human intervention. Our method identifies similar
and dissimilar layers in the network, revealing potential sub-components. We
achieve this by proposing, for the first time to our knowledge, the use of Gromov-
Wasserstein distance, which overcomes challenges posed by varying distributions
and dimensionalities across intermediate representations—issues that complicate
direct layer-to-layer comparisons. Through experiments on algebraic, language,
and vision tasks, we observe the emergence of sub-groups within neural network
layers corresponding to functional abstractions. Additionally, we find that different
training strategies influence the positioning of these sub-groups. Our approach of-
fers meaningful insights into the behavior of neural networks with minimal human
and computational cost.1

1 INTRODUCTION

Rapid progress in transformer language models has directed attention towards understanding the
underlying causes of new capabilities. Like many other neural methods, large language models
(LLMs) are mostly black-box models and explainable artificial intelligence aims to offer insights and
improve human understanding of these LLMs. Recently, mechanistic interpretability research has
gained popularity, focusing on reverse-engineering models into human-understandable algorithms,
using methods such as computational graphs and circuits (Nanda et al., 2023; Conmy et al., 2024).
Examples include recovering internal mechanisms of LLMs to solve typical mathematical problems
such as modular sum (Zhong et al., 2024).

Current approaches primarily rely on extensive manual inspection and trial-and-error to reverse
engineer networks by discovering a sequence of learned functions that produce a desired output. This
process requires significant human prior knowledge with strategies tailored to specific tasks such
as algebraic problems (Charton, 2023). Automatic discovery of these functions is a difficult task
due to the large search space involved. We investigate a simpler task that can be considered as an
initial step towards automating the discovery of these functions: is it possible to detect how many
distinct (complex) functions exist in a learned network, and which layers correspond to each such
function? Understanding neural networks through the identification of subnetworks is essential due
to the complexity and opacity of modern deep learning models. Neural networks, especially those
with many layers and parameters, often exhibit behaviors that are difficult to interpret holistically.
Identifying subnetworks allows us to break down the model into smaller, more interpretable units,
providing insights into how individual components contribute to the model’s overall performance.
In this paper, we take such a step towards an automatic and task-agnostic approach to identify
sub-components in neural networks that are functionally different from each other. Specifically, we
treat the intermediate layers of neural networks as computing different functions of the input and base

1Code will be made publicly available.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

our approach on functional similarity. These distinctive subnetworks would represent one function in
a sequence of different ones, and knowing such a partition would facilitate further decoding these
functions leading a better understanding of the network.

The nature of functional similarities differ depending on which of the two cases is true: either we
have a hypothesized target function that part of the network may (approximately) compute, or we lack
such a hypothesis. In the case of a given target function, functional similarity relates to the output of
the target function, and the problem is one of search to find a network layer that best approximates it.
This is akin to comparing two functions based on the values they take for the same input samples.
The use of probes attached to representations is a popular method for detecting such similarities.
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Figure 1: Overview of our approach where we use
representations to identify functionally distinct sub-
networks (darker blocks) leveraging GW distance.

The more realistic case with neural networks is the
absence of a target function, which is the primary
focus of this paper. In this case, we propose to mea-
sure the functional similarity between layers of the
network, and the problem is to identify distinctive
sub-components within the network by finding which
layers are functionally less similar to previous layers
as shown in Figure 1. The idea is that less similar
layers (brighter colors) may indicate boundaries of a
sub-component, while more similar layers (darker
colors) likely belong to the same sub-component.
While it may be tempting to also use probes here
for layer comparisons, the lack of targets makes it
unclear how the representations in these layers should
be transformed by the probes for comparison. We
need a more direct way to compare these representa-
tions. Hence, we propose to measure similarity using Gromov-Wasserstein (GW) distance (Zheng
et al., 2022) between representations from different layers of the network. As elaborated further in
Section 4.1, GW allows distance computation between distributions supported on two different metric
spaces with different supports and potentially different dimensions, which is common across different
layers in neural networks. GW is also invariant to permutation of the representation within a layer, a
crucial property since neural networks are known to have permutation symmetries (Goodfellow et al.,
2016). As such, GW can effectively identify genuinely distinct behaviors across (groups of) layers.

We validate our approach on algebraic, NLP, and vision tasks, showing that GW distance provides a
systematic way to analyze and identify subnetworks. Additionally, our findings provides a holistic
view on differences in representations of models trained with different strategies. We observe clear
patterns in the form of block structures among different layers, suggesting there exist sub-networks
that have different functions, particularly at the transition layers where major functional changes
may occur. Moreover, the GW distance can also be used to observe the emergence of subnetworks
during training process. Overall, we hope that our method can improve the efficiency of mechanistic
interpretation by finding subnetworks in larger models, reducing the need for extensive human effort
and potentially contributing to a further understanding of neural network behaviors.

2 BACKGROUND AND RELATED WORK

With its popularity, mechanistic interpretability has become a disparate area, with many different
applications in vision (Palit et al., 2023), and language (Ortu et al., 2024; Hernandez et al., 2023; Yu
et al., 2024), and we survey various directions within it.

Algorithm discovery in algebraic problems Modular sum algorithms (Nanda et al., 2023) are
studied in the context of progress measure in emerging abilities of transformers. The authors in
(Zhong et al., 2024) show, via various inspection such as gradient symmetry, logit patterns, and input
pair relations, that one class of algorithm is preferred than another. Other math problems such as the
greatest common divisor (Charton, 2023) also show insights into the inner mechanisms of neural
networks. However, most of these works require extensive human effort to reverse engineering these
algorithms. We investigate whether we can automate the discovery process by studying a simpler
problem of sub-function detection.
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Subnetwork Discovery Automated circuit discovery (Conmy et al., 2024; Shi et al., 2024) intends
to find a computational graph that is far sparser without sacrificing performance. Heuristic Core
(Bhaskar et al., 2024) hypothesizes that there exists a set of attention heads that encompasses all
subnetworks, learning shallow and non-generalizable features. Moreover, various work have explored
neuron semantics and possible disentanglement of semantics (Bricken et al., 2023; Dreyer et al.,
2024; Huang et al., 2024a), as well as concept representations (Park et al., 2024). Instead of studying
circuits and neuron, we investigate differences among neural network layers as a whole, based on an
existing line of work (Nanda et al., 2023). Block structures within neural network have been observed
in previous studies (Nguyen et al., 2022).

Methods of Studying Mechanisms Weight inspection and manipulation are commonly employed
techniques to gain insights into the inner work of networks, including studying periodicity (Nanda
et al., 2023) and weight gradients (Zhong et al., 2024). Modifying or ablating the activation of a
specific model components (Huang et al., 2024b; Kramár et al., 2024), including attention knockout
(Wang et al., 2022), and even direct modification of attention matrix (Ortu et al., 2024; Geva et al.,
2023) are prevalent. Another popular approach involves representation and output inspection (Meng
et al., 2022), including logit patterns (Zhong et al., 2024), residual stream (Ortu et al., 2024), and
periodicity (Nanda et al., 2023). Causal mediation analysis is used to compute the indirect treatment
effect (Meng et al., 2022; Yu et al., 2024) with perturbed embedding. Rather than just inspection of
outputs, many works have proposed to map the output to some target and is a popular technique for
analyzing how neural activations correlate with high-level concepts (Huang et al., 2024a). Linear
probes are generally used. (Hou et al., 2023) uses a nonparametric probe (k−nearest-neighbor) to
classify outputs for reasoning tasks. We focus on using similarity measure between layers here.

Similarity Measure between Neural Network Layers There are studies that quantify the similarity
between different groups of neurons (Klabunde et al., 2023), typically layers (Ding et al., 2021),
to understand and compare different neural networks. Cross product between each layer output
and final output (Yu et al., 2024) is used to approximate each layer’s contribution to the final
prediction. Generally a normalized representation is used to compare different transformer blocks,
with different desired invariance properties, such as invariance to invertible linear transformation in
canonical correlation analysis (Morcos et al., 2018), orthogonal transformation, isotropic scaling, and
different initializations in centered kernel alignment (Kornblith et al., 2019). Other measures include
representational similarity analysis (Mehrer et al., 2020), which studies all pairwise distances across
different inputs. Wasserstein distance has been explored in measuring similarities in the context of
neural networks (Dwivedi & Roig, 2019; Cao et al., 2022; Lohit & Jones, 2022), but they assume that
different layer representations belong to the same metric space, which is very unlikely even if they
have the same dimensionality as the semantics captured by each layer are likely to differ significantly.
Several similarity measures (Tsitsulin et al., 2019; Demetci et al., 2023a) are related to GW distance.
While GW distance has been used for model merging as a regularization (Singh & Jaggi, 2020; Stoica
et al., 2023), it has not been fully explored in the area of mechanistic interpretability, particularly for
the subnetworks identification.

3 FUNCTIONAL SIMILARITY WITHIN NEURAL NETWORKS

We aim to identify sub-components of a neural network based on their mechanistic functions. When
we have a hypothesized target function that the sub-component may compute, this can be formulated
as a similarity search problem. In this context, we search for candidate representations within neural
networks’ outputs that represents changes in function computation. The search problem consists of
three key elements: the search space, the search target, and the similarity measures used to evaluate
how closely the candidates in the search space match the target.

3.1 SIMILARITY MEASURES

Let f : X → Y be a function that map x in a set of input X = {xi : xi ∈ Rdx}ni=1 to y in a
set of output Y = {yi : yi ∈ Rdy}ni=1. Each element in Y and X are assumed to be a vector
with dimensions dy and dx, respectively, with n being the set size, without loss of generality. Let
f0 : X → Y 0 be another function that produces Y 0 = {y0i : y0i ∈ Rdy}ni=1 given X . Note sets can
be concatenated into matrix forms as Y 0, Y ∈ Rn×dy and X ∈ Rn×dx .

3
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Functional Similarity. Similarity between two functions, f0 and f , over a set of input X , can be
measured by the similarity between their output sets Y0 = f0(X) and Y = f(X).

We can use a scoring or distance function D(Y 0, Y ) as a measure between output similarity and
hence the functional similarity between f0 and f , where we regard Y 0 as the function/search target.
If they are close according to D, then the function values should be similar to each other locally
at a set of points X . Otherwise, these functions should be different at X . Popular measures such
as Euclidean distance have been used for this purpose (Klabunde et al., 2023). Each intermediate
representations of a neural network can be naturally treated as function outputs, given inputs X .

The Need for Complex Functional Similarity Measure. Since we cannot exactly control the
behavior of a trained neural network, the layer-wise functions f that it learns can be complex and thus
the learned representation Y from each layer may be a complex function of the target Y 0 rather than
a simpler transformation. For example, let Y 0 = sin(X) and a candidate Y = sin2(X) = (Y 0)2.
They share strong similarity, but a linear transformation will not be able to capture their functional
similarity. If we want to truly understand where function f0 might be approximately computed, we
should consider functions of target Y 0, but naively listing out all possibilities can be prohibitive. As
a consequence, one may need to use more complex measures to deal with such a space.

3.2 SEARCH SPACE

We consider multiple candidate Y ’s to form the search space for target Y 0. In the context of MLP
neural networks for example, where σ(.) denotes the non-linearity and W s are the parameter matrices,
we have Y ∗ = Wn(σ(Wn−1 . . . σ(W1X))) for the whole network. We can extract many Y ’s from
intermediate functions of the model, for instance Y1 = W1X , Y2 = σ(W1X), and so on. These Y ’s
are often called representations, activations, or sometimes even “outputs” from each layer. We use
these terms interchangeably here. For attention modules in transformer neural networks (Vaswani
et al., 2017), we can similarly extract Y ’s from attention key, query, and value functions as well
as MLP functions. We list the exact equations and locations of representations considered in the
transformer models in Table 2 in Appendix A, which serves as the focus of this paper. To show the
method is applicable to other types of networks, we also consider convolutional neural networks with
residual layers, with candidate representations listed in Table 3 in in Appendix A.

3.3 SEARCH TARGETS

Known Targets When the search target, denoted as T , is a value from a known function, we can
directly compare outputs between representations from each layer and known function output T .
Representations from each layer can be directly compared with the target via a probe. Popular linear
probes can be used to assess the similarity between a target and any layer’s representation. For
instance, linear regression can be used to model each target T from each representation candidate Y ,
and the residual error is used as the search criteria between Y and T . As discussed previously, to deal
with the potentially large search space of functions of the target, a more powerful probe (such as a
nonlinear MLP function) may have to be used so that it can detect more complex similarities to T .

One challenge with using predictive probes to compute the distance measure D is that the target
function must be known. In practice, however, we often lack knowledge of specific targets. While
it’s possible to experiment with various target functions with power probes, the vast number of
potential targets makes this approach inefficient. This calls for an alternative strategy to distinguish
sub-components in a network through representation similarity.

4 GROMOV-WASSERSTEIN DISTANCE AS A SIMILARITY MEASURE

Unknown Targets When the search target is unknown, functionally similar parts cannot be
identified by comparison to a predefined set of target functions. Instead, we propose to identify
the similarities and subnetworks among the representations at each intermediate layer. Each layer,
however, posits a representation that potentially has a different distribution, not to mention even
different dimensionality depending on the architectures and layers one considers (viz. mlp in layer
and attention layer in transformer blocks). Consequently, representations across layers may be
incomparable using standard distance metrics, such as the ℓp norm amongst others.
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To overcome these challenging issues, we propose computing distances between representations
produced at the same layer for different inputs and match the vertices of this weighted graph – where
each dimension of the representation of the inputs are vertices and the distances indicate weights on
the edges – with the vertices of a similarly constructed weighted graph from another layer. Essentially,
we assume the representations in a layer are samples of the underlying distribution, and we want the
best permutation of representation dimensions in one layer that aligns with vertices in another layer,
thereby deriving the inter-layer distance. If this inter-layer distance is low, then the two layers we
consider to be functionally similar, given the same input data.

Formally, without loss of generality, let Y1 = {y1i : y1i ∈ Rd1}ni=1 and Y2 = {y2i : y2i ∈ Rd2}ni=1
be representations of n examples from two different layers, where the discrete distributions over
the representations are µ1 and µ2 respectively, with dimension d1 possibly being different from d2.
Direct distance computation between them is not reasonable. Instead, we seek to compute a coupling
or matching π ∈ Π(µ1, µ2) between the n examples in each set such that given the pairwise distances
D1, D2 ∈ Rn×n within representations Y1 and Y2 respectively, the sum of differences between the
distances of the matched examples is minimized. Loosely speaking, we aim to find a matching that
preserves the pairwise distance as much as possible. In particular, we want to minimize the following:

ρ(Y1,Y2, µ1, µ2, D1, D2) ≜ min
π∈Π(µ1,µ2)

∑
i,j,k,l

(D1(i, k)−D2(j, l))
2πi,jπk,l

s. t. πI = µ1;π
T I = µ2;π ≥ 0. (1)

It turns out that ρ corresponds to the Gromov-Wasserstein (GW) distance (Demetci et al., 2023b),
used to map two sets of points in optimal transport. We thus utilize this distance as a measure of
inter-layer functional similarity in the setting where the target is unknown.

4.1 JUSTIFICATION FOR GW DISTANCE AS A FUNCTIONAL SIMILARITY MEASURE

Let (Y1, D1, µ1) and (Y2, D2, µ2) be two given metric measure space (mm-space), where (Y , D) is
a compact metric space and µ is a Borel probability measure with full support: supp(µ) = Y . An
isomorphism between Y1,Y2 is any isometry Ψ : Y1 → Y2, i.e., a distance-preserving transformation
between metric spaces, such that Ψ#µ1

= µ(Ψ−1) = µ2.
Theorem 4.1. (Mémoli, 2011). The Gromov-Wasserstein distance in equation 1 defines a proper
distance on the collection of isomorphism classes of the mm-spaces.

Remark. The Gromov-Wasserstein distance itself is defined on isomorphism-classes of metric
measure spaces, which means that any distance preserving (isometric) transformation of a space
should preserve GW distance between the points in that space and any other space (Mémoli, 2011).
These isometric transformations include rigid motions (translations and rotations) and reflections or
compositions of them. Additionally, permutations of points in a space also preserve GW distances, as
the points are unlabeled. Hence, GW distance captures much richer transformations across layers.

The computed GW distance represents the minimal distance over all possible transportation plans
between two sets of points from different spaces. In our context, we can also view GW as a
measure that quantifies the distance between distance-based (i.g., Euclidean-distance) graphs, with
a set of points as its nodes. Hence this would be low if the graph undergoes (nearly) isomorphic
transformations between layers. Conversely, a high GW distance indicates a non-distance preserving
transformation across layers, potentially reflecting a highly non-linear operation. While GW distance
does not reveal the exact function operation, it highlights specific layers for further investigations.

Favorable Properties of GW. Besides the above noteworthy property of GW to map between different
spaces, it also has other favorable properties (Zheng et al., 2022; Demetci et al., 2023b): i) It is
symmetric and satisfies triangle inequality. ii) It is invariant under any isometric transformation of the
input, which is advantageous because we do not want rotations and reflections to affect our similarity
search. This invariance also includes permutation invariance, which is a beneficial property since
we want the distance between layer representations to remain unaffected by permutations within the
representations in each layer. iii) GW is scalable since it does not require estimating high-dimensional
distributions, which is often the case with intermediate representations in large models; instead,
it only compare them to obtain a distance measure. iv) GW is monotonic in (positive) scaling of
pairwise distances, and hence the same layers should appear to be closer than others even with scaling.
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Figure 2: Histogram on
pairwise distances for outputs
from all transformer blocks
in a fine-tuned BERT model
trained on YELP dataset.

Distance Distributions. As an illustrative example, we plot the his-
togram on pairwise distances for a batch of samples across all trans-
former blocks in BERT models from the YELP review dataset in Fig-
ure 2. For more details on YELP, we provide a comprehensive dis-
cussion in the experiments section 5.2. The results in Figure 2 show
the distributions on pairwise distances begin to differ from block 9,
consistent with GW distance observed in Figure 6 suggests that signif-
icant transformations occur and can be effectively captured by GW. We
include the full results and discussion in Appendix F.

Neighborhood Change. Complementary to the distribution of pairwise
distances, the changing representations of samples could also alter their
relative neighborhoods across transformer blocks. We plot a tSNE
projection (Van der Maaten & Hinton, 2008) of representations from a
batch of samples on YELP, and visualize it in Figure 11e of Appendix F.
The Jaccard similarity, measuring the overlap between top-5-neighbors
of 3 selected samples across different transformer blocks, ranges from
0.0 to 0.43, with average values of {0.27, 0.26, 0.26}. The full details
are shown in Table 5 of Appendix F. Hence, the sample neighborhood
changes across blocks, which can be indicative of functional changes
that are not captured by comparing distributions alone. However, GW
can account for such changes as well.

Computation Details. We use an existing optimal transport toolbox,
pythonot (Flamary et al., 2021), for computing GW distance. Specif-
ically, we use an approximate conditional gradient algorithm proposed
in (Titouan et al., 2019), which has a complexity of O(mn2 +m2n),
where m and n are the dimensions of two spaces (here the number of
data samples from two layers being compared). In comparison, the
Wasserstein distance Lohit & Jones (2022) may require O(n3log(n))
for exact computation. When the dataset is large, we can also sub-
sample the dataset to improve the computational efficiency.

5 EMPIRICAL STUDY AND FINDINGS

We compare the proposed similarity measure for sub-network identifica-
tion against a set of baselines across multiple datasets, including those
from algebraic operation, NLP, and computer vision tasks. For a list of
baselines with their implementation details, please see Appendix H.

5.1 SYNTHETIC MODULAR SUM TASKS

We begin by validating the Gromov-Wasserstein distance by comparing it against known partitions of
the networks to determine whether it can successfully identify sub-networks. We first introduce the
setup for the experiment, including data generation and models to be investigated.

Setup As a test case, we focus on a modular sum problem, following existing works (Nanda
et al., 2023). We consider two datasets: the first generated by a single modular sum function
with c = fmod(a + b) = (a + b)mod p, where a, b, c = 0, 1, . . . , p − 1, with p = 59. The
second dataset is more complex, with c = fmod3(a, b) of three levels of modular sums, namely:
c1 = (a+ b)mod p1, c2 = (c1 + b)mod p2, c = (c2 + b)mod p3, where p = [59, 31, 17].

Training procedure We train 3 different neural networks with transformer blocks to predict c given
(a, b). These networks contain input embeddings for a and b, each of size d, i.e., [Ea,Eb] ∈ R2d,
and predict a categorical output c via an unembedding/decoding layer. All parameters in the network
are learned. For the first simpler fmod dataset, we train a neural network consisting of a one-block
ReLU transformer (Vaswani et al., 2017), following the same protocol and hyperparameter choices
as previous works (Nanda et al., 2023; Zhong et al., 2024). We call this Model 0. For the more
complex fmod3 dataset, we train two neural networks consisting of three-block ReLU transformers,
with 3 transformer blocks corresponding to the three levels of modular sum functions, and 4 attention
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Figure 3: Model L (layer-wise training) pairwise
GW distance, on fmod3 dataset.

Figure 4: Model E (end-to-end training) pairwise
GW distance, on fmod3 dataset.

heads within each block. The first network, which we call Model E, employs an end-to-end training
procedure to directly learn output c given input (a, b). For the second network, which we call Model
L, we use the same architecture as Model E but with a layer-wise training approach instead of
end-to-end training. Specifically, we use the following procedure:

1. We train the first transformer block of Model L to predict (c1, b) using an additional linear layer on
top, given inputs (a, b).

2. Once block 1 is fully trained, we discard the linear layer, freeze everything before the linear layer,
and use its representations of (c1, b) to train the second block to predict (c2, b), again incorporating
an additional layer on top.

3. Finally, we repeat the above step by freezing the first and second block and training the last block
to predict c, using representations of (c2, b).

In all these models, we are able to achieve 100% prediction accuracy on a separate validation dataset.
Note that extra linear layers can also be considered as probes but used in training. More details can be
found in appendix B. We use the GW measure on Model L with layer-wise training to verify if there
is consistency between GW distances and known output c’s. To evaluate the capability of handling
different dimensions, we directly measure GW distance between the 93 intermediate representation
Y (see appendix B for search space details) and c’s. To speed up computation of GW distance, we
randomly sub-sample 1000 data from a total of 3600 samples, reducing time from 2 min to 5 seconds
for each computation.

Table 1: Gromov-Wasserstein Distance Results for Various Targets, for fmod3 dataset.

Model L GW-D for Top Similar Layers Dmin =
c1 Resid-Post1 0.02
c2 Resid-Post2 0.03
c Resid-Post2, Resid-Pre2, Resid-Post3, and 6 others 0.04

Results The results are shown in the Table 1. We see that in the Model L, the GW distance correctly
identifies the most similar layers in accordance with different intermediate c’s. The final target c
contains 9 similar layers all with distance around 0.04. In Appendix C, we also test probes since the
targets are known. Results shows GW distance can be a reliable alternative to the probes.

Moreover, as previously mentioned GW distance can naturally compare representations across and
within transformer blocks with different dimensions. In Fig 3 and Fig 4, we visualize the pairwise
GW distance between layer representations without a target for Model L and Model E. Looking at
Model L we see predominantly 3 groupings of layers: i) layers roughly from 20 to 44 are similar
to each other and to layers 52 to 72, ii) layers roughly 12 to 19 are similar to each other and layers
45 to 51 and iii) the initial and last few layers are mainly similar to themselves. Interestingly, the
number of groupings corresponds to the 3 functions trained layer-wise in Model L. We also observe
differences in patterns across Model L and Model E, suggesting layer-wise and end-to-end training

7
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return different networks. Compared to the fixed layer-wise training, end-to-end training in Model E
may learn faster in the earlier layers and may not have much to learn in later layers, as the function
may not be particularly challenging for it. This could explain why, starting from layer 64, all layers
in Model E exhibit similar representations. Moreover, magnitudes of the distances are also different,
with Model L showing larger distances, indicating that learning the targets c1, c2 result in more
functional differences. One possible explanation could be that Model E directly operates in the
trigonometry space (Nanda et al., 2023), without having to predict the exact integer values until later,
thereby suppressing the distances. We include results from baseline methods capable of handling
different dimensions between subspaces in Appendix D.

Figure 5: Model 0 Pairwise GW dis-
tance, on fmod dataset.

To gain a deeper understanding of the operations within each
transformer block, we visualize pairwise GW distances among
layers for Model 0 for dataset fmod in Figure 5. In this case, we
have a total of 31 representations since only one transformer
block is used. We notice the first major difference occurs
between layers 13 and 16, which are 4 Attn-Pre (computing
key and value product). The second difference occurs between
layers 17 and 20, which are the first 3 Attn (computing A(X)).
This suggests that major computation seems to be done by the
attention mechanism. Note that distances are not monotonically
increasing across layers, which is expected as the representation
spaces can change significantly given the heterogeneity of the
operations such as those performed by residual connections and
attention within a transformer block.

5.2 NLP TASKS

Setup We now apply GW distance to real natural language processing tasks. We experiment on
benchmark sentiment analysis datasets, Yelp reviews and Stanford Sentiment Treebank-v2 (SST2)
from the GLUE NLP benchmark (Wang et al., 2019), with the goal to predict of the text has positive
or negative sentiment, and analyze how different layers from fine-tuning BERT(-base) (Devlin et al.,
2019) models perform on these datasets. We use the pretrained BERT to generate 4 fine-tuned models,
corresponding to a dense model and 3 sparse models with sparsity levels of 25%, 70% and 95% using
a state-of-the-art structured pruning algorithm (Dhurandhar et al., 2024). Sparsity are used to force
models to condense information into the limited remaining weights, enabling us to examine potential
links between this constraint and their structural similarity. Training details are in Appendix E. Due
to the size of BERT models, we limit our analysis to comparing the final representations from each of
the 12 transformer blocks, rather than examining all intermediate representations within the blocks.

Results In the last row of Figure 6a, we see that the pre-trained BERT does not have major differences
among blocks, which is not surprising given its accuracy on YELP is only 49.3% (roughly equivalent
to random guessing). In Figures 6b to 6e, we see an interesting pattern emerge, revealing two-to-three
major block structures in the (sparse) fine-tuned BERT models identified by our approach. The first
major differences occur at block 9 and then the last three blocks (10, 11, 12) seem to form a distinct
block. This seems to indicate that most of the function/task fitting occurs at these later blocks.

The presence of block structures in the GW-distance matrices indicates major functional changes
may concentrate at these transition blocks. This finding may suggest that for other downstream tasks,
we may consider freezing the model up to Block 8 and only fine-tuning the blocks after that. We
validate this observation in appendix G. We also consider a model compression application where
only 4 transformer blocks can achieve similarly good performance, as discussed in Appendix L.

When sparsifying these models, we observe the more sparse models have lesser differences among
the blocks (with 95% sparse model in 6e having the least differences). This is expected as fewer
parameters contribute to the final function output besides others being suppressed. Nonetheless,
a similar pattern persists, indicating that later blocks differ significantly from earlier ones. This
observation is consistent with fine-tuning and sparsification literature (Li et al., 2021; Dhurandhar
et al., 2024), where it has been observed that later blocks typically undergo substantial changes
during fine-tuning as they focus on task-specific solutions, while the earlier middle blocks remain
stable as they capture syntactic and semantic patterns of the language necessary for various tasks. In
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(a) Pre-trained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 6: Pairwise (layer) distances on Yelp, across different BERT models, using the proposed GW distance,
from top to bottom. Different columns: first column is the pre-trained BERT and the rest are fine tuned BERT
models with increasing sparsity (dense, 25%, 70% and 95% sparsity). As can be seen GW clearly demarcates
the (functional) sub-network blocks. Due to page limit, we show baseline results in Appendix I.

appendix J, we further investigate the GW distance between blocks from different models, providing
insights into how representations vary across architectures. In Appendix I, we include results from
baseline similarity measures. Overall, CKA produces also similar block structures to the proposed
GW distance, though with greater variability within block structures. In contrast, other baselines fail
to reveal such clear block structures.

On SST2 dataset, we also observe very similar patterns with the GW distance and 3 baselines, for
which we refer the readers to appendix K for detailed results. In both datasets, low distance measure
are consistently observed in the diagonal elements, but the overall block structures are not as obvious
in the baselines as they are with GW distance, highlighting the effectiveness of the GW distance.

Clustering Besides visualization above, one can also utilize clustering methods to automatically
identify the subnetworks from the GW distance. We tested spectral clustering (Von Luxburg, 2007) on
a similarity matrix computed as the reverse pairwise GW distance matrix. This method successfully
identified 2 groups with block 1 ∼ 8 and block 9 ∼ 12.

5.3 EMERGENCE OF SUBNETWORKS DURING TRAINING

We also visualize the GW distance between blocks while fine-tuning the pretrained BERT model on
YELP datasets in the entire training process, in order to observe when these subnetwork structures
begin to emerge. Figure 7 show a few visualization on GW distances at selected training iterations.
Block distances are low in the beginning (observed in Figure 6a), but by iteration 300 the last block
begin to differ from other blocks. As training progresses, block 9, 10, and 11 begin to show at
iteration 3k and 15k. These growing differences in GW distance reflect the model’s increasing F1
score on the test data. Overall it show the gradual specialization of blocks into distinct sub-networks,
with each sub-network potentially focusing on different aspects of the task.

(a) Iteration = 300 (b) Iteration = 3k (c) Iteration = 15k (d) Iteration = 26k

Figure 7: Pairwise GW distance in YELP datasets, over training iterations.

We also plot the mean GW distance of all block pairs in Figure 8. Figure 8a show the mean GW
distance over training iterations, and show it grows over time. Figure 8b shows that mean GW
distance versus two different accuracy metric on the test dataset. GW distance grow slowly at first,
followed by a rapid increase as the model achieves better accuracy and F1 scores. Such observation
is consistent with existing “grokking” behavior, where validation accuracy can suddenly increases
well after achieving near perfect training accuracy (Nanda et al., 2023). Similarly, Figure 8c shows a
rapid increase in mean GW distance in order to achieve a lower training loss.
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Figure 8: Pairwise GW distance in YELP datasets, over training iterations.

5.4 RESNET AND COMPUTER VISION DATASET

In addition to the attention-based architectures, we also test our approach on ResNet9, a popular
convolutional neural network architecture(He et al., 2016; Park et al., 2023). We compare a randomly
initialized ResNet9 and a trained model on CIFAR 10 image dataset CIFAR-10 (Krizhevsky et al.,
2009), achieving 91.63% accuracy on the test data. For more details on the setup, we refer the readers
to Appendix N. In Figure 20, we show the pairwise distance among layers using baselines that handle
different input dimensions. Overall, GW distance show the most clear divisions of subnetworks.

To further examine how the sub-network structures align with learned representation, we visualize
the computed distances alongside the learned representations of a ”ship” image across all layers in
Figure 9. The top row shows the representations of a ship at each layer. To see the gradual changes over
layers, we visualize the distance between every layer and its previous layer, using various methods
capable of handling different dimensions between compared spaces. Overall, RSM, RSA, MSID, and
CKA show indicate significant changes across many layers, without clear evidence of sub-network
structures. AGW highlights the changes in the final few layers only. In comparison, GW distance
demonstrates the most consistency with the image representations visually. Specifically, the 3rd
convolution layer (Layer ID 2.ReLU) introduces the first notable differences, where the ship’s shape
becomes less distinct, signaling the learning of mid-level features. The shapes become increasingly
blurred in the 5th convolution layers (Layer ID 4.Conv2d ) and by Layer 4.ReLU the ship’s shape
is nearly absent. The final convolutional layer (Layer ID 7.Conv2d) shows significant changes
from its preceding layer (Layer ID 6.ReLU), marking the point where class-specific information is
consolidated. These results suggest that GW distance aligns most effectively with the learned image
representations, providing strong evidence that it can reveal meaningful subnetwork structures.

Figure 9: Pairwise layer distance between every layer and its previous layer on CIFAR-10, for various baselines.

6 DISCUSSION
We proposed a novel approach to model interpretation based on functional similarity within intermedi-
ate layers of neural networks, using Gromov-Wasserstein (GW) distance to compute such similarities.
To the best of our knowledge, our application of GW distance in this context is novel. On algebraic,
real NLP, and vision tasks, we identified the existence of major sub-components amongst layers,
corresponding to functionally meaningful abstractions. Overall, our method provides an automatic
low-cost approach to find sub-components within neural networks, facilitating human understanding.
Future work could investigate larger models to observe general trends and applications of functional
similarity. Theoretical study of other properties of GW distances within the context of neural network
interpretability is also an interesting future direction.
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A REPRESENTATIONS IN TRANSFORMER-BASED AND CONVOLUTION
NEURAL NETWORK

We consider multiple candidate Y ’s to form the search space for target Y 0. In the context of MLP
neural networks for example, where σ(.) denotes the non-linearity and W s are the parameter matrices,
we have Y ∗ = Wn(σ(Wn−1 . . . σ(W1X))) for the whole network. We can extract many Y ’s from
intermediate functions of the model, for instance Y1 = W1X , Y2 = σ(W1X), and so on. These Y ’s
are often called representations, activations, or sometimes even “outputs” from each layer.

For attention modules in transformer neural networks (Vaswani et al., 2017), we can similarly extract
Y ’s from attention key, query, and value functions as well as MLP functions. More specifically, a
deep transformer architecture of depth l is formed by sequentially stacking l transformer blocks. Each
transformer block takes the representations of a sequence Xin ∈ RT×d, where Xin = Emb(X) with
embedding layer Emb and input X , T is the number of tokens and d is the embedding dimension,
and outputs Xout, where:

Xout = αFFX̂ + βFFMLP(Norm(X̂))

where, MLP(Xm) = σ(XmW 1)W 2

X̂ = αSAXin + βSAMHA(Norm(Xin)),

MHA(X) = [Attn1(X), . . . ,AttnH(X))]W P ,

Attn(X) = A(X)XW V ,

A(X) = softmax
(

1√
dk

XWQWK⊤
X⊤ +M

)
,

(2)

with scalar weights αFF, βFF , αSA, and βSA usually set to 1 by default. Here FF stands for feedforward
network, SA stands for self-attention, MHA is Multi-Head Attention, and Norm is a normalization
layer. MLP usually has a single hidden layer with dimension d and ReLU activation. The MHA sub-
block shares information among tokens by using self-attention with WQ, WK and W V indicating
query, key and value matrices. We list the exact locations of representations considered in the
transformer models in Table 2.

Table 2: Representations Y in the attention-based model considered in experiments as per equation 2.
Omitting Y in most names for readability.

(Across Blocks)
Name Resid-Prel Y l, at each block
Value = Xl

in = Xl
out

(Within Each Block l)
Name Attn-Outl Resid-Midl Pre Post MLP-outl Resid-Postl

Value =MHA(X)l = X̂ = X̂W 1 =MLP(X̂) = MLP(X̂) = Xout

(Within Each Attention Head h)
Name kh qh Attn-Preh Attnh vh zh
Value = XWK = XWQ = qhk

T
h = A(X) = XW V =Attn(X)

We also consider convolution neural networks for computer vision datasets. Specifically, we use
a relatively lightweight ResNet9 (He et al., 2016; Park et al., 2023). The exact locations of the
candidate representations considered are listed in Table 3.

B MODULAR SUM EXPERIMENT DETAILS

We use the same architecture and protocols in training, as previous modular papers (Nanda et al.,
2023; Zhong et al., 2024), based on their available Github repos. Specifically, we use transformer
width d = 128, and each attention head has 32 dimensions. As a result, MLP has 512 hidden neurons.
ReLU is used as the activation throughout the models,
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Table 3: All representations Y considered in ResNet 9 in experiments.

(Module 0)
Name 0.Conv2d 0.BatchNorm 0.ReLU
Details in-channel = 3, out =64, kernel size = (3,3) Batch Normalization activation

(Module 1)
Name 1.Conv2d 1.BatchNorm 1.ReLU
Details in-channel = 64, out =128, kernel size = (5,5) Batch Normalization activation

(Module 2 & 3: Residual Block )
Name 2.Conv2d 2.BatchNorm 2.ReLU
Name 3.Conv2d 3.BatchNorm 3.ReLU
Details in-channel = 128, out =128, kernel size = (3,3) Batch Normalization activation

(Module 4)
Name 4.Conv2d 4.BatchNorm 4.ReLU 4. MaxPool
Details in-channel = 128, out =256, kernel size = (3,3) Batch Normalization activation Kernel (2,2)

(Module 5 & 6: Residual Block )
Name 5.Conv2d 5.BatchNorm 5.ReLU
Name 6.Conv2d 6.BatchNorm 6.ReLU
Details in-channel = 256, out =256, kernel size = (3,3) Batch Normalization

(Module 7)
Name 7.Conv2d 7.BatchNorm 7.ReLU 7. MaxPool
Details in-channel = 256, out =128, kernel size = (3,3) Batch Normalization activation Adaptive

(Module 8)
Name 8.Linear (classification)
Details in-feature = 128, out =10

Data Among all data points (592 = 3481 of them), we randomly select 80% as training samples
and 20% as validation samples.

Hyperparameters We used AdamW optimizer (Loshchilov & Hutter, 2017) with learning rate
γ = 0.001 and weight decay factor β = 2. We use the shuffled data as one batch in every epoch. We
train models from scratch and train for 26,000 epoches.

Search Space For the fmod3 dataset, we consider all layers in the network, including all representa-
tions within transformer blocks. As shown in Table 2, each attention head has 6 intermediate layers,
for a total of 24. Each block has an additional 7 layers (1 input layer, Resid-Pre, and 6 intermediate
layers). Hence, for three blocks each with four attention heads, we have a total of 93 representations
to evaluate, as each block has 31 = 24 + 7 representations.

C PROBES ON MODULAR SUM DATASET: WHEN TARGET IS KNOWN

When the target is a value from a known function, we can directly compare outputs between
representations from each layer and the known function output. Representations from each layer can
be directly compared with the target via a probe. We first consider Model E and then Model L.

Linear Probe Popular linear probes can be used to assess the similarity between a target and
any layer’s representation. We perform linear regression of each target (c1, c2, c) on each of the 93
representations Y , and report the residual error as the scoring distance function between Y and c’s.

Results Since we perform layer-wise training with Model L, we know the true locations of c1 and
c2, which sit at X1

out and X2
out with names Resid-Post1 and Resid-Post2, respectively. As shown in

the top part of Table 4, a linear regression probe can predict targets perfectly with these two layers.
In fact, there are 21 other layers which also show perfect accuracy. For c1, these consist of Post0 and
MLP-out0 from the same block and some layers from the next block, including linear operations
with all k’s, q’s, v’s. The final prediction c can be linearly predicted as expected, due to the model’s
perfect prediction accuracy.
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Table 4: Linear and Nonlinear Probe Results, for fmod3 dataset.

Model L Linear Probe for Perfect Match? Top Similar Layers Dmin =
c1 ✓ Resid-Post1 and 21 others 0
c2 ✓ Resid-Post2 and 21 others 0
c ✓ Resid-Post3 and Post2 0

Model E Linear Probe for Perfect Match? Top Similar Layers Dmin =
c1 × Post2 0.522
c2 × Post1 0.93
c ✓ Resid-Post3 and 5 others 0

Model E Nonlinear Probe for Perfect Match? Top Similar Layers Dmin =
c1 ✓ Resid-Post1 and 15 others 0
c2 ✓ Resid-Post1 and 4 others 0
c ✓ Resid-Post3 and 9 others 0

Naturally we would like to confirm if the same happens with Model E: if we use the same linear
probe, does each block in Model E learn the corresponding c at the output of the transformer block?
As shown in the mid part of Table 4, we are not able to find any layer that produces a representation
that is linearly predictive of c1 and c2, with the lowest prediction errors at 52% and 93%, respectively.
Moreover, the most similar layers to c1 and c2 are in the 2nd block and 1st block respectively, instead
of the expected 1st and 2nd blocks. This seems to suggest that Model E does not actually learn any
function of c1 and c2.

Non-linear Probe As discussed previously, to deal with the potentially large search space of
functions of the target, a more powerful probe (such as a nonlinear MLP function) may have to be
used so that it can detect more complex similarities to c. Therefore, we train a two-layer MLP2 to
predict c’s. As shown at the bottom of Table 4, these two-layer MLPs have more predictive power and
can perfectly predict the targets, while still showing differences among various layers indicating that
the matched layers do capture the intended target functions while other layers do not. Many layers
in the 3rd block, for example, have only 1% accuracy relative to c1. This indicates that non-linear
probes can be used to find subgroups of layers in neural networks. Unlike existing work that primarily
focuses on linear probes, we show that non-linear probes, still with limited capacity, are useful.

One issue with using predictive probes to compute the distance measure D is that the target function
has to be known. In practice, however, we may not know any intermediate targets, as suggested in the
end-to-end training of Model E. While we still can try different target functions and use non-linear
probes, the infinite number of possible targets makes such an approach inefficient. This calls for a
different strategy to differentiate sub-components in a network through representation similarity.

D BASELINE COMPARISON RESULTS ON MODULAR SUM

We have also tested a few baselines that can handle different space dimensions, shown in Figure 10.
RSA and CKA reveal different levels of subnetworks within attention layers and across transformer
blocks. AGW demonstrates the highest sensitivity to attention computations, while RSM finds the
last few layers within each transformer block.

E REAL NLP EXPERIMENT DETAILS

We analyze a BERT-base-uncased (Devlin et al., 2019) model based on our optimal match-
ing inspired mechanistic interpretability approach. We fine tune it on two well known
datasets in NLP; i) Yelp reviews (https://www.kaggle.com/code/suzanaiacob/
sentiment-analysis-of-the-yelp-reviews-data) and ii) Stanford Sentiment
Treebank-v2 (SST2), which is part of the GLUE NLP benchmark (Wang et al., 2019). Both of
these are sentiment analysis tasks, where the goal is to predict if a piece of text has positive or

2We use the neural network classifier from the scikit-learn package, with default parameters.
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Figure 10: Pairwise (layer) distances on Modular Sum dataset, with layer-wise trained models. Different figures
from left to right, top to bottom: RSA, RSM, CKA, MSID, AGW, and the proposed GW distance.

negative sentiment. The Yelp dataset has hundreds of thousands of reviews, while the SST2 dataset
has tens of thousands of sentences. The training details are as follows: i) Hardware: 1 A100 Nvidia
GPU and 1 intel CPU, ii) Max. Sequence Length : 256, iii) Epochs: 1, iv) Batch Size: 16 and
v) Learning Rate: 2e−5 with no weight decay. The accuracy on Yelp was 97.87%, while that on
SST2 was 92.4%. Without fine tuning the pre-trained BERT models accuracy on Yelp and SST2 was
49.29% and 50.34% respectively indicative of random chance performance.

We also fine tuned a series of sparse models on these datasets. The method we used to sparsify was a
state-of-the-art dynamic sparse training approach NeuroPrune (Dhurandhar et al., 2024), which leads
to high performing structured sparse models. Using this approach and the same training settings as
above we created BERT models with 25%, 70% and 95% sparsity which had accuracies of 96.31%,
97.53% and 96.22% respectively for the Yelp dataset and accuracies of 90.25%, 88.5% and 84.4%
respectively for the SST2 dataset. We then used the resultant models for our analysis.

F ALIGNMENT FROM GW DISTANCE

We plot a tSNE projection (Van der Maaten & Hinton, 2008) down to 2 dimensions, on a batch of
16 samples (color indicative of sample) on YELP, and visualize it in Figure 11e. As one can see,
the sample neighborhood changes across layers, which can be indicative of functional changes but
something that is not captured by comparing distributions. However, GW can also account for such
changes.

We also show Jaccard similarity measure on top-5-neighbors, per Euclidean distances on tSNE
projection, of each of 3 samples across different transformer blocks. Jaccard similarity is a measure
of two sets, computed as their intersection divided by their union. Results are shown in Table 5. This
further shows the sample neighborhood changes across layers, and representation similarity measures
should account for such changes.

Table 5: Jaccard Similarity on top-5-neighbors of Selected Samples across all transformer blocks.

Sample 1 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.25 0.25 0.25 0.11 0.43 0.11 0.25 0.25 0.11 0.11 0.25 0.25 0.27

Sample 2 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.11 043 0.11 0.11 0.11 0.0 0.11 0.25 0.25 0.43 0.25 0.25 0.26

Sample 3 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Block 0 v.s. 0.0 0.11 0.43 0.25 0.25 0.25 0.11 0.66 0.11 0.11 0.11 0.0 0.26
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(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 90% Sparse

Figure 11: tSNE projection on intermediate representations on Yelp, across BERT models with different
sparsity levels. Different Rows: Results from all 12 transformer blocks, from top to bottom. Different columns:
first column is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense,
25%, 70% and 95% sparsity).

To show the exact transportation plan from GW distances, we choose plot one batch of data with size
16, and show the transportation plan over 5 random layer pairs in Figure 12. As one can see, the
transportation plan does not conform to identity-mapping. Both Wasserstein and Euclidean distance
will likely have trouble handle in this case. We also note that the transportation plan shown Figure 12
is a permutation of the original data, rather than a distributed transportation plan. This behavior is
consistent with existing Wasserstein optimal transport plan under certain conditions (Peyré et al.,
2019).

(a) (b) (c) (d) (e)

Figure 12: Pairwise GW transportation plan on Yelp, across BERT models. 5 of randomly chosen layer pairs
are shown.

To complement Figure 2 on other fine-tuned BERT models on YELP, we also plot all the histograms
of pairwise distances between two samples in a batch, across all layers for each of 5 models in
Figure 13. Pre-trained models are publicly available models training on other datasets. Row b) to e)
are the fine-tuned models on YELP, with different sparsity levels. As one can see, pretrained models
do not have much differentiations across layers in the histograms, with maximal KL-divergence of
0.11 between histogram in consecutive layers. Fine tuned models, on the other hard, show larger
KL-divergence values, in particular in later layers. For example, Layers 9 in the Dense BERT model
contains KL distance of 1.58 from its previous layer. The results show that significant transformations
in pairwise distances occur across layers and such distances would be captured by GW distances, as
show in Figure 6 and Figure 15.
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(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 13: Histogram on pairwise distances on Yelp, across BERT models with different sparsity levels. a)
is the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity levels: (b)densely
fine-tuned, c) 25%, d) 70% and e) 95% sparsity.

G FINE-TUNING WITH DIFFERENT LAYERS

Since the GW distance indicates significant changes occurs only at later layers in YELPS, we
investigate performance of fine-tuning only partial layers from pretrained models, by freezing early
layers during training and training only later layers alongside a classification layer (denoted as C)
at the end. In Table 6, we can see that there is no significant performance differences between
fine-tuning layer 8 to 12 and fine-tuning layer 9 to 12 (0.04% drop). On the other hand, the accuracy
drops 6 times more by freezing layer 1 to 9, with 0.25%. Freezing layer 1 to 10 results 0.49% drop,
and finally fine-tuning only 12 results 3.59% drop. These findings validate that the later layers are
crucial for significant functional changes.

Table 6: Accuracy of fine-tuning partial layers in various BERT models. C denotes the classification
layer on top of BERT models.

Fine-tune All 8∼12 + C 9∼12 + C 10∼12 + C 11∼12 + C Only 12 + C
Accuracy (%) 97.87 97.47 97.43 97.19 96.7 93.11

H BASELINE METHODS AND IMPLEMENTATION DETAILS

Besides the standard Euclidean and cosine distances, we compare a few other baselines, as discussed
below.

Wasserstein Distance (Dwivedi & Roig, 2019): We use the POT, python optimal transport library
pythonot (Flamary et al., 2021), with the algorithm proposed in (Bonneel et al., 2011).

Representational similarity metric (RSM) (Klabunde et al., 2023): RSM compares two different
spaces by using the L2 norms on differences in inter-instances distances. This can be seen as approxi-
mation to GW using the fixed and identity transportation plan (i.e., the samples map to itself). We
use existing implementation at: https://github.com/mklabunde/llm_repsim/blob/
main/llmcomp/measures/rsm_norm_difference.py.
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Representational Similarity Analysis (RSA) (Klabunde et al., 2023): RSA is similar to RSM but
use correlation instead of L2-norm to compute the final distance. Implementation at: https://
github.com/mklabunde/llm_repsim/blob/main/llmcomp/measures/rsa.py

Canonical Correlation analysis (CCA) (Morcos et al., 2018): CCA compute distances based on vari-
ances and covariances. Implementation at: https://github.com/google/svcca/blob/
master/cca_core.py

Centered Kernel Alignment (CKA) (Kornblith et al., 2019): CKA is based on normalized
Hilbert-Schmidt Independence Criterion (HSIC). Implementation at: https://github.com/
mklabunde/llm_repsim/blob/main/llmcomp/measures/cka.py

Multi-Scale Intrinsic Distance (MSID) Tsitsulin et al. (2019): MSID compute the intrinsic and
multiple distance, and can be considered as a lower bound of the GW distance. Implementation at:
https://github.com/xgfs/imd/blob/master/msid/msid.py. We have explored
different hyperparameter settings with different neighbors k (5 or all batch data available) and number
of iterations for SLQ, but results are all similar to the default parameter setting.

Augmented GW (AGW) (Demetci et al., 2023a): AGW considers feature alignment in addition to
sample alignment. Its overall objective can be seen as a penalized GW distance. Implementation at:
https://github.com/pinardemetci/AGW-AISTATS24/tree/main.

For all methods, we use default parameter settings to obtain results in the paper. Note that RSM,
RSA, CCA, MSID, and AGW, along with our proposed approach can handle different dimensions of
inputs.

Gromo-Wasserstein Distance (Dwivedi & Roig, 2019): We use the POT, python optimal transport
library pythonot (Flamary et al., 2021). We use the solver based on the conditional gradient
(Titouan et al., 2019).

I MORE BASELINES ON YELP

Due to the page limit, here we include baseline results on Yelp Datasets in Figure 14 and Figure 15.

We compare the proposed GW distance with Euclidean, Cosine, and Wasserstein distance as baselines
in Figure 14, on the same YELP dataset and with the same settings. Euclidean distance between
two layers’ outputs, shown in the first row of Figure 14, can be seen as the GW distance with a
fixed identity-mapping transportation plan for each sample. This validates the low-valued diagonal
elements. Off-diagonal elements show greater variation, and it is less obvious there are two distinct
sub-groups within layers. The similar pattern is also observed with Cosine and Wasserstein distances,
with similar strong diagonal pattern but more pronounced block structures than Euclidean distance.
we also include 6 other baseline similarity measure in Figure 15. Overall, CKA produces also similar
block structures to the proposed GW distance, though with greater variability within block structures.
In contrast, other baselines fail to reveal such clear block structures.

J CROSS MODEL COMPARISON

We can also use GW distance to compare layers from different BERT models. Shown in Figure 16,
pretrained and densely fine-tuned BERT models exhibit different similarity measures when compared
to fine-tuned BERT models with different levels of sparsity.

K SST2 DATASETS

Besides YELP Datasets, we also tested the GW distance on SST2 dataset. Results on SST2 dataset
are shown in Figure 17 again confirm there exist two-three different groups in terms of functional
similarity. The first major difference is seen at layers 10 and 11, while layer 12 forms its own block.
When sparsifying these models, lesser differences are observed in general as also seen on the YELP
dataset. Other baselines provide less clarity on the division of sub-components.
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(a) Pre-trained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 14: Pairwise (layer) distances on Yelp, across different BERT models. Different Rows: Euclidean,
Cosine, Wasserstein, and the proposed GW distance, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%
sparsity). As can be seen GW clearly demarcates the (functional) sub-network blocks.

More baselines are included in Figure 18, as they do not all fit into the one page. Overall, RSA and
CKA identify block structures but with larger 2nd block.

L MODEL PRUNING/COMPRESSING

Another another potential application beside freezing-and-fine-tuning specific transformer blocks, we
study the problem of model compress or pruning with the discovered subnetworks.

For each of desired block sizes, we take the original pre-trained BERT and only use the first
n = {12, 8, 4, 2, 1, 0} transformer blocks while discarding the rest. Note that n = 12 means we use
all the transformer blocks, resulting the same BERT model. n = 0, on the other hand, means that we
only use a (linear) classifier layer (after embedding layer) to predict the class label. The results are
shown in Table 7. As a reminder, GW distance suggest the last 4 blocks in YELP (see Figure 6) and
the last 2 blocks in SST (see Figure 17) are mostly different, which is marked by star (∗) in the table.
It shows that by using a limited number of layers, we can achieve similar performance with the full
12 block model, with 0.01% and 0.54% differences in YELP and SST, respectively. Using one fewer
transformer block can risk much worse reduction of performance, with 0.10% and 8.60% differences
(about 10 times worse performance reduction).

Table 7: Accuracy of pruning BERT with a smaller number of blocks on YELP and SST. N denotes
the number of transformer blocks in the new BERT models.

Number of Transformer Blocks 12 (all) 8 4 2 1 0 (only classifier)
YELP 97.87 97.87 97.86∗ 97.76 97.11 60.3
SST 92.40 90.25 90.25 91.86∗ 83.26 50.92
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(a) Pre-trained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 15: Pairwise (layer) distances on Yelp, across different BERT models. Different Rows: RSA, RSM, CKA,
CCA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%
sparsity). As one can be seen, GW clearly demarcates the (functional) sub-network blocks.

M GW DISTANCE WITH DIFFERENT RANDOM SEEDS

Neural networks initialized with different random seeds can converge to distinct representations (Li
et al., 2015; Morcos et al., 2018; Kornblith et al., 2019), even when their performance is comparable.
To study the impact of initialization seeds on the learned representations, we train the same BERT
model on YELP datasets with different seeds, with identical hyperparameters for a total of 27,000
iterations. As shown in Figure 19, while the learned representations vary across seeds, but the general
block structures remain consistent when analyzed using GW distances.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 16: Pairwise distances on YELP dataset, of layers across two different BERT models. TOP: Densely
fine-tuned BERT model vs fine-tuned BERT models with different sparsity levels. Bottom: Pretrained BERT
model vs fine-tuned BERT models with different sparsity levels.

N COMPUTER VISION APPLICATION: CIFAR-10 DATASETS

In addition to the attention-based architectures, we also test our approach on ResNet9, a popular
convolutional neural network architecture(He et al., 2016; Park et al., 2023). We compare a randomly
initialized ResNet9 and a trained model on CIFAR 10 image dataset CIFAR-10 (Krizhevsky et al.,
2009), achieving 91.63% accuracy on the test data. CIFAR-10 dataset consists of 60000 32x32 color
images in 10 image classes, with 6000 images per class. There are 50000 training images and 10000
testing images. The classes are completely mutually exclusive. ResNet is a convolutional neural
network with many residual connections. ResNet9 specifically contains 9 convolution layers, each
followed by BatchNorm and ReLU activation. The exact details of the ResNet 9 is listed in Table 3.

We show the pairwise distance of all layers in consideration using all methods, that can handle
difference dimensions of inputs, in Figure 20. The first column shows results from randomly
initialized pre-trained models, and the second columns shows results from the trained ResNet. Pre-
trained models generally do not show clear sub-network structures, while the trained models shows
differences across layers. RSA, RSM, and CKA show progressive changes over the network layers,
which is not too informative. AGW only shows the last a few layers contain significant changes, and
MSID distance does not contain clear patterns. In comparison, GW distance shows clear division of
3 or 4 subnetworks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 17: Pairwise distances on SST dataset, across different BERT models. Different Rows: Euclidean,
Cosine, Wasserstein, and the proposed GW distances, from top to bottom. Different columns: first column is the
pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and 95%
sparsity).
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(a) Pretrained (b) Dense (c) 25% Sparse (d) 70% Sparse (e) 95% Sparse

Figure 18: More Pairwise distances on SST dataset, across different BERT models. Different Rows: RSA, RSM,
CCA, CKA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is
the pre-trained BERT and the rest are fine tuned BERT models with increasing sparsity (dense, 25%, 70% and
95% sparsity).
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(a) Dense (b) 25% Sparse (c) 70% Sparse

Figure 19: Pairwise GW (layer) distances on Yelp, across BERT models trained with 3 different seeds. As one
can be seen, the (functional) sub-network blocks stay rather consistent with different seeds even though there is
some variations among the models.
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Figure 20: Pairwise (layer) distances on CIFAR-10, across different BERT models. Different Rows: RSA, RSM,
CKA, MSID, AGW, and the proposed GW distance, from top to bottom. Different columns: first column is the
pre-trained ResNet9 and 2nd columns are fine tuned ResNet model.
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